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Abstract

We show that the generating functions of the generalized Catalan numbers can be
identified with the moment generating functions of probability density functions re-
lated to the Brownian motion stochastic process. Specifically, the probability density
functions are exponential mixtures of inverse Gaussian (EMIG) probability density
functions, which arise as the first passage time distributions to the origin of Brownian
motion with a negative drift and an exponential initial distribution on the positive
halfline. As a consequence of the EMIG representation, we show that the generalized
Catalan numbers are the moments of generalized beta distributions. We also study
associated convolution sequences arising as the coefficients of the product of two gen-
eralized Catalan generating functions.

1 Introduction

Our purpose in this paper, as in our recent [8], is to establish connections between probability
theory and integer sequences. We show how established probability results can be applied to
generate new integer sequences and results about integer sequences, after appropriate con-
nections have been established. In particular, we establish a connection between the classical
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Brownian motion stochastic process and the generalized Catalan numbers, Cn(α). We show
that the generalized Catalan numbers are intimately connected to certain exponential mix-
tures of inverse Gaussian distributions, which arise as first passage times to the origin of
Brownian motion with negative drift, starting with an exponential initial distribution on the
positive halfline. (See Theorems 1 and 2.) We then apply this relation to identify interesting
integer sequences and relations among integer sequences.

As a consequence of our analysis, we propose the new family of integer sequences {Vn(α) :
n ≥ 1}, where α is a positive integer and

Vn(α) ≡
n
∑

k=0

(

n + k

k

)

αk, n ≥ 1, (1)

where ≡ denotes “equality by definition.” The integer sequence {Vn(1)} (A001700) is per-
vasive in the OEIS [19], but we ourselves only recently contributed the integer sequence
{Vn(2)} (A178792). A primary goal is to expose the structure of the family {Vn(α)}, α ≥ 1.
The general sequence {Vn(α)} has been studied on p. 236 of [13]; see pp. 167, 215 for more
on the special case α = 1/2.

In the end, there is a fairly direct connection between the classical sequence of Catalan
numbers {Cn}, with

Cn ≡
(

2n

n

)

1

n + 1
=

(2n)!

n!(n + 1)!
, n ≥ 1, (2)

and the integer sequences {Vn(α)} via their generating functions, which we summarize now:

c(x) ≡
∞
∑

n=0

Cnx
n =

2

1 +
√

1 − 4x
, (3)

c(x; α) ≡
∞
∑

n=0

Cn(α)xn = (1 − xc(αx))−1, (4)

c(x; a, b) ≡
∞
∑

n=0

Cn(a, b)xn ≡ c(bx; a)c(ax; b), (5)

v(x; α) ≡
∞
∑

n=0

Vn(α)xn ≡ c(2αx; 1/2)c(x; α); . (6)

Supporting theory appears in Theorems 3-8. In Theorem 2 and 7 we establish integral
representations, which are known to provide additional insight [16]. Many examples of
integral representations appear in [19].

The relations in (4)–(6) are especially interesting to us, because they are generalizations of
important relations for functions characterizing the transient behavior of reflected Brownian
motion exposed in our first paper [1]. Since the transient mean is nondecreasing and bounded,
it can be regarded as a probability cumulative distribution function (cdf) when we divide
by the limiting value; in [1] we called it the “RBM first-moment cdf.” We discuss the
connections between relations (3)-(6) and our previous papers [1, 4, 7] in §5.
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2 Background

We start by giving background on the generalized Catalan numbers, Brownian motion and
associated first passage time distributions.

The generalized Catalan numbers. The Catalan numbers in (2) frequently arise in
combinatorics and are pervasive in the OEIS [19]; see A000108. Following Lang (A064062),
we define the generalized Catalan numbers Cn(α) as the coefficients of the generating function
c(x; α) defined in (4), where c(x) is the generating function of the (ordinary) Catalan numbers
Cn in (3). Other proposed definitions for (properties of) the generalized Catalan numbers
appear in A006633, A068765, A130564 and in [10, p. 14]. We prefer definition (3) because
it builds on the basic characterization of c(x), namely,

c(x) =
1

1 − xc(x)
or c(x)2 =

c(x) − 1

x
. (7)

The first relation in (7) characterizes c(x) as the fixed point of the exponential-mixture
operator; see Proposition 4 of [8]. The second relation characterizes the sequence {Cn} by
having the two-fold convolution equal to Cn+1. Based on (3) and (4), we obtain

c(x; α) =
2α

2α − 1 +
√

1 − 4αx
=

2α − 1 −
√

1 − 4αx

2(α − 1 + x)
. (8)

The generalized Catalan numbers are given explicitly by

Cn+1(α) =
n
∑

k=0

a(n, k)αk, (9)

where the triangle numbers a(n, k) given in A009766 are the famous ballot numbers

a(n, k) ≡
(

1 − k

n + 1

)(

n + k

k

)

; (10)

see pp. 130, 152 of [17].

Brownian motion and EMIG distributions. Brownian motion is one of the most
extensively studied stochastic processes; e.g., see Chapter 1 of [14] or [12]. It has two
parameters: the drift parameter µ and the diffusion or variance parameter σ2. If X ≡ {X(t) :
t ≥ 0} is a (µ, σ2)-Brownian motion, then X(t) has a normal or Gaussian distribution with
mean µt and variance σ2t for each t. We will be interested in the first passage time from one
state to another for Brownian motion with drift, which is well understood. The standard
way to study such first passage time problems is to apply martingales. For the problem
at hand with drift, it is standard to apply exponential martingales, in particular, the Wald
martingale

W (t) ≡ exp {cX(t) − q(c)t}, t ≥ 0, (11)
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where q(c) ≡ µc + σ2c2/2; see §§1.5 and 3.2 of [14]. We can calculate the Laplace transform
of the first passage time distribution by using the optional stopping theorem with the first
passage time serving as the stopping time.

Here we consider Brownian motion (BM) with constant drift µ = −1/(2α) and constant
diffusion coefficient σ2 = 1/(2α), depending on the positive real parameter α. By the
reasoning above, or in other ways, we determine the Laplace transform of the probability
density function (pdf) f(t, y; α) of the first passage time from initial state y > 0 at time 0
to final state 0,

f̂(s, y; α) ≡
∫

∞

0

e−stf(t, y; α) dt = exp {−y(
√

1 + 4αs − 1)}, (12)

which is defined for complex s with positive real part, and then the pdf itself,

f(t, y; α) = ((αy2)/(πt3))1/2 exp {−(t − 2αy)2/(4αt)}, t ≥ 0, (13)

which is the pdf of an inverse Gaussian (IG) distribution. For the classical approach before
martingales, see (73) on p. 221 of [12]. The seminal work was done independently by
Schroedinger and Smoluchowski in 1915; see p. 1 of [18].

A closely related stochastic process is reflected Brownian motion (RBM), which is the
BM above, with the same parameters, and a reflecting barrier at 0; see §1.9 and Chapter
5 of [14], where it is called regulated Brownian motion (a name which has not caught on).
Clearly, the first-passage-time from y > 0 to 0 for RBM has the same pdf f(t, y; α) in (13).
Unlike the BM, the RBM has a proper limiting distribution as t → ∞, which is also a
stationary distribution for the RBM. That stationary distribution has an exponential pdf p
with mean 1/2, i.e.,

p(y; η) = ηe−ηy, y ≥ 0, for η = 2; (14)

see §5.6 of [14].
An important quantity associated with RBM is the first passage time to 0 starting from

the stationary distribution p, which we have called the equilibrium time to emptiness; see
Theorem 1.3 and Corollary 1.3.1 of [1]. Since the equilibrium time to emptiness is a mix-
ture of the distribution of the first-passage time to 0 with respect to the initial stationary
distribution, where the first-passage-time distribution is inverse Gaussian and the stationary
distribution is exponential, the equilibrium time to emptiness has a distribution that is an
exponential mixture of inverse Gaussian (EMIG) distributions.

EMIG distributions and the generalized Catalan numbers. We will show that a
particular family of EMIG pdf’s are intimately connected to the generalized Catalan num-
bers. We define the family of EMIG pdf’s indexed by α as

g(t; α) ≡
∫

∞

0

p(y; α)f(t, y; α) dy, t ≥ 0. (15)

For each α > 0, g(t; α) is a bona fide pdf, but it only corresponds to the equilibrium time
to emptiness for RBM in the special case α = 1. However, the EMIG distribution is the
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first passage time to the origin for both BM and RBM, when they have negative drift, with
respect to a particular exponential initial distribution on the positive halfline. We studied
EMIG probability distributions in [1, 3, 4, 5, 6]; see §2 of [3], §8 of [4], Example 8.3 in [5]
and §3 of [6].

Now let ĝ(s; α) be the Laplace transform of the pdf g(t; α) in (15), i.e.,

ĝ(s; α) ≡
∫

∞

0

e−stg(t; α) dt. (16)

Let ĝ(−x; α) for positive real x be the associated moment generating function of g(t; α). Our
main observation is

Theorem 1. The EMIG moment generating function ĝ(−x; α) coincides with the generating

function c(x; α) in (8). Equivalently, the Laplace transform in (16) can be represented as

ĝ(s; α) = c(−s; α) =
2α

2α − 1 +
√

1 + 4αs
. (17)

Proof. By direct integration, we can verify that ĝ(s; α) in (17) has the integral represen-
tation

ĝ(s; α) =

∫

∞

0

2αe−2αyf̂(s, y; α) dy, (18)

where f̂(s, y; α) is the Laplace transform in (12); see (29.3.82) on p. 1026 of [9] and (8.4) on
p. 95 of [4].

3 Further Connections

The explicit representation. We now apply Theorem 1 to make connections. We first
apply Theorem 1 to give an alternative derivation of the explicit expression for the generalized
Catalan numbers in (9). From (18), we directly obtain

Cn+1(α) =

∫

∞

0

2αe−2αy mn+1(f)

(n + 1)!
dy, (19)

where

mn(f) ≡
∫

∞

0

xnf(x) dx, (20)

so that mn+1(f) is the (n + 1)st moment of the pdf f ≡ f(t, y; α) in (13), with

mn+1(f)

(n + 1)!
=

n
∑

k=0

a(n, k)αk (2αy)n+1−k

(n + 1 − k)!
; (21)

see Proposition 2.14 on p. 46 of [18]. After the final expression for Cn+1(α) in (9) is factored
out of (19), the remaining integral reduces to 1, because it can be identified as the integral
of a gamma pdf over its entire domain.
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Examples are

{2nCn(1/2)} = 1, 2, 6, 20, 70, 252 (A000984)

{Cn(2)} = 1, 1, 3, 13, 67, 381 (A064062)

{2nCn(3/2)} = 1, 2, 10, 68, 538, 4652 (A110520)

{Cn(3)} = 1, 1, 4, 25, 190, 1606 (A064063)

In addition, the OEIS includes Cn(4) − Cn(10) as sequences A064087–A064093. Note that
{2nCn(1/2)} is the sequence of central binomial numbers (see (28) below) and that c(x; α) =
1/
√

1 − 2x.
It is immediate from (3) and the well known continued fraction representation for c(x)

that c(x; α) has the continued fraction representation

c(x; α) =
1

1−
x

1−
αx

1−
αx

1−
αx

1− . · · · (22)

As a consequence, we see that c(x; 0) = (1 − x)−1.

The generalized Catalan numbers as moments. Next we give the mixing-density
representation for the EMIG. We say that a pdf h(y) has a mixing density w(x) if h has the
integral representation

h(t) =

∫ τ2

τ1

y−1e−t/yw(y) dy, y ≥ 0,

for some fixed τ1 and τ2 with τ1 < τ2. The associated Laplace transforms are related by

ĥ(s) =

∫ τ2

τ1

w(y)
dy

1 + sy
;

see (3.2) and (3.4) in [5].
For our EMIG pdf’s, we have the mixing-density representation

ĝ(s; α) =

∫ 4α

0

β(y; α)
dy

1 + ys
, (23)

where

β(y; α) ≡
√

4α − y

2π
√

y(1 + (α − 1)y)
; (24)

i.e., β(y; α) is the pdf of a generalized beta distribution; see (94.22) on p. 375 of [20] and
Theorem 4.1 on p. 29 of [6]. For the two cases α = 1/2 and α = 1, β(y; α) is an ordinary
beta pdf.

As an immediate consequence, we obtain the following characterization of the generalized
Catalan numbers.

Theorem 2. The generalized Catalan numbers arise as the moments of the generalized beta

pdf β(y; α) in (24); i.e.,

Cn(α) =

∫ 4α

0

ynβ(y; α) dy. (25)

The moments in (25) can also be expressed in terms of the Gauss series, because Cn(α) =
F (1 − n, n;−n, a); see (15.4.2) on p. 561 of [9].
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4 Implications for Other Integer Sequences

A product of EMIG generating functions. We now study the (two-fold) convolution
of the sequence {anCn(b)} with the sequence {bnCn(a)}, i.e., the sequence {Cn(a, b)} defined
in (5), using (3). An interesting property of EMIG distributions is that the convolution
represented by (5) can be represented as a linear combination of EMIG’s; see (8.13) on p.
97 of [4]. As a consequence, we obtain

Theorem 3. For a 6= b,

c(bx; a)c(ax; b) =
1

b − a
(bc(bx; a) − ac(ax; b)) (26)

and

Cn(a, b) =
1

b − a

(

bn+1Cn(a) − an+1Cn(b)
)

. (27)

The case a = b is covered by Corollary 6 below. As an aside, we point out that for a =
b = 1, the multiple convolutions of {Cn} with itself are represented by the triangle A033184,
which has some very interesting properties; see [15]. From a probabilistic perspective, see p.
568 of [1].

Two examples are

{Cn(2, 3)} = 1, 5, 49, 653, 10201, · · · (A116873)

{Cn(2, 4)} = 1, 6, 76, 1336, 27696, · · · (A116874)

The OEIS includes {Cn(2, 5)} through {Cn(2, 8)} as A116875(n+1) through A116878(n+1).
To illustrate how Theorem 3 can be applied, from (27) we obtain

C4(2, 3) = 35C4(2) − 25C4(3)

= 35A064062(4) − 25C4(3)A064063(4)

= 35(67) − 25(190) = 10201.

The sequence {Vn(α)}. We now come to the sequence {Vn(α)} in (1) and (6). In §3 we
mentioned that the sequence {2nCn(1/2)} is the sequence of central binomial numbers; i.e.,

c(2x; 1/2) =
1√

1 − 4x
=

∞
∑

n=0

(

2n

n

)

xn. (28)

Define the sequence {Vn(α)} and its generating function v(x; α) via (6). We obtain the
following result; we give proofs of this theorem and following ones in §6 below.

Theorem 4. The numbers Vn(α) have the explicit representation

Vn(α) =
1

2α − 1

(

(2α)n+1Cn(1/2) − Cn(α)
)

=
n
∑

k=0

(

n + k

k

)

αk. (29)
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It seems that the representation in Theorem 4 is new. The only two cases of {Vn(α)} in
the OEIS we are aware of are

{Vn(1)} = 1, 3, 10, 35, 126, 1716 · · · (A001700)

{Vn(2)} = 1, 5, 31, 209, 1471, 10625 · · · (A178792)

Indeed, we ourselves recently contributed the case α = 2.
For the relatively simple case of α = 1/2, by (6) the generating function is given by

1/(1 − 2x), so that Vn(1/2) = 2n. Therefore, from Theorem 4, we deduce that

2n =
n
∑

k=0

(

n + k

k

)(

1

2

)k

. (30)

Formula (30) is given on p. 167 of [13].Also (5.137) on p. 236 of [13] gives the following
recurrence relation

Vn(α) + (α − 1)Vn+1(α) = (2α − 1)αn+1Vn(1). (31)

Now consider the convolution of the sequence {Cn(α} with itself, denoting its terms by

C
(2)
n (α); i.e., let

c(2)(x; α) ≡
∞
∑

n=0

C(2)
n xn ≡ c(x; α)2. (32)

Then we find the following result.

Theorem 5. We can represent the numbers C
(2)
n (α) via

c(2)(x; α) ≡ c(x; α)2 = 2αv(x; α) − (2α − 1)
d

dx
c(x; α) (33)

and

C(2)
n (α) = 2αVn(α) − (2α − 1)(n + 1)Cn+1(α). (34)

Two examples are

{C(2)
n (2)} = 1, 2, 7, 32, 169, · · · (A115197)

{C(2)
n (3)} = 1, 2, 9, 58, 446, · · · (A116867)

We can apply Theorem 5 to treat the missing case in Theorem 3; i.e., we can determine
the numbers Cn(a, a).

Corollary 6. We can represent the numbers Cn(a, a) via

Cn(a, a) = anC(2)
n (a). (35)

By combining (34) and (35), we can obtain explicit representations for the sequence
{Cn(a, a)}. The OEIS includes {Cn(2, 2)} through {Cn(9, 9)} as A064340 (n+1) through
A064347 (n+1).

The following integral representation for Vn(α) is obtained from Theorem 4 using (23)-
(25)
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Theorem 7. We have the following integral representation for the numbers Vn(α)

Vn(α) =

∫ 4α

0

ynw(y; α)dy, (36)

where the mixing density is given by

w(y; α) =
1

2α − 1

(

2α

π
√

y(4α − y)
− β(y; α)

)

=
1

2π

√

y/(4α − y)

(

2α − 1

1 + (α − 1)y

)

. (37)

Paralleling the observation after Theorem 2, we note that the numbers Vn(α) also have
a Gauss series representation, namely, Vn(α) = F (−n, n + 1;−n; α). We discuss it further
below.

Next we give a continued fraction representation for v(x; α).

Theorem 8. The generating function v(x; α) has the continued fraction representation

v(x; α) =
1

1 − (2α + 1)x−
α(2α − 1)x2

1 − 2αx−
(αx)2

1 − 2αx−
(αx)2

1 − 2αx− · · · (38)

Note that v(x, 0) = 1/(1 − x). From Theorem 8, we can “pick off” the Hankel trans-
form of the integer sequence {Vn(α)}. As in [8, 11], the Hankel transform of an integer
sequence provides a useful partial characterization; it is a many-to-one function mapping an
integer sequence into another integer sequence. Starting from a sequence {ωn : n ≥ 0} ≡
ω0, ω1, ω2, ω2, . . . with ω0 ≡ 1, let the Hankel matrix M (n) be the (n+1)× (n+1) symmetric

matrix with elements M
(n)
i,j ≡ ωi+j−2, 0 ≤ i ≤ n, 0 ≤ j ≤ n. (The first row contains the first

n + 1 elements and Mn+1,n+1 ≡ ω2n. Let H2n ≡ det(M (n)), the even Hankel determinant.
Let the Hankel transform of the sequence {ωn : n ≥ 0} above be the sequence {H2n : n ≥ 0};
it starts with H0 = 1. With (38), we can apply (12.2) and (12.3) of [11] to obtain

HT ({Vn(α}) = (2α − 1)nαn2

. (39)

The Gauss Contiguous Relation. After Theorems 2 and 7, we observed that both Cn(α)
and Vn(α) have Gauss series representations, namely,

Cn(α) = F (1 − n, n;−n; α) and Vn(α) = F (−n, n + 1;−n; α). (40)

These are nicely linked via the Gauss contiguous relation (15.2.14) on p. 558 of [9], yielding

Cn(α)

2
+

Vn(α)

2
= F (−n, n;−n; α) ≡

∞
∑

k=0

R(n, k)αk, (41)

where

R(n, k) ≡
(

n + k − 1

k

)

=

(−n

k

)

(−1)k, (42)

as in A158498. The case α = 2 is A119259.
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5 Connections with Our Previous Papers

Our interest was drawn to the generating functions in (3)-(6) largely because they are natural
generalizations of probabilistic quantities that we studied previously via Laplace transforms.
These generating functions in (3)-(6) are directly moment generating functions (mgf’s) of
probability density functions on the nonnegative halfline. If we replace x by −s, where
s is a complex number with positive real part, then we obtain the corresponding Laplace
transform. The relations we have established are simultaneously relations among integer
sequences and relations among probability distributions. We think that we have uncovered
relations of interest in both domains. We are also intrigued by the possibility of establishing
more connections between the two domains.

First, as noted before Theorem 9 of [8], c(−s) = ĥ1(s), where ĥ1(s) is the Laplace trans-
form of the pdf h1(t) of the first moment cdf of RBM, H1(t) ≡ E[R(t)|R(0) = 0]/E[R(∞)],
t ≥ 0, which we first studied in [1]. In [1] we consider RBM with drift coefficient −1 and
diffusion coefficient 1, whereas here we consider RBM with drift coefficient −1/(2α) and
diffusion coefficient 1/(2α), so that there is a scale difference, even when α = 1; e.g., in [1],
ĥ1(s) = c(−s/2) for c(x) in (3).

We can expand upon the second relation in (7). Corollaries 1.3.2 and 1..5.1 in [1]
show that the Laplace transform of the pdf h2 of the RBM second moment cdf H2(t) ≡
E[R(t)2|R(0) = 0]/E[R(∞)2] can be represented as

ĥ2(s) ≡
∫

∞

0

e−ysh2(y) dy = ĥ1,e(s) ≡
1 − ĥ1(s)

s
= ĥ1(s)

2, (43)

where, for any cdf H(t) ≡ P (X ≤ t), the associated stationary-excess (or equilibrium residual
lifetime) cdf and pdf are defined by

He(t) ≡
1

E[X]

∫ t

0

P (X > y) dy and he(t) ≡
1 − H(t)

E[X]
, t ≥ 0, (44)

having associated Laplace transform

ĥe(s) ≡
∫

∞

0

e−syhe(y) dy =
1 − ĥ(s)

E[X]s
. (45)

Thus, equation (43) states that the RBM second moment pdf h2 is simultaneously the
stationary excess of the RBM first-moment pdf h1 and the two-fold convolution of the cdf h1

with itself. The pdf h1 is the only pdf on the nonnegative real line for which the associated
stationary-excess pdf coincides with the two-fold convolution.. As discussed in Theorem 9
of [8], the pdf h1 is intimately connected to the Catalan numbers in (3).

Next, the definition we use for the generalized Catalan numbers in (4) is tantamount to
applying the exponential mixture operator to construct a new probability distribution via
its Laplace transform. As discussed in §7 of [4], given a Laplace transform f̂ of a pdf f ,
the exponential-mixture operator yields EM(f̂)(s) ≡ (1 + sf̂(s))−1. We get the two scale
parameters by first replacing f̂(s) by f̂(as) for some a > 0 and then replacing EM(f̂)(s) by
EM(f̂)(bs) for some b > 0. With the introduction of these two scale parameters, we see that
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c(−s; α) can be viewed as an application of the exponential-mixture operator, so that it too
is the Laplace transform of a bona fide pdf. Next, the product operation in (5) and (6) is
known to correspond to convolution, so that all generating functions correspond directly to
mgf’s of probability density functions.

Finally, the new relations in (5) and (6) generalize previous ones in our earlier papers.
First, when a = b = 1, equation (5) is equivalent to the equivalence of the two representations
for the RBM second moment pdf h2 in (43) above. When α = 1, the relation in (6),
appropriately adjusted for scale, reduces to a special relation among distributions that are
Beta mixtures of exponential distributions, as defined in [7]. In the language of [7],

v̂e(1/2, 1/2; s) = v̂(3/2, 1/2; s) = v̂(1/2, 1/2; s) · v̂(1/2, 3/2; s) (46)

where

v(p, q; t) ≡
∫ 1

0

y−1e−tyb(p, q; y) dy and b(p, q; y) ≡ Γ(p + q)

Γ(p)Γ(q)
yp−1(1 − y)q−1 (47)

and the subscript e again corresponds to the stationary-excess operator in (44) above. The
first equality in (46) follows from (1.14) in Theorem 1.3 in [7]. By Table 3 on p. 536 of [7],
the second relation in (46) then reduces to

γ̂e(s) = γ̂(s) · ĥ1(s), (48)

where

γ(t) ≡ γ(1/2; t) ≡ e−t

√
πt

and γ̂(s) ≡ γ̂(1/2; s) =
1√

1 + s
. (49)

The second relation in (46) and the equivalent representation in (48) can be verified by direct
calculation from the explicit expressions above and in Table 3 of [7].

And all of this has a corresponding story in the world of integer sequences. In par-
ticular, the associated integer sequences are: for γ(1/2; t) in (48) and (49): C(2n, n) ≡
(1, 2, 6, 20, 70, . . . (A000984), for h1: Cn ≡ (1, 1, 2, 5, 14, . . .) in (2) (A000108); and for γe in
(48): C(2n + 1, n) ≡ (1, 3, 10, 35, 126, . . .) (A001700). Our equations (6) and (29) generalize

A001700 = convolution(A000984, A000108)

A001700 = 2 · A000984 − A000108,

occurring when α = 1. The second formula above is not yet in the formula section for
A001700.

In summary, our goal here, as in our previous papers [2, 4, 7, 8] is to generalize the rela-
tions originally observed in [1] and, at the same time, make connections to integer sequences.
We view this paper as uncovering a little bit more about a much bigger story, rather than
just generating a few sequences not yet in the OEIS [19].. A major part of that larger story
is the development of an operational calculus for probability distributions, which may be
implemented via their transforms and moment sequences as well as via the pdf’s and cdf’s..
This short paper is neither the end of that story nor the beginning.
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6 Proofs

Proof of Theorem 4. Multiply the recurrence (31) by xn and sum, producing

∞
∑

n=0

Vn(α)xn + (α − 1)
∞
∑

n=0

Vn+1(α)xn = (2α − 1)α
∞
∑

n=0

Vn(1)(αx)n.

Apply that to get a relation for the generating functions, namely,

v(x; α) +
(α − 1)(v(x; α) − 1)

x
=

(2α − 1)(1 −
√

1 − 4αx)

2x
√

1 − 4αx
,

which yields

v(x; α) =
2α − 1 −

√
1 − 4αx

2(x + α − 1)
√

1 − 4αx
,

which is equivalent to (29).

Proof of Theorem 5. Observe that

2αv(x; α) − (2α − 1)
d

dx
c(x; α) =

(2α)2

√
1 − 4αx(2α − 1 +

√
1 − 4αx)

− (2α − 1)(2α)2

√
1 − 4αx(2α − 1 +

√
1 − 4αx)2

= c(x; α)2

(

2α − 1 +
√

1 − 4αx√
1 − 4αx

− 2α − 1√
1 − 4αx

)

= c(x; α)2.

Proof of Theorem 7. As a consequence of Theorem 4,

w(y; α) =
2αφ(y; α) − β(y; α)

2α − 1
,

where φ(y; α) is the mixing density of c(2αx; 1/2) and β(y; α) is the mixing density of c(x; α)
given in (24). From (28), c(2αx; 1/2) = 1/

√
1 − 4αx. Therefore, φ(y; α) = 1/π

√

y(4α − y).
Hence, we have

w(y; α) =
1

2α − 1

(

2α

π
√

y(4α − y)
−

√
4α − y

2π
√

y(1 + (α − 1)y)

)

=

(

1

2π(2α − 1)

)( √
y√

4α − y

)(

4α

y
− 4α − y

y(1 + (α − 1)y)

)

,

which gives the desired result (37).
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Proof of Theorem 8. Let Q be the continued fraction

Q ≡ (αx)2

1 − 2αx−
(αx)2

1 − 2αx−
(αx)2

1 − 2αx− · · ·

Then Theorem 8 is equivalent to

v(x; α) =
1

1 − (2α + 1)x − (2α − 1)Q/α
. (50)

Formula (50) is proved by showing that

(i) Q = αx(c(αx) − 1) and (ii) v(x; α) =
1

(1 − 2x − (2α − 1)xc(αx))
. (51)

Proof of (i) in (51): From

c(αx) =
1

1−
αx

1−
αx

1− · · ·

we have the even part as

c(αx) =
1

1 − αx−
(αx)2

1 − 2αx−
(αx)2

1 − 2αx− · · ·

=
1

1 − αx − Q
.

Hence, using (7) via 1/c(x) = 1 − xc(x), we obtain

Q = 1 − αx − 1

c(αx)
= αx(c(αx) − 1).

Proof of (ii) in (51): From (6), v(x; α) = c(2x; 1/2)c(x; α) and from (3), (4) and (8), we
find that

v(x; α) =

(

1

1 − 2αxc(αx)

)(

1

1 − xc(αx)

)

.

Then after some algebra, exploiting (7) via xc(x)2 = c(x) − 1, we get the desired result.
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