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Abstract

Motivated by interest in making delay announcements to arriving customers who must wait in

call centers and related service systems, we study the performance of alternative real-time delay

estimators based on recent customer delay experience. The main estimators considered are: (i)

the delay of the last customer to enter service (LES), (ii) the delay experienced so far by the

customer at the head of the line (HOL), and (iii) the delay experienced by the customer to have

arrived most recently among those who have already completed service (RCS). We compare

these delay-history estimators to the standard estimator based on the queue length (QL),

commonly used in practice, which requires knowledge of the mean interval between successive

service completions in addition to the queue length. We characterize performance by the mean

squared error (MSE). We do analysis and conduct simulations for the standard GI/M/s multi-

server queueing model, emphasizing the case of large s. We obtain analytical results for the

conditional distribution of the delay given the observed HOL delay. An approximation to its

mean value serves as a refined estimator. For all three candidate delay estimators, the MSE

relative to the square of the mean is asymptotically negligible in the many-server and classical

heavy-traffic limiting regimes.

Keywords: delay estimation, real-time delay estimation, delay prediction, delay announce-

ments, many-server queues, call centers, heavy traffic.
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1. Introduction

In this paper, we study alternative ways to estimate the delay (before entering service) of

an arriving customer in a service system. These delay estimates may be used to make delay

announcements to arriving customers, especially when the delay will be relatively long. Such

real-time delay announcements can be very helpful with invisible queues, as in call centers,

where service requests are made by telephone; see Gans et al. (2003) for background on call

centers.

Since the steady-state waiting-time distribution tends to be quite highly variable (e.g., often

exponential or approximately so), good real-time delay estimation necessarily relies on state

information; see Whitt (1999). From the perspective of statistical precision, for a single-number

estimate we would ideally want to use the conditional expected delay given all information

available at the arrival epoch, but complexity leads to considering more elementary alternatives.

The Standard Queue-Length (QL) Delay Estimator. The standard state-dependent

delay estimator, commonly used in practice (assuming service from a queue in first-come first-

served order, but without any other specific model assumptions), is the queue-length (QL)

delay estimator, defined as

θQL(t) ≡ Q(t) + 1
r(t)

, (1.1)

where the notation ≡ means “defined as,” t is the current time (time of the arrival for which the

announcement is made), Q(t) is the queue length (number of customers waiting) and r(t) is the

rate at which customers enter service (typically not known precisely). If the number of servers

is s(t), and can be assumed to remain at that level in the near future, with each server serving

a single customer without interruption, and the current average service time is m(t), then the

rate customers enter service may be approximated by r(t) = s(t)/m(t). Furthermore, when

the mean service time is stable, we can replace m(t) by a long-run average service time m. The

QL delay estimator then becomes θQL(t) ≡ m(Q(t)+1)/s(t), which requires knowledge of only

s(t), the number of servers, and Q(t), the queue length, at each time t, which is information

that usually is readily available.

Estimators Based on Delay History. In this paper, we examine alternative estimators

based on the delays actually experienced by recent customers, in particular: (i) the delay of

the last customer to enter service (LES), (ii) the delay experienced so far by the customer at
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the head of the line (HOL), (iii) the delay experienced by the customer to have arrived most

recently among those that have completed service (RCS).

These delay estimators based on recent delay history are appealing because they are easy

to interpret, and because they are simple and robust, applying to a broad range of models,

without requiring knowledge of the model or its parameters. If somehow the queue length,

Q(t), or the rate at which customers enter service, r(t), is unknown or incorrect, then we would

have difficulties with the standard QL estimator. With any prediction system, it is good to

monitor its performance, but that is often not possible for the customer. A delay-history delay

estimator has the advantage that the basis for the prediction is evident.

The HOL delay estimator was used as an announcement in an Israeli bank studied by

Mandelbaum et al. (2000) and is mentioned as a candidate delay announcement by Nakibly

(2002) in her study of delay predictions. Something similar to LES or RCS is used by the

U. S. Citizenship and Immigration Service (USCIS); they publish the arrival time of recently

completed applications in order to give an idea about upcoming delays. In this study, we are

motivated in part by recent work by Armony et al. (2006), who studied delay announcements

in many-server queues with customer abandonment, focusing on customer response to the

announcements, leading to balking and new abandonment behavior. They developed ways to

approximately describe the equilibrium system performance using LES delay announcements.

Armony et al. (2006) discuss the motivation for the LES delay estimator and other delays

estimators based on recent delay history.

Quantifying the Effectiveness. We quantify the effectiveness of the delay estimators

through the mean squared error (MSE), which we approximate analytically and estimate via

simulation. To illustrate, let WLES(w) denote the random delay of a new arrival, conditional

on that customer having to wait and an observed LES delay of w (under specified condi-

tions, e.g., in steady state). Let θLES(w) be a candidate estimator based on this information.

We will primarily be concerned with the direct estimator θd
LES(w) ≡ w, the refined estima-

tor θr
LES(w) ≡ E[WLES(w)] and approximations of the refined estimator, since the refined

estimator is difficult to determine. The MSE of such an estimator is

MSE ≡ MSE(θLES(w)) ≡ E
[
(WLES(w)− θLES(w))2

]
. (1.2)

For the refined estimator θr
LES(w), the MSE coincides with the variance V ar(WLES(w)). It is

well known that the mean minimizes the MSE (using that information).
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To estimate these MSE’s via simulation, we use the average squared error (ASE), defined

by

ASE ≡ 1
n

n∑

j=1

(aj − ej)2 , (1.3)

where aj is the actual delay and ej is the estimated delay for appropriate customers. For

example, if we want to estimate the performance of LES when the observed delay is w = 0.40,

then we consider all arrivals who must wait (aj > 0) for which the LES delay ej falls in an

interval such as [0.39, 0.41]. On the other hand, if we wish to consider the overall average

performance of LES, then we consider all j such that aj > 0.

Study in an Idealized Setting. In this paper, we study the performance of the delay-

history delay estimators and compare them to the standard QL delay estimator in the relatively

simple idealized setting of the GI/M/s queueing model, which has a renewal arrival process,

s homogeneous servers working in parallel, unlimited waiting space, a FCFS service discipline

and i.i.d. exponential service times with mean m, which are independent of the arrival process.

For this GI/M/s model, the QL estimator θQL(t) ≡ m(Q(t)+1)/s is an ideal delay estimator.

Indeed, there are no serious competitors, as far as statistical precision is concerned (provided

that we have no information about remaining service times). Given the queue length, the future

evolution of the system is independent of the past. (This even remain true for more general

arrival processes.) Consequently, θQL(t) is the conditional mean delay given all information

available at time t, so that it minimizes the MSE.

We study the alternative delay-history delay estimators in this simple context in order to

gain insight about the relative performance of alternative estimators in more complex scenarios

(which are much more difficult to analyze directly). We know that the QL estimator will have

superior performance for the GI/M/s model, but we want to understand by how much. That

knowledge will help us understand the advantage of the QL estimator over these alternative

delay estimators when the QL estimator is appropriate, and will provide useful background

when considering these alternative delay estimators for more complicated systems for which

these alternative estimators may be preferred.

Motivation for Considering Alternative Delay Estimators. Whenever the actual ser-

vice system is well modelled by a GI/M/s queueing model and the system state is known

accurately at each time, then there is little motivation for considering other delay estimators

besides the standard QL estimator. However, real service systems rarely are as simple as the
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GI/M/s model. First, the service-time distribution might well be non-exponential, as shown

for call centers by Brown et al. (2005). Second, the number of servers and mean service times

often change over time, in part because the servers are humans who serve in different shifts and

may well have different service-time distributions. Third, the queue length may not be directly

observable. That is nicely illustrated by the ticket queues studied by Xu et al. (2007). Upon

arriving at a ticket queue, each customer is issued a numbered ticket. The number currently

being served is displayed. The queue length is not known to ticket-holding customers or even

to system managers, because they do not observe customer abandonments.

Finally, the system is often much more complicated: For one example, there may be multiple

customer classes and multiple service pools with some form of skill-based routing (SBR);

see Gans et al. (2003). For a second example, with web chat, servers may serve several

customers simultaneously, different servers may participate in a single service, and there may

be interruptions in the service times, as the customers explore material on the web in between

conversations with agents. For a third example, when delays are large – which is when we

most want to make delay announcements – customers often abandon from queue. In these

more complicated settings, the queue length is typically known, but the rate customers enter

service is often not known and/or difficult to estimate reliably. That causes problems for the

QL estimator.

When the GI/M/s model is not appropriate for one of these reasons, the QL estimator

may not perform well.

Example (non-exponential service times). To dramatically illustrate the possible diffi-

culties with the QL delay estimator in the presence of a non-exponential service-time distribu-

tion (without trying to be realistic), we consider a limiting hyperexponential (H2) distribution,

in which each service time is either an exponential with mean 10, with probability 1/10, or

the deterministic value 0, with probability 9/10. Thus the service time has mean 1, but busy

servers will only be serving customers with the exponential distribution. Let s = 100 and

suppose that an arrival finds the queue empty but all the servers busy. Then the QL delay

estimate for this new arrival is 1/s = 1/100, but the actual delay is exponentially distributed

with mean 1/10 (the minimum of 100 exponential random variables, each with mean 10).

Hence, the actual mean delay is ten times greater than predicted by the QL delay estimator.

Consistent with this extreme example, we have found that our alternative delay estimators

actually outperform the QL delay estimator in the D/H2/100 model with moderately variable
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H2 distributions.

Similarly, when there is a large amount of customer abandonment, the QL estimator will

tend to overestimate the potential delay (the delay assuming that the customer has infinite

patience), because many customers in queue may abandon before entering service, and the

standard QL estimator fails to take that into account. As discussed in Whitt (1999), the QL

estimator can be revised to provide an accurate estimate of delays with abandonments when

the time-to-abandon distribution is exponential. However, as discussed in Whitt (2006), the

performance measures in the overloaded M/M/s + GI model, with non-exponential time-to-

abandon distribution, depend strongly on the time-to-abandon distribution beyond its mean.

Since the time-to-abandon distribution has been found to be non-exponential in practice, see

Brown et al. (2005), there also are potential difficulties with the generalized QL estimator

based on the M/M/s + M model. We investigate alternative delay estimators in the presence

of abandonments in a sequel to this paper, Ibrahim and Whitt (2008). There we give examples

with non-exponential distributions in which both the standard QL estimator and the refinement

for the M/M/s+M model are outperformed by delay estimators based on recent delay history.

From the above discussion, we conclude that other estimators besides the standard QL

estimator are worth considering; we do not conclude that the standard QL estimator or other

estimators based on the queue length are necessarily bad. Indeed, we will show advantages of

the QL estimator when it can be used.

This Study. Here we study the performance of the delay estimators based on delay history

in the relatively simple idealized setting of the GI/M/s model. Motivated by call centers, we

are especially interested in the case of large s, but we consider all possible s.

For this more elementary GI/M/s model, we obtain strong analytical results and make

comparisons through computer simulations. Unlike Armony et al. (2006), here we do not

consider customer response and we do not consider balking or customer abandonment, although

we recognize that those phenomena are important. Moreover, here we are not concerned with

what to announce, for which we should consider interpretation and response, but only with

the effectiveness of the candidate delay estimators in predicting the actual delay encountered

(assuming no customer response).

We find that the conditional distribution of the delay to be estimated, given the observed

past delay, is often approximately normally distributed, implying that the conditional distri-

bution is approximately characterized by its mean and variance. The observed delay is the
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natural direct estimator of the delay to be encountered by the new arrival, while the mean

of the conditional distribution of the delay of the new arrival, given that observed delay, is

a natural refined estimator based on the same information. (In general, these are different!)

The refined estimator depends on the model and its parameters. Since the conditional mean

is complicated, we develop approximations for it.

For the GI/M/s model, we will show that the QL estimator does indeed perform better

than the alternative estimators based on recent delays, and we will quantify the difference.

Roughly, the MSE differs by the constant factor c2
a + 1, where c2

a is the squared coefficient of

variation (SCV, variance divided by the square of the mean) of an interarrival time. Thus, the

MSE’s of the delay-history estimators are about the same as the MSE of the QL estimator

when the arrival-process variability is low, but considerably greater when the arrival-process

variability is high.

Related Literature. There is a large body of related literature with somewhat different

goals. We are doing statistical inference for queues, but as in Avramidis et al. (2004), Brown

et al. (2005) and Glynn and Whitt (1989), most statistical inference for queues aims to estimate

the model or the steady-state performance. There is an interesting stream of literature related to

estimating past performance in a partially observed system from transactional data, stemming

from Larson (1990). There has been much interesting recent inference work, including delay

estimation, related to the Internet, as surveyed by Coates et al. (2002), but our setting and

time scales tend to be very different. In addition to Whitt (1999), delay estimation for real-

time delay prediction is investigated by Ward and Whitt (2000) and Nakibly (2002); these

focus on processor-sharing and priority disciplines, respectively. Our real-time focus is in the

spirit of real-time queueing, as in Doytchinov et al. (2000) and references therein.

Organization of the paper. We start in §2 by defining alternative delay estimators based on

recent delay history and giving some expressions for them for the GI/M/s model. We present

results of initial simulation experiments in §3. We establish properties of two basic delay

estimators – LES and the Head-of-the-Line (HOL) estimator – in §4. We present confirming

simulations related to those analytical results in §5. We discuss insights from heavy-traffic

limits in §6. Finally, we draw conclusions in §7. We present additional material in the e-

companion, including more experimental results, more heavy-traffic limits and a cautionary

example showing the possible pitfalls of the LES and HOL delay estimators for non-exponential
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service-time distributions. We present even more experimental results in an online supplement

available on the authors’ web pages, Ibrahim and Whitt (2007).

2. Alternative Estimators

The GI/M/s Model. We now specify the GI/M/s model: The service times are indepen-

dent and identically distributed (i.i.d.) exponential random variables Vn with mean 1. The

interarrival times are i.i.d. positive random variables Un with a non-lattice cumulative distri-

bution function (cdf) F . (We will also consider the deterministic arrival process, which violates

this condition; consequently, it will require slightly different analysis.) We omit the subscripts

from U and V when the specific index is not important. Let F have finite third moment,

characterized by νa
3 ≡ E[U3]/(E[U ])3. Then F necessarily has finite first and second moments.

Assume that E[U ] = 1/(sρ), where s is the number of servers and ρ ≡ E[V ]/(sE[U ]) is the

traffic intensity. Let F have SCV c2
a ≡ V ar(U)/(E[U ]2). Let A ≡ {A(t) : t ≥ 0} be the renewal

counting process (arrival process) associated with Un, defined by

A(t) ≡ max {n ≥ 0 : U1 + · · ·+ Un ≤ t}, t ≥ 0 . (2.1)

The GI/M/s system is well known to be stable, and have a proper limiting steady-state

behavior, if and only if ρ < 1. All our simulation results are for the GI/M/s model in steady

state, even though the estimation procedures apply more generally.

The No-Information (NI) Steady-State Estimator. The candidate delay estimators

differ depending on the information used. If no information at all is used beyond the model,

then it is natural to use the steady-state distribution. In particular, with W∞ denoting the

steady-state waiting time before beginning service, the no-information (NI) steady-state delay

estimator for a customer that must wait before beginning service is θNI ≡ E[(W∞|W∞ >

0)]. It serves as a useful reference point. Any other estimator exploiting additional real-time

information should do at least as well to be worth serious consideration.

For the GI/M/s model, it is well known that (W∞|W∞ > 0) has an exponential distribution

– see §XII.3 of Asmussen (2003) – so that the SCV is 1. Since the SCV is 1, the NI estimator

is quite highly variable, and so necessarily has low predictive power. For the M/M/s special

case, the mean is 1/s(1− ρ), so that MSE = V ar((W∞|W∞ > 0)) = 1/s2(1− ρ)2.

The Full-Information Queue-Length (QL) Delay Estimator. The other extreme would

be full-information at the arrival epoch, which we take to mean that we know: (i) the queueing
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model, (ii) the number of customers in the system at that arrival epoch and (iii) the elapsed

service times of all customers in service. If we knew the remaining service times as well, then we

could compute the exact delay, but we assume that the remaining service times are unknown.

Of course, for exponential service times, the elapsed service times give no useful information

about the remaining service times because of the lack-of-memory property of the exponential

distribution. Thus the (full-information) queue-length (QL) estimator for the GI/M/s model

only exploits the queue-length Q(t) and knowledge of the model.

Let WQ(n) represent a random variable with the conditional distribution of the delay of

a new arriving customer at some time t, given that the arriving customer must wait before

starting service and given that the queue length at that time (not counting the new arrival) is

Q(t) = n. (For n ≥ 1, the customer must necessarily wait; for n = 0 our conditioning implies

that all servers are busy but the queue length is 0.) For the GI/M/s model, the random

variable WQ(n) can be represented as

WQ(n) ≡
n+1∑

i=1

(Vi/s) , (2.2)

when Q(t) = n. The natural QL delay estimator, based on the observed queue length Q(t) = n,

is the mean θQL(n) ≡ E[WQ(n)] = (n + 1)/s. The QL estimator requires knowledge of s and

the mean service time E[V ] (here taken to be 1) as well as Q(t).

We have the division by s in (2.2) because the times between successive service comple-

tions when all servers are busy are i.i.d. random variables distributed as the minimum of s

exponential random variables, each with mean 1, which makes the minimum exponential with

mean 1/s. It is significant that this estimator is independent of the arrival process and thus

also of the traffic intensity. It applies equally well to steady-state and transient settings.

As discussed in Whitt (1999), WQ(n) has the desirable property that the estimation gets

relatively more accurate as the observed queue length n increases:

E[WQ(n)] =
n + 1

s
, V ar[WQ(n)] =

n + 1
s2

and c2
WQ(n) ≡

V ar[WQ(n)]
(E[WQ(n)])2

=
1

n + 1
, (2.3)

so that c2
WQ(n) → 0 as n →∞.

Thus, whenever the queue length is large, the QL estimator E[WQ(n)] will be relatively

accurate. If we consider heavy-traffic regimes, where the queue length approaches infinity, as

we will do later, then this QL delay estimator will perform well. For example, the halfwidth

of a 95% confidence interval is about 2/
√

n, which is about 20% of a mean conditional waiting

time when n = 100. Such a large value of n is not uncommon when s too is large.
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For the M/M/s model, there is a simple expression for the average MSE in steady state,

which helps judge the performance of other estimators; the MSE’s for the other delay estimators

should all fall between the QL estimator (best possible) and the NI estimator (worst possible,

knowing the model). Let Qw∞ be a random variable with the conditional distribution of the

steady-state queue length upon arrival given that the customer must wait before beginning

service. In the M/M/s model, Qw∞+1 has a geometric distribution with mean 1/(1−ρ). That

is easily deduced from the time reversibility of the M/M/s model, which implies that Qw∞ has

the steady state distribution of the number in system in an M/M/1 queue with traffic intensity

ρ; e.g., see Proposition 5.6.3 of Ross (1996). Hence,

E[MSE(WQ(Qw
∞))] ≡

∞∑

n=0

MSE(WQ(n))P (Qw
∞ = n) = E[V ar(WQ(Qw

∞))] =
1

s2(1− ρ)
,

(2.4)

so that the ratio between the worst possible NI MSE and the best possible QL MSE is

MSE(θNI)
MSE(θQL(Qw∞))

=
V ar(W∞|W∞ > 0)
E[V ar(WQ(Qw∞))]

=
1/s2(1− ρ)2

1/s2(1− ρ)
=

1
1− ρ

. (2.5)

For example, a case of principle interest for call centers has s = 100 and ρ = 0.95. Then the

average MSE for NI is 20 times greater than the average MSE for QL. We will show that the

delay-history estimators produce a corresponding ratio of approximately c2
a + 1 = 2.

The Last Customer to Enter Service (LES). The first candidate direct delay estimator

is the delay (before starting service) of the last customer to enter service (LES). The direct

LES estimator is appealing because it is relatively easy to obtain and interpret, but there also

are a variety of refined LES estimators we can consider; all are based on the LES observation.

To a large extent, the alternative refined LES delay estimators (and others as well) are

obtained by replacing the known queue length n in (2.2) by random variables that estimate

the queue length, based on the available delay history. Let WLES(w, d) be the delay of a new

arrival, given that the new arrival must wait before starting service and given that the last

customer to enter service experienced delay w before entering service and there was elapsed

time d since that customer entered service. Let ta be the arrival epoch of the new customer

and te be the time the last customer entered service prior to ta. (Throughout this paper we

use the fact that, almost surely, no two events – arrivals or service completions – will occur

simultaneously.) Necessarily, d = ta−te and te−w is the arrival epoch of the customer entering

service at te. A key observation is that the queue length at time te must be distributed as A(w),

because customers enter service from the queue in order of arrival. However, WLES(w, d) has
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a relatively complicated exact distribution, because we do not know precisely what happens

in the interval [te, ta].

If we impose an extra condition, then this random variable WLES(w, d) has a relatively

simple distribution. The extra condition is that the epoch te is also simultaneously the

last service completion prior to ta. That extra condition will necessarily hold if at least one

customer remains in the queue at time te. In turn, that sufficient condition is very likely to be

satisfied if w is relatively large (the case of primary interest). Under the extra condition that

te is also the last service completion before ta, we have the simple representation

WLES(w, d) ≡
A(w+d)+1∑

i=1

(Vi/s) , (2.6)

where the summands are i.i.d. and independent of A(w + d), because the queue length seen

by the new arrival at time ta will be A(w + d), the number of arrivals in the interval of length

w + d preceding the arrival epoch ta. Formula (2.6) allows us to characterize the distribution

of WLES(w, d), under the assumed extra condition. Just like (2.2), (2.6) requires knowledge

of s and the mean service time as well as w. Here we also require knowledge of the renewal

arrival process or, equivalently, the interarrival-time distribution.

An important reference point for the refined LES estimator in (2.6) is the D/M/s model,

with a deterministic arrival process, having constant interarrival times, because under the extra

condition leading to (2.6), we then have WLES(w, d) = WQ(Q(ta)), since A(w + d) = Q(ta),

making (2.2) coincide with (2.6). Thus we see that the loss of efficiency in going from QL to

LES (direct or refined) is primarily due to the variability in the arrival process.

We assume that the experienced LES waiting time w is always available, but we might

not know d, so that we might want to consider as an alternative refined estimator the mean

of the random variable WLES(w), which assumes d is unavailable, but dropping d makes the

distribution even more complicated. If we can assume that w >> d, then there should be

negligible difference. In general, we have the natural approximations based on (2.6):

WLES(w) ≈
A(w+(V0/s))+1∑

i=1

(Vi/s) ≈
A(w+(1/s))+1∑

i=1

(Vi/s) , (2.7)

where V0 is an exponential random variable with mean 1 independent of Vi for i ≥ 1, because

the time between successive service completions when all servers are busy is distributed as

V0/s. (Assuming that the queue is nonempty at time te, that time is a service completion

epoch. Then d is the age of the Poisson all-servers-busy departure process with rate s under
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Poisson inspection by the arrival process.) The second approximation is obtained by inserting

the expected value. It is also based on the extra condition, which will hold approximately for

large w.

The Head-Of-The-Line (HOL) Estimator. A second candidate direct delay estimator,

which is closely related to the direct LES estimator, is the elapsed waiting time of the customer

at the head of the line (HOL) (queue), assuming that there is at least one customer waiting

at the new arrival epoch. The direct HOL delay estimator was used as an announcement in

an Israeli bank studied by Mandelbaum et al. (2000) and mentioned as a candidate delay

announcement by Nakibly (2002). It is appealing compared to LES because the conditional

distribution of the delay to be estimated is more tractable given the HOL information.

The customer at the head of the line will enter service after the next service completion.

That remaining time is exponential with mean 1/s. Let WHOL(w) be a random variable with

the conditional distribution of the waiting time (before starting service) of a new arrival given

that the new arrival must join the queue, given that there already is at least one customer

in queue, and given that the customer at the head of the line has already spent time w in

queue. The random variable WHOL(w) is closely related to the random variable WLES(w, d),

but has the advantage that we do not need to use d. Moreover, we do not need to impose the

extra condition that we made for WLES(w, d), but instead we need to impose a new one: The

extra condition now is the assumption that there is at least one customer in queue at the

arrival epoch ta; otherwise there would be no customer at the head of the line. We propose the

random variable WHOL(w) as an approximation for the random variable WLES(w) where we

omit the lag d, as well as for its own sake. Closely paralleling the previous formulas, we have

WHOL(w) ≡
A(w)+2∑

i=1

(Vi/s) . (2.8)

The Delay of the Last Customer to Complete Service (LCS). A third candidate direct

delay estimator is the delay of the last customer to complete service (LCS). We naturally would

want to consider this alternative estimator if we only learn customer delay experience after

they complete service. That might be the case for customers and outside observers.

Let WLCS(w, v, d) be the delay of a new arrival, given that the new arrival must wait

before starting service and given that the last customer to complete service experienced delay

w before entering service, had individual service time v, and there was elapsed time d since

that customer completed service. As before, let ta be the arrival epoch of the new customer;
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let tc be the time the last customer completed service prior to ta. The mean of the random

variable WLCS(w, v, d) is a natural refined estimator, but this random variable has a relatively

complicated distribution. Some data may be unavailable, so that we may want to consider as

alternative refined estimators the means of the random variables WLCS(w, d), which assumes

v is unavailable, and WLCS(w), which assumes that neither v nor d is available. Dropping v

or the pair (v, d) makes the representation even more complicated.

The Delay of the Most Recent Arrival to Complete Service (RCS). Under some

circumstances, the LCS and LES direct estimators will be similar, but they actually can be very

different when s is large, because the last customer to complete service may have experienced

his waiting time much before the last customer to enter service. We emphasize that customers

need not depart in order of arrival. Indeed, with exponential service times, when all s servers

are busy, each of the s servers is equally likely to generate the next service completion. Thus,

for large s the LCS estimator is not really a viable alternative, as we will show. Consequently,

we propose other candidate delay estimators based on the delay experience of customers that

have already completed service. The first is the delay experienced by the customer that arrived

most recently (and thus entered service most recently) among those customers who have already

completed service (RCS). We find that RCS is far superior to LCS when s is large.

Among the Last c
√

s Customers to Complete Service (RCS-c
√

s). A disadvantage

of the RCS estimator is that we must analyze a lot of data, going arbitrarily far back in the

past. From heavy-traffic analysis in §6 and the e-companion, we deduce that the most recent

arrival time of a customer that has completed service is very likely to occur among the last c
√

s

customers when s is large (and the system is normally loaded). So we introduce a new estima-

tor, which requires less information processing: Let RCS-c
√

s be the delay of the customer to

have arrived most recently among the last c
√

s customers who have already completed service.

Clearly, these last three estimators LCS, RCS and RCS-c
√

s are complicated, so that we pri-

marily rely on simulation to evaluate their relative performance. Through extensive simulation

experiments, we found that the average squared error of RCS-c
√

s is essentially identical to

that of RCS when c = 4, differs by at most 1% when c = 2 and differs by at most 10% when

c = 1.

Averages. Our main estimators are individual delays experienced by a recent customer,

rather than an average over many past delays. Only the no-information steady-state estimator

12



(W∞|W∞ > 0) can be said to use averages. We can extend the LES, LCS, RCS and RCS-

c
√

s estimators to get LES-k, LCS-k, RCS-k and RCS-c
√

s − k by averaging over the last k

experienced delays. With the exception of LCS with large s (which does not have desirable

properties), we have found that averages do not help, when the delays are relatively large (the

case of primary interest to us). There is a simple explanation: When delays are large, the

delays change relatively slowly compared to the size of the delays. Theoretically, this can be

explained by the heavy-traffic snapshot principle; see Section 6. In this setting it is better to

use recent information than to eliminate noise by averaging.

3. Initial Simulation Experiments: Comparing the Estimators

In this section we present initial simulation experiments, aiming to compare the alternative

estimators defined in §2. We focus on the average squared error (ASE) of the estimator, defined

in (1.3). For large samples, the ASE should agree with the MSE in steady state.

Table 1 shows the ASE’s for seven different delay estimators in the GI/M/s model with

s = 100. We consider three categories of estimators: (i) the two reference estimators QL

and NI, (ii) the direct delay estimators LES and HOL, and (iii) the three estimators based

on delays of customers who have already completed service - LCS, RCS and RCS-
√

s. We

consider three interarrival-time distributions - M , D and H2 - and four values of the traffic

intensity ρ - 0.98, 0.95, 0.93 and 0.90. The H2 distribution has SCV c2
a = 4 and balanced means

(the two component exponential distributions contribute equally to the mean). We performed

10 independent replications of long runs in each case. The half width of the 95% confidence

interval is shown below each estimate. Corresponding results for other values of s - 1, 10, 400

and 900 - are contained in the online supplement, Ibrahim and Whitt (2007). The cases s = 10

and s = 1 are shown in the e-companion.

These estimators appear in Table 1 with the better performance toward the left; i.e., in

terms of efficiency (low ASE), the estimators are ordered by

QL > LES ≈ HOL > RCS ≈ RCS −√s > LCS > NI . (3.1)

As expected, the full-information QL estimator performs best, while the no-information NI

estimator performs worst. The performance of LES and HOL are very close, while the perfor-

mance of RCS and RCS-
√

s are very close. The QL estimator is significantly better than LES;

LES is slightly better than RCS; RCS is significantly better than LCS; and LCS is significantly

better than NI. Very roughly, ASE(LES)/ASE(QL) ≈ (c2
a + 1)/ρ, so LES performs nearly as
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Estimated ASE in units of 10−3

M/M/s model with s = 100
ρ QL LES HOL RCS RCS-

√
s LCS NI

0.98 5.03 10.2 10.2 12.5 12.9 26.7 255
±0.02 ±0.05 ±0.05 ±0.05 ±0.05 ±0.06 ±36

0.95 2.04 4.3 4.3 6.4 6.7 16.5 41.8
±0.02 ±0.05 ±0.05 ±0.05 ±0.05 ±0.06 ±2.7

0.93 1.44 3.07 3.08 5.06 5.32 13.1 20.8
±0.002 ±0.003 ±0.003 ±0.003 ±0.003 ±0.13 ±1.2

0.90 0.99 2.2 2.2 3.9 4.2 9.4 9.7
±0.003 ±0.006 ±0.006 ±0.008 ±0.009 ±0.27 ±0.7

D/M/s model with s = 100
ρ QL LES HOL RCS RCS-

√
s LCS NI

0.98 2.48 2.62 2.62 3.77 3.94 10.3 61.5
±0.05 ±0.05 ±0.05 ±0.05 ±0.05 ±0.11 ±3.9

0.95 1.01 1.15 1.15 2.20 2.34 6.38 10.1
±0.02 ±0.02 ±0.02 ±0.03 ±0.03 ±0.12 ±0.40

0.93 0.73 0.87 0.87 1.85 1.96 4.90 5.20
±0.02 ±0.02 ±0.02 ±0.03 ±0.03 ±0.13 ±0.32

0.90 0.52 0.67 0.66 1.54 1.63 3.44 2.68
±0.015 ±0.016 ±0.017 ±0.035 ±0.037 ±0.15 ±0.23

H2/M/s model with s = 100
ρ QL LES HOL RCS RCS-

√
s LCS NI

0.98 12.4 60.4 60.4 66.1 67.0 103.4 1505
±0.70 ±3.2 ±3.2 ±3.2 ±3.2 ±34.0 ±226

0.95 4.82 22.5 22.5 27.7 28.4 56.3 243.3
±0.095 ±0.46 ±0.47 ±0.45 ±0.45 ±0.58 ±22.7

0.93 3.44 15.5 15.5 20.4 21.1 44.5 121.4
±0.094 ±0.44 ±0.44 ±0.49 ±0.50 ±1.02 ±10.2

0.90 2.35 10.2 10.2 14.6 15.2 33.1 55.4
±0.040 ±0.21 ±0.21 ±0.24 ±0.24 ±0.53 ±2.9

Table 1: A comparison of the efficiency of different real-time delay estimators for the GI/M/100
queue as a function of the traffic intensity ρ and the interarrival-time distribution (M , D and
H2). Only the direct estimators are considered. Estimates of the average squared error ASE
are shown together with the half width of the 95% confidence interval. The units are 10−3

throughout.
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well as QL for low-variability arrival processes such as the D arrival process, but much worse

for high-variability arrival processes such as the H2 arrival process.

It is instructive to look at the relative average squared error (RASE), which is obtained

by dividing the ASE by E[W∞|W∞ > 0]2, because the associated steady-state relative mean

squared error (RMSE), defined as MSE/E[W∞|W∞ > 0]2, is linear as a function of ρ for the

QL estimator: RMSE(QL) = (1− ρ). (The RMSE is identically 1 for the NI estimator.) We

show the RASE plots for the D/M/100 model in Figure 1. With the D arrival process, LES

and HOL are virtually identical (with the plots lying on top of each other), so we only show

LES. Both LES and HOL are nearly as good as QL and much better than RCS; LCS is so bad

that it is not even shown. Corresponding plots for other interarrival-time distributions and

other s appear in the online supplement. The plots for the M/M/100 and H2/M/100 models

are in the e-companion.
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Figure 1: The relative average squared error (RASE) for the D/M/100 model.

Experience shows that the NI estimator performs especially poorly in very heavy traffic,

while LCS performs especially poorly with large s in light traffic. For large s and small ρ, LCS
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Conditional ASE for the M/M/100 model in units of 10−3

Observed delays in between 4E[W |W > 0] and 6E[W |W > 0]
ρ QL LES HOL RCS RCS-

√
s LCS NI

0.99 49.4 86.6 86.3 89.4 90.1 108.8 11,586
±7.0 ±6.9 ±6.9 ±7.2 ±7.2 ±10.2 ±1250

0.98 24.8 47.5 47.3 50.1 50.6 69.6 3,542
±1.8 ±3.1 ±3.0 ±3.1 ±3.1 ±3.7 ±431

0.95 10.5 20.4 20.1 23.5 24.0 50.4 564
±0.23 ±0.63 ±0.62 ±0.82 ±0.80 ±3.3 ±27

0.93 7.54 15.2 14.9 18.7 19.3 52.0 286
±0.20 ±0.31 ±0.29 ±0.43 ±0.45 ±3.2 ±8.0

0.90 5.62 11.1 10.7 15.3 16.1 50.9 137.4
±0.21 ±0.38 ±0.38 ±0.61 ±0.66 ±25.2 ±6.7

Table 2: A comparison of the efficiency of different real-time delay estimators conditional on
the level of delay experienced for the M/M/100 model as a function of the traffic intensity ρ.
Actual delays are considered that fall in the interval (4E[W |W > 0], 6E[W |W > 0]). Estimates
of the conditional average squared error ASE are shown together with the half width of the
95% confidence interval. The units are 10−3 throughout.

even performs worse than the NI estimator. There is only one case in Table 2; more cases can

be seen when s = 400 and s = 900 in the supplement.

Since delay estimates are more relevant when the observed delays in the system are longer,

it is natural to consider the behavior of the estimators for larger delays. We have complemented

the experiments described above by considering how the delay estimators perform when we

only consider actual delays that fall in one of the intervals: (E[W |W > 0], 2E[W |W > 0]),

(2E[W |W > 0], 4E[W |W > 0]), (4E[W |W > 0], 6E[W |W > 0]) and (6E[W |W > 0],∞).

Table 2 illustrates the results for the M/M/100 model when the observed delays fall in the

interval (4E[W |W > 0], 6E[W |W > 0]). Other cases appear in the online supplement. The

performance of the estimators for these larger delays is approximately as in Table 1. As should

be expected, the NI estimator fares even worse in this comparison.

4. Analysis of the HOL and LES Estimators

The representation (2.8) allows us to characterize the probability distribution of the random

variable WHOL(w), which we do both for its own sake and as an approximation for the random

variables WLES(w) and WRCS(w). When we use the HOL estimator, we assume that there

is at least one customer in queue at the new arrival epoch ta. Very similar formulas hold for

the LES estimator based on formula (2.6), under the extra assumption given there. Since the

formulas are virtually identical, we do not display separate results for LES.
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We emphasize that the random variable WHOL(w) applies to both transient and steady-

state scenarios. We can have arbitrary traffic intensity ρ, including ρ > 1, under which there

is no proper steady state. We assume that the renewal arrival process {A(t) : t ≥ 0} and the

traffic intensity ρ are specified and unchanging in the interval [ta−w, ta], which is the relevant

system history for our estimation at time ta.

We start by showing that the distribution of WHOL(w) depends on s in a relatively simple

way. For that purpose, we introduce an extra subscript s to indicate the dependence upon s,

getting WHOL,s(w). Let d= denote equality in distribution.

Theorem 4.1. (dependence upon s) For the GI/M/s model,

WHOL,s(w) d=
WHOL,1(sw)

s
(4.1)

for all ρ, w and s.

Proof. We show the equality in distribution by establishing equality w.p.1 for a special

construction. We construct a convenient family of systems indexed by s. For each s, let the

service times be exponential random variables Vn with mean 1 as before. Start by defining

interarrival times Un with mean 1/ρ to use for the case of s = 1. Then in the system with

s > 1, let the nth interarrival time be Un/s. Let {As(t) : t ≥ 0} be the renewal counting

process in system s, having interarrival times Un/s. Then As(w/s) = A1(w) for all s and w;

since we have re-scaled the interarrival times, we just re-scale time in the associated renewal

counting process. This construction yields equality for the random variables in (4.1) and all

w ≥ 0. Since the distribution is independent of the construction, that implies the claimed

relation (4.1).

We now show that we get relatively simple asymptotic expressions characterizing the dis-

tribution of WHOL,s(w) when sw →∞. That applies when w →∞ for fixed s, but it also can

apply when s ↑ ∞ and w ↓ 0, as occurs in the QED many-server heavy-traffic limiting regime,

to be discussed in §6; then w = O(1/
√

s) so that sw →∞ while w → 0.

Let N(m, σ2) denote a normally distributed random variable with mean m and variance

σ2. Let ⇒ denote convergence in distribution.

Theorem 4.2. (distribution of WHOL,s(w)) Consider the GI/M/s queue with traffic intensity

ρ operating in the time interval [ta − w, ta]. (a) For any ρ > 0, s ≥ 1 and w > 0,

E[WHOL,s(w)] =
E[A(w)] + 2

s
(4.2)
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and

V ar[WHOL,s(w)] = E[A(w) + 2]V ar(V/s) + V ar(A(w) + 2)(E[V/s])2. (4.3)

(b) If the arrival process is Poisson, then

E[WHOL,s(w)] = ρw +
2
s

(4.4)

and

V ar[WHOL,s(w)] =
2ρw

s
+

2
s2

, (4.5)

so that

c2
WHOL,s(w) =

2
ρsw

− 6
(ρsw)2

+ O

(
1

(ρsw)3

)
as sw →∞ . (4.6)

(c) For a general renewal arrival processes with a non-lattice interrenewal-time distribution, if

sw →∞, then

sE[WHOL,s(w)]− ρsw → (c2
a + 3)
2

, (4.7)

WHOL,s(w)
w

→ ρ w. p. 1 and
E[WHOL,s(w)]

w
→ ρ , (4.8)

s2V ar(WHOL,s(w))− ρsw(c2
a + 1) →

(
5(c2

a + 1)2

4
− 2ν3

a

3
+ 1

)
, (4.9)

s2E[(WHOL,s(w)− ρw)2]− ρsw(c2
a + 1) → K , (4.10)

s2E[(WHOL,s(w)− w)2]− (sw)2(1− ρ)2 − sw
[
(2ρ− 1)c2

a + 4ρ− 3
] → K , (4.11)

where

K ≡ K(c2
a, ν

3
a) ≡

(
3c4

a

2
+ 4c2

a +
9
2
− 2ν3

a

3

)
, (4.12)

swc2
WHOL,s(w) →

c2
a + 1
ρ

and
WHOL,s(w)− ρw√

ρw(c2
a + 1)/s

⇒ N(0, 1) . (4.13)

Proof. Since WHOL(w) in (2.8) is a random sum of i.i.d. random variables, where A(w) is

independent of the summands Vi/s, we have (4.2). Formula (4.3) follows from the conditional

variance formula, e.g., p. 51 of Ross (1996). For (4.6), we use elementary operations on

series, as in 3.6.22 in Abramowitz and Stegun (1972). When we let sw increase, we first apply

Theorem 4.1 to reduce the analysis to the case s = 1. Henceforth assume that s = 1. When

we restrict attention to s = 1, it suffices to simply let w →∞. When we let w increase,

E[A(w) + 2]− ρw → (c2
a + 1)
2

+ 1 as w →∞ , (4.14)

see Corollary 3.4.7 of Ross (1996) or (2.7) and (2.8) of Whitt (1982), which review a classic

result. Combining (4.14) and (4.2) gives (4.7), which immediately implies the second limit in
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(4.8). For the w.p.1 limit in (4.8), we apply the strong law of large numbers for the partial

sums of Vn and the renewal arrival process A(w): With probability one,
∑n

i=1 Vi

n
→ E[V ] = 1 and

A(w) + 2
w

→ 1
E[U ]

= ρ , (4.15)

so that ∑A(w)+2
i=1 Vi

w
=

A(w) + 2
w

×
∑A(w)+2

i=1 Vi

A(w) + 2
→ ρ w. p. 1 . (4.16)

The asymptotic variance formula (4.9) follows from (4.3) and the asymptotic form of the

variance for a renewal process, e.g., as in (2.7) and (2.8) of Whitt (1982):

V ar(A(w)+2) = V ar(A(w)) = ρwc2
a+

5(c2
a + 1)2

4
−2ν3

a

3
− (c2

a + 1)
2

+o(1) as w →∞ . (4.17)

The associated limits (4.10) and (4.11) follow from (4.9). For (4.10), we use

E[(WHOL,s(w)− ρw)2] = var(WHOL,s(w)− ρw)) + (E[WHOL,s(w)− ρw])2

= var(WHOL,s(w)) + (E[WHOL,s(w)− ρw])2 . (4.18)

The calculation for (4.11) is similar. The first limit in (4.13) follows immediately from (4.7)

and (4.9). The central limit theorem in (4.13) follows from the central limit theorem for

renewal-reward processes, e.g., Theorem 7.4.1 of Whitt (2002). We use the convergence-

together theorem, Theorem 11.4.7 of Whitt (2002), to justify neglecting the asymptotically

negligible terms.

Remark 4.1. (exact values by numerical inversion) It is possible to exploit (4.2) and (4.3) in

order to compute the exact means and variances. To do so, we can exploit numerical transform

inversion of Laplace transforms, as discussed in §13 of Abate and Whitt (1992). The Laplace

transform of E[A(t)] is m̂1(s) ≡ f̂(s)/[s(1− f̂(s)], where f̂(s) is the Laplace transform of the

density function of the interarrival-time cdf F (here assumed to exist). The associated Laplace

transform of E[A(t)2] is 2m̂1(s)2 − m̂1(s), as can be seen from exercise XI.13 on p. 386 of

Feller (1971). Since we are interested in estimation for relatively large delays, we will rely on

the asymptotic approximations.

Remark 4.2. (nonhomogeneous Poisson arrival process) We can also analyze the random

variable WHOL,s(w) in the case of a nonhomogeneous Poisson arrival process with intensity

function {λ(t) : t ≥ 0}. The exact relations (4.4) and (4.5) have natural extensions to that
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case. We again have representation (2.8), but now with A(w) being a Poisson random variable

having mean

ma(w) ≡
∫ ta

ta−w
λ(t) dt , (4.19)

which depends on the arrival time ta and the intensity function as well as the experienced

waiting time w. Unless we specify how the intensity function behaves, we have no simple

asymptotic story as w increases, though.

Theorem 4.2 shows that the first-order asymptotic behavior of the random variable WHOL,s(w)

as sw increases depends on the general interarrival-time distribution F only through its first

two moments or, equivalently, through the mean E[U ] = 1/ρs and the SCV c2
a. Equations

(4.9) and (4.13) show that both the variance V ar(WHOL,s(w)) and the SCV c2
WHOL,s(w) are

approximately proportional to c2
a + 1 for large sw.

Theorem 4.2 shows that it may be useful to consider various refined estimators instead

of the direct estimator θd
HOL ≡ w. We would want to use the refined estimator θr

HOL ≡
E[WHOL,s(w)], because the mean necessarily minimizes the MSE, but we do not have a

convenient formula for the mean. Theorem 4.2 leads us to consider two other refined es-

timators: the simple refined estimator θsr
HOL ≡ ρw and the asymptotic refined estimator

θar
HOL ≡ ρw + (c2

a + 3)/(2s), based on the the limit (4.7) as sw → ∞. Note that the for-

mulas for the mean and variance for Poisson arrivals in (4.4) and (4.5) are exact, whereas the

formulas for non-Poisson formulas are only approximations.

For fixed ρ < 1, the three refined estimators θr
HOL(w), θsr

HOL(w) and θar
HOL(w) are all

relatively consistent and asymptotically relatively efficient as sw → ∞, whereas the direct

HOL estimator w has neither of these properties. By relatively consistent, we mean that

the ratio of the estimator to the quantity being estimated (here WHOL,s(w)) converges to 1;

by asymptotically relatively efficient, we mean that the relative mean squared error (RMSE

≡ MSE/Mean2) converges to 0.

At first glance, the simple refined estimator looks very appealing, because it combines

simplicity with good asymptotic properties. However, we found that the direct estimator

consistently outperforms the simple refined estimator in experiments evaluating the steady-

state performance for typical parameter values. Evidently, the extra constant term in θar
HOL

helps. The following (somewhat loosely stated) theorem supports that empirical observation.

Let MSE(θHOL(W∞)) denote the steady-state MSE of the estimator θHOL(w) when w is

averaged with respect to the conditional delay (W∞|W∞ > 0), where W∞ is the steady-state
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delay.

Theorem 4.3. (comparison of alternative HOL estimators) Consider the GI/M/s queue with

traffic intensity ρ < 1 in steady state. If the arrival process is Poisson or if we take the limit

in (4.7) as the exact mean, then the steady-state MSE’s are ordered by

MSE(θar
HOL(W∞)) < MSE(θd

HOL(W∞)) < MSE(θsr
HOL(W∞)). (4.20)

Moreover,

MSE(θd
HOL(W∞))−MSE(θar

HOL(W∞)) = E

[(
(1− ρ)(W∞|W∞ > 0)− (c2

a + 3)
2s

)2
]

<
(c2

a + 3)2

4s2
= MSE(θsr

HOL(W∞))−MSE(θar
HOL(W∞)) . (4.21)

Proof. The MSE formulas in (4.21) are obtained by directly adding and subtracting the

mean inside the MSE formula, with the mean here regarded as being given by (4.7). The key

inequality in (4.21) follows from a bound on the mean steady-state waiting time in the GI/M/1

queue. The conditional delay (W∞|W∞ > 0) in the GI/M/s model has the same exponential

distribution as in the GI/M/1 model; e.g., see p. 398 of Wolff (1989). Its mean is (1− ω)−1,

where ω is the root of the transform equation f̂(1−ω) = ω, where f̂(s) is the Laplace-Stieltjes

transform of the interarrival-time cdf. However, it is known that 1−ω > 2(1−ρ)/(c2
a +1); e.g.,

apply Theorem 2 of Whitt (1984), noting that in the D/M/1 queue 1 − ω > 2(1 − ρ), which

follows from elementary inequalities for the exponential function: e−2(1−ρ) ≥ 1−2(1−ρ). From

(4.21), we see that MSE(θd
HOL(W∞)) < MSE(θsr

HOL(W∞)) if and only if

E

[(
(1− ρ)(W∞|W∞ > 0)− (c2

a + 3)
2s

)2
]

<
(c2

a + 3)2

4s2
, (4.22)

which, upon expanding the quadratic and using the fact that the second moment is twice the

square of the first moment, holds if and only if

E[W∞|W∞ > 0] <
c2
a + 3

s(1− ρ)
, (4.23)

which is implied by the delay bound.

To illustrate, we show numerical results in Table 3 for the candidate delay estimators θd
HOL,

θsr
HOL and θar

HOL in the H2/M/s model with s = 100 and s = 1. We display the values of their

approximate MSE’s in steady state predicted by formulas (4.11), (4.10) and (4.9), and we show

the contributing terms, displayed in the order given in Theorem 4.2. In each case, one term
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grows without bound as ρ increases while the other terms remains constant or nearly constant.

We take the expected value of each MSE formula, where w is distributed randomly as the

steady-state conditional delay (W∞|W∞ > 0). We use the simulation estimates of the first two

moments of the conditional delay. Table 3 is consistent with Theorem 4.3. As a consequence

of Theorem 4.3, we suggest using the asymptotic refined estimator θar
HOL.

We remark that the limit in (4.13) implies that WHOL,s(w) should be approximately nor-

mally distributed when sw is not too small. Our simulation experiments show that all the

random variables WHOL,s(w), WLES,s(w) and WRCS,s(w) tend to be normally distributed

when sw is not too small.

We can combine (4.13) and (2.3) to compare the efficiency of the QL and refined HOL

estimators under high congestion. Let W (t) be the virtual waiting time at time t, the time an

arrival at time t would have to wait before beginning service. Since

W (t) =
Q(t)+1∑

i=1

(Vi/s) , (4.24)

the law of large numbers implies that W (t)/Q(t) → 1/s as Q(t) → ∞. Thus, when Q(t) is

large, we have W (t) ≈ Q(t)/s (even if W (t) itself is not large). Assuming that n is large with

w ≈ n/s in (4.13) and (2.3), we have both sw and n large and

c2
WHOL,s(w)

c2
WQ,s(n)

≈ (c2
a + 1)/ρsw

1/(n + 1)
≈ c2

a + 1
ρ

. (4.25)

Since we have introduced HOL partly as an approximation for LES, it is interesting to

consider the difference between the HOL and LES observed delays and the difference between

the random variables WHOL,s(w) and WLES,s(w, d/s). (We let ta − te = d/s because it should

be proportional to 1/s with s servers.) First note that if at least one customer remains in queue

after the last customer to enter service at time te, then the HOL customer at time te (after

the customer entered service) will remain the HOL customer at time ta. As a consequence,

the HOL customer arrived immediately after the LES customer. Thus the HOL customer

waits more than the LES customer by the time ta − te but less by the single interarrival

time between them. Clearly these differences should become asymptotically negligible in the

appropriate scaling.

We now compare the random variables WHOL,s(w) and WLES,s(w, d). We establish a

stochastic bound between these random variables. Let ≤st denote ordinary stochastic order;

see §9.1 of Ross (1996). The following bound shows that the difference between WHOL,s(w)

and WLES,s(w, d) is stochastically bounded and thus asymptotically negligible compared to w
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Evaluating the alternative HOL estimators
Approximations in the H2/M/100 model

ρ 0.88 0.92 0.96 0.98
E[W |W > 0] 0.1902 0.2964 0.6114 1.307

conf. int. ±0.0030 ±0.0067 ±0.029 ±0.17
E[W 2|W > 0] 0.07205 0.1761 0.7446 3.436

conf. int. ±0.0022 ±0.0095 ±0.060 ±0.67
MSE(θd) 0.00826 0.0135 0.0293 0.0640

term 1 0.00103 0.00113 0.00119 0.00137
term 2 0.00677 0.0120 0.0276 0.0622
term 3 0.00045 0.00045 0.00045 0.00045

MSE(θsr) 0.00882 0.00141 0.00298 0.0645
term 1 0.00837 0.0136 0.0293 0.0640
term 2 0.00045 0.00045 0.00045 0.00045

MSE(θar) 0.00759 0.0129 0.0286 0.0632
term 1 0.00837 0.0136 0.0293 0.0640
term 2 -0.000775 -0.000775 -0.000775 -0.000775

Approximations in the H2/M/1 model
ρ 0.85 0.90 0.95 0.98

E[W |W > 0] 15.01 23.50 48.64 115.7
conf. int. ±0.18 ±0.42 ±1.6 ±8.80

E[W 2|W > 0] 446.2 1105.7 4707.1 25650.5
conf. int. ±8.03 ±39.2 ±263.2 ±3280
MSE(θd) 62.59 104.9 230.3 565.7

term 1 10.04 11.06 11.76 10.26
term 2 48.04 89.3 214.0 550.9
term 3 4.5 4.5 4.5 4.5

MSE(θsr) 68.31 110.3 235.5 571.6
term 1 63.81 105.8 231.0 567.1
term 2 4.5 4.5 4.5 4.5

MSE(θar) 56.06 98.02 223.3 559.3
term 1 63.81 105.8 231.0 567.1
term 2 -7.75 -7.75 -7.75 -7.75

Table 3: Evaluation of the MSE approximations for the estimators θd
HOL, θsr

HOL and θar
HOL in

steady-state using (4.11), (4.9) and (4.10) together with simulation estimates of the first two
moments of the conditional delay E[W∞|W∞ > 0]. The H2/M/s model is considered as a
function of the traffic intensity ρ for s = 100 and s = 1.
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and these individual random variables as sw →∞. We say that a family of random variables

{X(w) : w > 0} is stochastically bounded if for any ε > 0 there exists a positive constant K(ε)

such that P (|X(w)| > K(ε)) < ε. By Markov’s inequality, for nonnegative random variables it

suffices to have the means E[X(w)] uniformly bounded: P (|X(w)| > K(ε)) ≤ E[X(w)]/K(ε).

Theorem 4.4. (bound on the difference between WHOL,s(w) and WLES,s(w, d/s)) Consider

the GI/M/s model. Assume that there is at least one customer in queue at the new arrival

epoch, so that (2.8) is valid for HOL and (2.6) is valid for LES. Then

WLES,s(w, d/s)−X(s, w, d) ≤st WHOL,s(w) ≤st WLES,s(w, d/s) + X(s, w, d) , (4.26)

where X(s, w, d) is distributed as

X(s, w, d) ≡
A(w+(d/s))−A(w)+1∑

i=1

(Vi/s) . (4.27)

As w →∞ for fixed s, E[X(s, w, d)] → (ρd + 1)/s; as sw →∞, E[X(s, w, d)]/w → 0. so that

|WHOL(w)−WLES(w, d)|
w

→ 0 as sw →∞ . (4.28)

For the M/M/s model,

X(s, w, d) =
A(d/s)+1∑

i=1

(Vi/s) , (4.29)

so that

E[X(s, w, d)] = (ρd + 1)/s and V ar(X(s, w, d)) = (2ρd + 1)/s2 . (4.30)

Proof. Without altering the individual distributions of WHOL,s(w) and WLES,s(w, d/s), we

can make a special construction in which we use exactly the same exponential random variables

Vi/s for the two estimators. The random numbers of summands differ by A(w+(d/s))−A(w)−
1, which is bounded above by A(w+(d/s))−A(w)+1, which we use in (4.27). Since the renewal

process A has rate ρs, we can then apply Blackwell’s renewal theorem, p. 155 of Asmussen

(2003), to get E[A(w + d/s)−A(w)] → ρd as sw →∞. Recall that we have assumed that the

interarrival time cdf F is non-lattice. Hence we get E[X(s, w, d)]/w → 0 as sw → ∞, which

implies (4.28).

5. Simulations Related to Theorem 4.2

Based on (4.11) in Theorem 4.2, we approximate the MSE of the direct HOL, LES and RCS

estimators by

MSE(θd
HOL(w)) ≈ (1− ρ)2w2 +

((2ρ− 1)c2
a + 4ρ− 3)w
s

+
K

s2
, (5.1)
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for K in (4.12). As above, let MSE(θd
HOL(W∞)) denote the MSE in steady state, i.e., when

we replace w in (5.1) by (W∞|W∞ > 0). We obtain

MSE(θd
HOL(W∞)) ≈ (1− ρ)2E[W 2

∞|W∞ > 0] +
((2ρ− 1)c2

a + 4ρ− 3)E[W∞|W∞ > 0]
s

+
K

s2
,

(5.2)

where W∞ is the steady-state delay.

We have compared the ASE for HOL, LES and RCS to MSE(θd
HOL(W∞)) and found close

agreement, with the agreement being slightly better for HOL and LES than for RCS. In making

this comparison, we substitute the simulation estimates of the two moments E[W∞|W∞ > 0]

and E[W 2∞|W∞ > 0] into (5.2). We must calculate or approximate these conditional moments

in order to have a full approximation, but we do not consider that step here. We obtain

good results comparing approximation (5.2) to the ASE for the cases of exponential (M),

hyperexponential (H2 with c2
a = 4) and Erlang (E2) interrenewal-time distributions. We did

experiments for s = 1, 10, 100, 400, 900, each for four values of ρ, increasing with s in order to

represent typical cases. The errors were consistently less than 5% for HOL and LES in these

experiments, as illustrated by the results for LES with M and H2 interarrival-time distributions

in Table 4.

Testing the MSE(HOL∞) Approximations
in the GI/M/100 model

ρ M % diff. D % diff. H2 % diff.
0.98 10.20 −0.3% 2.67 −1.9% 62.8 −3.9%
0.95 4.20 1.4% 1.20 −4.1% 22.9 −1.9%
0.93 3.06 0.4% 0.92 −5.8% 15.9 −2.1%
0.90 2.20 −1.5% 0.72 −7.5% 10.5 −3.2%

Table 4: Evaluation of the approximations for the steady-state MSE of HOL in (5.2) and (5.4)
by comparing to simulation estimates of the ASE for LES in the GI/M/100 model as a function
of the interarrival-time distribution and the traffic intensity ρ. The simulation estimates appear
in Table 1. The approximations in units of 10−3 and the relative percent differences are shown
here.

We found that the approximation in (5.2) does not perform nearly as well for the case of

a deterministic (D) arrival process, which should not be surprising, because the deterministic

interrenewal-time distribution is a lattice distribution not covered by Theorem 4.2. Instead of

(5.1), we propose the following approximation for the direct estimator with a D arrival process:

MSE(θd
HOL,D(w)) ≈ (1− ρ)2w2 +

ρw + (2/s)
s

, (5.3)

which is obtained by making the simple approximation A(w) ≈ ρsw. We then obtain the
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following analog of the steady-state approximation (5.2):

MSE(θd
HOL,D(W∞)) ≈ (1− ρ)2E[W 2

∞|W∞ > 0] +
ρE[W∞|W∞ > 0] + (2/s)

s
. (5.4)

Approximation (5.4) performs much better than approximation (5.2) with c2
a = 0, yielding

errors of about 5% (ranging up to 11%), instead of about 5− 25%, as shown in Table 4. For

the refined estimator, we would also change the mean estimator to (4.4) instead of (4.7).

In order to evaluate the approximations for a specified observed delay w, we consider

data from the simulation where the observed HOL delay falls in a small interval about w ≡
2E[W∞|W∞ > 0]. (We choose interval widths to make roughly reasonable, comparable sample

sizes.) Table 5 shows the results of such an experiment for the GI/M/100 model with ρ = 0.95.

(The width of the sampling interval in each case was chosen to have roughly comparable sample

sizes.) Table 5 shows that the approximations for the HOL conditional mean and variance are

remarkably accurate approximations for all three estimators: HOL, LES and RCS, with the

variance being slightly higher for RCS. We found that the estimated distribution of the actual

delay is approximately normally distributed in each case, as predicted by the limit in (4.13).

Testing the Approximations (4.7) and (4.9)
with observed w in a small interval about 2E[W∞|W∞ > 0]
interarrival-time dist. M D H2

2E[W∞|W∞ > 0] 0.40 0.20 0.96
selected HOL w interval [0.39, 0.41] [0.19, 0.21] [0.94, 0.98]

sample size 128,287 99,747 151,556
sample mean observed 0.3998 0.2000 0.9597

E[WHOL](w) est. 0.4003 0.1996 0.9625
V ar(WHOL)(w) est. 0.0080 0.0020 0.0448

E[WLES(w)] est. 0.3996 0.1995 0.9617
V ar(WLES(w)) est. 0.0081 0.0021 0.0450

E[WRCS(w)] est. 0.3938 0.1929 0.9586
V ar(WRCS(w)) est. 0.0103 0.0029 0.0507

Predicted mean by (4.7) 0.400 0.205 0.947
Pred. variance by (4.9) 0.0076 0.0021 0.0455

Table 5: Comparing the approximations for E[WHOL(w)] and V ar(WHOL(w)) for fixed w
following from (4.7) and (4.9) with simulation estimates of the mean and variance of the
HOL, LES and RCS estimators in the GI/M/100 model with ρ = 0.95 as a function of the
interarrival-time distribution. Data are collected for observed waiting times contained in a
small interval about 2E[W∞|W∞ > 0]. The resulting sample sizes are shown.
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6. Insights from Heavy-Traffic Limits

We can gain additional insight about the performance of the different estimators by considering

heavy-traffic limits for the GI/M/s model. To do so, we consider a family of models indexed

by the parameter ρ, so we introduce a second subscript ρ in addition to s. We let the service

times remain unchanged. We assume that we start with interarrival times Un having mean

1/s. In system (s, ρ), we use interarrival times Un/ρ, so that they have mean 1/sρ. That

makes the traffic intensity in model ρ be ρ.

We consider both the classical heavy-traffic (HT) regime in which ρ ↑ 1 for fixed s and the

Quality-and-Efficiency-Driven (QED) many-server heavy-traffic (HT) regime in which both

ρ ↑ 1 and s → ∞ with ((1 − ρ)
√

s → β for 0 < β < ∞; see Chapters 5, 9 and 10 of Whitt

(2002) for background. The queue length tends to be of order 1/(1 − ρ) in both limiting

regimes, but the delays behave differently. The delay are of order 1/(1− ρ) in the classical HT

regime, but are of order 1− ρ or 1/
√

s in the QED HT regime.

The Heavy-Traffic Snapshot Principle Just as in the application of heavy-traffic limits

to plan queueing simulations reviewed in §5.8 of Whitt (2002), the time scaling in the heavy-

traffic stochastic-process limits provides important insight. In particular, we can apply the

celebrated heavy-traffic snapshot principle, see Reiman (1982) and p. 187 of Whitt (2002),

which in our context tells us that the waiting times (of other customers) tend to change

negligibly during the time a customer spends waiting when the system is in heavy traffic. In

other words, the snapshot principle immediately implies that the LES and HOL estimators are

asymptotically exact in heavy-traffic limits (specifically, the ratio converges to one). It also

shows that, asymptotically in the heavy-traffic limit, there is no advantage in averaging over

delays of past customers.

Since we are primarily concerned with waiting times, it is appropriate to focus on the

virtual waiting time stochastic process, which describes the waiting time of a potential arrival

who would come at time t. We first consider the classical HT regime. Let Ws,ρ(t) be the

virtual waiting time at time t in model (s, ρ). The waiting time of the kth arrival at time Ak,s,ρ

is just Ws,ρ(Ak,s,ρ−), where g(t−) is the left limit of the function g at time t.

The classical heavy-traffic stochastic-process limit for the virtual waiting time process states

that

(1− ρ)Ws,ρ((1− ρ)−2t) ⇒ RBM(t) as ρ ↑ 1 , (6.1)
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where the limit stochastic process RBM(t) is a reflected Brownian motion, which has continu-

ous sample paths, and the convergence in distribution is for the entire stochastic process with

sample paths in the function space D; see Whitt (2002). The space scaling in (6.1) implies that

the waiting times will be of order O(1/(1− ρ)), while the time scaling in (6.1) implies that the

waiting times will only change significantly over time intervals of length of order O(1/(1−ρ)2).

As a consequence, we conclude that the HOL and LES estimators are relatively consistent in

the classical HT regime.

A similar story holds in the QED HT regime. The stochastic-process limit for the virtual

waiting time process in the QED regime is obtained by Puhalskii and Reiman (2000). Let

Ws,ρ(t) be the virtual waiting time at time t in model (s, ρ). Paralleling (6.1), in the QED

regime we have the stochastic-process limit

√
sWs,ρ(t) ⇒ Y (t) as ρ ↑ 1 , (6.2)

where the limit process Y (t) is no longer RBM but again is a diffusion process with continuous

sample paths and again the convergence in distribution is for the entire stochastic process with

sample paths in the function space D.

The time and space scaling in (6.2) is drastically different from (6.1), but we nevertheless

obtain the same conclusions about our estimators. Now the waiting times are getting small

instead of large, being of order O(1/
√

s), but there is no time scaling at all, so that the

waiting times will only change significantly over time intervals of length of order O(1). As a

consequence, we conclude that the HOL and LES estimators are also relatively consistent in

the QED HT regime. Again, we conclude that there will be no advantage to averaging the

delays experienced over past customers.

Steady-State Heavy-Traffic Limits In the e-companion we also establish heavy-traffic

limits in both regimes for steady-state random variables. We focus on the HOL estimator; by

Theorem 4.4, the LES estimator behaves the same. We see what happens “on average” to the

random variable WHOL,s,ρ(w) (where the observed delay w has the steady-state distribution).

From the steady-state HT limits, we deduce that both the direct QL and HOL estimators

are (weakly) relatively consistent: the ratio of the estimator to the random quantity being

estimated converges to 1. We also establish limits establishing the asymptotic efficiency of the

different estimators (comparing MSE’s). In these HT limits the direct and refined estimators

have asymptotically the same efficiency, while the QL estimator is asymptotically more efficient
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than these delay-history estimators by the constant factor c2
a +1, consistent with Theorem 4.2.

Since associated heavy-traffic stochastic-process limits have been established for other models,

the estimators should have similar nice properties for other models.

7. Conclusions

Insights that can be Generalized. Even though we are primarily interested in service

systems that are more complex than the GI/M/s queueing model, in this paper we studied

the performance of alternative delay estimators in this relatively simple idealized GI/M/s

setting. Our goal has been to gain insight into how the estimators will perform in more

complex settings. Our results for the GI/M/s model indicate what to expect more generally.

Although it remains to be verified in each specific context, we anticipate that many of the

performance conclusions for the GI/M/s model (reviewed below) will extend to other settings.

At a minimum, the results here serve as a basis for comparison in further examination of delay

estimation.

Performance of the Estimators. An important reference point for the delay estimators

based on delay history is the standard QL estimator based on the observed queue length,

defined in (1.1). For QL, the only source of uncertainty is the remaining service times of the

customers ahead of the arrival. That uncertainty can be reduced if the remaining service times

can be reliably estimated, as emphasized by Whitt (1999).

As can be seen from formulas (2.6)-(2.8), to a large extent, the LES and HOL estimators

can be regarded as the QL estimator modified by replacing the known queue length by an

estimate of that queue length. Since the queue length is equal (or approximately equal) to

the number of arrivals during the observed waiting time, the queue length is estimated by the

expected number of arrivals during the observed waiting time. Thus the increase in MSE in

going from QL to the LES, HOL and RCS estimators is primarily due to variability in the

arrival process. The MSE tends to be larger for LES and HOL than QL by the constant factor

(c2
a + 1), where c2

a is the SCV of an interarrival time, a common measure of variability for a

renewal arrival process; see Whitt (1982).

As a consequence, the delay estimators based on delay history will perform about the

same as the QL estimator when the arrival process has very low variability, but the relative

performance will degrade as that arrival-process variability increases. From the perspective of

statistical precision, the QL estimator should be preferred to the delay-history estimators if it
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is available, unless there is negligible arrival-process variability. The delay-history estimators

offer the advantage of transparency, but that is obtained at the expense of statistical precision.

This insight should apply very broadly.

Overall, we conclude that the greatest source of estimation uncertainty is the remaining

service times. After that, it is the arrival-process variability, as partially characterized by

the SCV c2
a. We conclude that the estimators θQL(n), θd

LES(w), θd
HOL(w) and θd

RCS(w) can

be very useful, but they are not extraordinarily accurate. The refined estimators for HOL,

LES and RCS can remove all or nearly all of the bias, but non-negligible variance remains.

The greatest hope for more reliable estimation seems to lie in being able to better predict the

remaining service times, which is certainly possible if the service times are actively controlled,

and is possible to some extent if either the service-time distribution is non-exponential or if

it is possible to classify the customers, as discussed in Whitt (1999). An important direction

for further research is to develop more sophisticated estimators that exploit much more of the

information. Nevertheless, there may always be a role for the transparent delay estimators

based on recent delay history considered here.

We considered several different delay estimators based on recent delay history, notably LES,

HOL and RCS. Through analysis and extensive simulation experiments, we conclude that the

LES and HOL delay estimators are very similar, with both being more accurate than the

others based on delay history, but less accurate than the full-information queue-length (QL)

estimator. For large s, RCS is far superior to the delay of the last customer to complete service

(LCS), because customers need not complete service in the same order they arrive. For low

traffic intensities with large s, LCS was even outperformed by the no-information estimator

(NI). The reason is that the LCS customer may have arrived too long ago. We conclude that

RCS should only be preferred to HOL and LES if delay information is not available until after

customers complete service, but the MSE is not much greater for RCS than for LES and HOL.

For the GI/M/s model, the random delay WHOL(w) given the HOL observation w is

remarkably tractable, as can be seen from the representation (2.8). Theorem 4.2 gives the

exact mean and variance of WHOL(w) for Poisson arrivals. It is significant that the mean

E[WHOL(w)] is not simply w, but instead is a linear function of it: ρw + (2/s) with Poisson

arrivals. That mean serves as a refined estimate, which has lower MSE than the direct esti-

mator, but it requires extra information. Bias in the direct estimators can be expected more

generally.

For general renewal arrivals, Theorem 4.2 establishes asymptotic results that generate sim-
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ple approximations, which may well describe the behavior of these estimators in other settings.

As sw increases, the random variable WHOL(w) is asymptotically normally distributed with

explicit mean and variance (§4), which has been substantiated by simulation, as discussed in

§5. From (4.13), we see that the squared coefficient of variation c2
WHOL,s(w) is asymptotically

proportional to (c2
a + 1)/ρsw as sw → ∞. That implies very accurate prediction when sw is

large. These properties of WHOL(w) (and WLES(w)) can be expected to hold more generally.

In §6 and the e-companion we showed that heavy-traffic limits provide important insight.

The heavy-traffic snapshot principle provides strong support for all these delay-history esti-

mation procedures, and shows that there should be little benefit from averaging over past

customer delays, under heavy loads. The relative errors of the LES and HOL estimators are

asymptotically negligible in both the classical and many-server heavy-traffic regimes. The MSE

relative to the mean is asymptotically negligible for all the candidate delay estimators based

on delay history. The QL estimator is asymptotically more efficient than HOL and LES by

the constant factor c2
a + 1 in both heavy-traffic regimes. Since similar heavy-traffic limits have

already been established for much more general models, these heavy-traffic properties can be

expected to hold more generally.

Possible New Applications. For call centers as well as other service systems (e.g., delays

in receiving new products or getting an application processed by the INS), there may be new

applications of these alternative delay estimators based on recent delay history. They can also

be used by customers and third parties that do not have access to all the state information

available to the service provider. This might work as follows: Large groups of customers might

voluntarily route their delay experience electronically to a centralized consumer-group monitor

that makes this information available to its customer base in real time. The customers in turn

could have their communication equipment set up to simultaneously query the monitor when-

ever the customer contacts the service provider. In this way, the flow of critical information

could take place in milliseconds, which is far shorter than a short telephone call. This is not

beyond current technology.

In the same spirit, the LES delay estimator could be used by outside parties to verify

that the service provider is providing accurate delay estimates. The service provider could

agree to publish its delay estimates, providing extra coded information giving the customer

identification for each observed LES delay. Customers or authorized third parties could then

verify that the delays, appropriately recorded, coincided with that same delay when it was
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quoted as an LES delay. The information available to each customer would not go beyond its

own delay experience, and yet, collectively, customers could verify the accuracy of the delay

predictions. Such verification might well be regarded as a legitimate customer concern. And

service providers might want to offer the verification as a way to provide better service.
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A. Introduction

We present additional material in this e-companion. First, in §B we present additional exper-

imental results; we present many more in an online supplement available on the authors’ web

pages. Next, in §C we establish steady-state heavy-traffic limits for these estimators. At the

end of the section, we show that the bad performance of the LCS estimator for large s can be

explained in part by its behavior in the QED many-server heavy-traffic limiting regime. Un-

like the LES, HOL and RCS delay estimators, the LCS delay estimator is not asymptotically

consistent in this limiting regime. Finally, in §D we present a cautionary example showing the

possible pitfalls of the LES and HOL delay estimators.

B. Additional Tables and Figures

Paralleling Table 1 in §3, which displays the ASE’s for seven different estimators in the

GI/M/100 model for the M , D and H2 arrival processes, we display the corresponding es-

timated ASE’s for the same estimators for the GI/M/s models with s = 10 and s = 1 in

Tables 6 and 7 below. The estimator LCS fares better as s decreases. The ASE’s of LCS and

RCS do not differ greatly for s = 10 and are identical for s = 1.

Paralleling Figure 1 in §3, where we display plots of the relative average squared errors

(RASE’s) for several of the estimators in the D/M/100 model, we display the RASE’s for

the M/M/100 and H2/M/100 models in Figures 2 and 3. Again we see linear or near-linear

performance as a function of ρ. The advantage of QL over LES increases as c2
a increases. Again

the HOL and LES values fall on top of each other, so we only show LES.

Paralleling Table 3 in §4, where we compare the approximations for the MSE’s of the three

estimators θd
HOL, θar

HOL and θsr
HOL in the H2/M/s model with s = 100 and s = 1, we show

1



Estimated ASE in units of 10−1

M/M/s model with s = 10
ρ QL LES HOL RCS RCS-

√
s LCS NI

0.98 4.95 10.1 10.1 10.8 10.9 11.9 257.2
±0.23 ±0.42 ±0.41 ±0.41 ±0.42 ±0.41 ±48.1

0.95 1.98 4.16 4.17 4.83 4.94 5.87 39.61
±0.025 ±0.040 ±0.042 ±0.039 ±0.041 ±0.041 ±2.3

0.93 1.42 3.03 3.05 3.67 3.77 4.62 20.01
±0.013 ±0.032 ±0.037 ±0.036 ±0.033 ±0.036 ±0.66

0.9 1.00 2.19 2.20 2.79 2.88 3.63 10.10
±0.017 ±0.033 ±0.042 ±0.036 ±0.035 ±0.036 ±0.49

0.85 0.661 1.50 1.53 2.04 2.11 2.69 4.41
±0.0032 ±0.0076 ±0.012 ±0.0092 ±0.0085 ±0.0097 ±0.083

D/M/s model with s = 10
ρ QL LES HOL RCS RCS-

√
s LCS NI

0.98 2.49 2.63 2.63 2.99 3.05 3.57 59.3
±0.084 ±0.083 ±0.086 ±0.085 ±0.086 ±0.086 ±10.2

0.95 1.01 1.16 1.16 1.50 1.55 2.00 10.1
±0.018 ±0.018 ±0.020 ±0.019 ±0.019 ±0.019 ±0.83

0.93 0.730 0.876 0.877 1.21 1.26 1.66 5.24
±0.010 ±0.011 ±0.013 ±0.012 ±0.011 ±0.012 ±0.29

0.9 0.518 0.663 0.663 0.977 1.02 1.37 2.66
±0.0058 ±0.0057 ±0.0091 ±0.0077 ±0.0066 ±0.0078 ±0.12

0.85 0.352 0.494 0.494 0.779 0.814 1.06 1.24
±0.0025 ±0.0026 ±0.0057 ±0.0047 ±0.0028 ±0.0047 ±0.0053

H2/M/s model with s = 10
ρ QL LES HOL RCS RCS-

√
s LCS NI

0.98 12.8 62.6 62.6 64.4 65.1 67.3 1594
±0.69 ±4.0 ±4.1 ±4.1 ±4.1 ±5.6 ±258

0.95 4.81 22.3 22.3 23.9 24.6 26.5 229
±0.081 ±0.47 ±0.48 ±0.47 ±0.47 ±0.81 ±9.1

0.93 3.42 15.4 15.4 17.0 17.5 19.4 115
±0.069 ±0.35 ±0.37 ±0.35 ±0.35 ±0.35 6.8

0.9 2.34 10.1 10.1 11.6 11.8 13.7 54.4
±0.036 ±0.18 ±0.20 ±0.19 ±0.18 ±0.18 ±2.9

0.85 1.50 6.00 6.02 7.25 7.50 8.97 22.8
±0.022 ±0.12 ±0.13 ±0.12 ±0.13 ±0.076 ±1.37

Table 6: A comparison of the efficiency of different real-time delay estimators for the GI/M/10
queue as a function of the traffic intensity ρ and the interarrival-time distribution (M , D and
H2). Only the direct estimators are considered. Estimates of the average squared error ASE
are shown together with the half width of the 95% confidence interval. The units are 10−1

throughout.
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Estimated ASE
M/M/s model with s = 1

ρ QL LES HOL RCS RCS-
√

s LCS NI
0.95 20.1 42.2 42.4 44.1 44.1 44.1 405.0

±0.42 ±0.77 ±0.79 ±0.78 ±0.78 ±0.78 ±23.4
0.93 14.4 30.6 30.7 32.4 32.4 32.4 207.5

±0.19 ±0.37 ±0.39 ±0.37 ±0.37 ±0.37 ±10.4
0.9 9.99 21.8 22.0 23.5 23.5 23.5 100.6

±0.084 ±0.19 ±0.21 ±0.19 ±0.19 ±0.19 ±3.4
0.85 6.68 15.1 15.4 16.6 16.6 16.6 44.9

±0.043 ±0.093 ±0.095 ±0.010 ±0.010 ±0.010 ±0.88
D/M/s model with s = 1

ρ QL LES HOL RCS RCS-
√

s LCS NI
0.95 10.1 11.6 11.6 12.6 12.6 12.6 101.1

±0.15 ±0.15 ±0.16 ±0.15 ±0.15 ±0.15 ±7.2
0.93 7.32 8.79 8.79 9.73 9.73 9.73 52.7

±0.081 ±0.078 ±0.086 ±0.080 ±0.080 ±0.080 ±2.4
0.9 5.19 6.64 6.65 7.56 7.56 7.56 26.8

±0.038 ±0.037 ±0.041 ±0.040 ±0.040 ±0.040 ±0.94
0.85 3.53 4.96 4.95 5.82 5.82 5.82 12.4

±0.018 ±0.018 ±0.020 ±0.020 ±0.021 ±0.020 ±0.36
H2/M/s model with s = 1

ρ QL LES HOL RCS RCS-
√

s LCS NI
0.95 48.7 226.4 226.5 231.1 231.1 231.1 2339

±1.13 ±5.14 ±5.23 ±5.15 ±5.15 ±5.15 ±425
0.93 34.3 154.4 154.4 158.9 158.9 158.9 1151

±0.63 ±2.9 ±2.9 ±3.0 ±3.0 ±3.0 ±181
0.9 23.48 101.3 101.4 105.5 105.5 105.5 552.9

±0.37 ±2.3 ±2.4 ±2.4 ±2.4 ±2.4 ±103
0.85 14.95 60.0 60.2 63.9 63.9 63.9 224.4

±0.104 ±0.52 ±0.53 ±0.51 ±0.51 ±0.51 ±6.2

Table 7: A comparison of the efficiency of different real-time delay estimators for the GI/M/1
queue as a function of the traffic intensity ρ and the interarrival-time distribution (M , D and
H2). Only the direct estimators are considered. Estimates of the average squared error ASE
are shown together with the half width of the 95% confidence interval.
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Figure 2: The relative average squared error (RASE) for the M/M/100 model.

corresponding results for the M/M/s model with s = 100 and s = 1 in Table 8. We have used

simulation to estimate all quantities here, even though we could compute them analytically.

This case thus provides a crosscheck on both our analytic formulas and the simulations.

Finally, we present one table illustrating our study of the number of past customers we

need to consider for RCS, as discussed at the end of §2. Table 9 presents simulation results for

the H2/M/100 model as a function of ρ. These results support the conclusion that RCS−c
√

s

is virtually identical to RCS itself when c = 4, and that small errors are observed when c = 2

and s = 1. These conclusions held uniformly over all interarrival-time distributions and all

s ≥ 100.
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Evaluating the alternative HOL estimators
Approximations in the M/M/s model for s = 100 and s = 1

ρ 0.85 0.90 0.93 0.95 0.98 0.99
E[W |W > 0] 0.0666 0.0993 0.1435 0.2012 0.500 0.901

conf. int. ±0.0018 ±0.0027 ±0.0018 ±0.0019 ±0.037 ±0.059
E[W 2|W > 0] 0.0089 0.0196 0.0414 0.0811 0.500 1.53

conf. int. ±0.0006 ±0.0012 ±0.0016 ±0.0026 ±0.097 ±0.24
MSE(θd) 0.00153 0.00219 0.00307 0.00422 0.01020 0.01823

term 1 0.00020 0.00020 0.00020 0.00020 0.00020 0.00015
term 2 0.00073 0.00139 0.00227 0.00342 0.00940 0.01748
term 3 0.00060 0.00060 0.00060 0.00060 0.00060 0.00060

MSE(θsr) 0.00173 0.00239 0.00327 0.00442 0.01040 0.01844
term 1 0.00113 0.00179 0.00267 0.00382 0.00980 0.01784
term 2 0.00060 0.00060 0.00060 0.00060 0.00060 0.00060

MSE(θar) 0.00133 0.00199 0.00287 0.00402 0.01000 0.01804
term 1 0.00113 0.00179 0.00267 0.00382 0.00980 0.01784
term 2 0.00020 0.00020 0.00020 0.00020 0.00020 0.00020

Approximations in the M/M/1 model
ρ 0.80 0.85 0.90 0.95 0.96 0.98

E[W |W > 0] 5.01 6.68 9.98 20.04 24.80 50.70
conf. int. ±0.03 ±0.04 ±0.08 ±0.36 ±0.33 ±2.4

E[W 2|W > 0] 50.3 89.6 200.3 806.6 1211 5290
conf. int. ±0.69 ±1.36 ±5.1 ±37.4 ±45 640
MSE(θd) 12.02 15.36 21.98 42.08 51.58 103.4

term 1 2.01 2.01 2.00 2.02 1.94 2.11
term 2 4.01 7.35 13.98 34.07 43.64 95.25
term 3 6.00 6.00 6.00 6.00 6.00 6.00

MSE(θsr) 14.02 17.35 23.97 44.07 53.61 105.31
term 1 8.02 11.35 17.97 38.07 47.61 99.31
term 2 6.00 6.00 6.00 6.00 6.00 6.00

MSE(θar) 10.02 13.35 19.97 40.07 49.61 101.31
term 1 8.02 11.35 19.97 38.07 47.61 99.31
term 2 2.00 2.00 2.00 2.00 2.00 2.00

Table 8: Evaluation of the MSE approximations for the estimators θd
HOL, θsr

HOL, and θar
HOL

in steady-state using (4.11), (4.9) and (4.10) together with simulation estimates of the first
two moments of the conditional delay E[W∞|W∞ > 0]. The M/M/s model is considered as a
function of the traffic intensity ρ for s = 100 and s = 1.
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Figure 3: The relative average squared error (RASE) for the H2/M/100 model.
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C. Heavy-Traffic Limits

In this section we present additional heavy-traffic limits, extending the discussion in §6. We

start by establishing heavy-traffic limits for the steady-state random variables. We see what

happens “on average” to the random variable WHOL,s,ρ(w). We consider both the classical

heavy-traffic regime in which ρ ↑ 1 for fixed s and the QED (many-server heavy-traffic limiting)

regime in which both ρ ↑ 1 and s → ∞ with ((1− ρ)
√

s → β for 0 < β < ∞; see Chapters 5,

9 and 10 of Whitt (2002) for background. For more on the QED regime for GI/G/s queues,

see Halfin and Whitt (1981), Puhalskii and Reiman (2000), Jelenkovic et al. (2004) and Whitt

(2004b, 2005).

The Classical Heavy-Traffic Regime. We start with the classic heavy-traffic (HT) regime

in which ρ ↑ 1 with fixed s. We look at the distribution of WHOL,s(w), assuming that the

observed waiting time w experienced by the customer at the head of the line is a random

variable W h∞,s,ρ, assumed to be the steady-state delay in model (s, ρ) experienced by a customer

at the head of the line at an arrival epoch, conditional on there being at least one customer in

the queue. Thus let WHOL,s,ρ(W h∞,s,ρ) denote a random variable with the distribution

P (WHOL,s,ρ(W h
∞,s,ρ) ≤ x) ≡

∫ ∞

0
P (WHOL,s,ρ(w) ≤ x) dP (W h

∞,s,ρ ≤ w) , (3.1)

in model (s, ρ), where in this subsection s is held fixed. This means that E[WHOL,s,ρ(W h∞,s,ρ)] ≡
E[E[WHOL,s,ρ(W h∞,s,ρ)|W h∞,s,ρ]]. The random variable W h∞,s,ρ is not quite distributed as the

steady-state waiting time at the arrival epoch, W∞,s,ρ, or the conditional steady-state waiting

time, (W∞,s,ρ|W∞,s,ρ > 0), but it is asymptotically equivalent to both of these in the heavy-

traffic limit.

In order to relate the HOL and QL estimators, it is important to exploit the joint conver-

gence of the steady-state queue length and waiting time. Such joint convergence is discussed

extensively for the single-server queue in Chapter 9 of Whitt (2002); it was also used in Igle-

hart and Whitt (1970), which treated more general models. Let (Q∞,s,ρ,W∞,s,ρ) be a random

vector with the limiting steady-state distribution of (Qk,s,ρ,Wk,s,ρ), where Qk,s,ρ is the queue

length and Wk,s,ρ is the delay just before Ak,s,ρ, where Ak,s,ρ is the kth arrival epoch, all in

model (s, ρ).

Here we will use the following established steady-state heavy-traffic limit:

(1− ρ)(Q∞,s,ρ,W∞,s,ρ) ⇒ (L,L/s) as ρ ↑ 1 , (3.2)

8



where L
d= Exp(c2

a + 1)/2 with Exp(m) denoting a random variable having an exponential

distribution with mean m. We give a detailed proof in a subsection below starting from the

known steady-state distribution for Q∞,s,ρ. The joint convergence follows from the limit for

Q∞,s,ρ and the law of large numbers, using the representation

(Q∞,s,ρ,W∞,s,ρ) =


Q∞,s,ρ, (Q∞,s,ρ + 1)







Q∞,s,ρ+1∑

i=1

(Vi/s)


 /(Q∞,s,ρ + 1)





 . (3.3)

We can apply (3.2) and previous results to get the following limits for our estimators.

Let RMSE ≡ MSE/Mean2 be the relative mean squared error. Let c2
WQ,s,ρ

(Q∞,s,ρ) be the

random variable assuming the value c2
WQ,s,ρ

(n) with probability P (Q∞,s,ρ = n) for n ≥ 0. Let

other random variables involving c2 and RMSE be defined analogously. We prove the following

theorem in a subsection below.

Theorem C.1. (classical heavy-traffic limit) If ρ ↑ 1 in the family of GI/M/s models indexed

by (s, ρ) with fixed s, then

WQ,s,ρ(Q∞,s,ρ)
E[WQ,s,ρ(Q∞,s,ρ)|Q∞,s,ρ]

=
WQ,s,ρ(Q∞,s,ρ)
(Q∞,s,ρ + 1)/s

⇒ 1 , (3.4)

W∞,s,ρ

W h∞,s,ρ

⇒ 1 and
WHOL,s,ρ(W h∞,s,ρ)

W h∞,s,ρ

⇒ 1 , (3.5)

from which we can deduce that

(1− ρ)(Q∞,s,ρ,W∞,s,ρ,W
h
∞,s,ρ, WQ,s,ρ(Q∞,s,ρ), WHOL,s,ρ(W h

∞,s,ρ)) ⇒ (L,L/s, L/s, L/s, L/s)

(3.6)

and

(1− ρ)−1(c2
WQ,s,ρ(Q∞,s,ρ), c

2
WHOL,s,ρ(W h∞,s,ρ), RMSE(W h

∞,s,ρ)) ⇒ (1/L, (c2
a + 1)/L, (c2

a + 1)/L)

(3.7)

where L
d= Exp((c2

a + 1)/2) as above, so that

WHOL,s,ρ(W h∞,s,ρ)
WQ,s,ρ(Q∞,s,ρ)

⇒ 1,
c2
WHOL,s,ρ(W h∞,s,ρ)

c2
WQ,s,ρ(Q∞,s,ρ)

⇒ c2
a + 1 , (3.8)

RMSE(W h∞,s,ρ)
c2
WHOL,s,ρ(W h∞,s,ρ)

⇒ 1 and
RMSE(W h∞,s,ρ)
c2
WQ,s,ρ(Q∞,s,ρ)

⇒ c2
a + 1 . (3.9)

The limits in (3.4) and (3.5) show that the direct QL and HOL estimators are (weakly)

relatively consistent in the classical heavy-traffic limit, while the limits in (3.7)–(3.9) compare
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the asymptotic efficiency of the different estimators. In this heavy traffic limit, the direct and

refined HOL estimators have asymptotically the same efficiency, while the QL estimator is

asymptotically more efficient by the constant factor c2
a + 1.

We conjecture (but have not yet proved) that there is appropriate uniform integrability,

so that the moments of these random variables converge as well as distributions, see p. 31 of

Billingsley (1999). Then from (3.7) and (3.8) we obtain associated convergence of the moments:

E

[
c2
WHOL,s,ρ(W h∞,s,ρ)

c2
WQ,s,ρ(Q∞,s,ρ)

]
→ c2

a + 1 and
E[c2

WHOL,s,ρ(W h∞,s,ρ)
]

E[c2
WQ,s,ρ(Q∞,s,ρ)]

→ c2
a + 1 , (3.10)

and similarly for the direct estimator. These limits supplement the previous limits, implying

that the QL delay estimator is asymptotically more efficient than the HOL and LES delay

estimators by the constant factor c2
a + 1 in the classical heavy-traffic limit.

The QED Many-Server Heavy-Traffic Regime. We now consider the QED HT regime,

in which both ρ ↑ 1 and s ↑ ∞ with (1− ρ)
√

s → β for some positive constant β.

This alternative QED regime is appealing because, unlike the classical HT regime, the

probability that a customer is delayed approaches a nondegenerate limit, strictly between 0

and 1:

P (W∞,s,ρ > 0) → α and P (Q∞,s,ρ > 0) → α, 0 < α < 1 , (3.11)

where α ≡ α(β/
√

c2
a + 1) for α(x) ≡ [1 + xΦ(x)/φ(x)]−1, where φ is the cdf and φ is the

probability density function (pdf) of the standard normal N(0, 1); see (1.1) of Whitt (2004b).

With minor modifications, the story is the same as for the classical HT regime, so we will

be brief. A major difference is that the queue length is of order O(
√

s) = O(1/(1− ρ)), while

the waiting time is of order O(1/
√

s) = O((1 − ρ)). As before, the ratio W∞,s,ρ/Q∞,s,ρ is of

order O(1/s), but now s →∞.

Paralleling (3.2), we have the joint limit

(Q∞,s,ρ/
√

s, (1− ρ)Q∞,s,ρ,
√

sW∞,s,ρ,W∞,s,ρ/(1− ρ)) ⇒ (Z, βZ, Z, Z/β) , (3.12)

where P (Z > 0) = α for the same α ≡ α(β/
√

c2
a + 1) defined above and (Z|Z > 0) d= L

d=

Exp((c2
a + 1)/2). The limit for Q∞,s,ρ was established by Halfin and Whitt (1981), but Whitt

(2004b) corrects an error in the expression for α when the arrival process is non-Poisson. The

joint limit with W∞,s,ρ can be established as in (3.3). Paralleling (3.39), here we have

((1− ρ)(Q∞,s,ρ|Q∞,s,ρ > 0), (W∞,s,ρ|W∞,s,ρ > 0)/(1− ρ),W h
∞,s,ρ/(1− ρ), (1− ρ)A(W h

∞,s,ρ))

⇒ (βL,L/β, L/β, βL) , (3.13)

10



where again L
d= (Z|Z > 0) d= Exp(c2

a + 1)/2; as before, the important point is that the same

random variable L appears in all four components on the right.

We now state the theorem, omitting the proof.

Theorem C.2. (QED heavy-traffic limit) If ρ ↑ 1 and s ↑ ∞ so that (1 − ρ)
√

s → β for

0 < β < ∞ in the family of GI/M/s models indexed by ρ and s, then

WQ,s,ρ(Q∞,s,ρ)
(Q∞,s,ρ + 1)/s

⇒ 1 and
WHOL,s,ρ(W h∞,s,ρ)

W h∞,s,ρ

⇒ 1 . (3.14)

(1− ρ)−1(WQ,s,ρ(Q∞,s,ρ),WHOL,s,ρ(W h
∞,s,ρ)) ⇒ (L/β, L/β) (3.15)

and

(1−ρ)−1(c2
WQ,s,ρ(Q∞,s,ρ), c

2
WHOL,s,ρ(W h∞,s,ρ), RMSE(W h

∞,ρ,s)) ⇒ (1/βL, (c2
a +1)/βL, (c2

a +1)/βL)

(3.16)

where L
d= Exp((c2

a + 1)/2) as above, so that

WHOL,s,ρ(W h∞,s,ρ)
WQ,s,ρ(Q∞,s,ρ)

⇒ 1,
c2
WHOL,s,ρ(W h∞,s,ρ)

c2
WQ,s,ρ(Q∞,s,ρ)

⇒ c2
a + 1 . (3.17)

RMSE(W h∞,s,ρ)
c2
WHOL,s,ρ(W h∞,s,ρ)

⇒ 1 and
RMSE(W h∞,s,ρ)
c2
WQ,s,ρ(Q∞,s,ρ)

⇒ c2
a + 1 . (3.18)

Just as in the classical HT regime, we conjecture that there is appropriate uniform integra-

bility, so that the moments converge as well as distributions. Then we will obtain associated

convergence of the moments, just as in (3.10).

Heavy-Traffic Detail: Proof of (3.2). In this section we prove the classical heavy-traffic

limit for the steady-state joint distribution of the queue length and waiting time at arrival

epochs stated in (3.2):

(1− ρ)(Q∞,ρ,W∞,ρ) ⇒ (L,L/s) as ρ ↑ 1 , (3.19)

where L
d= Exp(c2

a + 1)/2 with Exp(m) denoting a random variable that is exponentially

distributed with mean m. We consider this a known result, but we cannot point to a place

where a proof is given.

We draw on well-known properties of the steady-state distribution of the GI/M/s queue.

The key initial result is the fact that the conditional distribution of the queue length at an

arrival epoch, given that the arrival must wait, is a geometric distribution, i.e.,

P (Q∞,ρ = j|W∞,ρ > 0) = (1− ω)ωj , j ≥ 0 , (3.20)

11



where the single parameter ω in (3.20) is the unique root of the equation

ω =
∫ ∞

0
e−(1−ω)sx dF (x) ≡ f̂((1− ω)s) , (3.21)

where f̂ is the Laplace-Stieltjes transform of the cdf F , i.e.,

f̂(z) ≡
∫ ∞

0
e−zx dF (x) ; (3.22)

see (14.10), (14.11), (14.12) and (14.19) of Cooper (1982). This property was used in the proof

of Theorem 4.3.

The key then is the way that the root ω ≡ ω(ρ) depends on the traffic intensity ρ as

ρ ↑ 1. Anticipating that we should have ω(ρ) ↑ 1 as ρ ↑ 1, we see that the argument of the

Laplace-Stieltjes transform should approach 0 in the limit. It should thus come as no surprise

that we can rigorously establish the desired result by expanding the Laplace transform f̂(z)

in a Taylor series about z = 0; see p. 435 of Feller (1971) for supporting theory. As was first

observed by Smith (1953, p. 461), it follows that

1− ω(ρ)
1− ρ

→ 2
c2
a + 1

as ρ ↑ 1 . (3.23)

The expansion appears in a more general context in formula (17) of Abate and Whitt (1994).

In the special case of the GI/M/s queue, equation (7) there reduces to equation (3.21) here.

An alternative approach involving upper and lower bounds is given in Whitt (1984); that

focuses on the more elementary GI/M/1 model, but the key root has the same structure. The

equation differs only by the constant factor s appearing in the equation (3.21). Additional

theoretical results about characterizing roots for queues appears in Neuts (1986), Choudhury

and Whitt (1994) and Glynn and Whitt (1994).

It is well known – see pages 1-2 of Feller (1971) – that if Xm is a random variable with a

geometric distribution having mean m, then

Xm

cm
⇒ Exp(1/c) as m →∞ . (3.24)

By (3.20), (Q∞,ρ|W∞,ρ > 0) has a geometric distribution with mean 1/(1 − ω(ρ)). Thus

we can combine (3.20), (3.23) and (3.24) to obtain

(1− ρ)(Q∞,ρ|W∞,ρ > 0) ⇒ Exp((c2
a + 1)/2) as ρ ↑ 1 . (3.25)

It is also known that

P (W∞,ρ > 0) =
A

1− ω
where A =

[
1

1− ω
+ X

]−1

, (3.26)
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with X ≡ X(ρ) → X(1), 0 < X(1) < ∞, as ρ ↑ 1; see (14.14)–(14.17) of Cooper (1982). Hence

P (W∞,ρ > 0) = [1 + (1− ω(ρ))X(ρ)]−1 → 1 as ρ ↑ 1 . (3.27)

Combining (3.25) and (3.27), we obtain the first part of (3.19):

(1− ρ)Q∞,ρ ⇒ L
d= Exp((c2

a + 1)/2) as ρ ↑ 1 . (3.28)

Given that

W∞,ρ
d=

Q∞,ρ+1∑

i=1

(Vi/s) , (3.29)

we have
W∞,ρ

Q∞,ρ + 1
⇒ 1

s
as ρ ↑ 1 (3.30)

by the weak law of large numbers, since Q∞,ρ ⇒∞ as a consequence of (3.28). We then apply

Theorem 11.4.5 of Whitt (2002) to write the joint limit

((1− ρ)Q∞,ρ,W∞,ρ/(Q∞,ρ + 1)) ⇒ (L, (1/s)) . (3.31)

We then can apply the continuous mapping theorem with the function h : R2 → R2 defined by

h(x, y) = (x, xy) to get

h(((1− ρ)Q∞,ρ,W∞,ρ/(Q∞,ρ + 1)) ⇒ h(L, (1/s)) = (L,L/s) , (3.32)

but

h(((1− ρ)Q∞,ρ,W∞,ρ/(Q∞,ρ + 1)) =
(

(1− ρ)Q∞,ρ, (1− ρ)W∞,ρ
Q∞,ρ

Q∞,ρ + 1

)
. (3.33)

Since Q∞,ρ ⇒∞,
Q∞,ρ

Q∞,ρ + 1
⇒ 1 as ρ ↑ 1 . (3.34)

Hence,

|h(((1− ρ)Q∞,ρ, W∞,ρ/(Q∞,ρ + 1))− (1− ρ)(Q∞,ρ,W∞,ρ)| ⇒ 0 as ρ ↑ 1 . (3.35)

Thus we can combine (3.32), (3.35) and the convergence-together theorem, Theorem 11.4.7 of

Whitt (2002), to complete the proof of (3.19).
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Proof of Theorem C.1. First we show that W h∞,s,ρ ⇒∞ as ρ ↑ 1. As a consequence of the

limit in (3.2), we must have W∞,s,ρ ⇒∞ as ρ ↑ 1. Suppose that we do not have W h∞,s,ρ ⇒∞.

Then there must exist a subsequence {ρk} with ρk ↑ 1 as k →∞, a constant K and a positive

constant ε > 0 such that P (W h∞,s,ρk
> K) > ε for all k. Since

W∞,s,ρ
d=

A(W h∞,s,ρ)+2∑

i=1

(Vi/s) , (3.36)

conditional on W∞,s,ρ > 0, which holds with probability 1 in the limit, there must exist a

new constant K ′ such that P (W∞,s,ρk
> K ′) > ε/2 for all k as well, but that contradicts the

established limit W∞,s,ρ ⇒∞ as ρ ↑ 1. Hence we must have W h∞,s,ρ ⇒∞ as ρ ↑ 1, as claimed

above.

Given that ρ ↑ 1 and W h∞,s,ρ ⇒∞, we get A(W h∞,s,ρ)/W h∞,s,ρ ⇒ s and

WHOL,s,ρ(W h∞,s,ρ)
W h∞,s,ρ

=




∑A(W h∞,s,ρ)+2

i=1 (Vi/s)
A(W h∞,s,ρ) + 2




(
A(W h∞,s,ρ) + 2

W h∞,s,ρ

)
⇒ (1/s)× s = 1 , (3.37)

by the law of large numbers for partial sums and renewal processes. Similarly, by (3.2), we

also have Q∞,s,ρ ⇒∞, so that

WQ,s,ρ(Q∞,s,ρ)
Q∞,s,ρ + 1

=
∑Q∞,s,ρ+1

i=1 (Vi/s)
Q∞,s,ρ + 1

⇒ 1/s . (3.38)

The limits (3.37) and (3.38) imply (3.4) and (3.5).

Since the limits in (3.37) and (3.38) are deterministic, we can apply Theorem 11.4.5 of

Whitt (2002) to obtain joint convergence of all these with the limits in (3.2):
(

(1− ρ)Q∞,s,ρ, (1− ρ)W∞,s,ρ, (1− ρ)W h
∞,s,ρ,

WQ,s,ρ(Q∞,s,ρ)
Q∞,s,ρ + 1

,
WHOL,s,ρ(W h∞,s,ρ)

W h∞,s,ρ

)

⇒
(

L,
L

s
,
L

s
,
1
s
, 1

)
. (3.39)

We next apply the continuous mapping theorem, see Section 3.4 of Whitt (2002), with the

function h : R5 → R5 defined by h(v, w, x, y, z) = (v, w, x, vy, xz) to get (3.6) from (3.39).

To continue, we next consider the random variable c2
WHOL,s,ρ(W h∞,s,ρ)

. Starting from the limit

in (3.6), we can apply the Skorohod representation theorem, Theorem 3.2.2 on p. 78 of Whitt

(2002), to get random variables W̃ h∞,s,ρ with the same probability law as W h∞,s,ρ but for which

we have the convergence (1− ρ)W̃ h∞,s,ρ → L̃/s as ρ ↑ 1 w.p.1, where L̃
d= L

d= Exp((c2
a + 1)/2).

Next note that c2
WHOL,s,ρ(w)/c2

WHOL,s,1(w) → 1 w.p.1 as ρ ↑ 1 and w → ∞ in any order. Then,
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by (4.13),

c2
WHOL,s,ρ(W̃ h∞,s,ρ)

1− ρ
=




c2
WHOL,s,ρ(W̃ h∞,s,ρ)

c2
WHOL,s,1(W̃ h∞,s,ρ)







W̃ h∞,s,ρc
2
WHOL,s,1(W̃ h∞,s,ρ)

(1− ρ)W̃ h∞,s,ρ


 → (c2

a + 1)/s

L̃/s
(3.40)

as ρ ↑ 1 w.p.1. Essentially the same reasoning applies to the random variable RMSE (W h∞,s,ρ),

giving the same limit. The equality in distribution then implies the associated convergence in

distribution for the last two components of the original random vector in (3.7). We now treat

the first component. Since (Q∞,s,ρ + 1)c2
WQ,s,ρ(Q∞,s,ρ) = 1, a deterministic quantity, by (2.2),

we can apply (4.13) to get

c2
WHOL,s,ρ(W h∞,s,ρ)

c2
WQ,s,ρ(Q∞,s,ρ)

=
(

Q∞,s,ρ + 1
W h∞,s,ρ

) 


W h∞,s,ρc
2
WHOL,s,ρ(W h∞,s,ρ)

(Q∞,s,ρ + 1)c2
WQ,s,ρ(Q∞,s,ρ)




=
(

Q∞,s,ρ + 1
W h∞,s,ρ

)
W h
∞,s,ρc

2
WHOL,s,ρ(W h∞,s,ρ) ⇒ s× c2

a + 1
s

= c2
a + 1 .(3.41)

We then reason as before in establishing (3.39), first to express this limit jointly with the last

two components of (3.7) and then to apply the continuous mapping theorem to complete the

proof of (3.7) itself. Finally, (3.8) and (3.9) follow from the previous results.

Customers Who Have Completed Service. In this final subsection, supplementing the

application of the snapshot principle in §6, we consider the estimators based on the delays

experienced by previous customers to complete service. Unlike for the LES and HOL estimators,

we find that the LCS estimator behaves very differently in the classical and QED HT regimes.

The way to see this is to observe that the LCS customer completed service a full service time

in the past. That LCS customer arrived a waiting time plus a service time in the past.

In both heavy-traffic regimes, the service time is an exponential random variable with mean

1. In the classical HT regime, the waiting times are exploding in heavy traffic, so that a service

time is negligible compared to the waiting time. Thus we see that LCS will be asymptotically

equivalent to LES and HOL in the classical HT regime, for any fixed number of servers. The

LCS estimator will be consistent as well in the classical heavy-traffic regime.

However, the story is very different in the QED HT regime. The service times remain

unchanged, but now the waiting times become smaller, being of order O(1/
√

s). Now the

service time is the same order as the time scaling. The stochastic-process limit in (6.2) describes

the waiting time experience of each customer, but for the last customer to complete service at

time t, we have a different limit. Let AL
s,ρ(t) denote the arrival time of the last customer to
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complete service at time t in model (s, ρ). The relevant limit now will be

√
sWs,ρ(AL

s,ρ(t)) ⇒ Y (t− V ) as ρ ↑ 1 , (3.42)

where Y (t) is the limit process in (6.2) and V is a service time, an exponential random vari-

able with mean 1. In other words, the waiting time at time t is approximately Y (t)/
√

s, while

the waiting time of the last customer to complete service immediately prior to time t is ap-

proximately Y (t − V )/
√

s. Thus, in the QED HT limit the LCS estimator is not consistent.

The effectiveness of the LCS estimator depends on the difference between Y (t− V ) and Y (t).

However, we do not attempt to do further analysis; here we are content to observe that the

LCS estimator has inferior asymptotic performance in the QED HT regime. That is consistent

with our simulation results, which show that the LCS estimator performs poorly for large s.

Fortunately, there is better information that we can obtain from customers who have al-

ready completed service in the QED HT regime. Other customers who have completed service

are very likely to have arrived much more recently than the last customer to complete service.

The minimum service time among the last m customers to complete service is 1/m. Since

the waiting times are of order 1/
√

s, it is natural to consider m = O(
√

s); then the minimum

service time among these customers also will be of order O(1/
√

s).

As a bound, first consider the customer among the last c
√

s customers to complete service

with the minimum service time. That customer’s service time is exponentially distributed

with mean 1/c
√

s = O(1/
√

s). By (6.2), the customer’s waiting time is also of order O(1/
√

s).

Since the times between successive service completions are i.i.d. exponential random variables

with mean 1/s, the last c
√

s service completions occur over a time interval having mean

c/
√

s = O(1/
√

s). Hence this customer arrived O(1/
√

s) in the past. Hence we deduce that if

we consider the customer among the last c
√

s customers to complete service with the minimum

service time, then that delay estimator is consistent in the QED HT regime.

Even better will be the RCS and RCS-c
√

s estimators, because those customers necessarily

arrive at least as recently. We summarize these conclusions in the following theorem. To state

the theorem, let WRCS∞,s,ρ and W
RCS−c

√
s

∞,s,ρ be the steady-state RCS and RCS-c
√

s delays in model

(s, ρ); and let WRCS,s,ρ(w) and WRCS−c
√

s,s,ρ(w) be the associated random variables having

the conditional distribution of the delay to be estimated given the observed RCS and RCS-c
√

s

delays.

Theorem C.3. (performance of LCS, RCS and RCS-c
√

s in the QED HT regime) If ρ ↑ 1

and s ↑ ∞ so that (1− ρ)
√

s → β for 0 < β < ∞ in the family of GI/M/s models indexed by
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s and ρ, then the RCS and RCS-c
√

s estimators are relatively consistent, i.e.,

WRCS,s,ρ(WRCS∞,s,ρ)
WRCS∞,s,ρ

⇒ 1 and
WRCS−c

√
s,s,ρ(W

RCS−c
√

s
∞,s,ρ )

W
RCS−c

√
s

∞,s,ρ

⇒ 1 , (3.43)

but the LCS estimator is not relatively consistent.

In this relatively crude sense, the estimators LES, HOL, RCS and RCS-c
√

s are all asymp-

totically equivalent in the QED regime, but LCS is not. However, it remains to describe the

asymptotic efficiency of RCS and RCS-c
√

s, paralleling the results for the HOL (and LES)

estimator SCV’s in (3.16) and (3.17).

D. A Pathological Example for LES

We have drawn very positive conclusions about the LES delay estimator WLES(w) in the

GI/M/s queue. To provide some balancing perspective, in this section we demonstrate poten-

tial weaknesses of the estimator WLES(w) for other service-time distributions. To illustrate

the possible deficiencies of the LES estimator, we consider a specific stable D/G/1 queueing

model with non-exponential service-time distribution in light traffic. Let the arrival process

be deterministic with interarrival times 1.

We deliberately choose a difficult service-time distribution: let the service-time distribu-

tion be a two-point probability distribution, which usually assumes a very small value ε, but

occasionally takes a very large value M ; specifically, let

P (V = M >> 1) = δ = 1− P (V = ε << 1) , (4.1)

where the traffic intensity

ρ ≡ E[V ]/E[U ] = E[V ] = δM + (1− δ)ε . (4.2)

We suppose that δ is very small, so that ρ itself is very small and the service time is only equal

to the large value M very rarely. If δ is sufficiently small, relatively few customers will have

to wait in queue before starting service, but occasionally a customer will have one of the very

long service times.

To see the deficiencies of the LES estimator, we will consider an epoch at which a customer

with service time M arrives at an empty system. If δ is small enough, then with high probability

the customer with the large service time M will not have to wait before starting service, but

he will remain in service for a long time, precisely M . Thus the following M customers will
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all have to wait before starting service. For each of them, however, the last served customer

to have entered service – the customer with service time M – will have not had to wait at all.

To quantify the effect, let us call the customer with service time M customer 0. Then,

assuming that these following M customers themselves all have ε service times (which has high

probability), customer k will have to wait precisely M − k + (k − 1)ε before starting service.

Customer number M will have to wait only (M − 1)ε. But, for all M customers with positive

waiting times, the last served customer will have waited 0 before starting service.

To go further, suppose that ε is very small, so that (M − 1)ε is itself less than 1. Then

customer M will have to wait less than 1 before starting service, so that M + 1 will not have

to wait at all before starting service. We thus have the strange estimation phenomenon: The

delay of the last served customer is 0 for all customers that themselves experience positive

delays. Thus, whenever an estimation needs to be made (because the customer must wait in

queue), the estimated delay will be 0. Moreover, the actual delays of these customers who

have to wait may be quite large: as large as M − 1 and averaging about M/2 for all customers

forced to wait. This example allows arbitrarily large M , but after choosing M , we must choose

ε and δ suitably small.

We have only described one possible scenario. The story we have described breaks down

when two or more customers with large service time M interact, but by choosing δ sufficiently

small, this deviation from the story can be made to occur relatively rarely. Thus the phe-

nomenon we have described will hold for the vast majority of the customers that are delayed.

We can make the situation described above apply w.p.1 if we abandon the condition of i.i.d.

service times. If we instead assume that customers 2kM have service times M , while all other

customers have service time ε with ε < 1/M (e.g., ε = 0), then we obtain the scenario above

w.p.1. In addition, the average delay is approximately M/4, so the average delay can be made

arbitrarily large by choosing M large. Thus this scenario does not only apply in very light

traffic. Nevertheless, we regard this example as pathological. We are thinking of situations in

which the delay of a new arrival should not be too different from the delay of the last customer

to enter service.

For this example, the HOL estimator would fare somewhat better, but it would not do so

great either. Given the scenario described above, when the customer at the head of the line

has waited w = k, the random variable WHOL(w) depicting the delay of this new arrival is

very likely to take the value M − k + (k − 1)ε instead of w.
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