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Abstract

This paper proposes practical modeling and analysis methods to facilitate dynamic sta�ng in a telephone call center with
the objective of immediately answering all calls. Because of this goal, it is natural to use in�nite-server queueing models.
These models are very useful because they are so tractable. A key to the dynamic sta�ng is exploiting detailed knowledge
of system state in order to obtain good estimates of the mean and variance of the demand in the near future. The near-term
sta�ng needs, e.g., for the next minute or the next 20 min., can often be predicted by exploiting information about recent
demand and current calls in progress, as well as historical data. The remaining holding times of calls in progress can be
predicted by classifying and keeping track of call types, by measuring holding-time distributions and by taking account of
the elapsed holding times of calls in progress. The number of new calls in service can be predicted by exploiting information
about both historical and recent demand. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

In the last 15 years there has been spectacular
growth in retail business conducted by telephone. It
has been recognized that a critical factor in business
success in this environment is being able to respond
rapidly to customer requests. At the same time, the
costs of sta�ng telephone call centers have become
a substantial part of business expense. Thus it is es-
sential to e�ciently manage telephone call centers,
so that customer requests are met without excess
sta�ng. This has led to sophisticated systems de-
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signed to balance the competing objectives; e.g., see
[12,4,18,5,13], and references therein.
However, in highly competitive businesses, suc-

cess often depends on being able to provide service
of even higher quality. One way to do so in a tele-
phone call center is to aim to immediately answer all
calls. Of course, actually answering all calls imme-
diately upon arrival may be an unrealistic objective,
especially when demand is highly unpredictable, as is
often the case when unusually high demand is peri-
odically stimulated by special promotions. Neverthe-
less, we contend that it is often possible to come quite
close to the goal of immediately answering all calls
in a reasonably stable environment by dynamically
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sta�ng based on detailed information on the recent
history of the call center. Modern computer systems
make it possible to collect and apply this information.
The purpose of this paper is to discuss ways to man-

age a telephone call center and do dynamic sta�ng
with the goal of immediately answering all calls. For
this purpose, two key system attributes are: (i) scale
and (ii) 
exibility. By “scale”, we mean large size.
With large size, the demand 
uctuations over time
tend to be a smaller percentage of the average work-
load; i.e., with larger systems the workload tends to
be more predictable. Under regularity conditions, the
required sta�ng level at any time has, at least approx-
imately, a Poisson distribution. The possible 
uctu-
ations of a Poisson distribution can be characterized
roughly by its standard deviation, which is always the
square root of the mean. As the mean increases, the
standard deviation becomes a smaller proportion of
the mean. Expressed di�erently, extra sta�ng to ac-
count for 
uctuations tends to be about c

√
m for some

constant c, typically with 16c610 when the mean is
m. Thus, for very large m, we can sta� very near the
mean m. Then the problem reduces to predicting the
mean, which is what much of this paper is about.
By “
exibility”, we primarily mean the ability of

the service system to dynamically control the sta�ng
response. Flexible sta�ng can be achieved by ensur-
ing that representatives (the sta� of the call center)
have alternative work. Natural forms of alternative
work are training and after-call processing of previ-
ous calls. Flexibility is achieved by having represen-
tatives do alternative work when demand is relatively
low. Idle representatives may also be used to make
contact with customers by making calls themselves
(having outbound as well as inbound calls). With sub-
stantial alternative work, there can be a large number
of representatives in the center not currently answer-
ing calls who are available to start answering calls on
short notice. Moreover, with advanced communica-
tion systems, physical proximity may not be a critical
requirement.
If possible, it is desirable to classify calls accord-

ing to their importance or value. for example, there
might be two classes of calls: high-priority calls and
low-priority calls. It might be decided only to an-
swer all high-priority calls immediately upon arrival.
In contrast, low-priority calls might be answered on a
best-e�ort basis. Then, assuming that the high-priority

calls can be identi�ed, they can be considered as the
demand that must be met, and the low-priority calls
can be considered as a form of alternative work.
Indeed, it is natural to consider several priority lev-

els for di�erent sta� functions. The high-priority calls
would have highest priority. Then the low-priority
calls might have second priority, the after-call pro-
cessing of previous calls might have third priority, and
the training might have fourth priority. These priority
assignments are natural because the di�erent types of
alternative work have very di�erent degrees of delay
tolerance. The low-priority calls may have a delay tol-
erance of a few seconds or minutes, while the after-call
processing of previous calls may have a delay toler-
ance of a few minutes or hours, while the training may
have a delay tolerance of a few hours or days. The dif-
ferent time scales of the requirements make it natural
to use a priority scheme.
In this paper we are primarily concerned with dy-

namic sta�ng for a single class of demand. In the
priority scheme, we are thus focusing on the highest
priority class only. If there is enough lower-priority
work, then it is natural to think that we should be able
to immediately answer all calls for the highest prior-
ity. Indeed, with enough lower-priority work that also
must be satis�ed, it should be possible to meet the
highest priority demand by assigning servers on quite
short notice.
The goal of dynamic sta�ng dictates a di�erent kind

of stochastic analysis from the goal of longer-term
capacity planning. For longer-term capacity planning,
it is natural to use the classical Erlang loss and de-
lay formulas and their relatives, which describe the
steady-state performance. In contrast, dynamic sta�ng
requires time-dependent analysis of a time-dependent
model. The relevant perspective for dynamic sta�ng
is optimal control given an appropriate system state.
Thus, if a classical Erlang model is used, then it is the
time-dependent behavior we want to know.
We conclude this introduction by mentioning our

previous related work. The problem of longer-term
sta�ng to meet time-varying demand is considered
in [13]. The problem of improving service by inform-
ing customers of anticipated delays, when delays are
deemed necessary, is considered in [19]. Ways to ac-
tually predict queueing delays are proposed in [20].
Admission control schemes for immediate-request
calls when some calls book ahead are proposed in
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[11,16]. These admission control schemes also in-
volve real-time prediction of service load. Theoretical
analysis of in�nite-server queues closely related to
the analysis here is contained in [7]. The primary aim
there is to gain insight into overload controls, but
the supporting theory is similar to what we do here.
That paper provides additional supporting theoretical
results, such as large deviations principles. Ways to
calculate the time-dependent characteristics of the
Erlang loss model are developed in [2].

2. Current calls remaining in the future

In doing our analysis, we assume that all calls are
immediately answered, because that is what we are
aiming to achieve. The immediate-answer property
means that the usual performance-analysis concern
about the impact of waiting before beginning service
or blocking and retrials after blocking need not be con-
sidered; i.e., it su�ces to use an in�nite-server model.
In this context, the sta�ng requirement (number of

required servers) in the near future can be divided into
two parts: (i) the number of current calls that will re-
main in progress in the future and (ii) the number of
new calls that will arrive and remain in service. More-
over, it is reasonable to regard these two components
of future demand as being independent (and we do)
and focus on them separately. We aim to describe the
mean and variance of each component. The overall
mean and variance of the total future sta�ng require-
ment will be the sums of the component means and
variances.
If the lead time (the length of the interval until the

time for which the prediction is made) is larger than
all but a few call holding times, then current calls in
progress will tend not to be signi�cant. However, we
are thinking of predicting for lead times less than many
call holding times. For example, we might have a lead
time of 5 min in an airline reservation or software
support call center, where many calls exceed 30 min.
Assuming that both components of sta�ng are rel-

evant, it is useful to treat the two components sep-
arately in order to actually determine how important
each component is. This reveals howmuch attention in
the control should be given to current calls in progress
as opposed to new arrivals. As the lead time increases
well beyond the average call holding time, the current

calls obviously play a less important role. However,
we are thinking of short lead times, so that the evolu-
tion of current calls can be the dominant component.
Current calls in progress also have the potential of

providing useful information. Given the types of calls
in progress and their elapsed holding times, we may
be able to accurately predict the remaining holding
times. To appreciate the great control opportunity here,
it is important to break away from the conventional
stochastic models that are traditionally used in per-
formance analysis. The conventional stochastic model
has all holding times exponentially distributed with a
common mean. With that model, the only relevant in-
formation is the number of active calls. The number of
active calls can of course be important for predicting
future requirements, but other state information can
be even more important.
In many settings, there are di�erent classes of

customers with very di�erent holding-time distribu-
tions. One class might have a mean holding time of
1 min, while another class has a mean holding time
of 30 min. (Think of airline reservation and software
support centers.) Often the customer class can be
identi�ed from the originating telephone number.
Moreover, the representative may be able to further
classify a call after it arrives. The representative can
proceed to re�ne the classi�cation while the call is
in progress. (For example, think of a technical sup-
port service for a personal computer dealer. After
answering the call, and after some conversation, the
representative may be able to better predict how
much longer the call will be.) The representatives
might even directly estimate the remaining length of
the current call and provide updates while the call
remains in progress.
The representatives may not only be able to clas-

sify the calls, but the representatives may be able to
control the remaining holding times of calls. When
the system is heavily congested, representatives could
be informed and some might be able to take actions
to shorten calls in progress. If such a policy is used,
we presume that it is properly taken account of when
remaining holding times are predicted.
The holding time could also depend strongly upon

the particular representative handling the call. Rep-
resentatives may have special skills. The assignment
system may attempt to assign calls to representa-
tives with the appropriate special skills, but if that
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assignment is not possible, then the assignment will
be made to an alternative representative. When future
sta�ng requirements are being considered, it is pos-
sible to take account of the assignments in progress.
Again, available sophisticated computer systems
make it possible to obtain and apply this information.
We now propose a general model to predict the

number of current calls remaining in future. We as-
sume that the number n of current calls is known. We
assume that the remaining holding time for call i con-
ditional on all available system state information is a
random variable Ti with cumulative distribution func-
tion (cdf) Hi, i.e.,

P(Ti6t) = Hi(t); t¿0: (2.1)

We assume that these random variables Ti; 16i6n,
are mutually independent.
Let C(t) be the number of the current calls in

progress t time units in the future. By the assumptions
above, for each t; C(t) is the sum of n non-identically
distributed Bernoulli ({0; 1}-valued) i.i.d. random
variables. Thus, the mean and variance of C(t) can
be computed. In particular,

EC(t) =
n∑
i=1

H ci (t); t¿0 (2.2)

and

VarC(t) =
n∑
i=1

Hi(t)H ci (t); t¿0; (2.3)

where H ci (t) = 1 − Hi(t). Assuming that n is rela-
tively large, it is natural to regard C(t) as normally
distributed with mean and variance in (2.2) and(2.3),
by virtue of the central limit theorem for indepen-
dent non-identically distributed random variables, see
p. 262 of Feller [10].
Obviously EC(t) in (2.2) is decreasing in t for all t.

The behavior of the variance VarC(t) in (2.3) is some-
what more complicated. If Hi(t) is di�erentiable at t
and if Hi(t)6(¿)1=2, then Hi(t)H ci (t) is increasing
(decreasing) in t. Thus VarC(t) is unimodal, �rst in-
creasing and then decreasing. If t is su�ciently short,
then EC(t) is relatively large while VarC(t) is rela-
tively small, so that prediction is important and accu-
rate prediction is possible.
Implementation depends on being able to ap-

propriately identify the cdf ’s Hi(t). There are sev-
eral natural scenarios. If current call i is known to

have holding-time cdf Gi upon arrival, and noth-
ing more is known except that the elapsed holding
time is ti, then we let Hi be the conditional remaining
service time given the elapsed holding time ti, i.e.,

Hi(t) =
Gi(t + ti)− Gi(ti)

Gci (ti)
; t¿0; (2.4)

where Gci (t) = 1− Gi(t). Formula (2.4) exploits two
pieces of information: the original cdf Gi for this
call (which may depend on other factors, such as the
representative handling it) and the elapsed holding
time ti.
Of course, if Gi is an exponential cdf, then Hi in

(2.4) is just Gi again, by the lack-of-memory property
of the exponential distribution. However, if

Gi(t) = 1[c;∞)(t); (2.5)

where 1A(t)=1 if t ∈ A and 0 otherwise, correspond-
ing to a constant holding time of length c associated
with a very well-de�ned task, thenHi(t)=1[c−ti ;∞)(t),
corresponding to a constant remaining holding time of
length c−ti. Obviously we can predict very accurately
with low-variability holding times. In many scenar-
ios, low variability can be achieved after the call has
been properly classi�ed. Many tasks have highly pre-
dictable durations. High variability often stems from
having uncertainty about which of two or more pos-
sible predictable tasks is required. Thus, there is rea-
son to expect that the variance VarC(t) will be small
when the proper information is brought to bear.
On the other hand, if Gi is highly variable, then the

elapsed holding time can greatly help in future predic-
tion. With highly variable holding-time distributions,
a very long elapsed holding time tends to imply a very
long remaining holding time. To illustrate, let Y (a; b)
denote a random variable with a Pareto distribu-
tion, i.e.,

P(Y (a; b)6t) = 1− (1 + bt)−a; t¿0: (2.6)

The high variability of Y (a; b) is indicated by the fact
that the tail decays as a power instead of exponen-
tially. Now let Yt(a; b) denote the conditional remain-
ing holding time given an elapsed holding time t. It
turns out that Yt(a; b) is distributed as (1+bt)Y (a; b);
see Theorem 8 of [7]. Hence,

EYt(a; b) = (1 + bt)EY (a; b); (2.7)
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i.e., the mean remaining holding time EYt(a; b) is
approximately proportional to the elapsed holding
time t.
If the cdf Gi is known but the elapsed holding time

is not available, then it is still possible to exploit the
fact that service is in process. To do so, it is natural
to use the equilibrium-excess cdf associated with Gi,
namely,

Hi(t) = Gie(t) ≡ 1
ETi

∫ t

0
[1− Gi(u)] du: (2.8)

For an M=G=∞ queueing model in steady state, for-
mula (2.8) is in fact the exact distribution of the re-
maining holding time; e.g., see p. 161 of Tak�acs [17].
As indicated above, it may be possible to directly

predict the remaining holding time cdf Hi while the
call is in progress. If only partial information is given,
then it is natural to �t the cdf to the available informa-
tion. For example, if only the mean mi of Hi is spec-
i�ed, then we can �t Hi to an exponential cdf with
mean mi by setting

Hi(t) = 1− e−t=mi ; t¿0: (2.9)

However, even if only the mean ofHi is given directly,
it should be possible to do better by exploiting histor-
ical data. Depending on the application, we should be
able to assess the variability. More generally, we can
assume that

Hi(t) = Fi(t=mi); t¿0; (2.10)

where Fi is a cdf with mean 1 and the right shape.
Then the scaling by mi in (2.10) makes the cdf Hi
have meanmi and the shape of Fi. For example, highly
variable holding times might have the Pareto shape in
(2.6) for some a¿ 1, where b is chosen to produce
mean 1. Note that (2.9) is a special case of (2.10) with
Fi(t) = 1− e−t .
The goal in bringing information to bear on the

cdf’s is to have Hi(t) either be close to 1 or close to
0 for the desired lead time t. If Hi(t) ≈ 1 for many
i, while Hi(t) ≈ 0 for the remaining i, then the mean
EC(t) in (2.2) will be substantial, while the variance
VarC(t) in (2.3) will be small.
For a concrete example, suppose that Hi(t) = 1− �

for a fraction p of the calls, while Hi(t) = � for the
remainder of the calls. Then EC(t) = (1 − p)n +
n�(2p − 1) and VarC(t) = n�(1 − �). The degree
of uncertainty can be characterized approximately by

the ratio of the standard deviation to the mean, which
here is

SD(C(t))
EC(t)

≈ 1√
n

( √
�(1− �)

1− p+ (2p− 1)�

)
: (2.11)

The ratio (2.11) tends to be small if either n is large
or one of � and (1− �) is small, provided that p is not
near 0 or 1.

3. New calls in progress in the future

In this section we develop a procedure to predict
how many new calls will be in progress in the future.
Part of this prediction involves predicting the future
arrival rate of new calls, but we must also consider
how long the new calls will remain in service, since
some new arrivals may depart before the speci�ed
lead time. We approach this second problem by using
theMt=G=∞ queueing model, assumed to start empty.
We assume that the system starts empty because we
have already accounted for the calls initially in service
in Section 2. It is natural to assume a Poisson arrival
process, which can be justi�ed by the assumption that
arriving customers act independently of each other.
However, reality usually dictates that the arrival-rate
function �(t) should be time-varying. We thus think
of the arrival-rate function �(t) as time-varying but
deterministic. In fact, �(t) is not known, so that �(t)
should properly be thought of as the realization of a
stochastic process {�(t): t¿0}. However, as an ap-
proximation, we let �(t) be the mean E�(t) and aim to
estimate it. Then we use this mean value as the deter-
ministic arrival-rate function in the Mt=G=∞ model.
We hope to exploit system state to reduce the uncer-
tainty about the future arrival rate.
A useful �rst step is to classify the arrivals into

di�erent call types. We assume that the separate call
types are independent, so that we can simply add the
means and variances of the di�erent types to obtain the
mean and variance of the total number of new arrivals
present at time t. We now analyze a single call type.
For any one call type, we assume that the arrival

process is a nonhomogeneous Poisson process with
deterministic arrival-rate function �(t) and that the
holding-time is a random variable T with cdf G. Let
N (t) be the number of these calls in the system at time
t in the future. Using basic properties of in�nite-server
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queues, e.g., see [9], we conclude that N (t) has a
Poisson distribution with mean (and variance)

EN (t) = VarN (t) = m(t) =
∫ t

0
Gc(t − u)�(u) du:

(3.1)

It is signi�cant that (3.1) remains the valid formula for
the mean (but not the variance) when �(t) is replaced
by a stochastic process �(t). Because of the linearity
associated with the in�nite server model,

EN (t) = E
∫ t

0
Gc(t − u)�(u) du

=
∫ t

0
Gc(t − u)E�(u) du: (3.2)

Henceforth, we focus on (3.1).
Formula (3.1) can easily be calculated numerically.

It should su�ce to use the simple trapezoidal rule
approximation

m(t)≈ 1
2n
Gc(t)�(0)

+
1
n

n−1∑
k=1

Gc(t − (k=n))�(k=n)

+
1
2n
Gc(0)�(t); (3.3)

where n is chosen large enough to produce negligible
error; e.g., see [6].
Formula (3.1) applies with general arrival-rate

functions, but given the relatively short time scale
for prediction, it might be possible to consider as an
approximation a constant arrival rate function, i.e.,
a step function, which is zero before time 0. In that
case, (3.1) becomes

m(t) = �ETGe(t) = �
∫ t

0
Gc(u) du; t¿0; (3.4)

whereGe is the equilibrium-excess cdf associated with
the holding-time cdf G, de�ned as in (2.8). For prac-
tical applications of (3.4), it is signi�cant that the
equilibrium-excess cdf Ge often inherits the structure
of the cdf G; see Section 4 of Du�eld and Whitt [8].
For example if G is a mixture of exponentials or phase
type, then so is Ge. Moreover, given the Laplace–

Stieltjes transform of G, i.e.,

ĝ(s) =
∫ ∞

0
e−st dG(t); (3.5)

we can easily compute Gce(t) ≡ 1−Ge(t) by numeri-
cally inverting its Laplace transform

Ĝ
c
e(s) =

∫ ∞

0
e−stGce(t) dt =

sET − 1 + ĝ(s)
s2ET

; (3.6)

e.g., see [1].
Given (3.1) or (3.4), the remaining problem is to

estimate the appropriate arrival-rate function �(t) and
the holding-time cdf G for the single customer class
under consideration. It is important, though, to recog-
nize that these should depend on the observation time.
We assume that the holding-time cdf G can be ade-
quately estimated from historical data (over a much
longer time interval than the prediction lead time).
We estimate the arrival-rate function �(t) in two steps.
In the �rst step we obtain a preliminary estimate of
�(t) over a day, based on seasonal, day-of-the-week
and known promotion e�ects. We call this estimate
�a(t); it is the standard prediction that can be done a
day in advance or possibly even a week in advance.
Given arrival counts in subintervals of previous days,
the arrival rate function �a(t) might be a linear or
quadratic function estimated by least squares; e.g., see
[14]. In the second step we make adjustments to the
anticipated demand by taking account of the observed
demand during previous times on the same day. A
simple approach is to estimate a multiplier r(t) based
on the observed history over the day, i.e., we represent
the observed demand as r(t)�a(t). We thus estimate
r(t) from the ratio

r(s) = �(s)=�a(s) (3.7)

for times s in the past. In practice, we can divide
time into equally spaced intervals. Let 
(k) and 
(k)
denote the predicted and observed demand in interval
k. We then can predict the ratio r(n)= �(n)=�a(n) for
the nth interval by using exponential smoothing, i.e.,

r(n) = �

(n− 1)

a(n− 1) + (1− �)r(n− 1)

=
∑m

k=1 �
k [
(n− k)=
�(n− k)]∑m

k=1 �
k

(3.8)

for some constants m and �. We can choose m and �
by �nding the best �t using historical data, e.g., we
see what values minimize mean squared error.
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Given that current time is 0, we would use �(t) ≡
r(0)�a(t) as the predicted arrival rate for future times
t, where r(0) is determined from the recent history up
to the current time 0, as in (3.8).
In this section we have emphasized methods to de-

termine the mean and variance (which turns out to be
equal to the mean) of the number N (t) of new calls
in the system at time t in the future, assuming the
Mt=G=∞ model where the arrival rate function �(t)
and service-time cdf G are known (can be estimated).
We thus account for uncertainty naturally associated
with the Mt=G=∞ queueing model, given speci�ed
model components. In doing so, we have only brie
y
considered statistical forecasting required in estimat-
ing �(t), t¿0, and G. However, in some contexts the
critical problem may be estimating these quantities;
e.g., see Abraham and Ledolter [3], Pankratz [15] and
references therein. We have indicated one possible ap-
proach to estimating �(t), t¿0, and G. Our Mt=G=∞
analysis will remain valid if some other estimation
procedure is used, provided that the estimates are suf-
�ciently accurate (have approximately the correct ex-
pected value and are accompanied by su�ciently low
uncertainty).
The most likely shortcoming in our analysis seems

to be the assumption that �(t) can be estimated with-
out signi�cant remaining uncertainty. We now indi-
cate a simple modi�cation in the analysis for cases
when that is not possible. The general idea is to in-

ate the variance VarN (t) to account for additional
uncertainty about �(t). We propose one speci�c ap-
proach that can be considered: We assume that the
stochastic arrival rate �(t) has the following special
form:

�(t) = X�(t); t¿0; (3.9)

where X is a positive random variable, independent of
the queueing process with EX = 1. Let NX (t) be the
number of new calls in the system at time t associated
with X . The Mt=G=∞ model structure and the special
assumption (3.9) imply that

NX (t) = XN1(t); t¿0; (3.10)

so that

E[NX (t)k ] = E[X k ]E[N1(t)k ]; t¿0; (3.11)

for all k¿1. The �rst important conclusion is that the
mean EN (t) is unaltered by the random variable X in
(3.9). As noted in (3.2), this holds more generally. The
speci�c form (3.9) allows us to obtain a convenient
simple expression for the variance, in particular,

VarNX (t) = m(t) + [m(t) + m(t)2]Var (X ); (3.12)

where m(t) = EN1(t) as before. As a consistency
check, note that VarNX (t)→ m(t) =VarN1(t) when
Var (X )→ 0.

4. Predicting future demand

The total future demand, say D(t), is the sum of the
current calls remaining in the future and the new calls
in progress in the future, i.e.,

D(t) = C(t) + N (t); t¿0: (4.1)

The mean is the sum of the means in (2.2) and (3.1).
The variance is the sum of the variances in (2.3)
and (3.1) or (3.12). Since both components should
have approximately normal distributions, so should
the sum. Let N (0; 1) denote a standard (mean 0, vari-
ance 1) normal random variable. Thus we let the re-
quired number of servers at time t be

s(t) = dED(t) + z�
√
VarD(t) + 0:5e; (4.2)

where P(N (0; 1)¿z�)=� and dxe is the least integer
greater than x. We choose � suitably small (z� suit-
able large) so that the likelihood of demand exceeding
supply at time t is suitably small.
Formula (4.2) is the same as formula (4) in Jennings

et al. [13]. The di�erence is that here we dynamically
exploit all available information up to the current time
in order to more accurately predict the mean ED(t)
and the variance VarD(t) a relatively short time t in
the future.
The estimation procedure can be said to be working

if the demand t units in the future is indeed distributed
approximately as N (ED(t);VarD(t)). Thus the
procedure can be checked with historical data. The
estimation scheme is e�ective if (i) ED(t) is indeed es-
timated accurately and (ii) VarD(t) is suitably small
(relative to ED(t)) and estimated accurately. Then the
required number of servers s(t) will be only slightly
greater than actually needed. The overhead due to
uncertainty can be described by the percentage the
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di�erence s(t)− ED(t) is of ED(t). For example, the
overhead is 10% if ED(t) = 400 and s(t) = 440. The
overhead represents the cost of providing the high
quality of service.
Finally, it remains to ensure that at least the required

number s(t) of servers will be available at time t in
the future. Greater e�ciency can be achieved if some
number of servers that are quite sure to be needed, such
as ED(t)−z�

√
VarD(t), are committed, while another

number, say 2z�
√
VarD(t) are made available, but not

committed, by being placed on alert. The servers on
alert might pursue other tasks, but be ready to answer
calls immediately upon notice. This analysis shows
the degree of 
exibility needed, and how scale can
help.

5. Veri�cation and examination

It is important to recognize that uncertainty plays
an important role in the sta�ng decision. The number
s(t) of servers in (4.2) depends upon the standard
deviation

√
VarD(t) as well as the mean ED(t). We

thus want to make comparisons with historical data
to ensure that both ED(t) and

√
VarD(t) are being

estimated properly.
We also want to examine the historical data to better

understand where ED(t) and
√
VarD(t) come from.

Our approach has provided a means for identifying
sources of uncertainty in the prediction. For a future
time t of interest, we can see how much of the mean
ED(t) and variance VarD(t) are due to the number
C(t) of current calls and the number N (t) of new
calls. An analysis of the models determines what to
anticipate. An analysis of historical data can con�rm
the predictions about these two sources of uncertainty.
For both C(t) and N (t), from an analysis of histori-

cal data we can see how much uncertainty is due to (i)
stochastic 
uctuations for the speci�ed model and (ii)
uncertainty about the model components (confounded
with an improper model).
Thus, to substantiate the prediction process, we

suggest not only comparing the prediction of overall
demand D(t) with observations, but also comparing
predictions of component demand, C(t) and D(t),
plus predictions of the model elements. Such per-
formance feedback provides the basis for prediction
improvements in the future. It might also be possible

to take other actions (controls) to improve system
performance.
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