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a b s t r a c t

We establish a limit theorem supporting a Poisson approximation for the departure process from amulti-
server queue that tends to have many busy servers. This limit can support approximating a flow out of
such a queue in a complex queueing network by an independent Poisson source. The main ideas are:
(i) to scale time so that previous many-server heavy-traffic limits can be applied and (ii) for time-varying
arrival-rate functions, to scale (spread out) time by a large factor about each fixed time.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Complex queueing systems are typically networks of queues,
with arrival processes at individual queues being composed of
departures and overflows fromother queues,with the service-time
cumulative distribution functions (cdf’s) often being not nearly
exponential. Thus an arrival process at an internal queue usually
cannot be assumed to be exactly a Poisson process; e.g., see [3].
Nevertheless, a Poisson approximation may be reasonable.

Example 1.1 (Final Checkout in Online Shopping). Suppose that we
want to develop a stochastic arrival process model for the final
checkout in a complex online shopping system. Many separate
people shop online until they are ready for final checkout, To
illustrate, we model the checkout as the second queue in a two-
queue Gt/GI/∞ → ·/GI/1 network, in which the first queue is
an infinite-server (IS) model with a general arrival process having
a time-varying arrival-rate function λ(t), which is independent
of service times that are independent and identically distributed
(i.i.d.) with a general cdf F having a continuous probability density
function (pdf) f with F(t) =

 t
0 f (s) ds, t ≥ 0. The output of the

IS queue is the arrival process to a final single-server (SS) checkout
queue, with general service cdf, unlimited waiting room and
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service in order of arrival. The exact form of the departure-rate
function from the IS queue is

δ(t) =


∞

0
f (y)λ(t − y) ds, (1)

as given in Theorem 1 of [4]; it is the same for Gt as for Mt ; see
§5 of [9]. In this setting we provide support for approximating the
final SS queue by an Mt/GI/1 queue, where the arrival process
is a nonhomogeneous Poisson process (NHPP) with arrival-rate
function δ(t) in (1). An efficient algorithm to calculate performance
measures when λ(t) is periodic is given in [16].

For a concrete simulation, consider the stationary GI/GI/∞ →

·/GI/1 model in which all service times are i.i.d. and the
external arrival process is a renewal process. To introduce extra
variability, we assume that all three GI components have the
hyperexponential cdf (H2, mixture of two exponentials) with
squared coefficient of variation (scv, variance divided by the square
of the mean) c2 = 4 and balanced means as in p. 137 of [21]; that
leaves only the mean or its reciprocal, the rate, to be specified. We
let the arrival rate be λ = 100 and the service rates at the two
queues be µ1 = 1 and µ2 = 200. By Little’s law, these rates make
the mean steady-state number of busy servers in the IS queue be
100, which we regard as moderately large scale. In actual online
checkout, the mean number of busy shoppers is likely to be much
larger, and the difference between the two service rates is likely to
be even greater.

In this context, we suggest that the performance at the final
SS queue can be approximated by the M/H2/1 model, for which
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the mean steady-state waiting time before starting service has the
Pollaczek–Khintchine (PK) formula EW = ρµ−1

2 (1 + c2)/2(1 −

ρ) = 0.0125 for ρ = 0.50, µ2 = 200 and c2 = 4. The intuition
is that, with many busy servers, the departure process from the IS
queue is much like the superposition of i.i.d. renewal processes,
one for each server, for which the limit is Poisson, as discussed
in §9.8 of [23]. Of course, the servers do not remain busy all the
time and the number of busy servers is random, varying over time,
so that representation is only approximate. Thus, there remains
something to prove for departure processes.

A simulation experiment was conducted for this example.
It shows that the interarrival-time cdf at the second queue is
approximately exponential withmean 0.01 and that the estimated
mean wait EW is only 8% above the PK formula for M arrivals; see
the appendix for more details.

We conclude this example by mentioning that part of the
justification for the M/H2/1 approximation with a Poisson arrival
process for the SS queue is the relatively low traffic intensity at
the SS queue, because the departure process from the H2/H2/∞ IS
queue with many busy servers is only approximately Poisson over
a short time scale. For example, the central limit theorem for the
departure process will not have the same variability parameter as
for a Poisson process. As discussed in §9.8 of [23], there is different
variability at different time scales. As ρ ↑ 1, the ratio of the actual
mean EW (ρ) to the mean with Poisson arrivals increases. We
found that the M/H2/1 approximation for the mean EW was 27%
low when the service rate at the second queue was decreased
so that ρ2 = 0.90. See [20] for a related superposition process
example. �

In [22] we previously established a limit theorem supporting
the Poisson approximation for the departure process in the
simulated example; our purpose here is to extend the result
to a larger class of models. First, for infinite-server models, we
extend the result established for the GI/Ph/∞ model in [24] to
the Gt/GI/∞ model, having a general service-time distribution
(the GI) instead of Ph and from a renewal arrival process (GI)
to general (allowing non-renewal) arrival process with a time-
varying rate (the Gt ). The proof is similar, except now we apply
the two-parameterMSHT FWLLN for theGt/GI/∞model reviewed
in [18] instead of the single-parameter FWLLN for the GI/Ph/∞
model in [24].

We are also interested in establishing a result that applies to
models with finitely many servers, perhaps including customer
abandonment and feedback. A concrete example of a closed
network of two ·/GI/s queues which could be used in this way is
contained in [12]. In that model there is one SS station with state-
dependent service rate and one IS station. In the same spirit, our
approach provides the basis for an alternate proof of a Poisson limit
for a queue with delayed feedback (which can be regarded as a
·/GI/∞ IS queue) in [19]; they established the Poisson limit using
a coupling technique.

The Poisson limit in [22] was established using martingale
methods The ‘‘martingale method’’ means that we focus on the
stochastic departure rate or intensity of the departure process
and its integral, called the compensator, which depends on a
specification of the history or filtration; see [2,17] for introductions
and [5,8] for advanced accounts. We will establish the Poisson
limit, independent of the history of the queueing system, by
showing that the compensators approach a deterministic limit;
e.g., see Theorem VIII.4.10 in [8] and Problem 1 on p. 360 of [5].

We have special interest in many-server queues with time-
varying arrival-rate functions. To obtain useful Poisson limits for
those models, we will introduce a new scaling method, spreading
out time about a fixed reference time. The Poisson limit then
provides support for approximating the departure process by an
NHPP. For the requiredMSHT FWLLN’s in Gt/GI/∞ and Gt/GI/st +
GI models with general nonstationary arrival processes, we can
apply [11,18,10,15], respectively. These limits exploit a random-
measure or two-parameter framework. We present our results
with minimum technicalities; we refer to those papers for the
details.

In Section 2 we review the MSHT FWLLN in a Gt/GI/∞
model and establish the required FWLLN for the departure rate
process in Theorem 2.1. In Section 3 we establish the main
result, Theorem 3.1, which provides general conditions for the
desired Poisson limit in terms of associated MSHT limits. We
present additional supplementary material on the simulation for
Example 1.1 and a direct NHPP approximation for the departure
process in an appendix, which is available from the author’s
website (http://www.columbia.edu/~ww2040/allpapers.html).

2. Review of the MSHT FWLLN for Gt/GI/∞ queues

We start by reviewing the MSHT FWLLN in Theorem 3.1 in [18],
because we will use established properties as conditions in our
new theorem for other models.

Let ⇒ denote convergence in distribution and let D ≡ D(I, R)
be the usual Skorohod space of right-continuous real-valued
functions with left limits on a subinterval I of the entire real line
R, possibly R itself [5,8,23]. In our setting with a continuous limits,
convergence in the Skorohod J1 topology is equivalent to uniform
convergence over bounded subintervals of I .

We consider a sequence of queueing models indexed by n. Let
the arrival process have a well-defined arrival rate for each n;
i.e., let An(t1, t2) be the number of arrivals in model n in the time
interval (t1, t2] and assume that

E[An(t1, t2)] = nΛ(t1, t2), where Λ(t1, t2) ≡

 t2

t1
λ(s) ds (2)

for −∞ < t1 < t2 < +∞, with ≡ denoting equality by definition.
This can be achieved by scaling (accelerating) time in a fixed arrival
process. Thus, the arrival rate in model n is

λn(t) = nλ(t), −∞ < t < +∞. (3)

As a regularity condition, we also assume that 0 ≤ λ(t) ≤ λU <
∞. We furthermore assume that the system starts empty at time
−t0 ≤ 0. That avoids having to carefully treat the initial conditions,
but for a way to do so, see [1]. Let Ān(t1, t2) ≡ n−1An(t1, t2). We
assume a FWLLN is valid for the arrival processes; i.e.,

sup
tL≤t1<t2≤tU

|Ān(t1, t2) − Λ(t1, t2)| ⇒ 0 as n → ∞

for all tL and tU with −∞ < −t0 ≤ tL < tU < ∞ (weak
convergence uniformly over bounded intervals).

Assumption 1 of [18] allows a general sequence of arrival
processes, but they are required to satisfy a functional central limit
theorem (FCLT) because the primary concern was establishing the
MSHT FCLT. That FCLT condition can be weakened to having only
a FWLLN, because Theorem 3.1 only requires the MSHT FWLLN
conclusion. The proof of the FWLLN for the number of busy servers
under the weaker FWLLN condition is not discussed in [18], but it
is discussed in [17]; see Theorem 3.6 and §§3.4, 4.3, 5.2, 6.1 and 6.2.

Assumption 2 of [18] stipulates that the service times come
from a single i.i.d. sequence, independent of n and the arrival
processes, distributed as a random variable S having a general cdf
F . In addition, we require that the cdf F have a continuous pdf
f in terms of which we can write F(t) =

 t
0 f (s) ds, t ≥ 0, for

F c(t) ≡ 1−F(t), and a failure-rate function h(t) ≡ f (t)/F c(t) that
is bounded over finite intervals. In [18] the system starts empty
at time 0. Without loss of generality, we assume that the system
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starts empty at time −t0 < 0. We then can let t0 → ∞ to obtain
the simple approximation formula in (1).

Let Ne
n(t, y) be the number of customers in service at time t in

model n that have been so for at most time y. Let N̄e
n be the FWLLN-

scaled version N̄e
n(t, y) ≡ n−1Ne

n(t, y). A variant of (3.5) and (3.7)
of Theorem 3.1 of [18] then implies that

sup
tL≤t≤tU ,yL≤y≤yU

|N̄e
n(t, y) − Ne(t, y)| ⇒ 0 as n → ∞ (4)

for all tL and tU with −∞ < −t0 ≤ tL < tU < ∞ and for all yL and
yU with −∞ < yL < yU < ∞ (again weak convergence uniformly
over bounded intervals), where

Ne(t, y) ≡

 y

0
F c(s)λ(t − s) ds. (5)

Let Dn(t) ≡ An(t) − Ne
n(t, t + t0) be the associated departure

counting process in model n and let D̄n(t) ≡ n−1Dn(t) be the fluid-
scaled version. Along with (4), we also have the limit

D̄n ⇒ D in D[−t0, ∞) as n → ∞, (6)

where

D(t) ≡ Λ(t) − Ne(t, t + t0)

=

 t+t0

0
F(s)λ(t − s) ds, t ≥ −t0. (7)

For the new part, let ∆n(t) be the stochastic departure rate
at time t in model n. The departure rate can be expressed as a
stochastic integral (which is just a random sum) via

∆n(t) =

 t+t0

0
h(y) dyNe

n(t−, y) dy, t ≥ −t0. (8)

As in (2.1) of [22], we use the left limit t-in (8) to make ∆n(t) be
the predictable stochastic intensitywith respect to the appropriate
history that includes the ages of all the customers in service and the
history of the arrival process at each time t; see §1.3 of [2] and [17].
That can be understood and justified by a discretization argument,
dividing the interval [−t0, t] into k subintervals, doing a discrete-
time analysis and then letting k → ∞. A detailed proof is given in
§5.2 of [11]; see Lemma 5.4.

To elaborate, ∆n(t) being a stochastic intensity means that the
centered process Dn(t) − Cn(t) is a martingale with compensator

Cn(t) =

 t

−t0
∆n(s) ds, t ≥ −t0, (9)

again with respect to the full system history at time t .
Let ∆̄n ≡ n−1∆n for in (8) be the FWLLN-scaled departure rate

process. We first establish a bound on the expectations.

Lemma 2.1 (Expectation Bound). Under the assumptions above for
the sequence of Gt/GI/∞ models,

E[∆̄n(t)] ≤ K max{1, t + t0} sup
0≤s≤t+t0

{h(s)} < ∞ (10)

for all n and t.

Proof. Since Nn(t) ≡ Ne
n(t, ∞) ≤ An(−t0, t) we can apply (2).

Since the failure rate function h is bounded over bounded intervals,
we can replace it by a constant outside the integral. �

Theorem 2.1 (MSHT Limit For the Departure Rate). For the Gt/GI/
∞ model under the assumptions above,

∆̄n ≡ n−1∆n ⇒ δ in D([−t0, ∞), R) as n → ∞, (11)
where

δ(t) ≡

 t+t0

0
h(y)dyN(t, y), t ≥ −t0, (12)

so that

δ(t) =

 t+t0

0
f (y)λ(t − y) dy and

D(t) =

 t

−t0
δ(s) ds, t ≥ −t0. (13)

Proof. We first apply Lemma 2.1 to get bounded expectations.
Then we apply the Skorohod representation theorem, Theorem
3.2.2 of [23], to reduce the argument to a deterministic one, but use
the same notation. We establish the desired uniform convergence
over bounded intervals by showing, for any t in a bounded an
interval and any sequence {tn} with tn → t as n → ∞, that
n−1∆n(tn) → δ(t) as n → ∞. To do that, we exploit the fact that
the convergence in (4) corresponds to the weak convergence of
finitemeasures, wherewe regard N̄e

n(t, y) as a function of y as a cdf.
Hence, we can show, for each t ≥ −t0 that we have the associated
convergence of the integrals

n−1∆n(tn) =

 tn+t0

0
h(y) dyN̄e

n(tn, y)

→

 t+t0

0
h(y)F c(y)λ(t − y) dy as n → ∞.

We use the fact that h is continuous and bounded on the interval
[0, t + t0]. The limiting integral simplifies, yielding t+t0

0
h(y)F c(y)λ(t − y) dy =

 t+t0

0
f (y)λ(t − y) dy

by the simple relation h(y)F c(y) = f (y). That convergence implies
that ∆̄n → δ in D(R, R) as n → ∞, which implies the weak
convergence for the original processes. �

Remark 2.1 (Starting Empty in the Distant Past). In many papers on
IS queues, the system is assumed to start empty in the distant past
(at −∞). That is tantamount to letting t0 → ∞. As t0 → ∞, δ(t)
in Theorem 2.1 approaches (1), the departure rate E[λ(t − S)] in
theMt/GI/∞ model in equation (4) of Theorem 1 in [4] and in the
associated Gt/GI/∞ fluid model; see §4 of [14].

3. The supporting limit for a Poisson approximation

We now establish the Poisson limit for the departure process
from a general Gt/GI/∞ model. At the same time, we provide
a framework for treating many other models. To do so, we
assume some of the conclusions deduced for the Gt/GI/∞ model
is Section 2 rather than specify the detailed model. Thus, we
now consider a more general multi-server queue. As before, we
assume that the servers work independently in parallel having an
individual remaining service-time failure rate function h. However,
the queue may be in the middle of a complex network and there
may be customer abandonment and feedback.

As in Section 2, we consider a sequence of models indexed by n
in a MSHT framework. That typically means that the arrival rate is
allowed to growwithout bound as in (2) and if the there are finitely
many servers, then that number is allowed to grow as well. We
directly assume that the processes Ne

n(t, y), Dn(t), Cn(t) and ∆n(t)
are well defined with the same meaning as in Section 2, but we
do not fully specify the system; e.g., we do not specify the arrival
process. We directly assume that the stochastic departure rate can
be defined by the stochastic integral in (8) and that Dn(t) − Cn(t)
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is a martingale with respect to the system history up to time t ,
where Cn(t) is the compensator and is the integral of ∆n(t) as in
(9). We also assume that the limits in (4) and (8) hold, but without
assuming the explicit form of the limitsNe(t, y) andD(t) in (5) and
(7). Finally, we assume that the bound in (10) holds. Under these
assumptions, we also have the conclusions of Theorem 2.1 with
the limit in (12), but without the explicit limit in (13), because
the same proof applies. For example, these assumptions apply to
the Gt/GI/s + GI model with finitely many servers and customer
abandonment, for which a FWLLN was established in [14,13].

Paralleling [22], we will do an additional slow-time scaling in
order to establish the supporting Poisson limit. However, in order
to capture the time-varying arrival rate appropriately, instead of
simply undoing the MSHT scaling in (2), we do the time scaling
about an arbitrary time t , which we regard as fixed.

For this purpose, we introduce two-parameter processes

Dn(t, u2) − Dn(t, u1) ≡ Dn(t + u2/n) − Dn(t + u1/n),
Cn(t, u2) − Cn(t, u1) ≡ Cn(t + u2/n) − Cn(t + u1/n),

∆n(t, u) ≡ ∆n(t + u/n)/n,
− ∞ < u1 < u2 < +∞. (14)

Note that the definitions for Cn(t, u) and ∆n(t, u) follow from the
definition for Dn(t, u). With these definitions and the assumptions
above,

Cn(t, u2) − Cn(t, u2) =

 u2

u1
∆n(t, v) dv,

−∞ < u1 < u2 < +∞, (15)
{Dn(t, s) − Cn(t, s) : s ≥ u1} is a martingale and ∆n(t, u) is a
predictable stochastic intensity with respect to the system history.

With this preparation, we are able to establish our desired
result. In our setting, weak convergence of the processes with
nondecreasing sample paths to a Poisson process in D(I, R) is
equivalent to convergence of all finite-dimensional distributions;
see VI.3.37 of [8].

Theorem 3.1 (Poisson Limit). Under the assumptions in this section
above,

Dn(t, ·) ⇒ Πδ(t)(·) in D(R, R) as n → ∞, (16)

where Πc is a homogeneous Poisson process with constant rate c and
δ(t) is the limit in (12); i.e., for any integer k, any k-tuple of disjoint
subintervals ((ui,1, ui,2] : 1 ≤ i ≤ k) and any k-tuple of nonnegative
integers (ji : 1 ≤ i ≤ k),

P

Dn(t, ui,2) − Dn(t, ui,1) = ji : 1 ≤ i ≤ k


→

k
i=1

e−µi(t)µi(t)ji

ji!

as n → ∞, where µi(t) ≡ δ(t)(ui,2 − ui,1).
Proof. The proof is similar to the proof of Theorem 2 in [22]. The
limit in (11) implies that

sup
uL<u<uU

|n−1∆n(t + (u/n)) − δ(t)| ⇒ 0 as n → ∞

for all uL and uU with −∞ < uL < uU < +∞. Then, paralleling
the proof of Theorem 2 in [22], we write

Cn(t + (u2/n)) − Cn(t + (u1/n))

=

 u2/n

u1/n
∆n(t + v) dv

=

 u2

u1
n−1∆n(t + v/n) dv

⇒

 u2

u1
δ(t) dv = δ(t)(u2 − u1) as n → ∞. (17)
Combining (17)with (14), we have the analog of Corollary 2 of [22],
i.e.,

Cn(t, u2) − Cn(t, u1) ⇒ δ(t)(u2 − u1) as n → ∞.

That implies that the limit (16) holds, as claimed, by Theorem
VIII.4.10 of [8]. �

Remark 3.1 (Supporting anNHPPApproximation). The statement of
Theorem 3.1 may seem a bit paradoxical, because it states that the
departure process is asymptotically ahomogeneousPoissonprocess
but with the time-varying rate δ(t) in (12). That dichotomy arises
because of our scaling about the fixed time t . For applications,
we interpret the limit as supporting an NHPP approximation with
time-varying rate δ(t).

Remark 3.2 (The Stationary Case). For a stable stationary model
without abandonment, the rate out equals the rate in, so that the
departure ratemust equal the constant arrival rate. Consistentwith
that basic property, we see that δ(t) = λ for all t if the arrival
process has a constant arrival rate λ.

Remark 3.3 (ModelsWith Finitely Many Servers). For the stationary
GI/M/s and the M/M/s + M models, the papers [7,6] can be
applied to establish analogs of Theorem 2.1. For the quality-and-
efficiency-driven (QED) and efficiency-driven (ED) MSHT regimes,
δ(t) = µs for all t . The FWLLN follows immediately from theMSHT
FCLTs established in those papers. These result can be extended to
general arrival processes using §7.3 of [17]. Extensions to theG/G/s
and G/GI/s + GI follow from [10,11].

We can also apply [15] to obtain the analog of Theorem 2.1
for the Gt/M/st + GI Model with customer abandonment,
which alternates between overloaded intervals and underloaded
intervals.With exponential service times, it suffices to look atN(t),
the number of customers in service at each time, instead of the
more complicated two-parameter process Ne(t, y). The departure
rate at time t is simply µmin{X(t), s(t)}, where µ is the fixed
service rate, X(t) is the number of customers in the system and
s(t) is the number of servers at time t . The FWLLN is given for
overloaded intervals in (4.2) of Theorem 4.1 and §3 of [15]; then
δ(t) = s(t)µ. The FWLLN is given for underloaded intervals in (5.1)
and (5.2) of Theorem 5.1 of [15]; except for the initial conditions,
δ(t) is the same as in an IS system. Extensions to GI service follow
from [13].
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