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Ancient Relics

• A. K. Erlang (1924) On the rational determi-
nation of the number of circuits. In The Life and
Works of A. K. Erlang, E. Brockmeyer, H. L. Hal-
strom and A. Jensen (editors), Danish Academy of
Technical Sciences, Copenhagen, 1948.

• S. Halfin and W. Whitt (1981) Heavy-traffic lim-
its for queues with many exponential servers. Op-
erations Research 29, 567-588.

• D. R. Smith and W. Whitt (1981) Resource
sharing for efficiency in traffic systems. The Bell
System Technical Journal 60, 39-55.
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Engineering for Services

• T. Levitt (1972) Production-line approach to
service. Harvard Business Review, September-October,
41-52.
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Customer Contact Centers

• Telephone Call Centers

• e-Contact

N. Gans, G. Koole and A. Mandelbaum (2002)
Telephone call centers: a tutorial and literature re-
view. Manufacturing and Service Operations Man-
agement (M&SOM), to appear.
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Economy of Scale

• Qualitative

Bigger is Better

• Quantitative

Bigger is How Much Better?
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Erlang Loss and Delay Models

The M/M/s/0 and M/M/s/∞ Models

Parameters

λ = arrival rate

µ = service rate

s = number of servers

a = λ/µ = offered load

ρ = a/s = traffic intensity
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Erlang Loss Formula

steady-state blocking probability

B(s, λ, µ) = B(s, a) =
as/s!∑k=s

k=0 ak/k!

truncated Poisson distribution

B(s, a) =
aB(s, a)

s + aB(s− 1, a)
,

where B(0, a) = 1 and a = λ/µ.

recursion for efficient computation
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Erlang Delay Formula

steady-state delay probability
i.e., probability an arrival must wait before

beginning service

C(s, λ, µ) = C(s, a) =
B(s, a)

1− ρ + ρB(s, a)

expected steady-state waiting time:

EW (s, λ, µ) = C(s, a)
1

µ(1− ρ)

(Can start from B(s, a)).
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Economy of Scale

• Qualitative

Bigger is Better

• Quantitative

Bigger is How Much Better?
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Qualitative Economy of Scale

B(s1 + s2, λ1 + λ2, µ) ≤ λ1

λ1 + λ2
B(s1, λ1, µ)

+
λ2

λ1 + λ2
B(s2, λ2, µ)

C(s1 + s2, λ1 + λ2, µ) ≤ λ1

λ1 + λ2
C(s1, λ1, µ)

+
λ2

λ1 + λ2
C(s2, λ2, µ)

EW (s1 + s2, λ1 + λ2, µ) ≤ λ1

λ1 + λ2
EW (s1, λ1, µ)

+
λ2

λ1 + λ2
EW (s2, λ2, µ)

D. R. Smith and W. Whitt (1981)
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Qualitative Economy of Scale: Short Proofs

The same argument works for all three.

One-dimensional monotonicity:

B(ts, ta) is decreasing in t .

Convexity in s:

B(
λ1s1 + λ2s2

λ1 + λ2
, a) ≤ λ1

λ1 + λ2
B(s1, a) +

λ2

λ1 + λ2
B(s2, a)

for 0 < λi < ∞, i = 1, 2.

Jagers and van Doorn (1986, 1991)

11



Qualitative Economy of Scale: Short Proofs

Need to extend B(s, a) to all real positive s:

1

B(s, a)
= a

∫ ∞

0
(1 + t)se−at dt

Jagerman (1974)

Use to prove:

• one-dimensional monotonicity

• convexity in real s.
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Qualitative Economy of Scale: Short Proofs

The same argument works for all three
(B, C and EW ).

B(s1 + s2, λ1 + λ2, µ) ≤ λ1

λ1 + λ2
B

(
λ1 + λ2

λ1
s1, λ1 + λ2, µ

)

+
λ2

λ1 + λ2
B

(
λ1 + λ2

λ2
s2, λ1 + λ2, µ

)

≤ λ1

λ1 + λ2
B (s1, λ1 + λ2, µ)

+
λ2

λ1 + λ2
B (s2, λ1 + λ2, µ) .

Use convexity in step 1.

Use one-dimensional monotonicity in step 2.
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Stochastic-Comparison Proof: Loss Model

Little’s Law: L = λW

EQ(s, λ, µ) = λ(1−B(s, λ, µ))µ−1

or, equivalently,

λB(s, λ, µ) = λ− µEQ(s, λ, µ) ,

so that

(λ1 + λ2)B(s1 + s2, λ1 + λ2, µ)

≤ λ1B(s1, λ1, µ) + λ2B(s2, λ2, µ)

if and only if

EQ(s1 + s2, λ1 + λ2, µ)

≥EQ(s1, λ1, µ) + EQ(s2, λ2, µ)

Suffices to show: EQ1+2 ≥ EQ1 + EQ2
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Stochastic-Comparison Proof: Delay Model

Little’s Law: L = λW

EQ(s, λ, µ) = λ(EW (s, λ, µ) + µ−1)

or, equivalently,

λEW (s, λ, µ) = EQ(s, λ, µ)− λµ−1 ,

so that

(λ1 + λ2)EW (s1 + s2, λ1 + λ2, µ)

≤ λ1EW (s1, λ1, µ) + λ2EW (s2, λ2, µ)

if and only if

EQ(s1 + s2, λ1 + λ2, µ)

≤EQ(s1, λ1, µ) + EQ(s2, λ2, µ) .

Suffices to show: EQ1+2 ≤ EQ1 + EQ2
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Stochastic-Comparison Proofs: Summary

By Little’s Law, L = λW , we need to show:

For Loss Model, EQ1+2 ≥ EQ1 + EQ2

For Delay Model, EQ1+2 ≤ EQ1 + EQ2

We establish stronger results:

For Loss Model, Q1+2 ≥st Q1 + Q2

For Delay Model, Q1+2 ≤st Q1 + Q2

stochastic order: X ≤st Y if Ef (X) ≤ Ef (Y ) for
all nondecreasing real-valued functions f .
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Stronger Stochastic Comparisons

We show:

For Loss Model, Q1+2 ≥st Q1 + Q2

For Delay Model, Q1+2 ≤st Q1 + Q2

by establishing two stronger comparisons:

• likelihood-ratio ordering, ≤r (M/M/s/∗)
X ≤r Y if

P (X=k+1)
P (X=k)

≤ P (Y =k+1)
P (Y =k)

for all k.

• sample-path stochastic order, ≤st (A/GI/s/∗)
{X(t) : t ≥ 0} ≤st {Y (t) : t ≥ 0} if

E[f ({X(t) : t ≥ 0})] ≤ E[f ({Y (t) : t ≥ 0})]
for all nondecreasing real-valued functions f .
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Economy of Scale

• Qualitative

Bigger is Better

• Quantitative

Bigger is How Much Better?
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Quantitative Economy of Scale

Perform asymptotics as a →∞ and s →∞.

Heavy Traffic: ρ = a/s → 1

with (1− ρ)
√

s → β for −∞ < β < ∞.

Square-Root Safety Factor

We should have s ≈ a + c
√

a for c = c(β).

known by Erlang (1924)
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Quantitative Economy of Scale: Loss Model

As a →∞,

B(a + c
√

a, a) =

(
1√
a

)(
φ(c)

Φ(c)

)
+ O

(
1

a

)

Erlang (1924), Jagerman (1974)

Φ(x) = P (N(0, 1) ≤ x), normal cdf

φ normal density, Φ(x) =
∫ x
−∞ φ(u) du
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Quantitative Economy of Scale: Delay Model

As a →∞ (or λ →∞ with µ fixed),

C(a + c
√

a, a) =

[
1 + c

(1− Φ(c))

φ(c)

]−1

+ O

(
1√
a

)

Erlang (1924), Halfin and Whitt (1981)

EW (λ+c
√

λ, λ, 1) =

(
c√
a

)[
1 + c

(1− Φ(c))

φ(c)

]−1

+ O

(
1

a

)

Erlang (1924), Halfin and Whitt (1981)

Φ(x) = P (N(0, 1) ≤ x), normal cdf

φ normal density, Φ(x) =
∫ x
−∞ φ(u) du
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Stochastic-Process Limit

As a →∞ and s →∞

with (1− ρ)
√

s → β for −∞ < β < ∞,

Qa(t)− a√
a

⇒ L(t),

where L is a diffusion process.

(convergence for stochastic processes)
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Recent Work

Halfin and Whitt did stochastic-process limit for
GI/M/s/∞.

Now extend from GI/M/s/∞ to G/H∗/s/∞

http://www.research.att.com/∼wow


