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DIFFUSION APPROXIMATIONS FOR QUEUES WITH
SERVER VACATIONS

OFFER KELLA,* Yale University
WARD WHITT,** AT&T Bell Laboratories

Abstract

This paper studies the standard single-server queue with unlimited waiting space
and the first-in first-out service discipline, modified by having the server take random
vacations. In the first model, there is a vacation each time the queue becomes empty,
as occurs for high-priority customers with a non-preemptive priority service
discipline. Approximations for both the transient and steady-state behavior are
developed for the case of relatively long vacations by proving a heavy-traffic limit
theorem. If the vacation times increase appropriately as the traffic intensity
increases, the workload and queue-length processes converge in distribution to
Brownian motion with a negative drift, modified to have a random jump up
whenever it hits the origin. In the second model, vacations are generated
exogenously. In this case, if both the vacation times and the times between
vacations increase appropriately as the traffic intensity increases, then the limit
process is reflecting Brownian motion, modified by the addition of an exogenous jump
process. The steady-state distributions of these two limiting jump-diffusion processes
have decomposition properties previously established for vacation queueing models,
i.e., in each case the steady-state distribution is the convolution of two distributions,
one of which is the exponential steady-state distribution of the reflecting Brownian
motion obtained as the heavy-traffic limit without vacations.

SERVICE INTERRUPTIONS; LIMIT THEOREMS; HEAVY TRAFFIC; STOCHASTIC
DECOMPOSITION

1. Introduction and summary

Communication, computer and manufacturing systems have recently generated
considerable interest in queueing models in which the server occasionally takes
random vacations; see Fuhrmann and Cooper (1985), Doshi (1985), (1986),
(1990a,b), Federgruen and Green (1986), Lucantoni et al. (1990), and references
cited there. Our purpose here is to develop heavy-traffic diffusion approxima-
tions for such models. As with previous diffusion approximations for queues
(e.g., see Newell (1982) and Harrison (1985)), these diffusion approximations
have considerable applied interest because they provide relatively tractable ex-
pressions for quantities of interest in quite general models. (For example, the
arrivals need not be Poisson.) The approximations can be applied to general
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stable systems, either directly or with refinements such as interpolations with
light-traffic limits; see Burman and Smith (1986), Reiman and Simon (1988) and
Whitt (1982), (1989). The diffusion approximations here are of special interest in
relation to previous diffusion approximations for queues, because the diffusion
approximations here involve jumps. Particularly significant is the opportunity the
approximations provide to analyze the transient or time-dependent behavior of the
processes, €.g., in the spirit of Abate and Whitt (1987).

In this paper, we consider two models involving a single-server queue with
unlimited waiting space and the first-in first-out discipline, one in which the server
takes a vacation each time the queue becomes empty (as occurs for high priority
customers with non-preemptive priorities), and the other where the vacations are
generated by an exogenous process, providing an independent random environment
for the queue (as occurs in some models of machine breakdowns). It is well known
that the standard heavy-traffic limit theorem for the first vacation model (obtained
by letting the traffic intensity approach the critical value 1) is the same as if the
server takes no vacations. This limiting behavior nevertheless provides important
insight; it shows that the degradation in service due to the vacations is relatively
negligible under heavy loads compared to the effect of a high traffic intensity. To
obtain a more detailed description of the degradation of service due to vacations, we
let the length of the server vacations increase as the traffic intensity p increases. In
particular, the length of the vacation should be of order (1— p)~!, which is the
same order as the mean steady-state workload without vacations. The limit is
particularly appropriate as an approximation when the vacations are relatively long,
but can be applied in any case, e.g., see the approximation for the steady-state mean
workload in (2.18).

We show that normalized versions of the workload, queue-length and waiting-
time stochastic processes converge in distribution to non-degenerate limits as p— 1.
For the first model, the limit process is Brownian motion (BM), modified to have a
random jump up whenever the process hits the origin. This limit is of course just
BM on [0, ) with a jump boundary at the origin instead of the usual reflecting
boundary in Iglehart and Whitt (1970) or the sticky boundary in Harrison and
Lemoine (1981). (See Harrison (1985) for background on BM and its use to model
stochastic flow systems.) For the second model, the limit process is reflected
Brownian motion (RBM) modified to have random jumps up at intervals deter-
mined by an exogenous vacation process. (The exogenous vacation process
specifies the jumps and the intervals between the jumps.) There is some technical
interest in these limit theorems because the jumps require working with weak
convergence in the function space D(0, «), excluding the point 0, with Skorohod’s
(1956) M, topology instead of the customary J; topology. (See Billingsley (1968),
Whitt (1980) and Pollard (1984) for background on weak convergence of probability
measures on function spaces.)

For the second model with an exogenous vacation process, we inflate the times
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between the vacations as well as the vacations themselves. In particular, the times
between vacations should grow like (1—p)~? while the vacations grow like
(1-p)~". Unlike the first model, the heavy-traffic behavior of the second model
without inflating the vacations and the times between vacations is not the same as
the heavy-traffic behavior of the model without vacations, as can be seen from
Fischer (1977), Burman and Smith (1986), Burman (1987a,b), and Asmussen
(1988). However, without inflating the vacations, the heavy-traffic limit is RBM with
different parameters, but without any jumps. The major contribution here is to
point out the relevance of the jump-diffusion processes. The limit processes and
associated steady-state distributions obtained here are natural candidates for
approximations when there are long rare vacations. An example of a setting in
which the limits here should be appropriate is a mean service time of 1 and a traffic
intensity of p =0-9 in the system without vacations, plus a mean vacation time of
2(1— p)~'=20 and a mean time between vacations of 5(1 — p)~% = 500. This range
of parameter values was not considered in previous work on this model by
Federgruen and Green (1986) and Burman (1987b).

The steady-state distributions of the limit processes are interesting, because they
exhibit decomposition properties previously established for special cases of these
vacation queueing models; see Doshi (1986). (Recent work by Lucantoni et al.
(1990) and Doshi (1990a) extends the decomposition results for the vacation
queueing models to approximately the same level of generality assumed here; we
only assume a joint functional central limit theorem for the arrival and service
processes. Nevertheless, the decomposition results for the jump-diffusion processes
here are new, because the jump-diffusion process is not directly a queueing process.)
For the first model, the approximating steady-state distribution is the convolution of
the exponential steady-state heavy-traffic approximation without vacations and the
stationary-excess (or equilibrium-residual-life) distribution associated with the
vacation-time distribution; see Theorem 2.2. For the second model, the steady-state
distribution is again a convolution of the exponential steady-state heavy-traffic
approximation without vacations and another distribution. The other distribution
has a positive mass at ( equal to the steady-state probability that the server would be
idle (or, equivalently, one minus the traffic intensity) if the queue received work
only from the limiting jump process (not the RBM). The conditional distribution
given that it is positive is the convolution of the vacation-time stationary-excess
distribution and the steady-state distribution of the embedded Markov chain
obtained by looking at the entire limit process just prior to the jumps. An explicit
expression is obtained when the jumps occur according to a Poisson process; see the
Corollary to Theorem 3.3.

For the general case of the second model, we obtain more tractable approxima-
tions for both the process and its steady-state distribution by proving a second
heavy-traffic limit theorem for the limit process obtained from the first heavy-traffic
limit. The second limit process is RBM with an exponential stationary distribution.
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The jumps in the first limit process produce a larger diffusion coefficient and a
higher steady-state mean in the final RBM than in the RBM without vacations.
The rest of this paper is organized as follows. In Section 2 we specify the first
model and establish the limiting behavior for it. In Section 3 we do the same for the
second model. In Section 4 we give the proofs. Finally, we make a few concluding
remarks in Section 5, including discussion about extensions to multiserver queues
and queueing networks. Further results are contained in Kella and Whitt (1991).

2. The first model: vacations when the queue becomes empty

The first model is a standard single-server queue with unlimited waiting room and
a first-come first-served discipline, in which the server goes on a vacation for a
random period each time the queue becomes empty. To be specific, we assume that
the server will take another vacation if there are no arrivals during a vacation, but in
our heavy-traffic limit the event of no arrivals during a vacation has negligible
probability, so that the model variant without successive vacations has the same
heavy-traffic limit.

To establish our heavy-traffic limit, we consider a family of systems indexed by the
traffic intensity p. We specify the stochastic behavior in terms of three stochastic
processes, defined independently of p: an arrival counting process {A(t):t=0}, a
sequence of service times {S,: n =1}, and a sequence of vacation times {V,:n=1}.
We assume that the vacation-time sequence {V,,} is independent of the other two
processes. We also assume that the arrival rate and average service time are both 1,
i.e.,

n
(2.1) limtA(f)=1 and limn™' Y S,=1w.p.1
La k=1

n—ow

For the pth system, we use the scaled arrival process A,(t) = A(pt), which has
arrival rate p, and leave the service times unchanged, so that the traffic intensity (or
offered load, i.e. the arrival rate times the average service time) is p. Thus, for the
pth system, the total input process is

Ap(0)

2.2) X,(6) = }_‘, S, t=0.

For the pth system, we let the scaled vacation times be
(2.3) Vor=(1—-p)"'V,, nz1,

so that the length of the vacations is growing with p (typically at the same rate as the
mean steady-state workload without vacations). Of course, it suffices to have
(1-p)V,,>V, as p—1 for each n, but (2.3) is a simple sufficient condition, which
is adequate for developing approximations. For simplicity, we assume that the
queue is initially empty for each p. This means that a vacation always begins at time
t=0.
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Note that p <1 is the typical stability condition for the pth system, i.e., the
vacations typically do not alter the conditions for stability, but we have not yet made
enough assumptions to guarantee that the standard descriptive queueing processes
converge to proper limits as n#— ® or t— . We study the limiting behavior of the
queueing processes (transient behavior) as p T1. We propose using the steady-state
limiting distributions (obtained by letting — =) of the limiting processes (obtained
by letting p T 1) to approximate the steady-state distributions for the pth system for
p <1; then we must assume that the steady-state distributions for p <1 are well
defined.

In order to establish our desired heavy-traffic limits, we assume that the arrival
process and service times satisfy a joint functional central limit theorem (FCLT), as
in Theorem II.1 of Iglehart and Whitt. In particular, let

(2.4 A (=Q0-p)A((1-p) ) -t(1-p)7*], tZ0,
and

[t(1=p)7
2.5) S=(1-p) % (S-1), 120,

where [x] is the greatest integer less than or equal to x. Let = denote weak
convergence, as in Billingsley (1968), and let D([0, »),J;) be the space of
right-continuous real-valued functions on [0, ) with left limits, endowed with the
usual Skorohod J; topology, as in Whitt (1980) and Pollard (1984).

Basic FCLT assumption. We assume that
(A,, S;)=>(By, B;) in D([0, ®), J;) x D([0, ®), J;) as p—1,

where (B,, B,) is two-dimensional Brownian motion (BM) with (B,(1), B,(1))
having a bivariate normal distribution with mean (0,0) and covariance matrix
Z=(oy).

As discussed in Iglehart and Whitt, there are many conditions under which the
basic FCLT assumption holds. The standard sufficient condition is to have the
arrival process independent of the service times, the interarrival times associated
with A(#) i.i.d. (independent and identically distributed) with finite squared
coefficient of variation (variance divided by the square of the mean) c2 and the
service times i.i.d. with finite squared coefficient of variation cZ. Then o, =c2,
0»=c? and 0,, = 0,; =0. However, neither independence between the processes
nor independence within each process is necessary. For example, all three kinds of
dependence occur for multiclass queues with independent classes each of which has
arrival and service processes satisfying the independence conditions above; see
Iglehart and Whitt (1970) and Fendick et al. (1989).

A serious complication for analyzing vacation models with non-Poisson arrival
processes and p <1 is the residual interarrival time edge effect at the beginning and
the end of each vacation. However, in heavy traffic edge effects are asymptotically
negligible. To see this, let U, be the kth interarrival time associated with A(¢), so
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that p~'U, is the kth scaled interarrival time associated with A4,(¢). Let

(t(1=p)7%
(2.6) Up()=(1-p) 21 (P7'U-p7Y), tZ0.
By the basic FCLT assumption and Theorem 7.3 of Whitt (1980), U,=> —B, in
D([0, »), J;) as p— 1. By applying the continuous mapping theorem (Theorem 5.1
of Billingsley) with the maximum jump function J.:(D[0, c], R)— R, defined by

2.7 J.(x)=sup {x(t) —x(t—):0=t=c},
which is continuous, we see that
(2.8) (1-p)max{p 'U:1=k=t(1-p)2}>0 as p—1.

However, we shall not directly apply (2.7) and (2.8) in our proofs.

We shall explicitly treat only the continuous-time workload process (the amount
of remaining work in service time in the system at time ¢). The same result (same
normalization and same limit process) holds for the queue-length process by a minor
variation of the same argument (see Remark 5.2). For the workload process, it is
natural to use the argument in Whitt (1971) based on the random sum (2.2),
whereas for the queue-length process it is natural to use the argument in Iglehart
and Whitt. The same result also holds for the discrete-time embedded processes
obtained by looking at these processes just before arrivals (e.g., waiting times), as in
Section 1.7 of Iglehart and Whitt. By (2.1), the limiting arrival rate is 1, so there is
no rescaling in the random time change.

Let W,(t) and W,,(t) be the workload processes in the pth system with and
without vacations, respectively, and let the associated normalized processes be

29 L()=(1-p)W,((1=p)~) and L, (0)=(1-p)W,(((1-p)?), 1Z0.

For the limits with vacations we use the space D((0, ©), M,) instead of
D([0, ), J,); i.e., we exclude the point 0 and we change the topology from
Skorohod’s (1956) J, topology used in Billingsley for D[0, 1] to his weaker M,
topology (convergence J; implies convergence M,;). We do not work with the closed
interval [0, ©), because then pointwise convergence must hold at 0, which we will
not have. For each p, L,,(0) =0 but for the limit L,(0) = V;. However, we have no
difficulty if we exclude the origin.

Convergence of a sequence of deterministic functions {x,} to a limit x in
D((0, ©), T), where T =J, or M, is equivalent to convergence of the restrictions in
D([a, b], T) for all but countably many pairs (a, b) with 0<a <b <o (except at
points of discontinuities of x). When the limit function is continuous, convergence in
D([a, b], T) is equivalent to uniform convergence. As shown by Kolmogorov
(1956), Skorohod (1956) and Pomarede (1976), the J; and M, topologies both are
Polish (metrizable as complete separable metric spaces) and can be characterized by
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uniform convergence of parameteric representations of the graphs. For
D([a, b],, M,) we use the complete graph containing all pairs (¢, e) in [a, b] X R such
that x(¢t — ) =e =x(t); for D([a, b], J,) we use the incomplete graph containing all
pairs (2, ) in [a, b] X R such that e =x(t) or x(¢t —), i.e., the closure of the graph
{(t, x(¢)):a=t=b}. For the complete graphs associated with the M, topology, a
parametric representation is a continuous function ((¢), x(¢)) mapping [a, b] onto
the complete graph such that 7(¢) is non-decreasing. Convergence x,,—x as n— » in
D([a, b], M,) holds if there exist parametric representations (7,, x,) of x, and (7, x)
of x such that

(2.10) tim max { sup 17,(0)~ 7], sup. 1%.(0) ~ 21} =0.

For functions to be close, the J; topology requires nearly the same jumps at nearly
the same places, whereas the M,; topology only requires that parametric repre-
sentations of the complete graphs of the functions be nearly the same. Hence, a
function with several closely spaced small jumps up can be close to a function with
one large jump up in M, but not in J,. For example, with I, the indicator function of
the set A,

(211) 1[1’1_,,”-1) + 21[1_,."—1,2)—') 2[[1’2) in D([O, °°), Ml) as n—>x,

but not in D([0, »), J;).

In the following theorem we state results for both L, and L,, to make comparison
easy. The result without vacations follows from Iglehart and Whitt (1970) or Whitt
(1971); alternatively, apply Theorems 5.1 and 6.4 of Whitt (1980) plus the basic
FCLT assumption. The result with vacations is proved in Section 4.

Recall that the joint distribution of the vacations is arbitrary. To be sure that the
jumps up can keep the Brownian motion non-negative, we assume that Yz_, V, =
ow.p. 1.

Theorem 2.1. (a) L,>R in D([0, ©), J;) as p—1, where R=R(t; -1, 0?) is
reflected Brownian motion (RBM) with drift —1 and diffusion coefficient o®=
0,1 + 05 — 20y, starting at 0.

(b) L,,> L, in D((0, ), M) as p—1, where L,=L(t; B, {V,}) is Brownian
motion B = B(t; —1, 0®) with drift —1 and diffusion coefficient o= 0,; + 0, —
20y,, starting at 0, modified to have a jump up each time the process hits 0, with the
nth jump being V,,. :

Remark 2.1. It is not difficult to show that L, R in D([0, ), J,) if V,£>0 for
each n. The standard heavy-traffic limit theorem for vacation models in which the
vacations do not grow as p increases is essentially equivalent to choosing the limiting
vacation times V,, very small, which yields the limit R obtained without vacations.

Recall that we have assumed that the queue is initially empty, so that the first
vacation V,; begins at t=0. Let T,, be the interval between the end of the nth
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vacation and the beginning of the (n + 1)th vacation, and let C,, = V,, + T, be the
nth busy cycle, n = 1. Let ® be the standard normal c.d.f. (mean 0 and variancel).
Limits for (T, -+, T,s) and (C,y, - - -, C,,) as p— 1 follow immediately from
Theorem 2.1 by the continuous mapping theorem (Theorem 5.1 of Billingsley)
applied to first-passage times; see Section 7 of Whitt (1980). In fact, these limits are
established as part of the proof of Theorem 2.1. See pp. 565, 581 of Abate and
Whitt (1987) for more about the limiting inverse Gaussian distribution.

Corollary. As p—1,
{1-p)*C,,,nz1}>{C,,n21} in R~

where C,, n =1, are mutually independent conditional on {V,}, and C, is the first
passage time for B(t; —1, 0°) from V, to 0. Conditional on V,, C, thus has the
inverse Gaussian distribution, i.e.,

P(072C,=t|07%V,=x)=P(inf {tZ0: B(t; -1, 1) = —x} =1)

@) = o(*F) +ema( L),

so that E(6*C%| 07V, =x)=x for k=1, x+x? for k=2 and 3x +3x*+x> for
k=3; and E(C,)=E(V,) and E(C2%) = 07%E(V,) + E(V2).

Recall that R(t) > R(«) as t— o, where R(«) has an exponential distribution with
mean 02/2. Let £ denote equality in distribution.

Theorem 2.2. Suppose that {V,} is i.i.d. with E(V}) = m, <. Then L(t)=> L,.()
as t— o, where L,(®)<£ R()+ V,, R(~) and V, are independent and V, has the
stationary-excess distribution of V}, i.e.,

@2.13) P(V.<x)=m;! f P(V,>y) dy.

Recall that the moments of V in (2.13) and V), are related by
(2.14) E[V]=E[Vi"VE[Vi(k +1);
see p. 64 of Cox (1972). Hence, we have the following. Let m, = E(V?).

Corollary. Under the assumptions of Theorem 2.2,

02
(2.15) E[Ly()] =7+%1
and

2 - 2
(2.16) Var [L(=)] = (072) ﬂ%

The resulting direct heavy-traffic approximation for W,,(®) is of course
(1-p)'L(x) with V,=(1— p)V,,, where V,, is the stationary-excess variable as-
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sociated with the vacation time V,, in the pth system, as in (2.13). (Since
V,i=(1-p)'V,, V,s=(1-p)~'V,.) Hence, the direct heavy-traffic approximation
for W,, () is
@) Wop ()~ Ly

1-p
As in Whitt (1982), Burman (1987b) and Burman and Smith (1986), we can also
consider refinements to the direct heavy-traffic approximation in (2.17). For
example, it is natural to replace (1 — p) "'R() in (2.17) by a random variable that is
0 with probability (1 — p) and (1 — p)~'R() with probability p, so that (2.17) would
be exact for the M/M/1 model without vacations. Since the jump should correspond
to the amount of work to arrive in a vacation time, it is also natural to multiply V,,
in (2.17) by p, and possibly re-introduce some of the variability of the total input
process X,. However, we do not study approximation refinements here. We
conclude this section by giving our initial refined heavy-traffic approximation for the
steady-state mean under the assumptions of Theorem 2.2, namely,

(ci+1)
2 ’

po’
2(1-p)
where ¢ is the squared coefficient of variation of the vacation time V,,,. (Recall that

the mean service time is 1.) If the model without vacations is GI/G/1, then
o*=ci+cl

(2.18) E[W,, ()] =

+ pE[V,]

3. The second model: exogenous vacations

Now we assume that the vacations occur exogenously. In addition to the
framework of Section 2, this model requires another basic stochastic process, a
sequence of non-negative random variables {7, :n Z0} with T, =0 and P(T, >0)=1
for all n=1. For the pth system, we assume that the time between the end of the
nth vacation and the beginning of the (n + 1)th vacation is 7,,, where

(3.1) T,,=(1-p)2T,, nZL

We assume that the vector-valued vacation process {(V,,, T,,):n = 1} is independent
of {A(¢):t=0} and {S,:n =1}, which is what we mean by exogenous. As before,
we assume that the queue is initially empty and the first vacation begins at time 0.
Unlike the first model, the stability criterion for the pth system of the second model
is typically not p <1; assuming that all the processes are stationary, the stability
condition is typically p<1-E(V,,)/E(T,,). However, by (2.3) and (3.1),
EV,./ET,, = (1 - p)(EV,/ET,), so that the typical stability condition translates into
p<1 and EV,<ET, here. As in Section 2, we have not made assumptions
guaranteeing that steady-state limits exist under these conditions, so we must
assume that steady-state distributions exist when we develop approximations for
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them. However, approximations will only be developed for the case p <1 and
EV,<ET,.

Let W, be the workload process with the exogenous vacations and let L., be the
associated normalized workload process, defined just as in (2.9). To describe the
limit process, let

(3.2) N@)=max {(n=0:TH+---+T,_,=t}, t=0,

where T, =0. Let the limiting net input process be

N@®)

(3.3) Y()=B(t-1, )+ XV, 120,
i=1
and then apply a reflecting barrier to get L., i.e.,
3.9 L.(t) = Y.(t) + max {O, — inf Ye(s)}, t=0;
0=s=t

see pp. 14, 19 of Harrison (1985). (The reflection is applied after we add the jumps.)

Theorem 3.1. L., > L. in D((0, ), M,) as p— 1, where L.=L(t; R, {(V,, T,.)}
is RBM R(t; —1, %) modified by having jumps up of size V, at Ty+---+T,_,,
n=1.

The limit process L. is relatively complicated, as can be seen by observing that if
we let the RBM variance o® be 0, then L. coincides with the workload process in a
G/G/1 queue with interarrival-time sequence {7, } and service-time sequence {V,,}.
Hence, without extra assumptions on the exogenous vacation process {(V,, T,)},
we cannot expect to obtain very tractable expressions.

To describe the steady-state behavior, we assume that {(V,, T,)} is i.i.d. Our
description of the steady-state distribution of the limit process L. involves the
discrete-time process obtained by looking at the process L. just prior to the jumps;
i.e., let

(35) Jc(n) = Le((Tl +---+ I;t) - )7 n=1

For background on the theory of discrete-time real-valued Markov chains, see p.
150 of Asmussen (1987) and Laslett et al. (1978).

Theorem 3.2. If {(V,, T,):n=1} is a sequence of i.i.d. random vectors with
E(V)<E(T))<», then {J.(n):n=1} is an aperiodic ¢-irreducible (with ¢
Lebesgue measure) Harris-recurrent Markov chain with an absolutely continuous
transition kernel having a strictly positive continuous density; i.e.,

(3.6) P(x, B)=PUn+ 1) € B|Jn)=x) = [ f(x, ) dy,

where f(x, y) is strictly positive and continuous in (x, y).
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Corollary. Under the assumptions of Theorem 3.2, it is possible to construct the
processes J, and L. together with renewal processes such that the processes J. and
L. become regenerative with successive regeneration cycles being i.i.d. with finite
mean.

Theorem 3.3. Under the assumptions of Theorem 3.2, if the distribution of 7; is
non-lattice, then L (t) > L.(®) as t— . If, in addition, V; is independent of 7; with
E[V3] <, then L ()£ R(x)+ Z, where R(~) and Z are independent, R(«) has
the limiting exponential distribution of RBM with mean 0%/2, P(Z>0)=
EW)/E(T), (Z|Z>0) 4 J(«) + V, with J() and V, independent, V; in (2.13) and
J(») having the stationary distribution of J.

Remark 3.1. For the special case in which 0*=0, the expression for L.() in
Theorem 3.3 coincides with the known result for the GI/G/1 queue; see (3.3) on p.
189 of Asmussen (1987).

We can apply PASTA (see Wolff (1982)) to obtain the following explicit
expression when 7; has an exponential distribution.

Corollary. If, in addition, P(T,=t)=1—e"¥, t =0, then
L) 2] () £ R(=)+Z',
where R(») and Z' are independent, R() is just as in Theorem 3.3, and

1- (EVI/ETI)

6.7 e = —Ev/ET Ele e

so that
(8  PZ'=x)=(-EW/ET)(1+ 3 (EV/ELY(FL +F5))()

where F?" is the n-fold convolution of the exponential distribution of R(x) for i =1
and of P(V,=x) for i =2, and
(EVi/ET)(ER(®) + EV})
(1-(EWV)/(ET)))
Remark 3.2. When T, has an exponential distribution, the net input process

associated with L., is a Lévy process without negative jumps, so that (3.7)—(3.9) can
also be calculated directly from Harrison (1977). See Kella and Whitt (1991).

Remark 3.3. When o> =0, R(~) =0 and (3.7) reduces to the classical Pollaczek—
Khintchine formula for the M/G/1 queue; see p. 206 of Asmussen (1987).

(3.9) E[Z']=

If T does not have an exponential distribution, then we do not yet have a tractable
expression for the steady-state variable L.(). Hence we prove a second heavy-
traffic limit for the limit process L.. (A similar limit could be established for the first
model, but there is little motivation.) For this purpose, we construct a family of
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processes indexed by 7 with n <1. Let N(¢) be the counting process associated with
{T.} in (3.2). Paralleling (2.4) and (2.5), let

(3.10) N, (0)=A-n)N@E(1-n)"2)-Aa(1-n)"%, =0,
and

[((1=m)7F
(3.11) Vi®=(1-n) Y (V-v), (=20

For each 7, let the process N depend on 7 through simple time scaling as for A, in
Section 2, so that A; =1n/v, i.e., n represents the growth rate of the input of work
associated with vacations, as indicated by the translation terms. We then make
another FCLT assumption.

Second FCLT assumption. We assume that
(N», Vi)=>(B,, By) in D([0,®), /) X D([0,®),J;) as n—1,

where (B, B,) is two-dimensional BM with (B,(1), B,(1)) having a bivariate normal
distribution with mean vector (0, 0) and covariance matrix £ = (&y).

Finally, let L., be the normalized process associated with the jump-diffusion
process L., i.e.,

(3.12) Le,(t) =1 =n)L.(t(1—n)7?), t=0.
Theorem 3.4. Under the second FCLT assumption with = 4/v,
L., >R’ in D([0,»),J;) as n—1,

where R'=R'(t; —1, 0* + v6?) is RBM with o?>= 0,; + 0y —20,, as in Theorem
3.1, v is the centering constant in (3.11) and ° = &,, + G5, — 261,.

Note that R'(«) has an exponential distribution with mean (0?+ v3%)/2. The
resulting direct two-stage heavy-traffic approximation for the steady-state workload
Wepn () is

(3.13) Wepn(®) = (1= p) 'Ley() = (1 = p)7'(1 = ) 'R'(),
where
(3.14) B __EV

"TEL T ET.(-p)
so that 1 —p)"'(1—-n)"'=1-p—(EV,,/ET,,) and
o’ +voé®
21— p— (EV,/ET,))’

(3.15) E[Wepy ()] =

However, for practical applications it appears that (3.13) and (3.14) are much in
need of refinement. From Theorem 3.3 and its Corollary, it is evident that we
should regard (1 —n)'R’(«) only as an approximation for the difficult component
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(Z| Z>0) in Theorem 3.3. Theorems 3.3 and 3.4 thus suggest that the distribu-
tional form for an approximation of W,,() be the convolution of two distributions,
each of which is the mixture of an exponential and a point mass at 0. As a practical
refined approximation, we propose

(3.16) Weo () = Z, + Z,,

where Z, and Z, are independent, P(Z,=0)=1—p, P(Z,=0)=(1—-p—8)/(1 - p)
where 6 = EV,,/(EV,, + ET,,) is the long-run proportion of time the server is on
vacation, (Z; | Z,>0) is exponential for i =1, 2,

(3.17) E(Zl|Zl>O)=2(1_p)
and
(3.18) E(Z| zz>0)=£’((1;‘j;i—"3.

The random variable Z, is a familiar approximation for W,,() without any

vacations, as suggested by Theorem 3.3. We know that the exact probability that the

server is idle and not on vacation is 1 — p — §; this is the basis for our approximation

of P(Z,=0). Finally, the approximation for (Z, | Z,>0) is based on Theorem 3.4.
The resulting approximation for the mean is

po? N pd(0? + vd?)
21-p) 21-p)(1-p-9)

When the model is GI/G/1 with {V,} and {7,} independent sequences of i.i.d.
random variables with squared coefficients of variation c2 and c?, (3.19) becomes

(3-19) E[Wep ()]~

p(cz+cd) | pd(ci+c2+ v(c2+cd))

(3.20) BV =50 o) * 20— p)i=p o)

where v=EV,,.

Alternatively, the conditional mean E(Z,|Z,>0) can be chosen so that the
approximate overall mean E[W,,(«)] matches a separately determined approxima-
tion, such as the interpolation approximation for the mean number in system in
(3.3) of Burman (1987b), which has proven to be an effective approximation in
comparisons with simulations. (The mean number in system can be obtained from
the mean delay using Little’s formula.) For the M/G/1 case, Burman’s interpolation
approximation is (in our notation)

_p(A—p—98)dv(ci+1)

L
+155 [1 +2(‘!1)(—1 ;ﬂ)][l + p5v<9i§$_c%f)],

Our limit involves § » 0, v— « and év— (EV})*/(EV, + ET,) as p— 1.
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4. Proofs
In this section we prove the previous theorems.

Proof of Theorem 2.1(b). We establish weak convergence by considering the
process over successive busy cycles. Let L,,, be the normalized process restricted to
the nth busy cycle, i.e.,

4.1) Lopn(t) = LoDy, ,_, ypt(1 = p)7?),  tZ0,

where U,,=C, +---+C,, with U,0=0 and, as before, 14(¢) is the indicator
function of the set A, so that

4.2) L, (t)= i Lypn(t), t=0.

By considering deterministic functions (sample paths), we see that L,,>
L,=Y_,L,, as p—1in D(0, ») with any of the Skorohod topologies if

(43) (val’ ) vam (1 - p)chl’ T (1 - p)chn)
:(Lv1’°'°’Lvn)C1)'°°)Cn) as P—’l

in D(0, ©)* X R" with the same topology on D, where P(C, >0) =1 for each n, and
C;+- -+ +C,D»as n—x. Of course, here L,, is BM B(t; —1, o) starting at V,, at
time C, + - - - + C,_, absorbing at 0 and C, + - - - + C, is the time that it is absorbed.
Since we have assumed that ¥5_, V, =cow.p.1, (C;+---+C,) Do as n—>x,

We proceed by mathematical induction on the cycle index, establishing the
corollary to Theorem 2.1 along the way. For cycle n, we will establish four results.
First, the normalized length of the vacation V,,, converges in probability to 0; second,
the normalized work to arrive during V,,, converges in probability to V,,; third, the
normalized workload process after the vacation (without further vacations) con-
verges weakly to Brownian motion starting at V,; fourth, the time until the
workload next becomes empty converges weakly to the first-passage time of BM to 0
starting in V,,.

First, (1 — p)*V,,, 20 as p— 1 for each n by (2.3). Second, the amount of work to
arrive in the nth vacation is X,(U, ,—1 + V,.) — X,(U,,.-1). However, by the basic
FCLT assumption and Theorem 5.1 of Whitt (1980) or Section 17 of Billingsley
(1968), X, = B’ in D([0, =), J;) as p— 1, where

(4.4) X0 =1-pX(A-p) ) -pr1-p)?], 120,

and B'=B'(t;0, 0*) is BM with drift coefficient 0 and diffusion coefficient
0= 0y, + 0 — 201,. By the induction hypothesis,

4.5) 1-p)2U,p-1>U,-y=Cy+---+C,_, in R as p—1

Hence,

(1= )X, (Upno1+ Vo) = X (Up n-1)] = X (1 = p)*Up,n—1

(46) 2 ' 2 P,
+(1-p) Vpn) _Xp((l - p) Upn) +p(1- p)Vpn_) V. as p—1
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In this last step we used the convergence of X,, (2.3), (4.5) and the continuous
mapping theorem: if y,—y in [0, *) and x,—x in D([0, »), J;) as n— », where x
has continuous paths, then x,(y,)—>x(y) in R. Thus, both X, terms in (4.6)
converge weakly to B'(U,_,), so that their difference converges in probability to 0.

Third, let Y, be the net input process, defined by Y,(f) = X,,(¢¥) —¢, t=0, and let
Y, be the associated normalized process

@) Y0 =(1-p)Y, (- p) ) =Xy —1, 120,

so that Y, B’ —e as p— 1, where e(f) =¢, t=0. Then the normalized process on
[Up,n-1+ V,,, ®), before being absorbed when it hits 0, is

(1 - p)Vpn + Y;)((l - p)z(Up,n—l + Vpn) + ) - Y;)(Up,n—l + Vpn)

(4.8) a
SV, +(B' —e)(Upr+) —(B'—€)(Up1) =V, + B' —e.

Fourth, by the continuous mapping theorem, the first-passage times to 0 converge
weakly too, so that (1 — p)°C,, > C, and (4.5) holds for n as well as n — 1.

Finally, we put the pieces together to conclude that (4.3) holds for each n if we
use the M, topology on D((0, »)). We obtain convergence of the successive
n-dimensional processes by considering joint limits with previously established
limits, as in Whitt (1971). Since the pth process is non-decreasing in each vacation,
we have weak convergence to the limit process with the jump in the M, topology for
n=2. For n=1, we have excluded the limiting jump by considering the space
D(0, ).

Proof of Theorem 2.2. Since the BM has negative drift and E(V;) <, the jump
epochs are regeneration points for the process L,. By the Corollary to Theorem 2.1,
the mean interval between regeneration points is E(V;) <. Moreover, since the
regeneration interval has a positive density, L,(t) > L,(®) as t— o, It thus remains
to determine the distribution of L.(). For this purpose, note that the limit process
L, starting at x =0 can be represented as

NQ@)

4.9) L()=x—t+0B(t)+ 2V, tZ0,

where 0> =¢2+ c2, B(t)= B(t; 0, 1) is standard Brownian motion,

N@)=sup{n=0:71,=t}, t=0,
(4.10) (1) =sup { }

n—1
1:,,=inf{t§0:x—t+aB(t)+ > V,-=0}, nx1,
i=0

Vo=0 and 7,=0; i.e., L, can be represented as the stochastic integral

t

(4.11) L) = Ly(0) + f odB(s)+ Y(f), t20,

0
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where

N@)
4.12) Y()=—t+D V, =0

i=0
(L\(r) is adapted to the standard filtration % generated by {B(s):0=s=¢} and
{V.:n =1}; see Chapter 4 of Harrison (1985) and Chung and Williams (1983). The
fact that we include all of {V,} in & for each ¢ shows that independence in {V,} is
not essential.) Hence, we can apply the generalized Ito formula on p. 71 of Harrison
(1985) and p. 301 of Meyer (1976) with the function f(u)=e "% a>0, to
obtain

exp (—aL.(t)) =exp (—ax) — a0 f ' exp (—aL.(s)) dB(s)

(4.13) 2o\ [ NG
+ (a + T) L exp (—aL.(s)) ds — ;} (1 —exp (—aV)).

Since L,(r) =0, exp (—aL,(t)) is a bounded process, so that the stochastic integral
in (4.13) is a continuous L, martingale with mean 0; see p. 62 of Harrison (1985) or
p- 40 of Chung and Williams. Thus, taking expected values in (4.13) and using
Tonelli’s theorem, we obtain

Elexp (~aL ()] ===~ E 3 (1 - exp (~a¥)
(4.14) =0

t(a+ “’T"z) j ' Elexp (—aL(s)] ds.

Since L,(t)=> L,(«) as t—>, E[exp (—aL,(t))] converges to a proper limit. From
the regenerative structure and the Corollary to Theorem 2.1, t~'N(t)— EV, w.p. 1
and

N@O

1 (1—exp (—a¥))

_Nn 1 Q@ (1— E[exp (—aW)])
; N(t) (1 exp (—aV)))— EV, 1.
Since there exists a constant M such that
N(t)
(4.15) [ -t Z (1—exp(— aV))] Sr2E[N() ]S M <o

for t=1 (e.g., see the argument in the proof of (12) on p. 136 of Chung), the
process on the left in (4.15) is uniformly integrable (p. 95 of Chung), so that the
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means converge too. Hence, dividing by ¢ in (4.14) and letting t— », we obtain

lilg E exp (—aLv(i)) =lim¢™! J’t E[exp (—aL(s))] ds
(4.16) °

- () )

which is the product of the Laplace transforms of the appropriate two distributions.

Proof of Theorem 3.1. The argument is almost identical to the proof of Theorem
2.1(b), but slightly easier because we can analyze the vacations separately before
considering the queue. With the scaling in (2.3) and (3.1), (1 - p)°7,,> T, and
(1-p)*V,,>0, so that the analog of the Corollary to Theorem 2.1 holds and the
limit process has jumps at the times 7;+---+ T, for n=1. We then consider
successive cycles, just as in the proof of Theorem 2.1.

Proof of Theorem 3.2. Observe that J, is a Markov chain with transition kernel
P(x, B) in (3.6), where

(4.17) f(xy)=Elg(x+J1, T, y)]

with g(x, ¢, y) being the density of RBM at time ¢ starting in x; p. 49 of Harrison
(1985) or (1.1) of Abate and Whitt (1987). Since g is a strictly positive and
continuous function of (x, ¢, y), f(x, y) is a strictly positive and continuous function
of (x, y). Thus, P(x, B) >0 for all Borel sets B with ¢(B) >0 where ¢ is Lebesgue
measure; i.e., J. is aperiodic and ¢-irreducible; p. 457 of Laslett et al. (1978).
Moreover, J. is weakly continuous (Ph(x) is continuous for each bounded
continuous real-valued h); p. 459 of Laslett et al. (1978) and p. 224 of Billingsley
(1968). To establish recurrence, we apply the mean drift criterion; see Theorem 2.2
of Laslett et al. (1978). Since the transition kernel of RBM with density g is
stochastically monotone (p. 564 of Abate and WHitt (1987)), so is P(x, B). Since
EV,<ET, < and the RBM has drift —1, for any € >0 there exists K such that

_a<[¥TE€ for x>K
(4.18) EU(n +1) | J(n) x)_{ e
so that

(4.19) sup {E[inf{nZ1:X, =K} | Xo=x}:0=x=K} <o

and any set of positive Lebesgue measure is recurrent. Finally, J. is Harris recurrent
by Example 3.1 on p. 151 of Asmussen (1987); r =1 there.

Proof of the Corollary to Theorem 3.2. The regenerative structure follows
immediately from Harris recurrence; p. 151 of Asmussen. In general, the regenera-
tion cycles are only 1-dependent, but here they are independent because we have
r=1.
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Proof of Theorem 3.3. The regenerative structure provided by the. Corollary to
Theorem 3.2 and the assumption that 7; has a non-lattice distribution imply that
L(t)> L.(«) as t— ; apply Proposition 3.2 on p. 187 of Asmussen to deduce that
the regenerative cycle distribution in continuous time is also non-lattice and then
apply Theorem 1.2 on p. 126. To calculate the distribution of L.(), note that the
process L, starting in 0 can be represented as

(4.20) L()=0B(@t)+U({t)—t+Y(2), t=0,
where B is (0, 1) BM,

N(t)
(4.21) un=2 Vv, 20,

i=1
(4.22) N@t)=sup{nZ0:Th+---+T,_,=t}, t=0,
T,=0 and

(4.23) Y(t) = max {0, —inf {oB(s) + U(s) —s:0=s =t}}, t=0,

as on pp. 14-20 of Harrison (1985). Just as in the proof of Theorem 2.2, we apply
the generalized Ito formula on p. 71 of Harrison (1985) with the function
f(u) =e"", here obtaining

exp (—aL.(t)) =exp (—aV;) — ao I t exp (—aL.(s)) dB

(4.24) + <a + 52-293) fo " exp (= aL(s)) ds

— a¥(0)+ D exp (~adl(i)(exp (~aVie) ~ 1)

As in the proof of Theorem 2.2, the stochastic integral with respect to BM in (4.24)
is an L, martingale. Hence, we can take expected values, divide by ¢ and let t— » to
obtain

Efexp (~eL(=)]) =lim ' [ Efexp (~aL(s))] ds
(4.25)
_ (a + “27"2)_1 lim (at"EY(t) + (1= Efexp (- av,)])E[t-1 I_V_f exp (—a.le(i))]).

As in the proof of Theorem 2.2, by the regenerative structure,

N() o (oo
(4.26) 1 gl exp (—ad.(i))— E[expé[T?;’e( )]

wp.l as t—x

and the expected values converge too due to uniform integrability, because
E[(N(£)/t)?] is uniformly bounded, as in (4.15).
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By the strong law of large numbers, ¢ 'B(f)—0 and t~'U(t)— EV,/ET, w.p. 1 as
t— ., Hence,

E
4.27) t“Y(t)—»l——E-—;,T1 w.p.1 as t—x.
1

One way to prove (4.27) is to note that the strong law is equivalent to a functional
strong law (Theorem 4 of Glynn and Whitt (1988)) and then apply Theorem 6.2(ii)
of Whitt (1980). It remains to show that ¢'Y(f) is uniformly integrable. By
Minkowski’s inequality (p. 47 of Chung),

3
(4.28) E[(rlY(t))z]%;(r%lE[(oiug B(s))z]) + (Y + (CE[UED
Since supogsé,B(s)-i- |B(t)| (p. 8 of Harrison (1985)), E[(supos,=: B(s))*]=t. By
conditioning on N(¢) in (4.21) and then unconditioning,
(4.29)  ’E[U(t)") = tE[VIIEIN(1)] + " 2(EV))X(E[N(1)] + E[N(2)*)).

Since E[V3] <« and ¢t 2E[N(t)?] is uniformly bounded for t=1, t2E[U(t)?] is
uniformly bounded.
Finally, combining (4.25)—(4.27), we obtain

E[exp (—aL(»))] = (2 /ié(i o:) [(1 ﬂ)1

(4.30) EV)\(1—-E[ ET;- 4]
+ (5 ) (= o Elenp (~ e
as claimed.
Proof of Theorem 3.4. As in (2.2) and (4.4), let

(4.31) X 0=01-nX,1-n)-m1-n)77, =0,
where N
(4.32) X, = "Z Vi t=0.

k=1

By the second FCLT assumption, X, > B = B(t; 0, v5°) is BM with drift coefficient
0 and diffusion coefficient v6> = v(&,, + &, — 28,,), where v is the centering term in
(3.11). Since

(4.33) {(1=n)B(t(1—1)3%0, 6*):t =0} £ {B(t;0, 6%):t =0},

the net input process associated with L., in (3.12) converges to B=B(t; -1, 0> +
v&®). Finally, the desired convergence of L., itself follows by the continuous
mapping theorem with the barrier mapping, i.e., Theorem 6.4 of Whitt (1980).
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5. Concluding remarks

5.1. Limits for the steady-state distributions. The stochastic decomposition pro-
perty for queues with vacations says that a steady-state characteristic such as the
waiting time is distributed as the sum of two independent random variables, one of
which is the corresponding steady-state characteristic without vacations; see p. 37 of
Doshi (1986). Theorems 2.2 and 3.3 are new results of this form for the steady-state
distribution of jump-diffusion processes. Given that such a decomposition property
has been established for a queueing model, with a tractable expression for the
second component, it is usually relatively easy to establish heavy-traffic limits for the
steady-state distribution directly. For example, the distribution of L, («) in Theorem
2.2 can be obtained by taking limits with the M/G/1/V,, model steady-state
quantities in (4.4) and (4.17) of Doshi (1986). We can often treat the steady-state
limits without vacations by applying the heavy-traffic results of Kingman (1962).

5.2. The queue-length process. As indicated earlier, the queue-length process can
be treated much like the workload process. For example, consider the proof of
Theorem 3.1b. Instead of the amount of work to arrive in the nth vacation, we use
the number of arrivals to arrive in the nth vacation, A,(U,, ,_1+ V,,) — A,(U, .-1).
For each interval between vacations, instead of the net input process Y,, we use the
arrival counting process minus the potential service counting process, where the
potential service counting process is the counting process associated with the service
times {S,} evaluated at the cumulative busy time of the server. The cumulative busy
time up to time U, ,_, +V,, +t before the (n + 1)th vacation is

Up,n-—l - (Vpl +---4 Vp,n—l) + t.

Hence, the scaled net input process representing the arrivals minus the services after
the nth vacation converges to BM with drift coefficient —1 and diffusion coefficient
02= o+ (722_2012 as p— 1.

5.3. Conditions on {V,} in Theorem 2.2. In Theorem 2.2 it is not necessary for
the vacation times to be mutually independent. For example, a minor modification
of the current proof applies if the vacation sequence {V,} is regenerative with
E(V;) <. In the new proof of Theorem 2.2, regeneration points for the process L,
are the jump epochs corresponding to regeneration points in the vacation sequence.
If {V,} is only stationary, then {L,(¢):¢ =0} has a stationary version with the same
stationary marginal distribution as if {V,,} is i.i.d. To see this, note that the time
between the nth and (n + 1)th jump in L, conditioned on V, has an inverse
Gaussian distribution with mean and variance V,. For Theorem 2.2 it is also not
necessary for the vacation time sequence {V,} to be independent of the Brownian
motion. Our proof based on Ito’s formula requires that a jump V), occurring at time ¢
not depend on the process L, after ¢ (i.e., the random sum of all the jumps up to
time ¢ is adapted to the o-field % in the filtration). Under regularity conditions
guaranteeing that convergence holds, which can be seen from our proof, the
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distribution of L,(») is just as stated above when the two assumed kinds of
independence are relaxed.

5.4. Conditions on {(V,, T,)} in Theorem 3.3. In the proof of Theorem 3.3, the
condition E[V?] <= and the condition that V, be independent of 7, for each n are
used only to establish uniform integrability of t~'U(¢) in (4.21) and (4.29) and thus
t7'Y(¢) in (4.23) and (4.28). Hence, it is apparent that these conditions can be
relaxed. Moreover, as in Remark 5.3, the generalized Ito formula used in the proof
of Theorem 3.3 does not require that the vacation vectors (V,, 7,) be mutually
independent or independent of the Brownian motion. It suffices for U(f) = N9V,
to be adapted to the o-field % in the filtration for the process L.. However, the
limiting behavior of the expectation of the final term in (4.24) becomes more

complicated.

5.5. Multiserver queues. The results for the first model extend easily to multiser-
ver queues if all servers go on vacation together the instant one server becomes idle,
but the heavy-traffic behavior is much more complicated if the servers go on
vacation separately. Then the number of servers that go on vacation, which
determines the size of the jump, seems to depend on the more detailed structure of
the process.

On the other hand, for the second model it is relatively straightforward to extend
the results to multiple servers with a general exogenous vacation process and the
same scaling. Assuming s homogeneous servers (which is not necessary), there will
be a jump up of (k/s)V, if k servers simultaneously go on vacation for a period of
Vo satisfying (2.3). An interesting feature is that the generalization of Theorem 3.1
requires working with Skorohod’s (1956) M, topology instead of the M, topology
used with one server. The M, topology can be characterized in terms of the
Hausdorff metric applied to the complete graphs; see Pomarede (1976). We need
the M, topology because the converging process does not have only many small
jumps up where it approaches the limiting jump up, due to the fact that some
servers are still working while others are on vacation. We know of no previous
application of the M, topology.

5.6. Open queueing networks. Finally, we observe that the heavy-traffic limits can
be extended to queueing networks. A key step is to observe that we easily obtain
heavy-traffic limits for the departure processes in our models from our results. In
particular, with either model, the departure counting process in the pth system can
be represented as D, (t) = A,(t) — Q,(t) where Q,(¢) is the number of customers in
the pth system. Hence, a FCLT for the normalized version of D, follows from the
joint FCLT for (A,, Q,), which holds by a minor modification of our arguments,
see Remark 5.2 and Iglehart and Whitt (1970); it is easy to obtain the joint limit as
well as the limits for the components separately. To treat the subtraction, apply the
M, analog of Theorem 4.1 in Whitt (1980).
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The departure process D, is interesting because it is a point process with large
gaps. The resulting limit process is complicated, just as without vacations, but it has
continuous paths except for jumps of size V,, down at the times the limit process for
the queue-length process has jumps of size V,, up.

The FCLT limit theorem for the departure process implies a corresponding FCLT
for the queue-length process at a subsequent single-server queue, just as in II,
Theorem 1 and Section 4 of Iglehart and Whitt (1970). The jumps down in the limit
process for the departure process from the first queue cause a simultaneous jump
down in the limit process for the queue length at the second queue. If the size of the
jump exceeds the value of the queue-length limit process before the jump, the
excess will appear as a gap in the limit process for the departure process from the
second queue, and so forth. If the departures are routed randomly to two or more
different queues with a Markovian transition matrix P;, then a jump down of V,, in
the limit process for the departure process from queue i results in a jump down of
V,P; in the limit process for the flow from queue i to the queue j (essentially by the
law of large numbers). If there is feedback to the queue with the initial jump up,
then some of the inital jump up may be ‘cancelled’ by simultaneous jumps down
caused by the gap in the departure process. In general, each vacation causes an
instantaneous vector-valued jump transition in the vector-valued limit processes
associated with the queue lengths or the workloads at all the queues. Overall, we
can obtain weak convergence of the normalized version of the vector-valued
workload and queue-length processes to vector-valued jump-diffusion processes in
cases already treated without vacations. Paralleling the proof of Theorem 2.1, we
use previous arguments in Reiman (1984) and Chen and Mandelbaum (1988) to
treat the vector-valued processes in the intervals between vacations and modifica-
tions of the proof of Theorem 2.1 here, plus the rough arguments above, to treat the
vacations (the jumps). (More details are intended for a subsequent paper.)

We thus can define generalizations of the Brownian networks in Harrison and
Reiman (1981), Reiman (1984), Harrison and Williams (1987), Harrison (1988) and
Chen and Mandelbaum (1988), in which there are instantaneous jump transitions, in
the manner sketched above. These extensions evidently make complicated limit
processes even more complicated, but the behavior of the jumps in the network
model seems to provide useful insight. In the heavy-traffic time scale, a relatively
long (but not too long) server vacation has an instantaneous effect on the entire
network.
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