Chapter 12

The Space D

12.1. Introduction

This chapter is devoted to the function space D = D([0, T],R¥) with the
Skorohod M; topology, expanding upon the introduction in Sections 3.3 and
11.5 and the classic paper by Skorohod (1956). We omit most proofs here.
Many are provided in Chapter 6 of the Internet Supplement.

Here is how the present chapter is organized: We start in Section 12.2
by discussing regularity properties of the function space D. A key property,
which we frequently use, is the fact that any function in D can be approx-
imated uniformly closely by piecewise-constant functions with only finitely
many discontinuities.

In Section 12.3 we introduce the strong and weak versions of the M,
topology on D([0,T],R¥), referred to as SM; and W M;, and establish basic
properties. We also discuss the relation among the non-uniform Skorohod
topologies on D. In Section 12.4 we discuss local uniform convergence at
continuity points and relate it to oscillation functions used to characterize
different forms of convergence.

In Section 12.5 we provide several different alternative characterizations
of SM; and W M; convergence. Some involve parametric representations of
the completed graphs and others involve oscillation functions. It is signifi-
cant that there are forms of the oscillation-function characterizations that
involve considering one function argument ¢ at a time. Consequently, the
examples in Figure 11.2 tend to be more than illustrative: The topologies
are characterized by the local behavior in the neighborhood of single discon-
tinuities.

In Section 12.6 we discuss conditions that allow us to strengthen the
mode of convergence from W M; to SM;. The key condition is to have the
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472 CHAPTER 12. THE SPACE D

coordinate limit functions have no common discontinuities. In Section 12.7
we study how SM; convergence in D([0,T],R¥) can be characterized by
associated limits of mappings.

In Section 12.8 we exhibit a complete metric topologically equivalent to
the incomplete metric inducing the SM; topology introduced earlier. As
with the J; metric dj; in (3.2) of Section 3.3, the natural M; metric is
incomplete, but there exists a topologically equivalent complete metric, so
that D with the SM; topology is Polish (metrizable as a complete separable
metric space).

In Section 12.9 we discuss extensions of the SM; and W M; topologies
on D([0,T],RK) to corresponding spaces of functions with non-compact do-
mains. The principal example of such a non-compact domain is the interval
[0, 00), but (0,00) and (—o0,00) also arise.

In Section 12.10 we introduce the strong and weak versions of the My
topology, denoted by SMs and W Ms. In Section 12.11 we provide alterna-
tive characterizations of these topologies and discuss additional properties.

Finally, in Section 12.12 we discuss characterizations of compact subsets
of D using oscillation functions. These characterizations are useful because
they lead to characterizations of tightness for sequences of probability mea-
sures on D, which is a principal way to establish weak convergence of the
probability measures; see Section 11.6.

12.2. Regularity Properties of D

Let D = D¥ = D([0,T],R¥) be the set of all R¥-valued functions z =
(z',...,z%) on [0, T] that are right continuous at all ¢ € [0,T) and have left
limits at all ¢ € (0,T): If z € D, then

for0<t<T, =z(t+)= ligla:(s) exists with  z(t+) = z(t)
and
for0<t<T, z(t—)= 1;%11(8) exists .

However, with the M7 topology, we will be working with the completed
graphs of the functions, which are obtained by adding segments joining the
left and right limits to the graph at each discontinuity point. Thus the actual
value of the function at discontinuity points does not matter, provided that
the function value falls appropriately between the left and right limits. Such
functions are said to have discontinuities of the first kind. In Chapter 15 we
consider more general functions.
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We use superscripts to designate coordinate functions, so that subscripts
can index different functions in D. For example, x% denotes the second
coordinate function in D([0,T],R!) of z3 = (zi,...,2%) in D([0,T],R*),
where z3 is the third element of the sequence {z, : n > 1}. Let C be the
subset of continuous functions in D.

Let || - || be the maximum (or /) norm on R¥ and the uniform norm on
D; ie., for each b= (b',...,bF) € RF, let

= : 1
bl = mas. | (2.

and, for each z = (z!,...,z%) € D(]0,T],R¥), let

x|l = su z(t)|| = sup max |z*(¢)] . 2.2
(Ed] OgthH Ol 0§t£T1Si5k| (t)] (2.2)

The maximum norm on R¥ in (2.1) is topologically equivalent to the [, norm
k 1/p
18l = (Z(W”) :
i=1

For p = 2, the [, norm is the Euclidean (or l3) norm. For p = 1, the [,
norm is the sum ( or /1) norm. The uniform norm on D induces the uniform
metric on D.

We first discuss regularity properties of D due to the existence of limits.
Let Disc(z) be the set of discontinuities of z, i.e.,

Disc(z) ={t € (0,T] : z(t—) # z(t)} (2.3)
and let Disc(z,€) be the set of discontinuities of magnitude at least €, i.e.,
Disc(z,e) = {t € (0,T): ||z(t—) — z(t)]| > €} . (2.4)

The following is a key regularity property of D.

Theorem 12.2.1. (the number of discontinuities of a given size) For each
z € D and € > 0, Disc(z,€) is a finite subset of [0,T].

Corollary 12.2.1. (the number of discontinuities) For each z € D, Disc(x)
is either finite or countably infinite.
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We say that a function z in D is piecewise-constant if there are finitely
many time points ¢; such that 0 =ty <t < - <ty 1 <ty =T and z is
constant on the intervals [t;_1,%;), 1 <i <m —1, and [t;,—1,T]. Let D, be
the subset of piecewise-constant functions in D. Let v(z; A) be the modulus
of continuity of the function z over the set A, defined by

v(z; A) = . S;}Le)A{llﬂH(tl) — z(t2)} (2.5)

for A C [0,T]. The following is a second important regularity property of
D.

Theorem 12.2.2. (approximation by piecewise-constant functions) For each
z € D and € > 0, there exists x. € D, such that |z — z.| < e.

We can deduce other useful consequences from Theorem 12.2.2.

Corollary 12.2.2. (oscillation function property) For each x € D and € >
0, there exist finitely many points t; with0 =ty <t1 < - - <tpo1 <ty =T
such that v(z, [ti—1,t)) <€, 1 <i<m—1, and v(z, [t;—1,T]) <e.

Corollary 12.2.3. (boundedness) Each x in D is bounded, i.e., ||z| < oo.

Corollary 12.2.4. (measurability) Fach = in D is a Borel measurable real-
valued function on [0,T].

12.3. Strong and Weak M; Topologies

In this section we define strong and weak versions of the M; topology
on the function space D([0,T], R¥), denoted by SM; and W M;. The strong
topology agrees with the standard topology introduced by Skorohod (1956).
The strong and weak topologies coincide when k = 1 but differ for k£ > 1.
We will show that the weak topology coincides with the product topology.

We consider functions with domain [0, 7], but our results can be applied
to non-compact domains such as [0,00), if as is customary we understand
Ty, — x as n — oo in D([0,00),R¥) to mean that the restrictions of z, to
[0, T] converge to the restriction of z to [0,7] for all T' that are continuity
points of z. We discuss D([0, c0), R¥) further in Section 12.9.
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12.3.1. Definitions

The strong and weak topologies will be based on different notions of a
segment in R¥. For a = (a',...,ad%), b= (b',...,bF) € R¥, let [a,b] be the
standard segment, i.e.,

[a,b] ={aa+ (1 —a)b: 0 < a<1} (3.1)

and let [[a, b]] be the product segment, i.e.,

T

[[a,b]] = [a®,b'] = [al,b] x --- x [a¥,bF] , (3.2)

1

where the one-dimensional segment [a*, b°] coincides with the closed interval
[a® A B, at V bY], with ¢ A d = min{c,d} and ¢V d = max{c,d} for c,d € R.
Note that [a,b] and [[a,b]] are both subsets of R¥. If a = b, then [a,b] =
[[a,b]] = {a} = {b}; if a* # b’ for one and only one i, then [a,b] = [[a, b]].
If a # b, then [a,b] is always a one-dimensional line in R¥ while [[a, b]] is
a j-dimensional subset, where j is the number of coordinates ¢ for which
a® # b. Always, [a,b] C [[a, b]].

Remark 12.3.1. More general range spaces. We may want to consider the
space D with a more general range space than R¥. Generalizations of the M
topologies are restricted by the linear structure in the definition of segments
in (3.1) and (3.2). However, we can extend the M topologies to Banach-
space valued functions. We use that extension to treat the workload process
in the infinite-server queue in Section 10.3. =

We now define completed graphs of the functions: For x € D, let the
(standard) thin graph of x be

Ty ={(z,t) e RF x[0,T]: z € [x(t—),z(t)]}, (3.3)
where 2(0—) = z(0) and let the thick graph of = be

G = {(z0) €” x[0.7): 2 € [t-), (0]}
{(z,t) € R¥ x [0,T] : 2" € [z'(t—),z*(t)] for each i} (3.4)

for 1 <4 < k. Since [a,b] C [[a, b]] for all a,b € R¥, T, C G, for each z.
We now define order relations on the graphs I'; and G,. We say that
(Zl,tl) < (ZQ,tQ) if either (1) t1 < ty or (11) t1 = t9 and |.’L‘i(t1—) — Z“ <
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|z (t,—) — 24| for all 4. The relation < induces a total order on T, and a
partial order on G.

It is also convenient to look at the ranges of the functions. Let the thin
range of = be the projection of T'; onto R¥, i.e.,

p(Ty) ={z €RF : (2,t) €T, for some t€[0,T]} (3.5)
and let the thick range of x be the projection of G, onto R¥, i.e.,
p(Gy) ={z €R* : (2,t) € G for some t€[0,T]}. (3.6)

Note that (z,t) € 'y (G;) for some ¢ if and only if z € p(T'y) (p(Gz)). Thus
a pair (z,t) cannot be in a graph of z if z is not in the corresponding range.

We now define strong (standard) and weak parametric representations
based on these two kinds of graphs. A strong parametric representation of
is a continuous nondecreasing function (u, ) mapping [0, 1] onto I';. A weak
parametric representation of z is a continuous nondecreasing function (u,r)
mapping [0,1] into G such that 7(0) =0, 7(1) = T and u(1) = z(T). (For
the parametric representation, “nondecreasing” is with respect to the usual
order on the domain [0, 1] and the order on the graphs defined above.) Here it
is understood that u = (u!,...,u*) € C([0,1],R¥) is the spatial part of the
parametric representation, while » € C([0,1],[0,7]) is the time (domain)
part. Let II;(z) and IL,(xz) be the sets of strong and weak parametric
representations of z, respectively. For real-valued functions z, let II(z) =
I,(z) = I, (x). Note that (u,r) € I, (x) if and only if (u’,r) € II(z") for
1< <k.

We use the parametric representations to characterize the strong and
weak M topologies. As in (2.1) and (2.2), let || - || denote the supremum
norms in R¥ and D. We use the definition ||- || in (2.2) also for the RF-valued
functions v and r on [0, 1].

Now, for any z1,z2 € D, let

ds(z1,22) = inf - {flus —ugl| Vlre — |} (3.7)
(uj,rj)EMs(z;)
j=1,2

and
dw(II?l,.’L'Q) = inf ){||u1 — u2|| V ||r1 — 7‘2”} . (3.8)

(uj,r;) €My (x;
j=1,2

Note that ||u1 —usg||V||r1 —r2|| can also be written as ||(u1,71)— (ug, r2)||, due

to definitions (2.1) and (2.2). Of course, when the range is R, d; = d,, = dpr,

for dps, defined in (3.4) in Section 3.3.
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We say that z,, — = in D for a sequence or net {z,} in the SM; (W M;)
topology if ds(zn,z) = 0 (dw(zn,x) — 0) as n — oco. We start with the
following basic result.

12.3.2. Metric Properties

Theorem 12.3.1. (metric inducing SM;) ds is a metric on D.

Proof. Only the triangle inequality is difficult. By Lemma 12.3.2 below,
for any € > 0, a common parametric representation (us,r3) € II;(z3) can be
used to obtain

llur —us|| V ||r1 — r3|| < ds(z1,23) +€
and
|lug — us|| V ||re — r3|| < ds(z1,z3) +€

for some (u1,71) € I4(x1) and (ug,79) € I (z2). Hence
ds(z1,z2) < ||lur —ue|| V ||r1 — r2|| < ds(z1,z3) + ds(x3,22) + 2€ .

Since € was arbitrary, the proof is complete. =

To prove Theorem 12.3.1, we use finite approximations to the graphs
I';. We first define an order-consistent distance between a graph and a
finite subset. We use the notion of a finite ordered subset.

Definition 12.3.1. (order-consistent distance) For x € D, let A be a finite
ordered subset of the ordered graph (T'z, <), i.e., for some m > 1, A contains
m ~+ 1 points (z;,t;) from Ty such that

(2(0),0) = (20,t0) < (21,t1) <+++ < (2m,tm) = (2(T),T) . (3.9)

The order-consistent distance between A and I'y is

~

d(A,T') = sup{||(z, 1) — (zi,2)[| V (2, 8) = (zit1, tara)l} (3.10)

where the supremum is over all (z;,t;) € A, 1 <i<m—1, and all (z,t) € T
such that

(zirti) < (2,t) < (Zig1,tit1) »

using the order on the graph. =
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We now observe that finite ordered subsets A can be chosen to make
d(A,T,) arbitrarily small. The missing proofs are in the Internet Supple-
ment.

Lemma 12.3.1. (finite approximations to graphs) For any z € D and € >
0, there ezists a finite ordered subset A of T'y such that d(A,T;) < € for d
in (3.10).

To complete the proof of Theorem 12.3.1, we need the following result,
which we prove by applying Lemma 12.3.1.

Lemma 12.3.2. (flexibility in choice of parametric representations) For
any 1,22 € D, (u1,71) € Ug(xz1) and € > 0, it is possible to find (u9,m2) €
IIs(z2) such that

llur — uo|| V ||r1 — 72| < ds(z1,z2) + € -

We will show that the metric ds induces the standard M; topology de-
fined by Skorohod (1956); see Theorem 12.5.1. Since II;(z) C II,,(z) for all
z, we have dy,(z1,z2) < ds(z1,22) for all z1,z9, so that the WM; topol-
ogy is indeed weaker than the SM; topology. However, we show below in
Example 12.3.2 that d,, in (3.8) is not a metric when £ > 1.

For 1,72 € D([0,T],R*), let d, be a metric inducing the product topol-
ogy, defined by o

dy(z1,22) = lrél%xk d(z}, z%) (3.11)

for z; = (x;,,xf) and j = 1,2. (Note that d; = d,, = dp when the
functions are real valued, in which case we use the notation d.) It is an
easy consequence of (3.8), (3.11) and the second representation in (3.4) that
the WM, topology is stronger than the product topology, i.e., dy(z1,z2) <
dy(z1,x2) for all 21,29 € D. In Section 12.5 we will show that actually the
W M; and product topologies coincide.

We now show that SM; is strictly stronger than W M;. Let 14 denote
the indicator function of a set A; i.e., I4(t) = 1if ¢t € A and I4(t) = 0
otherwise.

Example 12.3.1. W M; convergence without SM; convergence. To show
that we can have dy(z,,z) — 0 as n — oo without ds(z,,z) — 0 as
n — oo, let z = (z',2?) € D([0,2],R?) be defined by z' = z? = 2I}; 5 and
let z} = 2I1_p—19) and T2 = Ity _p-11y + 211 5). The thin range of z is the
set {(0,0),(2,2)} plus the line segment [(0,0),(2,2)] connecting those two
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points, while the thin range of z,, is the set {(0,0),(2,1),(2,2)} plus the
line segments [(0,0), (2,1)] and [(2,1), (2,2)]. Since (2,1) € I'y,, for all n but
(2,1) ¢ T'y, we must have ds(zp,z) /4 0 as n — o0o. On the other hand, the
thick ranges of z and z,, n > 1 all are [0,2] x [0,2]. To demonstrate that
dy(zn,z) — 0 as n — 00, we construct suitable parametric representations.
Let

r(0) =0, r(1/3) =1=7r(2/3), r(1) =2

m(0) =0, ro(1/3) =1 —n"' =r (1 —n"1)/2),
(L +n71)/2) =1 =7r,(2/3), ra(1) =2
ut(0) =0 =u!(1/3), u(1/2) =2 ='(1)
U (0) = 0= up(1/3), up((1 —n"1)/2) =2 = uy(1)
u?(0) = 0 = w*(1/3), w*(1/2) = 1, w*(2/3) = 2 = v*(1)
un(0) = 0 =up(1/3), up((1—n"1)/2) =1 =up((1 +n"1)/2),

u?(2/3) =2 = u2(1)

with 7, 7, u!, ul, u?, u2 defined by linear interpolation in the gaps. With

this construction, (un,rn) € Iy (z,) and (u,r) € Hy(z), ||rp — 7| = n 71,
|lut —ul|| = 60! and ||u? — u?|| = 3n~!. Hence,

do(n, ) < [t —ul| V|rm —7]| =607 -0 as n—-o00. =

Example 12.3.2. d,, is not a metric. We now show that d,, in (3.8) is not
a metric. For this purpose, we use a minor modification of Example 12.3.1.
Let 2! = 22 = 2111 9] as before. For even 7, let zh = 21 _p-19) and T2 =
Iy p-1,1)+21}; 9] as before. Then let T3,.1 = 23, and 23, ., = z5,. We show
that dy(Ton, Ton+1) 7 0 as n — oo even though d,(z,,z) — 0 as n — oo,
contradicting the triangle inequality property of a metric. The thick range of
zy is ([0, 2] %[0, 1])U({2} x[1, 2]) for n even and ([0, 1] %[0, 2])U([1, 2] x{2}) for
n odd. The points (2,1) and (1,2) appear for n even and odd, respectively,
but are distance 1 from the other thick range. Any parametric representation
must pass through (2,1,1—n"1) in R? x [0, 2] for n even and (1,2,1—n"1!) for
n odd. However, for n odd (n even) all points on G, are at least a distance
1 from (2,1,1 —n~ 1) ((1,2,1 — n~!)). This example shows that we cannot
find a constant K such that dy(z1,z2) < Kdp(z1,22) for all 1,20 € D. =

We now relate the metrics dys, = ds and dy, for dj, in (3.2) of Section
3.3.
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Theorem 12.3.2. (comparison of J; and M; metrics) For each x1,z9 € D,
ds(w1,72) < djy (71,72)

Remark 12.3.2. Uses of the My topology. The M; topology has not been
used extensively. It was used by Whitt (1971b, 1980, 2000b), Wichura
(1974), Avram and Taqqu (1989, 1992), Kella and Whitt (1990), Chen
and Whitt (1993), Mandelbaum and Massey (1995), Harrison and Williams
(1996), Puhalskii and Whitt (1997, 1998), Resnick and van der Berg (2000),
O’Brien (2000) and no doubt a few others. =

12.3.3. Properties of Parametric Representations

We conclude this section by further discussing strong parametric repre-
sentations. We first indicate how to construct a parametric representation
(u,r) of T’y for any x € D.

Remark 12.3.3. How to construct a parametric representation. Let t;,
j > 1, be a list of the discontinuity points of z (of which there are finitely
or countably infinite many). For each j, select a subinterval [a;, b;] C [0,1]
and let r(s) = t; for a; < s < bj, u(a;) = z(t;—), u(b;) = z(¢;) and u(aa; +
(1—a)bj) = au(a;) + (1—a)u(bj), 0 < a < 1. For successive discontinuities,
do this in an order-preserving way; i.e., if t; < t; < tj, then we require that
b; < aj < bj < ag. Let this be done for all j. Next, suppose that ¢ is not
a discontinuity point but is the limit of discontinuity points. If ¢; | ¢ as
j — oo where t; € Disc(z), then let r(a) = t and u(a) = limj_,o z(¢;—),
where a = lim;_, a; with r(a;) = t;. Similarly, if¢; 1 ¢ as j — oo wheret; €
Disc(z), then let r(b) = t and w(b) = limj_,o z(t;), where b = lim;_, b;
with r(b;) = t;. Finally, there may remain open intervals (a,b) over which
(u,r) is undefined. Since (u,r) is already defined at the endpoints a and b, let
r(aa+(1—a)b) = ar(a)+(1—a)r(b) and u(aa+(1—a)b) = z(r(aa+(1—a)b)
for 0 < a < 1. This construction makes (u,r) a one-to-one function. This
construction also makes r a generalization of piecewise linear; i.e., there are
finite or countably many subintervals [a;,b;] over which r is constant and
there are finite or countably many intervals (bg,a) over which r is linear.
The union of all those points (where r is constant or linear) is dense in [0, 1].
The function r is extended to all other points by continuity. =

Remark 12.3.4. Parametric representations need not be one-to-one. We
do not require that a parametric representation be a one-to-one function. For
example, even if z is continuous at ¢, we could have r(s) =t for a < s < b.
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Then, necessarily, u(s) = z(t), a < s < b. However, we get the same metric
if the parametric representations (u,r) are required to be one-to-one with r
nondecreasing, e.g., as done by Wichura (1974); see Remark 12.5.2 in Section
5. Skorohod (1956) only originally required that r be nondecreasing instead
of (u,r), without the one-to-one property, in his Definitions 2.2.4 and 2.2.5.
However, from his remarks after 2.2.5, it is evident that he meant to require
that (u,r) be nondecreasing as we have defined it. As stated, Skorohod’s
version of the M; topology with only r nondecreasing is actually the M,
topology. =

Example 12.3.3. Need for monotonicity. To see the importance of requir-
ing that the parametric representation be nondecreasing, using the order
on the graphs, let z = Ipj g, 2p(1) = zn(1 —2n7') = 2,(2) = 1 and
7,(0) = 2,(1 - 3n"!) = 2,(1 —n~!) = 0, with z,, defined by linear interpo-
lation elsewhere. For these functions, z,, — = as n — oo in the Ms topology
but not in the M; topology. If we did not require that parametric repre-
sentations of £ be nondecreasing in our M; definitions, then we would have
T, — x as n — oo in the M; topology. To see this, we exhibit parametric
representations. Let u, = u, n > 4, and let

r(0) =0, r(1/5) =r(4/5) =1, r(1) =2

u(0) = u(1/5) = u(3/5) =0, u(2/5) =u(4/5) =u(2) =1

m(0) =0, 7(1/5) =1 —=3n"", r,(2/5) =1—2n"",

r(3/5) =1—n"1, ry(4/5) =1, rp(1) = 2
with r,u, 7, and u, defined by linear interpolation elsewhere. It is easy to
see that (un,ry) € s(zy), and ||(un,mn) — (u,7)|| = |lrn — r|| = 3n~1, but
(u,r) & Tl4(x) because (u,r) fails to be nondecreasing, since it backtracks

on the graph at ¢ = 1. If r were only required to be nondecreasing, then we
would have (u,r) € II5(z). =

We now continue characterizing parametric representations. For =z € D,
t € Disc(z) and (u,r) € Is(z), there exists a unique pair of points s; =
si(t,z) and s, = s,(t,z) such that s; < s, and 7 *({t}) = [s;, 5,], i.e.,
(i) r(s) <t for s < s (3.12)
(ii) r(s) =t for s; < s < sy
(iii) 7(s) > t for s > s, .

We will exploit the fact that a parametric representation (u,r) in IIs(z)
is jump consistent: for each t € Disc(z) and pair s; = si(t,z) < 8, =
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sr(t,z) such that (3.12) holds, there is a continuous nondecreasing function
B¢ mapping [0, 1] onto [0, 1] such that

) = (2L Yuts) + 1= (22 ute) tor wss <o
S — 8 S — 81
(3.13)
Condition (3.13) means that u is defined within jumps by interpolation from
the definition at the endpoints s; and s,., consistently over all coordinates.
In particular, suppose that ¢ € Disc(z"). (Since t € Disc(z), we must have
t € Disc(z') for some coordinate i.) Suppose that z'(t—) < (). Then we

can let (o) (o)
u'(s) —u'(s
Bi(s) = % .
ut(sr) — u'(s1)
We see that (3.13) and (3.14) are consistent in that

ui(s) = By ( i ) ui(sy) + [1 —~ B ( — )] ui(s1) (3.15)

Sy — 81 Sr — 81

(3.14)

for B, in (3.14). For another coordinate j, (3.13) and (3.14) imply that

u(s) = (—Ui(s) —w(s) ) w? (s,) + (—u.i(sr) — u.i(s) ) W(s) .  (3.16)

u'(sr) — u'(s1) u(sr) — u'(sy)

It is possible that ¢ & Disc(z’), in which case u/(s) = u/(s;) = u/(s,) for all
s, 851 <5< s,

We can further characterize the behavior of a strong parametric represen-
tation at a discontinuity point. For z € D, t € Disc(z) and (u,r) € I (z),
there exists a unique set of four points s; = s,(¢,z) < 57 = sj(t,z) < s, =
sh(t,z) < s, = s,(t,z) such that (3.12) holds and

(i) u(s) = u(sy) for s; < s < g,
(ii) for each i, either u’(s;) < u'(s) < u'(s,),
or u'(s;) > u'(s) > u'(s,) for s) < s < s,
(iii) u(s) = u(s,) for 5. < s < s, . (3.17)
Let D; be the subset of D containing functions all of whose jumps occur
in only one coordinate, i.e., the set of z such that, for each ¢ € Disc(x) there

exists one and only one i = i(t) such that ¢ € Disc(z’). (The coordinate i
may depend on ¢.)

Lemma 12.3.3. (strong and weak parametric representations coincide on
D,) For each z € Dy, I (z) = I, ().
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We now show that parametric representations are preserved under linear
functions of the coordinates when z € II;(z). That is not true in I, (z).

Lemma 12.3.4. (linear functions of parametric representations) If (u,r) €
Iy(z), then (qu,r) € T4(nz) for any n € RE,

12.4. Local Uniform Convergence at Continuity Points

In this section we provide alternative characterizations of local uniform
convergence at continuity points of a limit function. The non-uniform Sko-
rohod topologies on D all imply local uniform convergence at continuity
points of a limit function. They differ by their behavior at discontinuity
points.

We first observe that pointwise convergence is weaker than local uniform
convergence.

Example 12.4.1. Pointwise convergence is weaker than local uniform con-
vergence. To see that pointwise convergence in D at all continuity points
of the limit is strictly weaker than local uniform convergence at continuity
points of the limit, let z(t) = 0, 0 <t <2, and z, = Ijj4p-1,142n-1), 1 > 1.
Then z,(t) — z(t) = 0 as n — oo for all ¢, but z,(1 +n71) =1 4 0 as
n — o0, so we do not have local uniform convergence at t = 1. We also do
not have z, — x as n — oo in D in any of the Skorohod topologies. =

We start by defining two basic uniform-distance functions.
For z1,29 € D, t € [0,T] and 6 > 0, let

u(z1,xo,t,0) = sup {l|lz1(t1) — z2(t)|} » (4.1)
0V(t—0)<t1 <(t+0)AT

v(z1,%9,t,0) = sup {l|z1(t1) — z2(t2)||} » (4.2)
OV(t—0)<t1,t2 <(t+0)AT

We also define an oscillation function. For x € D, t € [0,T] and § > 0, let

o(z,t,0) = sup {llz(t1) —z ()} - (4.3)
OV(t—8)<t1 <ta <(t+0)AT

We next define oscillation functions that we will use with the M; topolo-
gies. They use the distance ||z — A|| between a point z and a subset A in
R* defined in (5.3) in Section 11.5. The SM; and W M; topologies use the
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standard and product segments in (3.1) and (3.2). Foreach z € D, t € [0, T
and § > 0, let

ws(z,t,6) = sup {llz(t2) — [z(t1), z(t3)]l (4.4)
OV (t—0)<t1 <ta<tz<(t+0)AT
and
Wi (2,1,0) = sup {llz(t2) — [[z(t0), =@l (4.5)

0V (t—0)<t1<ta<ts<(t+0)AT

We now turn to the M, topology, which we will be studying in Sections
12.10 and 12.11. We define two uniform-distance functions. We use w as
opposed to w to denote an M, uniform-distance function. Just as with the
M; topologies, the SMs and W My topologies use the standard and product
segments in (3.1) and (3.2). For z1, zo € D, let

Wy (21,22, t,0) = sup {llz1(t1) — [z2(t=), 22D} (4.6)
0V(t—0)<t1 <(t+0)AT

Wy (71, T2, t,6) = sup {llz1(t1) — [[w2 (=), z2 (NI} (4.7)
OV (t—8) <ty <(t4+0)AT

It is easy to establish the following relations among the uniform-distance
and oscillation functions.

Lemma 12.4.1. (inequalities for uniform-distance and oscillation functions)
For all z,z, € D, t € [0,T] and 6 > 0,

u(xn’x7 t7 6) S ’U(IEn,IE,t, 6) S u(l‘n’x7 t7 6) + ’6($7 t’ 6) ?

ww(xnataé) S ws(znataé) S 6($n7t75) S 2U(.€En,$,t, 5) + ’l_J(.’L',t,(S) ’
Wy (T, T, 1, 0) < Ws(Tp, 2,t,0) < v(Tp,x,t,0) < 2Wy(Tp,x,t,0) + 9(x,t,0) .

Since the Mj-oscillation functions ws(zy,t,d) and wy(zy,t,d) do not
contain the limit z, their convergence to 0 as n — oo and then § | 0
does not directly imply local uniform convergence at a continuity point of a
prospective limit function z.

Example 12.4.2. Characterizations of local uniform convergence at conti-
nuity points. We show that it is possible to have ¢t € Disc(x), x,(t) — z(t)
as n — oo and

lim lim w,(zy,t,6) =0
00 nooo o(@n )
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without having

lim lim v(z,,z,t,6) =0.

510 n oo (@n )
That occurs for t = 1 when z(t) =0, 0 <t <2, and z, = Ij11p-19, n > 1.
In this example, we have v(z,t,6) = 0 and ws(z,,t,d) = 0 for all n, ¢ and
0 >0, but v(zp,z,1,0) =1forn>1/6. =

We relate convergence of wg(z)n,t,d) and wy(x,,t,0) to 0 as n — oo
and § | 0 to local uniform convergence by requiring pointwise convergence
in a neighborhood of ¢; see (vi) in Theorem 12.4.1 below.

Theorem 12.4.1. (characterizations of local uniform convergence at con-
tinuity points) If t € Disc(x), then the following are equivalent:

(4) lim lim u(z,,z,t,6) =0, (4.8)
0 nooo

(%) lim lim v(zp,z,t,0) =0, (4.9)
00 psoo

(44i)  lim lLim wg(zy,z,t,6) =0, (4.10)
0 pnooo

(iv)  lim lim Wy (%n,,t,6) =0, (4.11)
0 nooo

(v) zn(t1) — z(t1) for all t1 in a dense subset of a neighborhood of t
(including 0 if t =0 or T ift =T) and

lim lim wy(z,,t,6) =0,
010 nooo s(@n )

(vi) xn(t1) — z(t1) for all t1 in a dense subset of a neighborhood of t
(including 0 if t =0 or T if t =T) and
lim lim wy(z,,t,6) =0 . (4.12)

010 nooo

We now show that local uniform convergence at all points in a compact
interval implies uniform convergence over the compact interval.

Lemma 12.4.2. (local uniform convergence everywhere in a compact in-
terval) If (4.8) holds for all t € [a,b], then

lim lim sup {llzn(t) —z@)||} =0 .
N0 nsoo 0V(a—8)<t<(b+8)AT
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12.5. Alternative Characterizations of M; Convergence

We now give alternative characterizations of SM; and W M; conver-
gence.

12.5.1. SM; Convergence

We first give several alternative characterizations of SM;j-convergence
(or, equivalently, ds-convergence) in D, one being a minor variant of the
original one involving an oscillation function established by Skorohod (1956).
Another one — (v) below — involves only the local behavior of the functions.
It helps us establish sufficient conditions to have dg((zy, yn), (z,y)) — 0 in
D([0,T), R when dy(xp,z) — 0 in D([0,T],R*) and ds(yn,y) — 0 in
D([0,T],R'); see Section 12.6. For the SM; topology, we define another
oscillation function. For any x1,z9 € D and § > 0, let

ws(z,8) = Oiltg)Tws(m,t,é) ) (5.1)

for ws(z,t,0) in (4.4). We include the proof here, except for the supporting
lemmas, which are proved in the Internet Supplement.

Theorem 12.5.1. (characterizations of SM; convergence) The following

are equivalent characterizations of convergence x, — T as n — 00 in
(D,SM):

(i) For any (u,r) € Ils(x), there ezxists (up,rn) € s(zy), n > 1, such
that
lun —ul| V|rn—7|| >0 as n—oo. (5.2)

(ii) There exist (u,r) € Is(z) and (un,ry) € Us(zy) for n > 1 such that
(5.2) holds.

(iii) ds(zpn,z) — 0 as n — oo; i.e., for all € > 0 and all sufficiently large
n, there ezxist (u,r) € ls(z) and (up,ry) € ls(zy) such that

[t —ull V[lrn — 7]l <e.
(v) zn(t) = z(t) as n — oo for each t in a dense subset of [0,T] including
0 and T, and
lim lim wg(z,,d) =0 (5.3)

0 nsoo

for ws(z,8) in (5.1) and wy(z,t,0) in (4.4).
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(v) z,(T) = z(T) as n — oo; for each t ¢ Disc(z),

lim lim v(xp,z,t,0) =0 (5.4)

00 nsoo

for v(z1,x9,t,0) in (4.2); and, for each t € Disc(x),

lim lim ws(zy,,t,0) =0 (5.5)

00 peo

for ws(z,t,0) in (4.4).

(vi) For all € > 0, , there exist integers m and ny, a finite ordered subset
A of Ty of cardinality m as in (3.9) and, for all n > n;p, finite or-
dered subsets A, of I';, of cardinality m such that, for all n > nq,
d(A,T;) <€, d(A,,Ty,) <€ for d in (3.10) and d*(A, A,) < €, where

d*(A,An) = max {H(Zi;ti)_(zn,i;tn,i)n : (zi,ti) € A, (Zn,i,tn,z') € An}.
(5.6)

In preparation for the proof of Theorem 12.5.1, we establish some pre-
liminary results. We first show that SM; convergence implies local uniform
convergence at all continuity points.

Lemma 12.5.1. (local uniform convergence) If ds(z,,z) — 0 as n — oo,
then (4.9) holds for each t ¢ Disc(x).

We next relate the modulus wy applied to z and the modulus applied to
corresponding points on the graph I';. The following lemma is established
in the proof of Skorohod’s (1956) 2.4.1.

Lemma 12.5.2. (extending the modulus from a function to its graph) If
(Zl,tl), (Zg,tg), (Z3,t3) eIy with OV (t — 5) <t <ta <ty < (t + 5) AT,
then ||z — [z1, z3]|| < ws(z,9).

Lemma 12.5.3. (asymptotic negligibility of the modulus) For any = € D,
ws(z,6) L 0 as 6 | 0.
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Proof of Theorem 12.5.1. The implications (i)—(ii)—(iii) are trivial.
We establish the others exploiting transitivity.

(iii)—(iv). First, the convergence x,(T") — z(T') is assumed directly. Next,
by Lemma 12.5.1, if dy(zp,z) — 0 as n — oo, then z,(t) — z(t) for all
t € Disc(z)¢, which is a dense subset of [0,7]. We now want to show that,
for any € > 0, there exists ng and ¢ such that ws(z,,d) < € for all n > nyg.
For x € D and € > 0 given, start by choosing 1 so that ws(z,n) < €/2,
which we can do by Lemma 12.5.3. Then apply (iii) to choose ng so that
(un,rn) € Us(zy), (u,r) € lg(x) and

lun —ul| V||rn —7]| < (eAn)/4 for n>mng.
Suppose that (t —6) VO < t; < to <t3 < (t+6) AT. Let s,; be such

that 7, (sp i) = t; and up(sp;) = zn(t;) for ¢ = 1,2,3 and all n. Then, apply
Lemma 12.5.2 to obtain, for n > ny,

[0 (t2) = [#a(t1), 2 ()] [[un (sn,2) = [tn (8n1); un (3n,3)]l]
[w(sn,2) — [u(sn,1), ulsn3)lll + 2[lun — ull
ws (2,0 +2(n A €)/4)) +2((n A€)/4)

ws(z,6 +(n/2)) +¢/2,

INIA A

so that, for § < n/2 and n > ng, ws(zy,d) < e.

(iv)—(vi). First, for e > 0 given, apply (iv) to find < €/16 and ng such
that ws(zn,n) < €/32 for n > ng. Next find a finite set A of points (z;, t;)
in I'; with

(3:(0)’0) = (zlatl) < (ZQ’tQ) <---< (zmatm) = (:E(T),T) )

using the order defined on T', below (3.3), where for each i, either t; €
Disc(z,€/2) or t; € S, with Disc(z,€e/2) being as in (2.4) and S being a
subset of [0,7] including 0, 7" and the points in Disc(z,€/2)¢ at which z,
converges pointwise to z. Use the left and right limits of z to include in
A for each t € Disc(z,€/2) points t' = t/(t) and ¢ = t"(¢) in S such that
t' <t <t" t is greater than all elements of Disc(z,e/2) less than ¢, ¢ is
less than all elements of Disc(xz,€/2) greater than ¢, [t' —¢t| <n, [t" —t| <,
lz(t') — z(t—)|| < €/32 and ||z(t") — z(t)|| < €/32. In addition, assume that
|tiy1 —t;| < nfor alli and d(A,T;) < €/2, for which we apply Lemma 12.3.1.
Moreover, if t € Disc(z,€/2) and

tT < tT‘+1 =t= tT‘-}—Q == tT‘-}—j < t7-+j+1 ) (57)
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then we require that ||z, 1 —z(t—)|| > €/4, || 2r+j—z(t)|| > €/4 and || 2y 4541 —
Zryi|| > €/4 for all i, 1 < i < j — 1. Since d(A4,T';) < €/2, we also have the
upper bound ||z, 4+i+1 — Zr44l| < €/2. For t; € SN A, let z; = z(t;). Now, for
all t; € SN A, let n1 > ng be s uch that ||z, () — z(t;)|| < €/32 for all 7 and
n > ny, using (iv). We now want to construct the subset A, of I';, . First
for all t; € SN A, let (2, tni) = (zn(ti),ti). Now we consider time points
in Disc(z,€/2). By the construction above, given (5.7),

[l (tr), 2(trtj+0)] = [2alte), 2altryjra)]ll < €/32

and
[[z(tr), z(tr;41)] — [#(t—), z()]]| < €/32 . (5.8)

Since wg(zn,n) < €/32, for each (r,4) there is a point (2p r+4i, tnrti) € Iz,
such that

|Znrti — 2r4ill < 3€/32 and |tp,4i—t| <1 <€/l6. (5.9)

Moreover, we must have (zprtit1,tnrt+it1) > (Zngtirtnrti) for 0 < i <
Jj. For ¢« = 0 and 7 = j, we can conclude that ¢, < ¢t < #,y;41. For
other 7, a reversal of order can occur only if ws(zy,t,1) > €/16 because the
construction implies that ||z, r1i+1 — Znr+il| > €/16, but that is prohibited
by the condition that ws(z,,t,m7) < €/32. Hence, the set of points A,
is ordered properly. Moreover, the construction yields d*(A, A4,) < ¢/16.
Finally, it remains to bound d(A,,T,, ) for n > n;. Consider (z,,t,) such
that (2n4,tn:) < (Zn,tn) < (Zni+1,tn,it1)- Since ||zn; — 2] < 3¢/32 for all
i and ||zip1 — 2| < d(A,Ty) < €/2, |Zni+1 — #n,l| < 5€/8 by the triangle
inequality. Since ws(zn,n) < €/32, invoking Lemma 12.5.2, we have

||(Zn, tn) - [(zn,z'a tn,i)a (zn,i—l—l; tn,z’—|—1)] || < 6/32 ’

so that
lzn — 2nill V ||2n — zn,it1]] < 21€/32 <€

and |tn; — tnitr1] < 2n < €/8. Hence az(An,I‘wn) < € for n > nq, so that the
proof is complete.

(vi)—(i). Suppose that the conditions in (vi) hold and € > 0 is given.
Let (u,r) € Is(z) and (un,r,) € Hs(z,), n > 1, be arbitrary paramet-
ric representations. Let s1 = 0 < s3 < -+ < 8, = 1l and 5,1 = 0 <
Sp2 < +++ < Spm = 1 be points such that (u(s;),r(s;)) = (zi,ti) € A and
(un(Sn,i)sTn(sni)) = (Znirtng) € Ay for 1 < i < m. Let A, : [0,1] — [0, 1]
be a continuous nondecreasing function such that A,(s;) = s, for each i
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and n. We will show that (u, o A,, 7, o A,) is a parametric representation
of I'y,, for each n such that

|unoAn —u| V]rnodn —7| <3¢ for n>mn;. (5.10)

Property (5.10) holds because, for s; < s < s;11, A(8i) = Sni < Ap(s) <
Sn,i+1 = An(Si+1) and

[un © An(s) = u(s)[| V [Irn o An(s) — r(s)||
< H(un o /\n(s)arn o )\n(s)) - (un(sn,i)aTn(sn,i))|| \% “(un © An(s)a"‘n o An(s))
= (un(snit1),n(Sni1)) |
+ [l(u(s),r(s)) = (u(se), r(sa)ll V I(u(s),7(s)) = (ulsit1), 7(si41))ll
+ (un(sn,i)sTn(sna)) — (u(si)sr(si))ll
< d(Ap,Ty,) +d(A,Ty) +d* (4, An) < 3e.

(v)—(iv). First, the convergence z,(T) — z(T) is assumed directly. Next,
(5.4) implies that z,(t) — z(t) as n — oo for each ¢ ¢ Disc(z). Since
[0,T]— Disc(z) is a dense subset of [0, 7], the first part of (iv) is established.
Condition (5.4) also implies that (5.5) holds for each ¢ ¢ Disc(z) by Theorem
12.4.1. Finally, we show that (5.5) for each ¢ € [0, 7] implies (5.3). Condition
(5.5) for each ¢ implies that for each ¢ > 0 and ¢, there is § = 4(¢) and
n(t, e, 6) such that wy(x,,t,0) < e for all n > n(t,€,d). Now suppose that
(5.3) does not hold. Then there must exist € > 0 such that for all § > 0
there is a sequence {¢;} of points in [0, 7] and a sequence of integers n such
that ny — oo and wy(zp,,tk,d/2) > € for all k. However, the sequence {t;}
has a subsequence {t,} with tx; — t € [0,T] as k; — oo. Thus, for all k;
suitably large,

Wy (mnkj ,t,0) > "US(xnkj ) tnkj ,0/2) > €,

which is a contradiction, so that (5.3) must in fact hold.
(iii)+(iv)—(v). By Lemma 12.5.1, (iii) implies (5.4) for each ¢ € Disc(z)°.
Trivially, (iv) implies (5.3), which in turn implies (5.5). =

Remark 12.5.1. Connection to Skorohod (1956). Part (iv) of Theorem
12.5.1 is essentially Skorohod’s (1956) original characterization, established
in his 2.4.1. Instead of (5.1) with (4.4), Skorohod (1956) actually considered
(5.1) with ws(z,t,d) replaced by

wy(z,t,0) = sup {llz(®) — [z(t), z(@3)]l} . (5.11)
OV (t—8) <ty <t<t3<(t+6)AT
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but when the supremum over ¢ € [0, 7] is applied, ws and w!, are equivalent.
In particular, clearly w(z,t,d) < ws(z,t,d) for each t. On the other hand, if
ws(z,t,8) > e for all ¢, then w(z,t,2d) > € for all . Hence (iv) is equivalent
to Skorohod’s original characterization. We have introduced ws(z,t,d) in
(4.4) in order to get characterization (v) in Theorem 12.5.1. We cannot use
Skorohod’s (5.11) instead of (4.4) in characterization (v) in Theorem 12.5.1,
because it does not rule out multiple large oscillations on the same side of
t. =

Remark 12.5.2. Possibility of using one-to-one parametric representations.
The proof of the implication (vi)—(i) shows that the SM; topology is un-
altered if all the parametric representations are required to be one-to-one
functions from [0,1] onto the graph. In the proof we would then let the
transformations A, be homeomorphisms of [0, 1], so that (u, o Ay, 7, © \p)
become one-to-one functions. =

We can apply Theorem 12.5.1 to develop a simple criterion for M; con-
vergence for monotone functions.

Corollary 12.5.1. (the case of monotone functions) If z,, is monotone for
each n, then ds(zp,x) — 0 for x € D if and only if z,(t) — z(t) for all t in
a dense subset of [0,T] including 0 and T

Proof. Apply Theorem 12.5.1 (iv). Note that condition (5.3) always holds
for monotone functions. =

12.5.2. WM, Convergence

We now establish an analog of Theorem 12.5.1 for the W M; topology.
Several alternative characterizations of W M; convergence will follow directly
from Theorem 12.5.1 because we will show that convergence z, — x as
n — oo in WM is equivalent to d,(zy,z) — 0. To treat the WM topology,
we define another oscillation function. Let

wy(z,0) = sup wy(z,t,0) (5.12)
0<t<T

for wy,(z,t,0) in (4.5). Recall that wy,(z,t,0) in (4.5) is the same as ws(z, t, §)
in (4.4) except it has the product segment [[z(t1),z(t3)]] in (3.2) instead of
the standard segment [z(¢1), z(t3)] in (3.1).
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Paralleling Definition 12.3.1, let an ordered subset A of G, of cardinality
m be such that (3.9) holds, but now with the order being the order on G,.
Paralleling (3.10), let the order-consistent distance between A and G5 be

d(4,Gy) = sup{[|(z,t) = (21, 1) |V | (2,) = (zi1, B || £ (2,8) € G} (5.13)
with the supremum being over all (z,t) € G, such that (z;,t;) < (z,¢) <
(zig1,tiy1) foralld, 1 <7 <m—1.

Theorem 12.5.2. (characterizations of W M; convergence) The following
are equivalent characterizations of T, — x as n — oo in (D, W M;):

(i) dy(zn,z) = 0 as n — 0.
(1) dp(zn,z) = 0 as n — oo.

(11i) zn(t) — z(t) as n — oo for each t in a dense subset of [0,T] including
0 and T, and
lim lim wy(z,,0) =0 . (5.14)

0 nooo

(iv) zp(T) — x(T) as n — oo; for each t & Disc(x),
%iin lim v(zy,,t,0) =0 (5.15)

n—o0

for v(zp,x,t,0) in (4.2); and, for each t € Disc(x),
lim lim wy(zy,t,6) =0 (5.16)

0 nsoo
for wy(zn,t,d) in (4.5).

(v) for all € > 0 and all n sufficiently large, there exist finite ordered
subsets A of Gy (in general depending on n) and A, of Gy, of common
cardinality such that d(A,G,) < €, d(An,Gy,) < € and d*(A, A,) < €
for d in (5.13) and d* in (5.6).

Example 12.5.1. Need for changing parametric representations. In gen-
eral, there is no analog of characterizations (i) and (ii) in Theorem 12.5.1 for
the parametric representations in IT,,(x) and I1,(x,); i.e., if dy(zn,z) = 0
as n — 00, there need not exist (u,r) € I, (z) and (up, ) € Iy(zy) such
that (5.2) holds. To see this, let ! = z? = I 9, Thpiq = T3y = Iji_n-19]
and 73,1 = 73, = Itiin-19 for n > 2. Property (i) of Theorem 12.5.2
holds, but different parametric representations of x are needed for even and
oddn. =
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12.6. Strengthening the Mode of Convergence

In this section we apply the characterizations of M; convergence in Sec-
tions 12.3 and 12.5 to establish conditions under which the mode of conver-
gence can be strengthened: We seek conditions under which W M; conver-
gence can be replaced by SM; convergence. We use the following Lemma.

Lemma 12.6.1. (modulus bound for (z,,,)) For z,, € D([0,T],RF), y,,y €
D([0,T],R'), t € [0,T] and § > 0,

ws(($nayn)at; 5) < ws(a:n,t, 5) + ZU(yn,y,t, 5) .

Theorem 12.6.1. (extending SM; convergence to product spaces) Suppose
that ds(zn,z) — 0 in D([0,T),R*) and ds(yn,y) — 0 in D([0,T],R!) as
n — 00. If

Disc(z) N Disc(y) = ¢.

then
ds((TnsYn), (z,9)) = 0 in D([0,T],R*) as n — oo.

Proof. We use characterization (v) in Theorem 12.5.1. First, for each
t & Disc((x,y)), t € Disc(x) U Disc(y), (5.4) holds and

lim lim v(yn,y,6,t) =0, (6.1)

00 neo

which implies that

lim Lim v((zn,yn), (2,9),6,t) =0 .

0 nooo

Now, for each ¢ € Disc(z), (5.5) and (6.1) hold (because Disc(z)NDisc(y) =
¢). Thus, for those ¢, by Lemma 12.6.1,

lim lim ws((zn,yn),t,0) =0 . (6.2)

010 nooo

By the same reasoning (6.2) also holds for each ¢ € Disc(y), so that (6.2)
holds for all t € Disc((z,y)) = Disc(z) U Disc(y). =
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Remark 12.6.1. The discontinuity condition is not necessary. The dis-
continuity condition Disc(z) N Disc(y) = ¢ in Theorem 12.6.1 is not nec-
essary. To see that, note that if z, — x as n — oo in D([0,T],R¥), then
(Tn,Tn) — (z,2) as n — oo in D([0,T],R?*). However, some condition
is needed, as can be seen from the fact that the W M; topology is strictly
weaker than the SM; topology on D([0,T],R¥) for k > 1, as shown by
Example 12.3.1. =

Remark 12.6.2. The J; and Ms analogs. Analogs of Theorem 12.6.1 hold
in the J; and M, topologies. For Ji, see Propositions 2.1 (a) and 2.2 (b) on
p. 301 of Jacod and Shiryaev (1987). For Mj, see Theorem 12.11.3 below.

As in Lemma 12.3.3, let D; = D; ([0, T], R¥) be the subset of z in D with
discontinuities in only one coordinate at a time; i.e., z € Dy if 2*(t—) # ' (¥)
for at most one coordinate 7 for each ¢. (The coordinate i = i(¢) may depend
upon t.)

Corollary 12.6.1. (from W M; convergence to SM; convergence when the
limit is in D) If dp(zn,xz) = 0 as n — oo and = € Dy, then ds(z,,z) — 0.

Example 12.3.3 shows that it is not enough to have x € D, in Corollary
12.6.1.

12.7. Characterizing Convergence with Mappings

The strong topology SM; differs from the weak topology W M; by the
behavior of linear functions of the coordinates. Example 12.3.1 shows that
linear functions of the coordinates are not continuous in the product topol-
ogy (there (z} — z2) 4 (' — 2?) as n — o0), but they are in the strong
topology, as we now show. Note that there is no subscript on d on the left
in (7.1) below because 7z is real valued.

Theorem 12.7.1. (Lipschitz property of linear functions of the coordinate
functions) For any 1, z2 € D([0,T],R*) and n € R,

d(nzy,nze) < ([0l v 1)ds(z1,22) - (7.1)

Example 12.7.1. Difficulties with the weak topology. To see that (nz,t)
need not be an element of Iy, when (2,t) € G, and that (nu, ) need not be
an element of II(nz) when (u,r) € IL,(z), let ' = % = Iy 5 and consider
nxr = ' — z2. The flexibility allowed by G, allows (z,t) € G with nz # 0
and (u,r) € II,(z) with u(s) #0. =
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We now obtain a sufficient condition for addition to be continuous on
(D,ds)x (D, ds), which is analogous to the .J; result in Theorem 4.1 of Whitt
(1980).

Corollary 12.7.1. (SM;-continuity of addition) If ds(zn,z) — 0 and ds(yn,y) —
0 in D([0,T],R¥) and

Disc(z) N Disc(y) = ¢,

then
ds(@n + yn,z +y) = 0 in D([0,T],RF).

Proof. First apply Theorem 12.6.1 to get ds((zn,¥n),(z,y)) — 0 in
D([0,T],R?*). Then apply Theorem 12.7.1. =

Remark 12.7.1. Measurability of addition. The measurability of addition
on (D,ds) x (D,ds) holds because the Borel o-field coincides with the Kol-
mogorov o-field. It also follows from part of the proof of Theorem 4.1 of
Whitt (1980). =

In Theorem 12.7.1 we showed that linear functions of the coordinates
are Lipschitz in the SM; metric. We now apply Theorem 12.5.1 to show
that convergence in the SM; topology is characterized by convergence of all
such linear functions of the coordinates.

Theorem 12.7.2. (characterization of SM; convergence by convergence of
all linear functions) There is convergence z,, — z in D([0,T],R¥) as n — oo
in the SM; topology if and only if nz, — nz in D([0,T],R!) as n — oo in
the M, topology for all n € RF.

We can get convergence of sums under more general conditions than in
Corollary 12.7.1. It suffices to have the jumps of z* and y* have common
sign for all 7. We can express this property by the condition

(#*(t) — 2'(t=)) (W' () — ' (t=)) > 0 (7.2)
forallt, 0 <t <T,andalli, 1 <i<k.

Theorem 12.7.3. (continuity of addition at limits with jumps of common
sign) If t, — x and y, — y in D([0,T],RE, SM;) and if condition (7.2)
above holds, then

Tn+yn—x+y in D(0,T],RF,SM)) .
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Proof. Apply the characterization of SM; convergence in Theorem 12.5.1
(v). At points ¢ in Disc(z)°N Disc(y)€, use the local uniform convergence in
Lemma 12.5.1 and Corollary 12.11.1. For other ¢ not in Disc(z) N Disc(y),
use Theorem 12.6.1. For t € Disc(z) N Disc(y), exploit condition (7.2) to
deduce that, for all € > 0, there exists 6 and ng such that

’U)s(-Tn +ynat,6) S ws(xn,t,é) + ws(yn’t’ 5) +e

foralln >ng. =

In Sections (2.2.7)-(2.2.13) of Skorohod (1956), convenient characteri-
zations of convergence in each topology are given for real-valued functions.
We can apply Theorem 12.7.2 to develop associated characterizations for
RF-valued functions. For each z € D([0,T],R!), 0 < t; < to < T and, for

each a <bin R, let vf;?h (z) be the number of visits to the strip [a, b] on the
interval [t1,t2]; i.e., Ufl’?t2 () = k if it is possible to find &k (but not k + 1)

points ¢} such that ¢; <t} < --- <t} <ty such that either
‘T(tl) € [CI,, b]a x(tll) ¢ [a,b]a w(t’2) € [CI,, b]a Ty

$(t1) ¢ [av b]7 x(tll) € [aab]a w(tIQ) g [aa b]" v

We say that z € D([0,7],R) has a local mazimum (minimum) value at
t relative to (t1,t2) in (0,T) if t1 < ¢t < t2 and either
(i) sup{z(s) :t1 <s<to} <z(t) (inf{z(s):t; <s<to}>z(t))
or
(ii)) sup{z(s) :t1 < s <to} <z(t—) (inf{z(s):t1 <s<ty)}>z(t—)).

We say that x has a local mazimum (minimum) value at t if it has a local
maximum (minimum) value at ¢ relative to some interval (¢1,%2) with ¢; <
t < to. We call local maximum and minimum values local extreme values.

Lemma 12.7.1. (local extreme values) Any z € D([0,T],R) has at most
countably many local extreme values.

If b is not a local extreme value of x, then z crosses level b whenever x
hits b; i.e., if b is not a local extreme value and if z(t) = b or z(t—) = b, then
for every t1, to with ¢; < ¢ < to there exist ¢}, t), with t; < ¢}, t, < ¢ such
that z(t}) < b and z(¢}) > b. This property implies the following lemma.
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Lemma 12.7.2. Consider an interval [t1,t] with 0 < t1 < to < T. If
z(t;) € {a,b} for i = 1,2 and a,b are not local extreme values of x, then z

crosses one of the levels a and b at each of the U?I,?b (x) visits to the strip
[a, b] in [t1, t2].

Theorem 12.7.4. (characterization of SM; convergence in terms of con-
vergence of number of visits to strips) There is convergence ds(zp,x) — 0
as n — oo in D([0,T],RF) if and only if

b b
U?f,tz (nzy) — ’Ugl”h (nz) as n — oo

for all n € R*, all points t1,to € {T} U Disc(x)® with t; < ty and almost all
a, b with respect to Lebesgue measure.

12.8. Topological Completeness

In this section we exhibit a complete metric topologically equivalent to
the incomplete metric d; in (3.7) inducing the SM; topology. Since a prod-
uct metric defined as in (3.11) inherits the completeness of the component
metrics, we also succeed in constructing complete metrics inducing the as-
sociated product topology. We make no use of the complete metrics beyond
showing that the topology is topologically complete. Another approach to
topological completeness would be to show that D is homeomorphic to a G
subset of a complete metric space, as noted in Section 11.2.

In our construction of complete metrics, we follow the argument used by
Prohorov (1956, Appendix 1) to show that the J; topology is topologically
complete; we incorporate an oscillation function into the metric. For M,
we use ws(z,d) in (5.1). Since ws(z,d) — 0 as § — 0 for each z € D, we
need to appropriately “inflate” differences for small §. For this purpose, let

ws(z,e?), z<0
Ws(z,z) = (8.1)
ws(z,1), 2z>1.

Since wg(z,d) is nondecreasing in ¢, ws(z, z) is nondecreasing in z. Note
that ws(z,z) as a function of z has the form of a cumulative distribution
function (cdf) of a finite measure. On such cdf’s, the Lévy metric A is known
to be a complete metric inducing the topology of pointwise convergence at
all continuity points of the limit; i.e.,

AP, Fy) =inf{e >0: Fo(x —€) —e < Fi(z) < Fo(z +€) +€} . (8.2)
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The Helly selection theorem, p. 267 of Feller (1971), can be used to show
that the metric A is complete.
Thus, our new metric is

dy(x1,22) = dg(z1,72) + MNabs (21, -), Ws (22, -)) - (8.3)

Theorem 12.8.1. (a complete SM; metric) The metric d, on D in (8.3)
is complete and topologically equivalent to ds.

Example 12.8.1. The counterexample for ds is not fundamental under dy.
Recall that Example 12.10.1 was used to show that the metric d; is not
complete. That example has z, = Ijj 14,-1), so that ds(zm,zs) — 0 as
m,n — oo, i.e., the sequence {z,} is fundamental for d; even though it
does not converge. Note that ws(zn,d) = 1 for § > 1/2n and ws(zy,d) =
0 otherwise. Hence, ws(zy,,2) = 1 for z > log(1/2n) = —log(2n) and
Ws(Tp, z) = 0 otherwise. Note that ws(zy, ) corresponds to the cdf of a unit
point mass at —log(2n). Consequently, dy(zm,z,) /4 0 as m,n — co.

Remark 12.8.1. An alternative complete metric. An alternative complete
metric topologically equivalent to d; is

dl(z1,32) = my(z1,2) + N(s(71, ), s (72,)) (8.4)

where mg = dpy, is the My metric in (5.4) of Section 11.5. That is actually
what Prohorov did for J; (with w, in (8.4) replaced by the J; oscillation
function). =

12.9. Non-Compact Domains

It is often convenient to consider the function space D([0, o), R¥) with
domain [0, 0o) instead of [0, T"]. More generally, we may consider the function
space D(I,RF), where I is a subinterval of the real line. Common cases
besides [0, 00) are (0,00) and (—o0,00) = R.

Given the function space D(I,RF) for any subinterval I, we define con-
vergence z, — = with some topology to be convergence in D([a, b], R¥) with
that same topology for the restrictions of x, and = to the compact inter-
val [a,b] for all points a and b that are elements of I and either boundary
points of I or are continuity points of the limit function z. For example, for
I = [c,d) with —o0 < ¢ < d < 00, we include a = ¢ but exclude b = d; for
I = [¢,d], we include both ¢ and d.
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For simplicity, we henceforth consider only the special case in which
I =[0,00). In that setting, we can equivalently define convergence z, — x
as n — oo in D([0,00), R¥) with some topology to be convergence z, —
as n — oo in D([0,],R¥) with that topology for the restrictions of x,, and
z to [0,t] for ¢ = t; for each t; in some sequence {tx} with ¢, — oo as
k — oo, where {tx} can depend on z. It suffices to let ¢; be continuity
points of the limit function z; for the J; topology, see Stone (1963), Lindvall
(1973), Whitt (1980) and Jacod and Shiryaev (1987). We will discuss only
the SM; topology here, but the discussion applies to the other non-uniform
topologies as well. We also will omit most proofs.

As a first step, we consider the case of closed bounded intervals [t1, t2].
The space D([t1,t2], R¥) is essentially the same as (homeomorphic to) the
space D([0,T],R*) already studied, but we want to look at the behavior
as we change the interval [t1,%2]. For [ts,t4] C [t1,t2], we consider the
restriction of = in D([t1,t2], R¥) to [t3,t4], defined by

Ttz,tq - D([tlatQ]’Rk) — D([t3at4]a]Rk)

with 74, 4,(2)(t) = z(t) for t3 < t < t4. Let dy, 4, be the metric d; on
D([t1,ts], R¥). We want to relate the distance dy, 1, (%1, 72) and convergence
di, 4o (Tn,z) — 0 as n — oo for different domains. We first state a result
enabling us to go from the domains [t1, o] and [to, t3] to [t1,t3] when ¢ <
1o < t3.

Lemma 12.9.1. (metric bounds) For 0 < t; < ty < t3 and x1, o €
D([tlat3]aRk)7
Aty t3(T1,T2) < diy 1, (T1,T2) V dyy 15 (71, T2) -

We now observe that there is an equivalence of convergence provided
that the internal boundary point is a continuity point of the limit function.

Lemma 12.9.2. For 0 < t; < ty < t3 and =, z, € D([t1,t3],R¥), with
to € Disc(x), diy t3(xn,z) = 0 as n — oo if and only if dy, 1,(zn,z) = 0
and dy, 4, (zn,z) = 0 as n — oco.

For z € D([0,T],RF) and 0 < t; < tp < T, let 7, 4, : D([0,T],RF) —
D([t1,t],R¥) be the restriction map, defined by 4, 4,(z)(s) = z(s), t; <
s < to.

Corollary 12.9.1. (continuity of restriction maps) If z, = = as n — o©
in D([0,T],RF, SMy) and if t1,ts € Disc(z)®, then

Tt te(Tn) = Ty 1, (T) as n— 00 in D([tl,tg],Rk,SMl) ;
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Let r; : D([0,00), R¥) — D([0, 1], R¥) be the restriction map with r;(z)(s) =
z(s), 0 < s < t. Suppose that f : D([0,00),R¥) — D(]0,00),R¥) and
f: : D([0,%],R*¥) — D([0,t],R*) for ¢ > 0 are functions with

fi(re(z)) = re(f ()

for all z € D([0,00),R¥) and all ¢ > 0. We then call the functions f;
restrictions of the function f.

Theorem 12.9.1. (continuity from continuous restrictions) Suppose that
f : D([0,00),R¥) — D([0,00),R!) has continuous restrictions f; with some
topology for all t > 0. Then f itself is continuous in that topology.

We now consider the extension of Lipschitz properties to subsets of
D([0,00),R¥). TFor this purpose, suppose that p; is one of the M; met-
rics on D([0,#],R¥) for ¢ > 0. As in Section 2 of Whitt(1980), an associated
metric g can be defined on D([0, 00), R¥) by

p(zi,z2) = /000 e ug(re(z1), re(x2)) A 1]dt. (9.1)

The following result implies that the integral in (9.1) is well defined.

Theorem 12.9.2. (regularity of the metric u:(z1,x2) as a function of t) Let
e be one of the My metrics on D([0,t],RF). For all 1,z € D(]0,00), RF),
pt(z1,z2) as a function of t is right-continuous with left limits in (0,00) and
has a right limit at 0. Moreover, p;(x1,x2) is continuous at t > 0 whenever
x1 and xo are both continuous at t.

We also have the following result, paralleling Lemma, 2.2 and Theorem
2.5 of Whitt (1980). For (#i7), we exploit Theorem 12.5.1 ().

Theorem 12.9.3. (characterizations of SM; convergence with domain [0, 00))
Suppose that p and py, t > 0 are the SMy (or W My) metrics on D([0, oc), RF)
and D([0,t],R¥). Then the following are equivalent for z and z,, n > 1, in
D([0,00), RF).

(i) w(zn,z) = 0 as n — oo;

(1) pi(ri(zn),r(x)) = 0 as n — oo for all t & Disc(z);
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(i7i) there ezist parametric representations (u,r) and (un,ry,) of T and x,
mapping [0,00) into the graphs such that

lun —ulle Vrn =7l =0 as n— o0
for each t > 0.

We now show that the Lipschitz property extends from D([0,], R¥) to
D([0,00), R¥).

Theorem 12.9.4. (functions with Lipschitz restrictions are Lipschitz) If a
function

f: D(]0,00),R¥) — D([0, 00), R)

has restrictions

fi : D([0,T),R¥) — D([0, T], R¥)
satisfying

pi (fr(re(21)), fe(re(xa))) < Kpy(re(w1),re(z2))  for all ¢>0,

where K is independent of t, then
p2(f(@1), f(22)) < (K V 1)p' (21, 22).

Proof. By (9.1) and the conditions,

R fa)) = " e R (o (1), e f(22))) A 1t
- /0 e (), fulra(a))) A 1dt
< [ e Koo (o) Al

0

< KV [ e ubrulon),rem)) At

< (KVv1)pt(z,zs). =

12.10. Strong and Weak M, Topologies

We now define strong and weak versions of Skorohod’s M2 topology. In
Section 12.11 we will show that it is possible to define the M> topologies
by a minor modification of the definitions in Section 12.3, in particular, by
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simply using parametric representations in which only r is nondecreasing
instead of (u,r), but now we will use Skorohod’s (1956) original approach,
and relate it to the Hausdorff metric on the space of graphs.

The weak topology will be defined just like the strong, except it will use
the thick graphs G, instead of the thin graphs I';. In particular, let

ps(z1,22) = sup inf ~ {[|(21,11) — (22,12} (10.1)
(21,t1)€Ty, (22:t2) €Ty

and

prw(T1,22) = sup inf  {||(z1,t1) — (22,22)|} - (10.2)
(zlatl)EGml (227t2)€Gw2

Following Skorohod (1956), we say that z, — = as n — oo for a sequence
or net {z,} in the strong M, topology, denoted by SM; if ps(zy,,z) — 0
as n — oo. Paralleling that, we say that x, — = as n — oo in the weak
M, topology, denoted by W Mo, if py(zy,,2z) — 0 as n — oo. We say that
T, — T as n — oo in the product topology if us(z%, z*) — 0 (or equivalently
(72, 7%) — 0) as n — oo for each i, 1 < i < k.

We can also generate the SMy and W M, topologies using the Hausdorff
metric in (5.2) of Section 11.5. As in (5.4) in Section 11.5, for z1,z9 € D,

mS(CEl,.’Eg) = mH(Pl‘la FIQ) = //‘8(3:17'7"2) \% /’l’S(‘T??‘Tl) ) (103)
mw(xla'TZ) = mH(Gmlasz) = Mw(xla:L'Z) \ u'w(x%ml) (104)

and o
my(z1,22) = Jnax ms (2, zh) . (10.5)

We will show that the metric ms induces the SMs> topology.

That will imply that the metric m,;, induces the associated product topol-
ogy. However, it turns out that the metric m,, does not induce the W M
topology. We will show that the W My topology coincides with the prod-
uct topology, so that the Hausdorff metric can be used to define the W M,
topology via my, in (10.5).

Closely paralleling the d or M metrics, we have m,, < m; on D([0, T], R¥)
and m, = m, = ms on D([0,T],R'). Just as with d, we use m without
subscript when the functions are real valued. Example 12.3.1, which showed
that WM, is strictly weaker than SM; also shows that WM, is strictly
weaker than SMy. Example 12.3.3 shows that the SMs topology is strictly
weaker than the SM; topology.
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Note that pg in (10.1) is not symmetric in its two arguments. We first
show that if us(z,z,) — 0 as n — oo, we need not have ps(z,,z) — 0 as
n — 0o.

Example 12.10.1. Lack of symmetry of us in its arguments. To see that
we can have pg(x,z,) — 0 as n — oo without py(xn, x) — 0 or ps(zy, ) —
0 asn — oo, let z(t) =0, 0 < ¢ <2, and let z, = Ijj 1 1,-1) in D([0,2],R).
Clearly my,(zn,z) /4 0, but for any (0,t) € 'y, = G, we can find (0,t,) €
Iy, = Gy, such that |t, —t| - 0. =

We now observe that mg induces the SM, topology.

Theorem 12.10.1. (the Hausdorff metric m; induces the SMs topology)
If ps(zp,z) — 0 as n — oo, then ps(z,z,) — 0 as n — oo. Hence,
Us(Zn, ) = 0 as n — oo if and only if ms(xn,z) = 0 as n — co.

It may seem natural to consider a weak My topology defined by the
metric my,(z1,22) in (10.4), but this does not yield a desirable topology.

Example 12.10.2. Deficiency of the m,, metric. To see a deficiency of the
My, metric in (10.4), we show that convergence ds(zy,z) — 0 as n — oo,
which implies m(z,,, ) — 0, does not imply py(z, z,) — 0 or my(zy, ) —
0 as n — oo. For this purpose, consider z and z,, n > 1, in D([0,2], R?)
defined by z' = 2? = Ijj o) and z,(t) = z2(t) = n(t — 1) 14,-1)(t) +
Ij11n-19)(t) for n > 1. Then ds(zn,z) — 0 as n — oo and thus ms(zy, ) —
0 as n — oo, but the thick ranges of the graphs of z and z,, are p(G,) =
[0,2] x [0,2] and p(Gg,) = {(0,0) + (1 — a)(2,2) : 0 < a < 1}, so that
pu(Z,zn) # 0 and my(zn,z) # 0 as n — oo. in this case, py(zn,z) — 0
as n — 0o.

We now observe that m, induces the W M, topology.

Theorem 12.10.2. (W M, is the product topology) piw(zn,z) — 0 asn —
00 for py in (10.2) if and only if mp(zn,z) — 0 as n — oo for my in
(10.5), so that the W My topology on D([0,T],R¥) coincides with the product
topology.

We conclude this section by summarizing the relations among the pri-
mary distances under consideration in the following theorem.
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Theorem 12.10.3. (comparison of distances) For each z1,z9 € D,
ddedesSdJ1§|||| )
my, <dp, and my <mg<ds.

Remark 12.10.1. Relating the J and M topologies. The J; topologies were
related to the M; topologies in a revealing way in Pomarede (1976). The
Jo topology is induced by the Hausdorff metric on the space of incomplete
graphs; that shows that Jo is stronger than Ms. Similarly, the J; topology
can be defined in terms of a metric applied to parametric representations of
the incomplete graphs; that shows that Jy is stronger than M. =

12.11. Alternative Characterizations of M; Convergence

We now give alternative characterizations of the SMy and W Ms topolo-
gies.

12.11.1. M, Parametric Representations

We first observe that the SMs and W Ms topologies can be defined just
like the SM; and W M; topologies in Section 12.3. For this purpose, we
say that a strong My (SMs) parametric representation of x is a continuous
function (u,r) mapping [0, 1] onto I'y such that r is nondecreasing. A weak
My (W M,) parametric representation of z is a continuous function map-
ping [0,1] into G, such that r is nondecreasing with r(0) = 0, (1) = T
and u(l) = z(T). The corresponding M; parametric representations are
nondecreasing using the order defined on the graphs I';, and G, in Section
2. In contrast, only the component function r is nondecreasing in the My
parametric representations. Let II,; o(z) and II, 2(z) be the sets of all SMy
and W My parametric representations of .

Paralleling (3.7) and (3.8), define the distance functions

doan,a) = inf (- wlVin -} (L)
27 8, J
j=1,2

and
dw’g(iL‘l,.ﬁg) = inf ){||u1 — ’UQ“ V ||’l"1 — 7‘2”} . (11.2)

(uj,r; )€y 2(z;
i=1,2

We then can say that z, — z as n — oo for a sequence or net {z,}
if dso(zp,z) — 0 or dy2(zy,z) - 0 as n — oo. A difficulty with this
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approach, just as for the WM; topology, is that neither ds o nor d, 2 is a
metric.

Example 12.11.1. Neither d;2 nor dy2 is a metric. To see that neither
ds o nor d,, 2 is a metric, consider real-valued functions, so that ds 2 = dy, 2 =
do. Let x = 2[[1,2], Top41 = 21’[172n_1,17’n_1) + 2[[1,2] and z9, = I[lfn—l,l) +
21} 9 in D([0,2],R) for n > 3. For each n, it is possible to choose parametric
representations of x, and x such that da(z2,11,7) < 2n~! and da(z2,, z) <
n~l. However, da(x2,,T2,41) > 1 for all n. We cannot simultaneously
match the points in {2} X [1 —2n"1, 1 —n"1] C Ty, 41 to {2} X [1,2] CTy,,
and the points in {0} X [(1 —=n"1),1) CTy, ., to {0} x [0,1 —n"1) C Ty,
because the times are inconsistently ordered. =

12.11.2. SM, Convergence

We now establish the equivalence of several alternative characterizations
of convergence in the SM, topology. To have a characterization involving
the local behavior of the functions, we use the uniform-distance function
Wy(z, T2,t,0) in (4.6). We also use the related uniform-distance functions

we(z1,%2,0) = sup w(zx1,z2,t,0) . (11.3)

0<t<T
Ws (21, 22,1, 0) = [lz1(t) — [z2((t — 6) V 0),z2((t + 6) A T)]| (11.4)
Wy (z1,T2,0) = sup w;(z1,%2,t,0) . (11.5)

0<t<T

We now define new oscillation functions. The first is

wy(z,t,0) = sup{||z(¢) — [z(t1), ()]} (11.6)
where the supremum is over
OV(t—0) <t1 <[0V(t—08)]+0/2 and [TA(t+6)]—3/2 <ty < (t+)AT.

The second is
Wy (z,0) = sup wi(z,t,0) . (11.7)
0<t<T

The uniform-distance function @%(z1,z2,d) in (11.5) and the oscillation
function w}(z,d) in (11.7) were originally used by Skorohod (1956).

As before, T need not be a continuity point of z in D([0,T],R¥). Un-
like for the M; topology, we can have z, — z in (D, Ms) without having
2y (T) — z(T).
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Example 12.11.2. M, convergence does not imply pointwise convergence
at the right endpoint. To see that Ms convergence does not imply that
zn(T) — 2(T), let (0 = z(T—) =0, z(T) =1,

2,(0) = 2, (T —2n71) = 2,(T) =0

and z, (T —n~') = 1 for n > 1 with z and z,, defined by linear interpolation
elsewhere. It is easy to see that z, — = (Mz), but z,(T) /4 =(T).

Let v(z, A) represent the oscillation of = over the set A as in (2.5).

Theorem 12.11.1. (characterizations of SM, convergence) The following
are equivalent characterizations of T, — x as n — oo in (D, SM>):

(i) dsa(zn,z) = 0 as n — oo for dso in (11.1); i.e., for any € > 0 and
n sufficiently large, there exist (u,r) € l;2(x) and (up,r,) € s 2(zy)
such that ||u, — u|| V ||r, — 7] <e.

(ii) ms(xn,z) — 0 as n — oo for the metric mg in (10.3).
(iii) ps(zn,x) = 0 as n — oo for pg in (10.1).
(iv) Given ws(x1,x2,d) defined in (11.3),

lim lim wy(z,,z,0) =0.
L ) «(on )

(v) For eacht, 0 <t<T,

lim lim @ t,0) =0
im lim Ws(Tn, T, 1, 0)

for ws(z1,z2,t,d) in (4.6).

(vi) For all € > 0 and all n sufficiently large, there ezist finite ordered
subsets A of 'y and A, of T'y,, as in (3.9) where (z1,t1) < (2o,t2) if
t1 < to, of the same cardinality such that d(A,T;) <€, d(An,Tz,) <€
and d*(A, A,) < € for d in (3.10) and d* in (5.6).

(vii) Given wi(z1,x2,0) defined in (11.5),

lim lim @!(z,,z,6) =0.
0 pnooo s (n )
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(viii) z,(t) = x(t) as n — oo for each t in a dense subset of [0,T] including
0 and
lim lim @%(z,,8) =0
i oo

for wi(z,d) in (11.7).

Remark 12.11.1. The equivalence (iii)¢+(vii)<>(viii) was established by
Skorohod (1956). =

Remark 12.11.2. There is no analog to characterization (v) involving w}(zn, z, t, §)
in (11.4) instead of ws(zyp,x,t,6). For t € Disc(z)°,

lim lim @} t,6) =0
i Tim. Wy (Tn, T, 1, 0)

implies pointwise convergence z,(t) — x(t), but not the local uniform con-
vergence in Theorem 12.4.1. =

12.11.3. WM, Convergence

Corresponding characterizations of W My convergence follow from Theo-
rem 12.11.1 because the W My topology is the same as the product topology,
by Theorem 12.10.2. Let

Wy (21,%2,0) = SUP Wy (T1,T2,t,0) (11.8)
0<t<T

for wy (z1, z2,t,d) in (4.7).

Theorem 12.11.2. (characterizations of W My convergence) The following
are equivalent characterizations of T, — x asn — oo in (D, W Ms):

(i) dy2(Zn,z) = 0 as n — 0o for dy 2 in (11.2); i.e., for any e > 0 and
all n sufficiently large, there exist (u,r) € Iy 2(z) and (up,ry) € Iy 2(zy)
such that ||u, —ul|| V ||rn — ]| <e.

(it) mp(zp, ) = 0 as n = oo for the metric m, in (10.5).

(11i) Given wy(z1,x2,0) defined in (11.8),

lim lim @y (zp,z,0) =0.
510 nso wl(®n,:0)

(iv) For each t, 0 <t <T,

lim lim @y (z,,z,t,0) =0 .
0 nsoo wl(an )
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(v) For all e > 0 and all sufficiently large n, there exist finite ordered
subsets A of Gy and A, of T'y,, of common cardinality m as in (3.9) with
(z1,11) < (22,t2) if t1 < ta, such that d(A,Gy) < €, d(An,Ty,) < € and
d*(A,A,) < e for all n > ng, for d in (5.13) and d* in (5.6).

Theorem 12.11.2 and Section 12.4 show that all forms of M convergence
imply uniform convergence to continuous limit functions.

Corollary 12.11.1. (from W M, convergence to uniform convergence) Sup-

pose that my(zy,z) = 0 as n — oo.
(i) If t € Disc(x)¢, then

lim lim v(zp,z,t,0)=0.
510 n o0 (&n )

(ii) If © € C, then lim,_, ||zn, — z|| = 0.

Proof. For (i) combine Theorems 12.4.1 and 12.11.2. For (ii) add Lemma
12.4.2. =

Convergence in W My has the advantage that jumps in the converging
functions must be inherited by the limit function.

Corollary 12.11.2. (inheritance of jumps) If z,, = z in (D, W M), t, —
in [0,T] and % (tn) — 2} (tn—) > ¢ > 0 for all n, then z*(t) — z*(t—) > c.

Proof. Apply Theorem 12.11.2 (iv). =

Let J(z) be the maximum magnitude (absolute value) of the jumps of
the function z in D. We apply Corollary 12.11.2 to show that J is upper
semicontinuous.

Corollary 12.11.3. (upper semicontinuity of J) If z, — z in (D, M,),
then o
lim J(zp,) < J(z) .

n—oo

Proof. Suppose that z,, — = in (D, W M>) and there exists a subsequence
{z,} such that J(z,,) — c. Then there exist further subsubsequences
{wnkj} and {tnkj }, and a coordinate %, such that tny, — for some t € [0,T]

and ‘37%,9(75%]) -z (tnkj —)| = ¢. Then Corollary 12.11.2 implies that
J

Nk
k]

|zt (t) —2*(t—)| >c. =
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12.11.4. Additional Properties of M, Convergence

We conclude this section by discussing additional properties of the My
topologies. First we note that there are direct M> analogs of the M results
in Theorems 12.6.1, 12.7.1, 12.7.2 and 12.7.3.

Theorem 12.11.3. (extending SMj, convergence to product spaces) Sup-
pose that ms(z,,x) — 0 in D([0,T),R¥) and ms(y,,y) — 0 in D([0,T],R))
as n — oo. If

Disc(z) N Disc(y) = ¢,

then
m(@asya)s (2,9)) = 0 in D(0,T],R) as n— oo.

Corollary 12.11.4. (from WM, convergence to SM;, convergence when
the limit is in D) If mp(zp,z) — 0 asn — oo and x € Dy, then ms(zp,z) —
0 as n — oo.

Theorem 12.11.4. (Lipschitz property of linear functions of the coordinate
functions) For any 1, T2 € D([0,T],R*) and n € R,

m(nz1,nz2) < ([0l V Dms(z1, z2) -
We have an analog of Corollary 12.7.1 for the M5 topology.

Corollary 12.11.5. (SMs-continuity of addition) If ms(z,,z) — 0 and
ms(ynay) —0n D([OaT],Rk) and

Disc(z) N Disc(y) = ¢,

then
ms(Tn +Yn,z +y) = 0 in D([0,T],RF).

Theorem 12.11.5. (characterization of SMy convergence by convergence
of all linear functions of the coordinates) There is convergence x, — x in
D([0,T],R¥) as n — oo in the SMy topology if and only if nz, — nz in
D([0,T],R') as n — oo in the My topology for all n € RF.

Just as with the M; topology, we can get convergence of sums under
more general conditions than in Corollary 12.11.5. It suffices to have the
jumps of z* and y* have common sign for all i. We can express this property
by the condition (7.2).
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Theorem 12.11.6. (continuity of addition at limits with jumps of common
sign) If , — z and y, — y in D([0,T],R¥, SMy) and if condition (7.2)
holds, then

Tn+yn =z +y in D(0,T],RF, SMy) .

We now apply Theorem 12.11.5 to extend a characterization of con-
vergence due to Skorohod (1956) to R¥-valued functions. For each z €
D([0,T],R') and 0 < t; <ty < T, let

Miy@)= sup ot) (11.9)
t1 <t<ts

The proof exploits the SM, analog of Corollary 12.9.1.

Theorem 12.11.7. (characterization of SM, convergence in terms of con-
vergence of local extrema) There is convergence mg(x,,z) — 0 as n — oo
in D([0,T],R¥) if and only if

My, 1, (77'7"71) = My, 1, (77-'1:) as n — oo
for all n € R¥ and all points t1, to € {T} U Disc(z)¢ with t; < ts.

We can apply the characterization of My convergence in Theorem 12.11.7
to show the preservation of convergence under bounding functions in the My
topology.

Corollary 12.11.6. (preservation of WM, convergence within bounding
functions) Suppose that

yn (1) < @ (1) < 25, (t)

forallt €[0,T), 1 <i <k, and all n. If mp(yn,z) = 0 and mp(2zn,z) — 0
as n — 00, then mp(zn,z) = 0 as n — oo.

Example 12.11.3. Failure with other topologies. To see that there is no
analog of Corollary 12.11.6 for the My and Ji topologies, for n > 1, let

T = I[1,2], Yn = I[1+n_1,2]7 Zn = I[l—n—1,2]a
2n(0) = zn(1=n ') = zn(1 = (3n) ") = zn(l = (5n) 1) =0
and
zn(l — (2”)_1) =zn(l— (4”)_1) =zp(l) =2zn(2) =1,
with z,, defined by linear interpolation elsewhere. Then y,(t) < z,(t) <
2z (t) for all t and n, y, — = and 2, — = as n — oo in D([0,2],R) with the

J1 topology, while z,, — = with the My topology, but not with the My, Jo
and J; topologies.
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12.12. Compactness

We now characterize compact subsets in D = D([0,7],R¥) in the M
topologies, closely following Section 2.7 of Skorohod (1956). To do so, we
define new oscillation functions that include more control of the behavior of
the functions at the interval endpoints 0 and T'. First let

wy,(x,0) = lrélzaéc ok (xt, §) (12.1)
for @i in (11.7). Given ws(z,6) in (5.1), wy(z,d) in (5.12), @wi(z,d) in
(11.7), w} (z,d) in (12.1) and 9(z,t,6) in (4.3), let

wh(z,8) = ws(z,d) Vi(z,0,8)Vi(x,T,9), (12.2)
wh(%,8) = wy(z,0) Vi(z,0,06) Vi(z,T,J) , (12.3)
wh(z,8) = wi(z,d) V(0,0 Viz,T,96), (12.4)
why(x,8) = wh(z,08) Vo(z,0,8) Vi(x,T,d). (12.5)

Since

wy (z,0) < wi(z,0) and @) (z,0) < wy(z,d) < ws(z,d)
for all z € D and § > 0,

Wy (2,08) < wi(,6) and  wy,(w,d) < wy(w,d) < wi(z,d)

for all x € D and ¢ > 0.
We start by stating a characterization of W My convergence. The proof
draws on Theorem 12.11.1.

Theorem 12.12.1. (another characterization of W M, convergence) If {zy}
is a sequence in D such that z,(t) converges as n — oo for all t in a dense

subset of [0,T] including 0 and T and

lim lim @, (z,,d) =0 (12.6)

0 nsoo

for w' in (12.5), then there exists x € D such that my(zy, ) — 0.

Example 12.12.1. Need for the v terms. To see the need for the terms
9(z,0,6) and ¥(x, T, §) in @, (z,d), let ,(0) = 1, z,(n~') = z,(1) = 0 with
Zp, defined by linear interpolation elsewhere on [0,1]. Then w}(zp,d) =0
for all n and 6, but {z, : n > 1} does not converge and is not compact in
D([0,1],R, My). Since sup,, 9(z,,0,0) =1 for all 6 > 0, (12.6) fails.
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Corollary 12.12.1. (new characterizations of convergence in other topolo-
gies) If the conditions of Theorem 12.12.1 hold with w), in (12.5) replaced
by wh in (12.4), wl, in (12.3) or w in (12.2), then the convergence can be

strengthened to SMo, W My or SMy, respectively.

Theorem 12.12.2. (characterizations of compactness) A subset A of D has
compact closure in the SMy, WMy, SMy or W My topology if

sup{||z|} < oo (12.7)
TEA
and
lim sup{w'(z,0)} < oo , (12.8)
o0 zeA
where w' is wl in (12.2) for SMy, wl, in (12.3) for WM, @), in (12.4) for

SMy and w), in (12.5) for SMy. The conditions are necessary for SMy and
W M;.

Example 12.12.2. The conditions are not necessary for My. To see that
the conditions in Theorem 12.12.2 are not necessary for the Ms topologies,
for s € [1/4,1/2], let

s = Ii5,1/a+s/2) + T1y2,)
in D([0,1],IR). The set {zs:1/4 < s <1/2} is clearly My compact, but

sup  Wy(zs,0) =1
1/4<s<1/2

forall 6,0<d<1/4. =

Compactness characterizations on D translate into tightness characteri-
zations for sets of probability measures on D. Recall from Chapter 11 that
a set A of probability measures on a metric space (S, m) is said to be tight
if for all € > 0 there exists a compact subset K of (S, m) such that

P(K)>1—¢ forall PecA.

Theorem 12.12.3. (characterizations of tightness) A sequence {P, : n >
1} of probability measures on D with the SMy, W My, SMy or W My topology
1s tight if the following two conditions hold:
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(i) For each € > 0, there ezists ¢ such that
P.{zeD:|z| >c}) <e¢, n>1.
(i) For each € > 0 and n > 0, there exists § > 0 such that
P,{z €D :w'(z,6) >n)<e, n>1,

for w' being the appropriate oscillation function in (12.2)—-(12.5). The con-
ditions are also necessary for the SMy1 and W My topologies.

Proof. Suppose that conditions (i) and (ii) hold, where w' is w/ in (12.2)
for SMy w), in (12.3) for WM, @), in (12.4) for SMy and @), in (12.5) for
W M,. For € > 0 given, choose ¢ and ¢, such that P, (Af) < 2=+ k>,
where

Ay={z e D:|z| <c} (12.9)

and
Ay ={z€D:w'(z,0) <k}, k>1. (12.10)

Then let A = Ng>0Ag. By the construction,

o
Po(A%) = Py (Ug»04f) <> Po(Af) <. (12.11)
k=0

Since A C Ay and

. !

161%1:1613@0 (z,6) =0, (12.12)
the set A has compact closure by Theorem 12.12.1. Going the other way,
assume that the topology is SM; or WM, and suppose that {P, : n > 1}
is tight, so that for any € > 0 there exists a compact subset K of D such
that P,(K) > 1 —e. By Theorem 12.12.2, for any n > 0 given, K C {z :
|z|| < ¢} for some ¢ and K C {z : w'(z,d) < n} for small enough §; by
the monotonicity of w'(z,d) in § for the SM; and W M; topologies. Hence
conditions (i) and (ii) hold for all n. =

For an alternative characterization of M; tightness in D([0,T],R), see

Avram and Taqqu (1989).



514 CHAPTER 12. THE SPACE D



