Correction

Correction note on $L = \lambda W$

Ward Whitt

AT&T Bell Laboratories, Murray Hill, NJ 07974-0636, USA

Received 10 February 1992

The purpose of this note is to point out and correct a careless error in the proofs of theorems 2.1 and 2.2 in Whitt [6], which also appeared in Glynn and Whitt [1-3]. In particular, as pointed out by S. Stidham, Jr., the first inequality in (2.1) in [6] is not correct unless the service discipline is first-in first-out (FIFO). Of course, the relation $L = \lambda W$ does not actually depend on the FIFO condition. To obtain what was intended, simply replace D(t) in both (2.1) and the statement of theorem 2.1 of [6] by D'(t), where D'(t) counts the number of k such that $D'_k \leq t$ with $D'_k \equiv \max\{D_j: 1 \leq j \leq k\}$ as in (2.6) of [6]. Note that the complication of non-FIFO disciplines is accounted for in (2.6); this modification does the same for (2.1). Indeed, a variant of this modification is used in the more general setting in Glynn and Whitt [4]; see remark 5 and lemma 3 on p. 640 there. Moreover, proper modifications of (2.1) routinely appear elsewhere, such as in Stidham [5] and Wolff [7]. The use of D'_k and D'(t) is a conceptually simple approach.

The indicated modification of (2.1) in [6] is also needed in the proof of theorem 2.2 in [6] (which shows that the condition on D'(t) in the new statement of theorem 2.1 in [6] is actually not needed). This modification works because, first, $A_k \leq D_k \leq D_k'$ and $D'(t) \leq D(t) \leq A(t)$ and, second, $t^{-1}D'(t) \to \lambda$ as $t \to \infty$ if and only if $k^{-1}D_k' \to \lambda^{-1}$ as $k \to \infty$. (We use the fact that D_k' is nondecreasing in k here. In contrast, as noted in theorem 2(d) of [1], in general (without FIFO) the limit $k^{-1}D_k \to \lambda^{-1}$ as $k \to \infty$ implies, but is not implied by, the limit $t^{-1}D(t) \to \lambda$ as $t \to \infty$. The failure of the limit $t^{-1}D(t) \to \lambda$ as $t \to \infty$ to imply the limit $t^{-1}D_k \to \lambda^{-1}$ as $t \to \infty$ is the key reason for the asymmetry in theorem 2.2 of [6]; the second sentence of remark (2.2) in [6] confuses the issue.)

Unfortunately, even though this oversight concerning (2.1) in [6] does not appear in [4], it does appear in previous papers. This same error appears in the first inequality in theorem 1a, p. 196, of Glynn and Whitt [1], but not in the remainder term R(t) there; the proof of theorem 2(f) on p. 686 of Glynn and Whitt [2]; and (4.2) in the proof of (1.16) in theorem 3 on p. 704 of Glynn and

Whitt [3]. Fortunately, the error is easily corrected by the argument above in each case.

The relation among the relevant limits seems to be well summarized by theorem 2 of [1], with the understanding that part (b) should be augmented by the equivalent limit $t^{-1}D'(t) \to \lambda$ as $t \to \infty$. However, in [1] the assumption that the limits w and q be finite should be stated. Indeed, if $w = \infty$, then (viii) does not imply (iv) there, and theorem 1(e) is incorrect. (See remark 2.3 of [6].) Moreover, the last sentence on p. 199 of [1] should read: "The implication (viii) \to (ix) is provided by applying theorem 1(a) plus (b) and (d) above." Finally, D'(t) should appear instead of O(t) on top of p. 200, as well as in theorem 1(a) of [1].

References

- [1] P.W. Glynn and W. Whitt, A central-limit-theorem version of $L = \lambda W$, Queueing Systems 2 (1986) 191-215.
- [2] P.W. Glynn and W. Whitt, Ordinary CLT and WLLN versions of $L = \lambda W$, Math. Oper. Res. 13 (1988) 674-692.
- [3] P.W. Glynn and W. Whitt, An LIL version of $L = \lambda W$, Math. Oper. Res. 13 (1988) 693-710.
- [4] P.W. Glynn and W. Whitt, Extensions of the queueing relations $L = \lambda W$ and $H = \lambda G$, Oper. Res. 37 (1989) 634-644.
- [5] S. Stidham, Jr., A last word on $L = \lambda W$, Oper. Res. 22 (1974) 417–421.
- [6] W. Whitt, A review of $L = \lambda W$ and extensions, Queueing Systems 9 (1991) 235–268.
- [7] R.W. Wolff, Stochastic Modeling and the Theory of Queues (Prentice-Hall, Englewood Cliffs, NJ, 1989).