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 COMPLEMENTS TO HEAVY TRAFFIC LIMIT

 THEOREMS FOR THE GI/G/1 QUEUE

 WARD WHITT, Yale University

 Abstract

 A bound on the rate of convergence and sufficient conditions for the con-
 vergence of moments are obtained for the sequence of waiting times in the
 GI/G/1 queue when the traffic intensity is at the critical value p = 1.
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 1. Introduction

 This note provides two complements to heavy traffic limit theorems for the
 sequence of waiting times of successive customers in the standard GI/G/1 queue
 when the traffic intensity is at the critical value p = 1. In particular, we obtain a
 bound on the rate of convergence and a condition for convergence of moments.

 Since the sequence of waiting times { W,, n > 0} can also be viewed as a random
 walk with an impenetrable barrier at the origin, our results also apply to such
 random walks.

 The two theorems reported in Sections 3 and 4 here come from Sections 4.3 and

 4.8 of the author's doctoral dissertation [19] which was written under the direction
 of Donald L. Iglehart. A rather extensive survey of the heavy traffic literature was

 provided in Chapter 2 of [19] and will be updated in [22]. The first heavy traffic
 work was done by Kingman ((1961), (1965)), Prohorov (1963), and Borovkov
 ((1964), (1965)). Recent heavy traffic work in the context of the weak convergence

 theory for probability measures on function spaces has been done by Iglehart
 (1969), Iglehart and Whitt (1970a, b) and Whitt ((1969), (1970), (1971a, b)).
 Since we treat here only one of the many queueing processes in only one case of
 heavy traffic, much is yet to be done on the topics discussed in this note.

 2. Preliminaries

 Let u, represent the interarrival time between the nth and (n + 1)th customers;
 let v, represent the service time of the nth customer; let X, = u - u,, and let
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 186 WARD WHITT

 a2 = a2(X,) = a2(v) + a2(un), 0 < U2 < oc. Also assume the first (0th) customer
 arrives at t = 0, but the initial conditions are not critical for the heavy traffic
 limit theorems by virtue of Theorem 4.1 of Billingsley (1968) (cf. [19], Section 4.5).

 Theorem 2.1. In the GI/G/1 queue with p = 1 and a defined above
 x

 lim P{W. /an+ < x} = (2/7r)+ e '212dy, x ? 0 n-+oo 05, x < 0.

 The limiting distribution in Theorem 2.1 is the positive normal distribution

 which is known to be the weak convergence limit in R' of {((a2n)-maxOknlSk,

 n ?_ 1}, where So = 0 and Sk = Xo + "'" + Xk-1, k ? 1 (cf. Erd6s and Kac (1946)). Since Lindley (1952) and Pollaczek (1952) had observed that

 (2.1) P{W, _ x} = P ( max Sk ? x}
 for all x ? 0 and any n 2 0, Theorem 2.1 was established early. Theorem 2.1 was
 also obtained as a special case of more general results by Prohorov (1963).

 In [19] and [20] we obtained weak convergence generalizations of Theorem
 2.1 based on the relationship

 (2.2) W, = S, - min Sk, n 2 0,

 which holds everywhere instead of only in distribution. Let {(,} and {qn} be
 sequences of random functions induced in the function space D _ D[0, 1] by
 double sequences {S } and { W} corresponding to a sequence of single-server
 (not necessarily GI/G/1) queueing systems:

 (2.3) 5,(t) = Sft]I/'(n), O < t < i,
 and

 (2.4) r,(t) = W",]/ (n), 0 ? t ? 1.

 For background on weak convergence, see Billingsley (1968). As a consequence
 of the continuous mapping theorem (Theorem 5.1 of [1]), we proved (Theorem
 4.2 of [19] or Theorem 1 (i) of [20]) for arbitrary first-come-first-served single
 server queues (the i.i.d. assumptions may be relaxed):

 Theorem 2.2. Let be an arbitrary process in D[O, 1]. If ,, ~ >, then
 ', =:f(X), where f: D -, D is the uniformly continuous function, defined for any
 xeD by

 f(x)(t) = x(t) - inf x(s), O ? t ? 1.

 Using Donsker's theorem (Theorem 16.1 of [1]), we then immediately obtained
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 Theorem 2.3. If p = 1 in a GI/G/1 queue with a above and 0(n) = ant, then
 In zf( ) in D[O, 1], where f is defined in Theorem 2.2, ? is the Wiener process in

 D[O, 1], and f(?) is equivalent to the one-dimensional Bessel process 1 I.
 Theorem 2.1 can then be obtained as a corollary to Theorem 2.3 by applying

 the continuous mapping theorem with the projection at t = 1.

 3. Rate of convergence

 After having obtained limit theorems, it is natural to look next for asymptotic
 expansions, correction factors, and bounds on the rate of convergence. Prohorov
 ((1956), Chapter 4) has done some work in this direction for weak convergence
 theorems and Prohorov (1963) and Borovkov (1964) have done likewise for
 queues in heavy traffic, but it appears that much more needs to be done in this
 area. Here we give a bound on the rate of convergence in Theorem 2.1 which is
 obtained from Theorem 2.3 and recent results of Rosenkrantz (1968) and Heyde
 (1969).

 Rosenkrantz ((1968), Theorem 5) exploited the representation theorem of
 Skorohod (1965) to obtain a general theorem on the rates of convergence for
 functionals of the random functions in C[O, 1] associated with Donsker's theorem.
 Heyde (1969) sharpened the bound. We will not restate their theorem here. It
 leads to the following result.

 Theorem 3.1. In the GI/G/1 queue with p = 1, if E(I v, - un 2+a) = b, where
 0 < b < co and 0 < a, then there exists a constant A such that for all x 2 0 and

 n>0

 P{W /an < x} -(2I/n)- e'Y2/2 dy ? A(logn)-'n",

 where A = (1 + a /2)/(a + 3) < ? and p = min(a, 1 + a /2)/2(a + 3).

 Proof. Since the function f in Theorem 2.2 is uniformly continuous, it follows
 that the composite functional obtained by taking the projection at t = 1 is also
 uniformly continuous. The constant 2n(0), where n is the standard normal density,
 supplies the constant L for the Rosenkrantz-Heyde theorem, which is apparent
 from Theorem 2.1. Finally the queueing functional is the same for the linearly
 interpolated versions in C[0, 1] as it is for (2.3) and (2.4) in D[0, 1].

 Note that we can also obtain bounds on the rate of convergence for many other
 functions of the sequence of waiting times by considering the composition
 g of: C[O, 1] -+ R for uniformly continuous functions g: C[0O, 1] -+ R other than
 the projection at t = 1. For example, let

 (3.1) g(x) = sup x(t).

 Since g in (3.1) is uniformly continuous, Theorem 3.1 also applies to
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 (3.2) P{(n2 max Wk ? x} - P{ sup (t)l x} , 1:k<n 0<5t1

 where

 P { sup I(t) I x} = 1 - (4/ 1) [(- 1)k /(2k + 1)]
 0_<t< l k=1

 (3.3) exp{ - [712(2k + 1)2 /8x2]}.

 This provides a refinement of Theorem 9.1 of [9].

 4. Convergence of moments

 Since convergence in distribution does not by itself imply convergence of
 moments (cf. [6], p. 244), we need further conditions to imply that

 (4.1) E[( W, /an-)k] - E[(J((1)))k]
 as n -+ co. The standard tool is uniform integrability (cf. [1], p. 32), which we
 apply to prove the following theorem.

 Theorem 4.1. If EX2~ < OO in the GI/G/I1 queue with p = 1, then for all
 k < 2m,

 lim[(W n(3)...(2j - 1), k = 2j

 lir E[(W;,/Un?)k] n-.oo j 2j+ t(2n)-, k = 2j + 1.
 Proof. We obtain (W, /an')m J(?(1))m in R from Theorem 2.1 by once again

 applying the continuous mapping theorem, here with h: R -+ R defined by

 h(x) = x"'. By Theorem 5.4 of [1], it thus suffices to show that (W, /an-)m, n> 1,

 are uniformly integrable. From (2.2), W, < 2max1 k n Sk [, SO that
 (4.2) (W. an-L)m < (2/u)"' ( max I Sk I In)m.

 To show the uniform integrability of {max,1knl Sk 2"'/nm), we follow an argu-
 ment in the proof of Theorem 23.1 of [11].

 We begin by truncating the random variables in the sequence {X,, n ? 0}. Let

 (4.3) Xj =iX, X j
 0o, 9 X >J.

 Now consider for each j the sequence of random variables { Y,j, n > 0}, where

 (4.4) Y,,j = X,j- EX,.j.

 Observe that if S,j = Yoj + -"' + Y,-~1,j, then there exists a constant K(j) (depen-
 ding on j and m) such that E(S,4i) < K(j)n2m for n ? 1. This inequality is easily
 demonstrated by induction on m, using the fact that Y,j, are uniformly bounded
 and i.i.d. with mean 0 (cf. [4], p. 225). For any random variable Y,
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 (4.5) E,(Y) < a-1E(y2),
 where

 E,( Y) = > x IdF,(x),
 so that

 E,(n-m max ISki 1) a-1E(-2 max I Sj 14m)
 kin k:n

 (4.6) < - 4m 4m- 2mE(S4m)

 S 4m- 1JK j)

 the second to last step being a consequence of a submartingale inequality ([4],
 p. 317). Hence, for any fixed j,

 (4.7) lim sup E,(n-mmax I Skj 12m)= 0.
 a-+ 00 n k:n

 Now consider the sequence {Z,n} where Znj =Xn - Xnj + EXnj. Since
 X, = Ynj + Znj, there exists a constant M depending only on m (M ? 2m) such
 that

 (4.8) n-m max Sk 2m ? M (n-m maxj Skj j2m + -m max I D 2 IZm),
 k<n k=n k=n

 where Dkj = Zo- + --- + Zk-1,j. Now note that

 E,(n-mmax IDkjI2m) ? E(n-m maxlDkjl2m)
 kn kn

 < n-. 2m - 1) (4.9)

 (2m - 1 ) J)m

 < K"(j),

 where K"(j) is a is a constant only depending on j and m such that K"(j) -+0 as

 j -> co (because El Z,P ,-+ 0 as j -+ co, 1 < p < 2m). We have used the submar-
 tingale inequality again and the fact that Z,j are i.i.d. with mean 0 and

 E] Zn ]2m < 2 . Finally, from (4.6), (4.8), and (4.9), we have for all n ? 1

 (4.10) E,(n-mmax Sk j2n) < M 1))4m+ K"(j) . k n
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 190 WARD WHITT

 Hence, for any e > 0, we can choose i so that K" (j) is sufficiently small and
 then choose a sufficiently large, so that

 (4.11) sup E,(n-mmax Sk z2) < .
 nl1 kn

 Therefore, we have our desired result:

 (4.12) lim sup E,(n-"'max ISk 2m) = 0.
 S-+oX n21 k<n

 The moments are easy to evaluate. The even moments coincide with those of
 the normal distribution and the odd moments are related to the integral of the
 gamma distribution after the change of variables y = x2.

 5. Note added in proof

 Forthcoming work of Kennedy [10a] significantly extends Section 3.
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