Economy of Scale

in Multiserver Service Systems:

A Retrospective

Ward Whitt

IEOR Department

Columbia University



Ancient Relics

e A. K. Erlang (1924) On the rational determi-
nation of the number of circuits. In The Life and
Works of A. K. Erlang, E. Brockmeyer, H. L. Hal-
strom and A. Jensen (editors), Danish Academy of
Technical Sciences, Copenhagen, 1948.

e S. Halfin and W. Whitt (1981) Heavy-traffic lim-
its for queues with many exponential servers. Op-
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Erlang Loss and Delay Models

The M /M/s/0 and M /M /s/oco Models

Parameters

— arrival rate

= number of servers
= )/ = offered load

A

[, = service rate

S

a

p = a/s = traffic intensity



Erlang Loss Formula

steady-state blocking probability

a’/s!
SR=S ok k|

truncated Poisson distribution

B(s,\,u) = B(s,a) =

aB(s,a)
s+aB(s—1,a)

B(s,a) =

where B(0,a) =1 and a = \/p.

recursion for efficient computation



Erlang Delay Formula

steady-state delay probability
i.e., probability an arrival must wait before
beginning service

B(s,a)

Cls, A p) =Cls,a) = 1 —p+pB(s,a)

expected steady-state waiting time:
1

EW (s, \, ) = C(s, CL),u(l — )

(Can start from B(s,a)).
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Qualitative Economy of Scale
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B A\ A\ < B A\
(814 59, A\1 + Ao, 1) < Ny (81, A\, 1)

A2
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A
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D. R. Smith and W. Whitt (1981)
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EW (s2, A9, 11)



Qualitative Economy of Scale: Short Proofs

The same argument works for all three.

One-dimensional monotonicity:

B(ts,ta) is decreasing in 1 .

Convexity in s:

)\181 —+ )\282 )\1 )\2
< B
)\1—|—)\2 o )\1—|-)\2 (Slja)_F
for 0 < )\, < o0, 2=1,2.

B(

)

Jagers and van Doorn (1986, 1991)
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Qualitative Economy of Scale: Short Proofs

Need to extend B(s,a) to all real positive s:

L a/oo(l +1)%e % gt
B(s,a) 0

Jagerman (1974)

Use to prove:

e one-dimensional monotonicity

e convexity iIn real s.
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Qualitative Economy of Scale: Short Proofs

The same argument works for all three
(B, C"and EW).

A1 A1+ A
B(s1 + 89, A1+ Ao, ) N ( 1)\1 81,>\1+>\2,#)
A9 A+ A
B
+ Ny ( . 827>\1+)\2,M>
Al
B A1+ A
S (51, A1+ A9, 1)
2 Bl A o)
87 Y
oy D 2 AT A

Use convexity in step 1.

Use one-dimensional monotonicity in step 2.
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Stochastic-Comparison Proof: Loss Model

Little’'s Law: L = \WW

EQ(s, A\, 1) = M1 = B(s, A, p)p™"

or, equivalently,
AB(s,\, ) = A = pEQ(s, A, 1)

so that
(A1 4+ A2)B(s1 + 82, A1 + A9, 1)
< M B(s1, A1, 1) + Ao B(s2, Ao, 1)
if and only if
EQ(s1 + 52, A1 + Ao, 1)
> EQ(s1, A1, 1) + EQ(s2, Ao, 1)

Suffices to show: F(Q) .o > EQ)| + EQ)»
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Stochastic-Comparison Proof: Delay Model

Little’'s Law: L = \W

EQ(s, A, 1) = MEW (s, A, ) + ™)
or, equivalently,

AEW (s, \, 1) = BQ(s, \, p1) — A\t
so that

(A1 4+ ) EW (51 4 59, A\ + A9, 1)
< MEW (81, A1, 1) + A EW (89, Ao, 1)

if and only if

EQ(s1 + 52, A1 + A2, 1)
<EQ(s1, A1, 1) + EQ(s2, Ao, 1)

Suffices to show: K)o < FQ| + FQ)
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Stochastic-Comparison Proofs: Summary

By Little’s Law, L = AW/, we need to show:

For Loss Model, £Q.9 > EQ1 + EQ>
For Delay Model, £EQ1.9 < EQ1+ EQ>
We establish stronger results:
For Loss Model, Q1.9 >4 Q1 + @

For Delay Model, Q1.9 <. Q1 + Q>

stochastic order: X <4 VY if Ef(X) < Ef(Y) for
all nondecreasing real-valued functions f.
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Stronger Stochastic Comparisons

We show:

For Loss Model, Q1.9 >4 Q1 + Q2
For Delay Model, Q)19 < Q1 + Q>

by establishing two stronger comparisons:

e likelihood-ratio ordering, <, (M /M /s/x)

P(X=k+1) <P(Y:k+1)
P(X=k) — P(Y=k)

e sample-path stochastic order, <, (A/GI/s/x)

{X(t):t >0} < {Y(t): £ >0} if
E[f(X(@) t 2 0})] < E[f({Y(t) : t = 0})

for all nondecreasing real-valued functions f.

X <. Y if for all k.
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Quantitative Economy of Scale

Perform asymptotics as ¢ — oo and s — oc.

Heavy Traffic: p=a/s — 1
with (1 — p)/s — [ for —c0 < 3 < 0.

Square-Root Safety Factor

We should have s ~ a + ¢\/a for ¢ = ¢(3).

known by Erlang (1924)
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Quantitative Economy of Scale: Loss Model

As o — o,
Bla + ¢v/a,a) = (%) (%) 0 G)
Erlang (1924), Jagerman (1974)

O(x) = P(N(0,1) < x), normal cdf

¢ normal density, ®(z) = [*_ ¢(u

20



Quantitative Economy of Scale: Delay Model

As o — oo (or A — oo with u fixed),

C(a+ cva,a) = [1+c<1 ;b(q;;c))]_lJr O(%)

Erlang (1924), Halfin and Whitt (1981)

EW (Aev/A, M 1) = (7) [1 e ;(@;)(c»] !, (1>

Erlang (1924), Halfin and Whitt (1981)

d(x) = P(N(0,1) < x), normal cdf

¢ normal density, O(z) = [*_ o(u
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Stochastic-Process Limit

As o — oo and s — >

with (1 — p)/s — [ for —oco < 7 < o0,

Qu(t) —a

Ve = L(t),

where L is a diffusion process.

(convergence for stochastic processes)
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Recent Work

Halfin and Whitt did stochastic-process limit for
GI/M/s/o0.

Now extend from GI/M/s/oco to G/H"/s/oo

http://www.research.att.com/~wow



