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DEPARTURES FROM A QUEUE WITH
MANY BUSY SERVERS*

WARD WHITT
AT&T Bell Laboratories

To analyze networks of queues, it is important to be able to analyze departure processes
from single queues. For the M /M /s and M /G /o models, the stationary departure process is
simple (Poisson), but in general the stationary departure process is quite complicated. As a
basis for approximations, this paper shows that the stationary departure process is approxi-
mately Poisson when there are many busy slow servers in a large class of stationary G/GI/s
congestion models having s servers, infinite waiting room, the first-come first-served discipline,
and mutually independent and identically distributed service times that are independent of a
stationary arrival process. Limit theorems are proved for the departure process in a G/GI/s
system in which the number of servers and the offered load (arrival rate divided by the service
rate) both increase. The asymptotic behavior of the departure process depends on the way the
arrival rate changes. If the arrival rate is held fixed, so that the offered load increases by
slowing down the service rate, then the departure process converges to a Poisson process. For
this result, the service-time distribution is assumed to be phase-type. Other limiting behavior
occurs if the arrival rate approaches zero or infinity. Convergence is established in each case
by applying previous heavy-traffic limit theorems.

1. Introduction and summary. To analyze networks of queues, it is important to be
able to analyze departure processes from single queues. Useful for this purpose are the
results by Burke (1958) and Mirasol (1963) showing that the departure process is
Poisson in stationary M /M /s and M/ G/ congestion models; see Bremaud (1981,
Chapter V). Other research has shown, however, that the departure process tends to be
quite complicated when these assumptions are relaxed; see Disney and Konig (1984,
Chapter VII) and references there. Thus it is natural to look for approximations. In
particular, it is of interest to know when the departure process is approximately
Poisson. By continuity arguments, as in Franken et al. (1981, Chapter 3) and refer-
ences there, it is not difficult to show that the departure process is approximately
Poisson in a stationary G/G/s model (built from stationary point processes; see
Franken et al.) that is appropriately close to a stationary M /M /s model. Similarly, it
is not difficult to show that the departure process in a stationary M/G/s system
approaches a Poisson process as s — oo.

We might also expect the stationary departure process to be approximately Poisson
when the equilibrium number of busy servers tends to be large in a G/GI/s model
having s servers, infinite waiting room, the first-come first-served discipline and i.i.d.
service times that are independent of a stationary arrival process. With many busy
servers, the departure process might behave like the superposition of many renewal
processes having service times as renewal intervals. Hence, some variant of the
classical superposition limit theorem might apply; see Cinlar (1972). Note, however,
that some critical assumptions are not satisfied: The component renewal processes are
typically neither independent nor stationary. The residual service time will differ
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depending on how long the customers have been in service. There are also some
obvious counterexamples that indicate limitations of this heuristic reasoning. First, if
the service times are deterministic, then the departure process is just a shifted version
of the arrival process when there are infinitely many servers. Second, if the service-time
distribution has positive mass at zero, then the departure process will have multiple
points when there are finitely many servers and customers waiting in queue. Third, if
the interarrival-time and service-time distributions have common lattice support, e.g.,
the integers, so will the departure process.

The purpose of this paper, nevertheless, is to justify the heuristic reasoning. After
restricting the class of service-time distributions to avoid the counterexamples men-
tioned above, we prove that the stationary departure process does converge to a
Poisson process in stationary G/ GI /s models as s > 00 and a—> oo, where a =A/p, A
is the arrival rate and p is the service rate. The quantity a is often referred to as the
offered load; it is the expected number of busy servers; see (4.2.3) of Franken et al. If
s < o0, then p = a/s is the traffic intensity.

We consider a sequence of G/GI/s systems indexed by n in which s,—> o0 and
a, = A,/ p, = n. The limiting behavior of the associated sequence of departure pro-
cesses also depends on the way the arrival rates A, and service rates p, change with n.
Since the departure rate is just the arrival rate, the only way we can have the
associated sequence of departure processes without normalization converge to a
nondegenerate limit is to have A, A as n—> 00, 0 < A < 0. Accordingly, we establish
convergence to a Poisson process when A, = 1 for all n (Theorem 2).

Our proof involves only a few ideas. First, we adopt the martingale or Strasbourg
view and look at our departure process as a point process with a stochastic intensity
with respect to an appropriate history or filtration; see Bremaud (1981). However, we
make no real use of the history. Second, as in Brown (1978, 1983), we obtain
convergence to the Poisson process by showing convergence of the compensators
(integral of the intensity). Third, we assume the service-time distribution is phase type
as in Neuts (1981) or Whitt (1982) and represent the intensity as a function of the
number of phases of each type in service. Finally, we obtain convergence of the
compensators by changing the time scale and applying previous heavy-traffic limit
theorems in Borovkov (1967), Halfin and Whitt (1981) and Whitt (1982). Our result
and proof are closely related to Brown and Pollett (1982) and Pollett (1982), which
contain Poisson approximations for the flows in Markovian networks of queues.

Our limit theorem is useful for generating approximations. For example, for the
approximation method described in Whitt (1983a) it suggests that the variability
parameter ¢ (the squared coefficient of variation of the renewal interval in an
approximating renewal process) in an approximation of the departure process in a
G/ GI /s model should approach 1 as s— o0, a—> o0 and p—0.

Our limit theorem is also useful for generating approximations for networks of
queues, as in Whitt (1983a). First, since the arrival process can be quite general, the
result applies to general nodes in the network having nonrenewal input. Second, under
these limiting conditions, the departure process is not only asymptotically Poisson but
also asymptotically independent of the arrival process in any bounded time interval.
(This is easy to prove; we do not give the details.) Hence, such a node with many busy
slow servers tends to decouple the network. It can be replaced (approximately) by an
independent Poisson source. (More on this will appear in another paper.)

We also prove limit theorems when A, —0 or A, - oo with 5, > o and &, > c0. For
these the departure process is normalized. In §4 we discuss the case of fast arrivals in
which we fix the service rate instead of the arrival rate, and let u, = 1 and A, = n for
all n. The main limit theorem in this case (Theorem 3) is due to Borovkov (1967).
However, there is a gap in the theory because we are primarily interested in the
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stationary version of the departure process, whereas Borovkov assumes the systems are
initially empty. We can obtain a limit theorem for the stationary version in the case of
renewal arrival processes (Theorem 5), but there is another gap because it remains to
show that the limit process is consistent with Borovkov’s results.

1t is significant that the normalization constant in the conjectured limit theorem for
the stationary departure process, obtained from Borovkov (1967) by taking the iterated
limit in the wrong order, is not the same as if the departure process were Poisson. The
variability of the departure process is affected by the variability of the service-time
distribution and the variability of the arrival process in a rather complicated way; see
(4.11). Just as Wolff (1977) observed for the number of busy servers, greater variability
in the service times need not cause greater variability in the departure process; the
qualitative behavior depends on the arrival process. Obviously, this limit theorem also
can serve as a valuable guide when developing approximations for departure processes.

There is another important way to interpret the different kinds of limiting behavior
that occur for the departure process depending on the way A, changes as n— co. The
choice of A, is equivalent to a choice of the time scale. Instead of varying A,, we can let
A, =1 and vary the time. Indeed, suppose A, = 1 and that n is large. Let D,(r) be the
number of departures in the interval [0, 7) in the nth system. Our results say that D, (¢)
behaves like a Poisson process when ¢ = O(1), like a point process with a rather
complex Gaussian stochastic intensity when ¢ = O(n), and like the arrival process
when £ n, i.e., when 7! = o(n~"). In other words, the departure process for large n
is still complicated. Its structure depends on the way you look at it. For example, the
asymptotic method in Whitt (1982a) corresponds to ¢>» n and approximates the
departure process by the arrival process. On the other hand, the stationary-interval
method in Whitt (1982a) corresponds to ¢ = O(1) and our results indicate that it
approximates the departure process by a Poisson process. For intermediate values of ¢,
the variability of the departure process, as measured by the normalization constant in
the central limit theorem when ¢ = O(n), is between these two extremes. (See Remark
42)

We illustrate these ideas in §6, where we conclude by discussing the asymptotic
behavior of two service facilities in series, the first being an infinite-server system with
many busy servers and the second being a single-server system. Hence, the arrival
process to the second system is the departure process studied in the previous sections
of this paper. We show how the different kinds of limiting behavior for the departure
process are reflected in the second facility.

2. A representation for the departure process. Consider a G/GI/s queueing
model and let the arrival process 4(7) be a stationary point process with a predictable
stochastic intensity A(z) with respect to its history ¥ (4 (s), s < ¢); see Chapter II of
Bremaud (1981). Suppose that EA(f) < oo and let the arrival rate be A = EA(1).

Let each service time consist of a random (finite and positive) number of phases,
with the length of each phase being exponentially distributed with mean 8~ '. A
customer in service upon completing phase k leaves the system with probability p, and
moves on to phase k + 1 with probability 1 — p,. Let m be the maximum number of
phases, i.e., assume that p,, = 1. This phase-type distribution was used in Whitt (1982).
We could of course also use other phase-type distributions, e.g., Neuts (1981, Chapter
2). Our class of phase-type distributions, like most others, is dense in the family of all
probability distributions on the nonnegative real line, using the topology of weak
convergence as in Billingsley (1968); see p. 179 of Whitt (1982).

For the G/GI/s model described above, let N*(z) be the number of customers in
phase k of service at time 7. We shall work with the vector-valued process N(7)
=[N(#),..., N™(1)}. When there are infinitely many servers, the process N(¢) is
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conditionally Markov given the arrival process; when there are finitely many servers,
the process (N(#), Y (7)) obtained by appending the number waiting in queue, Y (), is
also conditionally Markov. In order to obtain a homogeneous Poisson limit, we assume
that we have a stationary version of the process N(¢), so that D(¢) is a stationary point
process. It is easy to verify that such a stationary version of N(¢) exists and is unique
when the arrival process is a renewal process and s = 00 or p < 1 because then, with
phase-type service times, the empty system is a regeneration point with finite mean
regeneration time; see Whitt (1972). Much more general conditions are given by
Franken et al. (1981).

Let D(#) be the number of departures in the interval [0,¢]. The process D(¢) is a
point process with the predictable stochastic intensity

A = kﬁ:)] BpN¥(t=), >0, 2H

with respect to the history {F,} = {F (N(s), s < ©)}, see Chapter II of Bremaud
(1981). (The left-continuous version makes A(r) predictable.) Hence, D(f) can be
represented as the random-time transformation

D(H)=TI(C(1)), >0, 2)

where II(r) is a Poisson process with unit intensity and C(r) is the compensator
associated with A(?), defined by

c(t)= fo ‘Auydu, 1>0. (2.3)

In fact, I1(¢) is defined as
(y=D(C~'(r)), >0, where (24)
Cl()y=influ:C(u)>1t}, 1>0; (2.5)

see p. 41 of Bremaud (1981) and references there. Note, however, that D(z) is not a
doubly-stochastic or conditional Poisson process as in Serfozo (1972) and Grandell
(1976) because the processes II(¢) and C(#) in (2.2) and (2.3) are generally dependent.

We use this martingale setting only to obtain the representation (2.2), which enables
us to prove the desired limit theorems by exploiting the continuity of the composition
map on an appropriate function space.

3. A sequence of systems. We begin this section by giving simple sufficient
conditions for the convergence of a sequence of point processes to a Poisson process.
Then we apply these results to the sequence of departure processes in a sequence of

queueing systems.,

3.1. Convergence of point processes. For each n, let D,(¢) be a general point
process with a stochastic intensity A,(f) and associated compensator C,(¢), as defined
in (2.3). Our notation is motivated by the application to queues, but the results here are
not limited to queues.

We now give conditions on C,(?) for D,(¢) to converge in distribution. Let = denote
convergence in distribution of random elements of the real line R or D[0, o0); see
Billingsley (1968), Whitt (1980) and references there. Let ¢ and w be the special
random elements of D [0, o0) defined by

e()=1t and (f)=1, t>0. @G.1

Given the representation (2.2), the following result is an elementary consequence of
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the continuity of composition; see §17 of Billingsley (1968). Related results are
contained in Brown (1978), Serfozo (1977) and Whitt (1980). We include the short

proof to be complete.

THEOREM 1. If C (f)=ct in R as n—> oo for each t, then D,=1I_in D[0, ) as
n—> oo, where I1_ is a Poisson process with intensity c.

Proor. If we can show that (II,,, C,)=(II, ce), then we obtain II,(C,)=>II(ce) by
the continuity of the composition function; §5, 17 of Billingsley (1968). Since ce is
nonrandom, in order to have (II,, C,)=>(II, ce) it suffices to show that IT,=1II and
C,=> ce separately; Theorem 4.4 of Billingsley (1968). Note that II, and C, are, in
general, dependent. Since I1, is distributed as Il for each n, I1, =11 trivially. Since
C, (1) is nondecreasing and ce is strictly increasing and continuous, to have C,=> ce it
suffices to have convergence of the finite-dimensional distributions; see Straf (1972).
Since ¢ is nonrandom, it suffices to have C,(¢#)=> ct in R for each ¢.

COROLLARY 1. If A,=>cw in D[0, 0) as n—> oo, where w is defined in (3.1), then
D,=11. in D[0, o).

ProOF. Apply the continuous mapping theorem with (2.3). 8

ReMARK (3.1). By different methods, a bound on the distance between a point
process and the Poisson process can be established; see Brown (1983) and Brown and
Pollett (1982). Brown’s bound on the total-variation distance d, over any interval [0, ]

is
d(D,,II,) < fo "E|A () — c|du. (32)

The applications here are also related to Brown and Pollett (1982) and Pollett (1982),
but they consider only Markovian queueing networks.

3.2. Applications to queues. We now let D, (¢) represent the nth departure process .
in a sequence of G/GI/s queueing systems. We are interested in the case in which
A,=1 and p,=n"", but we want to apply previously proved heavy-traffic limit
theorems for the case in which A, = n and p, = 1; see Borovkov (1967), Halfin and
Whitt ( 1981) and Whltt (.1982) Let D,(?), C,(1), etc., be the processes with A, = 1 and
, = n"! and let D (1), C,(1), etc., be the processes with A, = n and p, = 1. Obviously
the processes can be related if we obtain one case from the other simply by rescaling
time. Suppose this is done. Then

D,(t)= D,(t/n) and (33)
C, (= C,(t/n) (34

for ¢+ > 0. Hence, we also have the following variant of Theorem 1.

COROLLARY 2. If é,,(t/ n)=>ct in R as n—> oo for each t, where é,, is based on
A,=nand p,=1, then D,=11_in D[0, o), where D, is the rescaled departure process
in (3.3).

We now give sufficient conditions for D, to converge in terms of the process 1\7,1‘(2)
representing the number of customers in phase k of service based on A, = n and
w=1

THEOREM 2. If

N¥/n=¢w inD[0,0) as n—>o0 (3.5)
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for each k, 1 < k < m, where w is defined in (3.1) and &, is a nonrandom number, then
D, =11, in D[0, 00), where II_ is a Poisson process with intensity

c= BkEI Piic - (3-6)
ProoF. By Theorem 4.4 of Billingsley, (3.5) implies the convergence
N, Ny
("n—,..., n):(ﬁlw,...,ﬁmw)

in D[0, 0)™. By (2.1) and the continuous mapping theorem, A,, /n=>cw as n—> oo in
D0, o), where ¢ is as in (3.6). Moreover, by a change of variables,

C‘,,(t/n)=j;'/"1i,,(u)du=fo‘i(:_@ d

so that C‘,,(t /m)=>ct in R by the continuous mapping theorem. Finish by applying
Corollary 2. ¥

It still remains to determine conditions under which condition (3.5) in Theorem 2 is
satisfied. We do not investigate this question in detail here. We observe that in several
cases (3.5) is a consequence of existing heavy-traffic limit theorems. In particular, in
GI/GI /o systems and GI/GI /s systems in which 5, > oo quickly, where the arrival
process is a renewal process, (3.5) is an immediate consequence of Theorem 3 of Whitt
(1982). We have used the same phase-type service-time distributions to make the
connection clear. For more general arrival processes, Borovkov (1967) can be applied.
For GI/M /s systems in which s,— oo more slowly, so that the probability of delay
converges to a nontrivial limit, i.e, so that (1 — p,,)\/g -0, 0< 6 <00, (3.5) is an
immediate consequence of Theorem 3 of Halfin and Whitt (1981).

For these heavy-traffic limit theorems in which A, = n and p, = 1, the service-time
distribution is held fixed while the arrival rate and number of servers go to infinity.
For example, the arrival process in the nth system, A (1), can be defined in terms of a
fixed arrival process 4 (f) by scaling, i.e.,

A (y=A(m), 130 37

t>0,

This definition of A4, «() in (3.7) is not the most general, but it is instructive for
interpreting the scaling. The scaling in (3.7) causes the rate of both the arrival process
A »(f) and the departure process D (1) to go to infinity as n— co. However, as n
changes, D ,(8) is also approaching a Poisson process, while A, .(?) is not changing. If we
rescale A L(2) and D (1) as in (3.3), then we just get back the original arrival process
A, (1) = A(¢), but D, (1) approaches a Poisson process.

REMARK (3.2). It is easy to obtain a discrete analog of §§2-3. The phases should be
geometrically distributed instead of exponentially distributed and the arrival process
should have all its jumps on the integers. The stationary departure process then
approaches a Poisson process on the integers. The number of departures at 1,2, ...,k
are mutually independent random variables with a Poisson distribution.

4. Fast arrivals, If A, >0 or A,—> 0 as n—> o, then we must normalize the
departure process to get a nondegenerate limit. The case of A, = nand p, = 1 for all n
is of particular interest. A limit theorem for this case was obtained by Borovkov (1967)
under the assumption that the system is initially empty. To state Borovkov’s result, let
the service time have the general (not necessarily phase-type) cdf F(¢), and let the
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system start off empty for each n. Let D/, be the normalized process defined by
D, (1) — n[(F(t — u)du
_ by = 2O = e~ )
Vn

Let A,, be the normalized processes defined as in §3 in terms of a fixed arrival process
A by

, t20 4.1

A(nt) — nt
Vn

THEOREM 3 (BOROVKOV). ~Consider a sequence of G/Gl/s systems, initially empty,
with (s, — n)/ Vn = 0. If A =c,B for A in (4.2), where B is standard Brownian
motion, then

A, =A ()= , 1>0. 42)

D,=¢cY;-Y; in D[0, o0), (4.3)
where D, is defined in (4.1),

Yy(t) = fo "F(t — u)dB'(u), (44)

B’ is a standard Brownian motion, and Y, is a nonstationary entered Gaussian process
independent of B’ and Y, having covariance function

Cov(Y)(x),Yi(x + 1)) = [ F(u)[1 - F(t + u)] du. (4.5)
( (“Fu)|

However, we are primarily interested in the stationary version of the departure
process. Let D, be the normalized random element of D0, co) defined by

B, =B, = 20"

where D, (?) is the stationary version of the departure process, assuming it exists. The
following is the stationary analog of Theorem 3, but we do not have a proof.

Conjecture. If, in addition to the assumptions of Theorem 3, a stationary version of
the departure process exists for each n, then

D,=cY,-Y, inD[0, ), 4.7

s t >0, (4.6)

where D, is defined in (4.6),
Y,(1) = fo P[F(u)- F(u—1)]dB(u), >0, (4.8)

with B’ a standard Brownian motion and Y,(¢) = Z,(#) — Z,(0), where Z, is a station-
ary centered Gaussian process independent of B’ and Y, having covariance function

() = LwF(u)[l — F(t + u)] du. (49)

Heuristic reasoning. We obtain the conjecture from Theorem 3 by letting x — o0 in
D, (¢t + x) — D,(x) and Z(z + x) — Z(x) for Z(#) = c,Y5(t) — Y\(?). First note that the
translation term in D), (1 + x) — D, (x) is

nfxﬂF(u)du-——' n[t —fx“[l - F(u)]du}—)nt (4.10)
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as x > 0. Next note that

Y5(t + x) — Yj(x) =J(;x+'[F(x + 11— u)— F(x — u)] dB/(u)

4 fo"“[F(u) ~ F(u~ 1)]dB'(u)
=>j(;°°[F(u)——F(u—t)]dB'(u) as x— oo,

where g— means equal in distribution. We also easily obtain (4.9) as the limit of (4.5)

as x —» o0,
We now describe the conjectured limit process in more detail.

THEOREM 4. For the conjectured limit process in (4.7),
Var[¢,Y (1) — Yy (1) = 1+ (¢2 - 1)f0°°[1:(u) ~ Fu—)de. (411
Proor. We use the fact that
fo”[p(u) ~ F(u—1)]du=1 (4.12)
for all t and any cdf F on the positive half line. Since Y, and Y, are independent,
Var[ ¢, Y,(1) = Y (£) ] = c3Var Y (1) + VarY,(?)

= cjfow[F(u) - F(u- t)]zdu+ 2[Var Z,(0) — ry(1)]
= cjfow[F(u) ~ F(u— 1] dr
+ ZJ:OF(u)[F(t + u) — F(u)]du
= (2~ 1)f0°°[F(i) — F(u~ t)]2+f0°°[F(u)2 — F(u—1)"]du

=1+ (- 1)f0°°[F(u) ~ F(u— 1)) du,

where (4.12) with the cdf F(f)? is used in the last step. 8

ReMARKs (4.1). From Mirasol (1963), we know that the departure process is
Poisson in an M/G/oo system. This is consistent with (4.11) because ¢ =1 for a
Poisson arrival process, so that Var{c,Y,(¢) — Y,(#)] = ¢ as it should. When the service
time is deterministic, the stationary departure process is just the arrival process, so that

(4.11) should be #c2. Since
f”[F(u) — Fu— 1)) du=1 (4.13)
0
for deterministic service times with mean 1,
Var[c,Yo(1) — Y\(£)] = 1}
as it should.

(4.2) The variance expression (4.11) enables us to do sensitivity analysis. We can see
how changes in the arrival process or service times affect the variability of the
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departure process. The integral in (4.11) is a measure of the variability of the
service-time distribution, with larger values indicating less variability. As Wolff (1977)
noted for the number in system, the way greater variability in the service times affects
the variability of the departure process depends on the sign of ¢ — 1. Since (4.12)
holds, the integral in (4.11) is maximized by a deterministic service-time distribution.
Hence, the most (least) variable departure processes, as measured by (4.11), are
obtained with deterministic service times when ¢2 > 1 (¢? < 1).

For related results, see Whitt (1984). The set of possible values of (4.11) for all
service-time distributions of mean 1 is the interval t[c? A-1,¢2 V 1],

(4.3) Note that

. - o 2
lim ¢ 'fo [F(u)— F(u— )] du=1 (4.14)
as 1> oo, so that
Jim ¢ 'Var[c,Y () = Y (1)] = (4.15)

In the special case of a renewal arrival process and a phase-type service-time
distribution, we can obtain a limit theorem for D in (4.6). As in (2.12) of Whitt (1982),
let X be the normalized process induced by [N (1), . ,N 7 (1)], where N k(1) repre-
sents the number of customers in phase k of service at tlme t in system n, as in (3.5),

AL o N () —&n
Xt =X = S &n , t>0. (4.16)
Vn
The following theorem closely parallels Theorem 3 of Whitt (1982) and Theorem 3.2 of

Whitt (1984a), so we omit the details. Here too we can apply simple criteria for weak
convergence of Markov chains in Stroock and Varadhan (1979).

THEOREM 5. For GI/Gl/s systems with phase-type service, (X,,D,)=(X,D) in
D([0,00), R™*"), where X, and D, are defined in (4.16) and (4.6) in terms of the
stationary processes, and (X, D) is a stationary multivariate diffusion process with infinites-
imal mean vector m(x) = Mx and infinitesimal covariance function 2(x) = =, where M
and Z are (m + 1) X (m + 1) matrices.

To obtain a proof of the conjecture under the conditions of Theorem 5, it remains to
show that the stationary Gaussian limit process D can be represented as ¢,Y, — Y, in
(4.7). This has not yet been done.

S. Other limiting behavior. In this section we briefly describe what happens in
other cases when A,—0 or A, > o0 with a, =A,/u, = n and s, co. We can exploit
the basic relation

D(t)=A4(1) - Q(1) + 2(0), CAY
where Q(¢) is the number of customers in the system at time 7, to obtain
D,(5)—At A, (H)—-At 0,()- Q0,0
O bt _ 4"t 00~ 00 52
We assume that
2O=2O vy as noo, (53)

wn

which we can obtain from the heavy-traffic limit theorems in special cases.
Case 1. First suppose that A, —> 0co. We assume that A4, (¢) satisfies a functional limit
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theorem of the form
A,(1) — At
W,

If u,=A,/n—> o0, then B, =»/5\: and
D,(1) = At
VA,

i.e., D,(r) has the same asymptotic behavior as 4, (7). As a consequence, D,(f) has the
same central limit behavior as a Poisson process if 4,(?) is a renewal process and the
renewal intervals have squared coefficient of variation 1.

Case 2. On the other hand, if A, o and p, =A,/n—>0, then 8, =yn and

Dy(#) — At
n

Suppose that s = oo, so that all customers waiting are in service. For the convergence,
Q,(t) — Q,(0) is asymptotically equivalent to the number of the Q,(0) customers in
service that depart, which has mean and variance of order A,. Hence, in this case (5.3)
holds with X () = 0.

Case 3. Finally, suppose A, 0. Then p, =\,/n—>0, B, =Vn and the behavior is
the same as in Case 2.

6. Two facilities in series. We believe that a good way to examine departure
processes and generate approximations for them is to see what kind of congestion they
cause as arrival processes to other service facilities, e.g., see Whitt (1983).

Suppose that the departure process we have been analyzing is the arrival process to
a second facility with a single server, unlimited waiting room, the first-come first-
served discipline and i.i.d. general service times that are independent of the departure
process from the first facility. Let n index the average number of busy servers in the
first facility (a, = n) and let A, = 1. Let G,(¢) and p, be the service-time distribution
and the service rate, respectively at the second facility, also indexed by n. A conse-
quence of §3 is that if G,(¢) = G(¢) with g, = p > 1, then as n—> oo the second facility
behaves like a stable M/G/1 queue. To see the effect of all the different kinds of
limiting behavior possible for the departure process from the first facility, we put the
second facility in heavy-traffic by letting g, approach 1 from above as n— oo. By
Theorem 1(a) of Iglehart and Whitt (1970), the heavy-traffic behavior at the second
facility depends on the central limit theorem behavior for the arrival process to that
facility. We only must relate the way (g, — 1) approaches 0 with n. There are three
cases:

Case 1. Vn(p, — 1)=>0.

The traffic intensity at the second facility is going to the critical value one quickly
relative to n, so that we are in Case 1 of §5. The second facility has the same
heavy-traffic behavior as if the first facility were not there, i.e., as if the arrival process
to the second facility were the arrival process to the first facility.

Case 2. \/;(p.,,— 1)y for0<y< oo

We are in the setting of §4. The departure process from the first facility has the
complicated central limit behavior described there. The heavy-traffic behavior at the
second facility is even more complicated. The limiting process can be characterized,
but not in a very useful way; see Iglehart and Whitt (1970).

Case 3. Vn(p,— 1)-> .

=Y(1) as n—>co. 54

=Y(t) as n-o o, (5.3)

=X(f) as n—>oo. (5.6)
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The traffic intensity at the second facility is going to the critical value one slowly
relatively to n, so that we are in the setting of §3. The heavy-traffic behavior at the
second facility is the same as if its arrival process were Poisson.

In closing we remark that Borovkov (1967) has also considered several multi-server
facilities in series, where each has many busy servers. His results correspond to the

difficult Case 2 above.

Acknowledgement. I am grateful to G. J. Foschini, M. I. Reiman, M. Segal, R. F.
Serfozo and the referees for helpful suggestions.

References

[1] Billingsley, P. (1968). Convergence of Probability Measures, John Wiley and Sons, New York.
[2] Borovkov, A. A. (1967). On Limit Laws for Service Processes in Multi-Channel Systems. Siberian
Math. J. 8 746-763.
{31 Bremaud, P. (1981). Point Processes and Queues. Springer-Veriag, New York.
[4] Brown, T. C. (1978). Martingales and Point Process Convergence. Ann. Probab. 6 615-628.
5] . (1983). Some Poisson Approximations Using Compensators. Ann. Probab. 11 726-744.
6] and Pollett, P. K. (1982). Some Distributional Approximations in Markovian Queueing
Network. Adv. Appl. Probab. 14 654-671.
{71 Burke, P. J. (1958). The Output Process of a Stationary M /M /s Queueing System. Ann. Math. Statist.
39 1144-1152.
[8] Cinlar, E. (1972). Superposition of Point Processes. In Stochastic Point Processes: Statistical Analysis,
Theory and Applications, P. A. W. Lewis, ed., John Wiley and Sons, New York, 549-606.
[9] Disney, R. L. and Konig, D. (1984). Queueing Networks: A Survey of Their Random Processes.
SIAM Rev., to appear.
[10] Franken, P., Konig, D., Arndt, U. and Schmidt, V. (1981). Queues and Point Processes, Akademie-
Verlag, Berlin.
[11] Grandell, J. (1976). Doubly Stochastic Poisson Processes. Lecture Notes in Mathematics 529, Springer-
Verlag, New York.
[12] Halfin, S. and Whitt, W. (1981). Heavy-Traffic Limits for Queues with Many Exponential Servers.
Oper. Res. 29 567-588.
[13] Iglehart, D. L. and Whitt, W. (1970). Multiple Channel Queues in Heavy Traffic I1I: Sequences,
Networks and Batches. Adv. Appl. Probab. 2 355-369.
[14] Mirasol, N. M. (1963). The Output of an M/G/co Queueing System is Poisson. Oper. Res. 11
282-284.
[15] Neuts, M. F. (1981). Matrix-Geometric Solutions in Stochastic Models. The Johns Hopkins University
Press, Baltimore.
[16] Pollett, P. K. (1982). Distributional Approximations for Networks of Quasireversible Queues. Statisti-
cal Laboratory, University of Cambridge.
{17] Serfozo, R. F. (1972). Conditional Poisson Processes. J. Appl. Probab. 9 288-302.
[18] . (1977). Compositions, Inverses and Thinnings of Random Measures. Z. Wabhrsch. verw.
Gebiete 37 253-265.
[19] Straf, M. L. (1972). Weak Convergence of Stochastic Processes with Several Parameters. Proc. Sixth
Berkeley Symp. Math. Stat. Prob. 2 187-221.
{20} Stroock, D. W. and Varadhan, S. R. S. (1979). Muitidimensional Diffusion Processes. Springer-Verlag,
New York.
[21] Whitt, W. (1972). Embedded Renewal Processes in the GI/G/s Queue. J. Appl. Probab. 9 650-658.

22} . (1980). Some Useful Functions for Functional Limit Theorems. Math. Oper. Res. 5 67-85.

[23] . (1982). On the Heavy-Traffic Limit Theorem for GI/G /w0 Queues. Adv. Appl. Probab. 14
171-190.

24} . (1982a). Approximating a Point Process by a Renewal Process, I: Two Basic Methods. Oper.
Res. 30 125-147.

[25] . (1983). Queue Tests for Renewal Processes. Oper. Res. Letters 2 7-12.

[26] ———. (1983a). The Queueing Network Analyzer. Bell System Tech. J. 62 2779-2815.

[27] ——. (1984). Minimizing Delays in the GI/G /1 Queue. Oper. Res., to appear.

[28] . (1984a). Queues with Superposition Arrival Processes in Heavy Traffic. under review.

[29] Wolff, R. W. (1977). The Effect of Service Time Regularity on System Performance. In Computer
Performance, K. M. Chandy and M. Reiser, eds. North-Holland, Amsterdam, 297-304.

AT&T BELL LABORATORIES, HOLMDEL, NEW JERSEY 07733



Copyright 1984, by INFORMS, all rights reserved. Copyright of Mathematics of
Operations Research is the property of INFORMS: Institute for Operations Research
and its content may not be copied or emailed to multiple sites or posted to a listserv
without the copyright holder's express written permission. However, users may print,
download, or email articles for individual use.





