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CONTINUITY OF GENERALIZED SEMI-MARKOV
PROCESSES*+
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It is shown that sequences of generalized semi-Markov processes converge in the sense of
weak convergence of random functions if associated sequences of defining elements (initial
distributions, transition functions and clock time distributions) converge. This continuity or
stability is used to obtain information about invariant probability measures. It is shown that
there exists an invariant probability measure for any finite-state generalized semi-Markov
process in which each clock time distribution has a continuous c.d.f. and a finite mean. For
generalized semi-Markov processes with unique invariant probability measures, sequences of
invariant probability measures converge when associated sequences of defining elements
converge. Hence, properties of invariant measures can be deduced from convenient approxi-
mations. For example, insensitivity properties established for special classes of generalized
semi-Markov processes by Schassberger (1977). (1978), Konig and Jansen (1976) and Burman
(1981) extend to a larger class of generalized semi-Markov processes.

1. Introduction and summary. Among the most promising stochastic processes for
modeling complex phenomena in operations research are the generalized semi-Markov
processes introduced by Matthes [19] and investigated further by Konig, Matthes and
Nawrotzki [15], [16], Konig and Jansen [17], Schassberger [23]-[25], Burman [6] and
Fossett [8]. A GSMP moves from state to state with the destination and duration of
each transition depending on which of several possible events associated with the
occupied state occurs first. Several different events compete for causing the next jump
and imposing their own particular jump distribution for determining the next state. An
ordinary SMP (semi-Markov process) is the special case in which there is only one
event associated with each state. At each transition of a GSMP, new events may be
scheduled. For each of these new events, a clock indicating the time until the event is
scheduled to occur is set by an independent chance mechanism. An event which is
scheduled but does not initiate a transition is either abandoned or it is associated with
the next state and its clock just continues running.

We think of a GSMP as a model of discrete-event simulation. A good example of a
GSMP is provided by the general multiple-heterogeneous-channel queue studied in
Iglehart and Whitt [11]. A state could be the number of customers in the system and
an indication of which servers are busy. Possible events associated with such a state
would be an arrival in one of the arrival channels or a service completion by one of the
occupied servers. With the usual independence assumptions and without any Markov
assumptions, as in [11], this representation yields a GSMP which is not a SMP.
Furthermore, this GSMP is not regenerative; there does not exist an embedded
renewal process. (This statement may be confusing, however, because after appending
appropriate supplementary variables to the GSMP we obtain an associated Markov
process, and recent results of Athreya, McDonald and Ney [1], [2], and Nummelin [21]
show that there will often exist a regenerative structure for this Markov process. At
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present, it does not seem possible to apply the regenerative approach in the full
generality of this paper or [11], but the regenerative approach can apparently be used
to obtain new proofs of the results in Konig, Matthes and Nawrotzki [15], [16]; some
of this has been done by Fossett [8].)

Other examples of GSMPs are given in the references. It will be apparent that a
GSMP provides a convenient representation for the familiar technique of supplemen-
tary variables; see Cox and Miller [7, §6.3]. However, modifications of the standard
definition can easily be introduced to extend the model beyond this setting. Even
applications to the setting of supplementary variables are significant. It is well known
that supplementary variables can be used to convert non-Markov processes into
Markov processes, but the resulting state space becomes so large that the general
theory of Markov processes does not contribute much. (However, the recent work in
[1], [2], and [21] indicates that the general theory has more to offer.) The idea behind
GSMPs 1s to exploit more of the structure than just the Markov property.

The purpose of this paper is to establish continuity or stability properties for
GSMPs. There is now a substantial literature on the continuity of stochastic models;
see [4], [9], [12]-[14], [26], [28], and references in these sources. Here we show that
sequences of GSMPs converge, in the sense of weak convergence of random functions,
if associated sequences of defining elements (initial distributions, transition functions
and clock time distributions) converge (Theorem 1). We apply the continuity to obtain
information about invariant probability measures. We show that there exists an
invariant probability measure for every finite-state generalized semi-Markov process in
which all clock time distributions have continuous c.d.f.’s and finite means (Theorem
2); this is an extension of a result proved by Konig, Matthes, and Nawrotzki [15, p. 15]
and [16, p. 381] by a different method. They assumed that the clock time distributions
have positive densities and that the GSMP is irreducible, but they also proved
uniqueness, which we do not.

We also show for GSMPs with unique invariant probability measures that sequences
of invariant probability measures associated with a sequence of these GSMPs converge
if associated sequences of defining elements converge (Theorem 3). This implies that
insensitivity properties deduced by Schassberger [23]-[25], Konig and Jansen [17] and
Burman {6] for special classes of GSMPs extend to the setting of this paper. The
insensitivity property extends to all invariant measures if the limiting GSMP has more
than one invariant measure. Our work was motivated by Schassberger’s announcement
of this open problem. While this work was being done (1975-1976), similar results
were also obtained independently by different methods by Hordijk and Schassberger
(10}

2. The definition via a discrete-time Markov process. We begin by defining a
GSMP in terms of a DTMP (discrete-time Markov process) which describes the
process at successive transition epochs. Let § and I be subsets of the positive integers.
We regard the elements s of S as possible states of the GSMP and the elements i of /
as indices of possible events that can occur. Let E be.a function mapping § into the set
of all finite subsets of /. We regard E(s) as the set of all events that can occur in state
5.

The system evolves from state s by having some event i € E(s) trigger a transition to
another state 5. Let p(s’;s,i) be the probability the new state is s° given that event /
triggers a transition in state s. We assume p(-;s,i) is a probability mass function on §
for each s € S and i € E(s). The actual triggering event i will depend on clocks
associated with the events in state s and speeds at which these clocks run. Let
R,=[0,cc)and RY =R,  XR, X -,

C;={cE€RY? :¢,>0if and only if i € E(s)) 1
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and r, € Ry with r, = 0 if i & E(s) for each s € S. The set C 15 the set of possible
clock readings in state s and r; is the (deterministic) rate clock i runs in state s. We
assume r,; > 0 for some / € E(s). When r, =0 for i € E(s), event / 15 regarded as
mnactive in state s. To avoid having two events simultaneously trigger a transition. we
focus attention on the set

Co=lce C ary ' # ey for i jwith ¢er,ry > 01, (2.2)

5 ijhsitsy f

Fors€ Sand c € C,, let

I*Et*(s.c)=inf{t >0: min {¢ - tr,} =0},
i€ E(s)

cr=cr(se)=c — t*r,, i€ E(s) (2.3)
i* = i*(s,c) =min{i € E(s) : c}(s5,¢)=0)}.

Our definition of /* would yield a unique triggering event even if ¢ were in C, instead
of C,, but for the continuity results we restrict attention to C,. The event i*(s,¢) is the
unique triggering event and *(s,c) is the interval between transitions beginning in
state s with clock vector c. At a transition from state s to state s’ triggered by event /.
new clock values are independently generated for each j € N, = N(s',s,i) = E(5") —
(E(s)— {i}). Let F(x;s', j,s.i) be the c.df. of such a new clock time. We assume
F(x;s', j,s,i) is continuous in x and F(0;s’, j,5,i) = 0 for each (s, j,s,i). For j €0,
=0(s",s,0)= E(s') N (E(s) — {i}), the old clock reading is kept after the transition,
ie., G = cj*(s, c). For j € (E(s) — {i}) — E(s'), event j ceases to be scheduled after the
transition, i.e., G is set equal to 0.

The DTMP has state space £ X R, where £ is the topological sum of {s} X C, for
s € S. Let the real line R have the usual topology and let all subsets have the relative
topology; let S and / have the discrete topology; and let all product spaces have the
product topology. It is easy to see that 2 X R with this topology is metrizable as a
complete separable metric space. (Use basic properties of Polish spaces; see Bourbaki
[5. p- 195].) We now define a Markov kernel K on 2 X R, by setting

K([s.c.t].A) = p(s's5,0%) EHN F(a,:s'.i,s.i*)_g Lo a(c¥)p(t + %) (2.4)

where
A=[sV X{cEC,:¢/<a,i€EE(S)} XB

with B a measurable subset of R, and 1, the indicator function of the set B. Since the
cdf’s F(-|s, j.s,i) are continuous, a legitimate Markov kernel on the state space
3 X R, is specified by (2.4); see Neveu [20, pp. 73, 162]. The continuity of the c.d.f.’s
is used here only to get K([s,c,1],Z X R, ) =1 for ali [s,c,1]. i.e., to guarantee that
(2.2) is preserved at each transition.

Let W(k)=[U(k),V(k), T(k)] be the coordinate random elements of the DTMP
determined by the Markov kernel in (2.4) and an initial random element W(0) =
[U(0), V(0),0]. (U(k) gives the state s, ¥'(k) gives the vector ¢ of clock readings and
T(k) gives the elapsed time at the epoch of the kth transition.) We assume that

P(supT(k)=oo| w(0)) =1 (2.5)
ki
for all initial random elements W(0). For example, (2.5) is satisfied if S is finite. Define

N by N(f) = max{k:T(k) < t},t > 0. Because of the regularity condition (2.5), N is a
random element of the function space D(R, , R): see Lindvall [18] or [27, §2]. Tt is also
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integer-valued and increases by unit jumps. Let X (1) = U(N(1)),

VAN = rxni(t = T(N(D))), i € E(X(1)),

=1, i g E(X(1),

(26)

and Z(1) = [X(¥), Y(?)], t > 0. The stochastic process X is calied the GSMP and the
process Z is the associated CTMP (cont nuous-time Markov process).

3. Continuity of the processes. In tiis section we establish the continuity of the
basic processes W (the DTMP) and 22 (the CTMP) as functions of the defining
elements: the initial random element W(0), the transition probabilities p(s’;s, i) and
the clock time c.d.f’s F(x;s, j,s,i). Within the framework of §2, the desired results
follow directly from results in the literature.

Let = denote weak convergence of random elements, probability measures and
c.d.f’s; see Billingsley [3]. Consider a sequence of GSMP’s indexed by n with common
sets I and S.

THeoreMm 1. If

(i) W,(0)= w(0),

(i) p,(s';5,0)> p(s'; 5,0) for all (s',s,i) € S* X I,

(i) F,(x;s, j,8,0)> F(x;5, j,s5,0) for all (5, j,5,0) € (S X IY and x ER,,
then W,=>Win (2 X R, ) and Z,= Z in D(R_,2).

Proor. We have noted that the state space Z X R, is metrizable as a complete
separable metric space, so we can apply Theorem 4 of Karr [12] to get W, = W. As a
consequence of S being discrete and Theorem 2.1 of [3], condition (4b) of [12] is
equivalent here to K,([s,c",t"], -)=> K([s, ¢, ), -) whenever (¢",t")—>(c,#) in C, X R,
for each s € 8, (see the remark following Theorem 4 in [12]) which is easily demon-
strated using (2.4). To treat the continuous-time processes, apply the continuous
mapping theorem in §5 of [3] together with Theorem 1 in the manner of Lemma 3.1 of
Kennedy [13] and Theorem 10 of Karr [12]. The overall continuous function here can
be obtained as the composition of several elementary continuous functions. The
continuity of (W, N) as a function of W holds because N is the inverse of 7 where
(2.5) holds and T, > 7, _, for all k. Then the continuity of Z as a function of (W,N)
is obtained from the definition in (2.6) by applying composition and addition. See [27]
for a more extensive study of these functions. #

4. Invariant probability measures. Consider an arbitrary CTMP {(¢),¢ > 0} with
sample paths in D(R,T) for every possible initial random element §(0), where I' is an
arbitrary complete separable metric space. Call a probability measure P on I' an
invariant probability measure for the CTMP § if £(¢) has distribution P for all >0
when £(0) is given the distribution P. Continuity can be a powerful tool for establishing
existence and other properties of invariant measures, as the next lemma illustrates.
{(Compare Theorem 6 of Karr [12]; notice that it does not apply.)

LEMMA 1. Let P, be an invariant probability measure for the CTMP (£,(1),t > 0} for
each n > 1. If §, =& in D(R,,T) whenever §,(0)= &(0) in T, then any weak convergent
limit point of the sequence { P,} is an invariant probability measure for &.

REMARKS. (i) Lemma 1 can be interpreted as saying that the set-valued mapping
that maps a CTMP in D(R,,T) into its set of invariant probability measures is
upper-semicontinuous.

(i) The condition involving weak convergence §, = ¢ with the Skorohod J, topology
on D(R_,T) can be replaced by weak convergence £,(¢)=£(¢) in T for each 7 in a
dense subset if £ is known to be right-continuous in probability; see the proof.
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Proor. Suppose P, = P on I for a subsequence { P} of { P,}. Let £,.(0) be given
the distribution P, and let £(0) be given the distribution P. Since §,(0)=£(0), §, = ¢ in
D(R_.T), which implies that §{ (1)=§&(7) in T for each 7 in a dense subset of [0, %0):
see [3, p. 124]. Since P, is invariant for §,, £,(¢) has distribution P, for each :.
Consequently, &(¢) has distribution P for each ¢ in the dense set where convergence
takes place. Since each sample path of £ is in D, the process £ is right continuous in
probability. Hence £(r) has distribution P for all 1 > 0. Consequently, P is invariant for
TR |

We now return to GSMPs. We apply an approximation by continuous-time Markov
chains with the results already established to obtain the following existence theorem
(extending a result in [15] and [16]).

THEOREM 2. There exists a proper invariant probability measure for any finite-state
GSMP in which each clock time c.d .f. F(-;5', j,s,i) is continuous and has a finite mean

w(s’, j',8,10).

PrOOF. We will represent the given GSMP as the limit in the sense of Theorem |
of a sequence of GSMPs known to have invariant probability measures. Then we will
show that any sequence of invariant probability measures, taking one for each n, has a
convergent subsequence. The limit of any such convergent subsequence is an invariant
probability measure for the original GSMP by Lemma 1.

We construct the nth GSMP in the converging sequence of GSMPs by approximat-
ing each clock time c.d.f. F = F(-;s, j,s,i) by a finite mixture of finite convolutions
of exponential c.d.f’s with common parameter n. Let G*(-) denote the c.d.f. of the
k-fold convolution of the exponential distribution with mean »n~'. Let

mk=F((k+ 1)/ny— F(k/n), 0<k<n a’=1- F(n)
and

n?
F(x)= kzow"’fc;,,"(x), x > 0. (4.1

It is well known (see for example {22, p. 32]) and not difficult to show that F, = F and
w, T as n—> oo, where p, is the mean of F,.

These specially constructed approximating GSMPs are convenient because they can
be represented in terms of continuous-time finite-state Markov chains. Instead of the
clock time, we keep track of the number of exponential phases remaining before the
clock expires. In particular, we can use the CTMC {[X(7), M(#)], ¢t > 0} where X (¢) is
the state of the GSMP and M(¢) is the vector with integer-valued coordinates which
records the number of exponential phases remaining before each scheduled event will
occur. Since the state space of the GSMP is finite and F, in (4.1) is a finite mixture, the
CTMC has a finite state space. Since every finite-state CTMC has an invariant
probability measure, the CTMC here does. This in turn implies that the associated
GSMP has an invariant probability measure on the space 2. The distribution of the
GSMP at any time 7 is obtained from the distribution of the CTMC at time ¢ by

P(X(t)=s,Y(t)EB) =2P(X(t) =s,M()=K)P(Y(:)EB|M(1)=k) (42)
k

where k is the vector of integers and the conditional probability is determined by (4.1).
Any invariant probability measure for (X, M) substituted into (4.2) immediately gives
an invariant probability measure for the GSMP.

To complete the proof by applying Lemma 1, it suffices to show that any sequence
of invariant probability measures { P,}, where P, is an invariant probability measure
for the GSMP associated with the nth CTMC, has a weakly convergent subsequence.
By, Prohorov’s theorem, [3, §6] it suffices to show that { P} is (uniformly) tight.

n
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The finite state space assumption is included to guarantee that any such sequence
{P,} is in fact tight, but an additional argument is needed: we must consider the clock
readings. Let K,, be the (finite) topological sum of {s} X (C, N[0,m]*) over all s € S.
Since S is finite and E(s) is finite for each s € S, the number of relevant coordinates in
C, € R? is finite. The set K, is clearly a compact subset of = for each m. Our goal is
to show that for each € > 0 there exists an m such that P, (K,,) > 1 — ¢ for all n. To
accomplish this goal, first let the initial distribution of the nth GSMP be P,, which
makes each GSMP a stationary process. We will get a handle on P, by looking at the
limiting fraction of time each clock reading is outside [0,m]. To see that this is
sufficient, let a(m,n, j) be the probability under P, that the clock associated with
event j reads more than m at any time, ie.,

a(m,n,j)=;P,,({s} X[Csﬂ'nj"((m,oo))]), (4.3)

where the summation is over {s € §: j€ E(s)} and m;: RY > R is the projection
onto the jth coordinate. Clearly

PAK) <SS a(mmj). (44)
SES JEE()
Since the sets S and E(s), s € S, are finite, it suffices to show that a(m,n, j)—0 as
m—> oo uniformly in n for each j. Now let 8(m.n, j,s’,i,s) be the probability under P,
that the clock associated with event j reads more than m and event j was initiated in
state s triggered by event i and followed by a transition to state s'. Clearly

a(mn, j)< X > > B(mn, j,si,s), (4.5)
sSeSseSieE(s)
so it suffices to show that B(m,n, j,s',i,5)=>0 as m— oo uniformly in n for each
quadruple (s, j,s, ).

Next let y(m,n, j,s',i,5) be the limsup as t —> oo of the fraction of time in [0, 7] that
the jth clock reading is in the set (m, o) and it was initiated by the quadruple
(s', j,5,i), under P,. To show B(m,n, j,s',i,5)—>0 as m— oo uniformly in #, it clearly
suffices to show that y(m,n, j,s',i,s)>0 w.p.l. as m— oo uniformly in n. Consider a
particular quadruple (s, j,s,7) corresponding to event j in state s* triggered by event i
in state 5. Over time a sequence of such clock readings are generated from the c.d.f.
F,(-:s, j,5,0). The successive clock readings generated are independent and identi-
cally distributed with this c.d.f. Also there typically will be periods in which the clock
reads O or the clock reading is initiated by a different quadruple. However, for each
sample path, y(m,n, j,s',i,s) would be larger if there were no idle periods for clock j
and all clock times were initiated by the quadruple (s, j, s, /). Hence, we can dominate
(in the sense of long-run averages) the given clock reading process by the forward
excess time process associated with the delayed renewal process based on P, and the
cdf. F,(-;5,j,5,0). Let R (s, j,s5,i) be the stationary forward excess of residual
lifetime variable associated with the renewal process with c.d.f. F,(-;s', j,s,i). We thus
obtain the bound

y(m.n, j.s',i,s) < P(R,(S, j,s,i) > m)

< u,;‘f”l— F (x5, j,5,i)dx (4.6)
m
which converges to 0 uniformly in n as m — co because { F,} is uniformly integrable.
Uniform integrability follows from F,=> F and g, — y; see [3, Theorem 54]. u
Now consider a sequence of finite-state GSMPs indexed by » > | with common
state and event spaces S and 1.
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THEOREM 3. Suppose

(1) p (578, D) pls'.s.0),

(i) F (x5, j,s.0)-> F(x:5, j.5.i). and

(ii1) p, (s, jos.0) > u(s’. j.5.0) < o0
for all (s'.j,s,i) £(S X 1Y and xER, . If the CTMP Z, has a unique invariani
probability measure P, for each n > I, then the sequence {P,} has a convergent
subsequence and every weak limit point of { P} is an invariant probability measure for the
limiting CTMP Z.

REMARKS. If the limiting CTMP Z has a unique invariant probability measure P.
then obviously P,= P in Theorem 3. By [16, p. 381], there is a unique invariant
probability measure for every irreducible finite-state GSMP in which all clock time
distributions have finite means and positive density functions. Theorem 3 thus extends
the insensitivity property deduced by Schassberger [23]-[25] beyond mixtures of
convolutions of exponential distributions. Similarly, the insensitivity of Konig and
Jansen {17] and Burman [6] extend to the setting of this paper. The insensitivity
property holds for all invariant probability measures associated with the limit process.

Proor. Construct a sequence of finite-state GSMPs generated by CTMCs indexed
by k converging to the nth GSMP for each # > | as in the proof of Theorem 2. Let
{P,.k > 1},n> 1, be associated sequences of invariant probability measures. Let .
n > 1, be limit points of these sequences, which exist and are invariant probability
measures for the nth GSMP by the proof of Theorem 2. Since we have assumed
uniqueness for each n > |, P, = P, and P,, = P, as k > oo for each n > 1. (This is the
only place where we use the uniqueness of P,.) Our object is to show that the sequence
{P,} has a convergent subsequence and that every limit point is an invariant
probability measure for Z.

As in the proof of Theorem 2, we can apply Theorem | and Lemma I here plus
Prohorov’s theorem to conclude that it suffices to show that the sequence { P, } is tight.
However, note that the sequence {P,} is contained in the closure of the double
sequence {P,.n > 1,k > 1}. By Theorem 2.1 (iii) of [3], it is easy to show that the
closure of a tight set of probability measures is again tight. Trivially, a subset of a tight
family is tight. Hence, in order to show that the sequence { P,} is tight, it suffices to
show that the double sequence { P,, } is tight. Now we are in the setting of CTMCs and
we can apply the argument used in the proof of Theorem 2. The analog of (4.6) goes to
0 uniformly in n and k by the same reasoning. We can obtain the double limits
F,=F and p, >y as n—>oo and k> oo as needed for uniform integrability by
choosing the sequence depending on k appropriately for each n. In particular, we can
have F, = F, and p,, — p, as kK — co uniformly in n.
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