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Our primary purpose in this paper is to contribute to the design of admission
control schemes for multi-class service systems. We are motivated by emerging high-
speed networks exploiting asynchronous transfer mode (ATM) technology, but there
may be other applications. We develop a simple criterion for feasibility of a set of
sources in terms of “effective bandwidths”. These effective bandwidths are based on
asymptotic decay rates of steady-state distributions in queueing models. We show how
to compute asymptotic decay rates of steady-state queue length and workload tail
probabilities in general infinite-capacity multi-channel queues. The model has  independent
heterogeneous servers that are independent of an arrival process which is a superposition
of n independent general arrival processes. The contribution of each component arrival
process to the overall asymptotic decay rates can be determined from the asymptotic
decay rates produced by this arrival process alone in a G/D/1 queue (as a function of
the arrival rate). Similarly, the contribution of each service process to the overall
asymptotic decay rates can be determined from the asymptotic decay rates produced by
this service process .alone in a D/G/1 queue. These contributions are characterized in
terms of single-channel asymptotic decay-rate functions, which can be estimated from
data or determined analytically from models. The asymptotic decay-rate functions map
potential decay rates of the queue length into associated decay rates of the workload.
Combining these relationships for the arrival and service channels determines the asymptotic
decay rates themselves. The asymptotic decay-rate functions are the time-average limits
of logarithmic moment generating functions. We give analytical formulas for the asymptotic
decay-rate functions of a large class of stochastic point processes, including batch
Markovian arrival processes. The Markov. modulated Poisson process is a special case.
Finally, we try to put our work in perspective with the related literature.

1. Introductioh and summary-

A fundamental problem in the design of multi-service communication networks
is .admission. control; see Roberts [50] for a broad overview. Network providers
would like to develop. a good way in which to decide whether or not to satisfy each
successive connection request. Due to the diverse traffic that may be carried by
these networks, the different sources can be expected to make very different demands
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on the network. Consequently, it is natural to seek an appropriate notion of effective
bandwidth associated with each kind of source, so that n sources with “bandwidths”
a;, 1 <i <n, can be regarded as feasible if and only if X;_,o; < C, where C is the
capacity, i.e. the total available “bandwidth”. (See section 12 for a discussion of
related literature.) The network provider might admit each prospective new
connection whenever feasible or sometimes elect to reserve space for “more desirable”
future connections, as with trunk reservation in circuit-switched networks; see
Mitra et al. [42]. We are motivated by potential applications to multi-service
communication networks, but obviously other applications are possible.

THE EFFECTIVE BANDWIDTH CONCEPT

In developing an appropriate. notion of effective bandwidth, it is natural to
go beyond deterministic rates (peak or average) and consider the resulting congestion
at network resources. We consider the critical network resource to be a switch, but
again, other application are possible. To analyze the congestion at a single switch,
it is natural to use a YG;/D/1 queueing model, which has one server with deterministic
service times, unlimited (as an approximation to large finite) waiting space and an
arrival process that is the result of statistical multiplexing, i.e. it is the superposition
of independent general stationary arrival processes, each of which  may be quite
“bursty”. This model is difficult to analyze exactly, because there are typically
many component arrival processes, but not nearly so many that the superposition
process will be nearly Poisson.

Our approach is to focus on the steady-state behavior of the queue. If sources
come and go relatively slowly compared to the way congestion changes, this steady-
state view may be appropriate. However, if sources come and go relatively quickly,
it may be much better to base admission decisions on a transient analysis reflecting
the present state of congestion in the system. Here, we consider only steady-state
analysis, ignoring the current congestion.

We primarily base our analysis of the ¥ G;/D/1 queue, and related ‘models
with more general service processes, on asymptotic analysis of steady-state tail
probabilities. First, however, it seems appropriate to discuss further the general
notion of effective bandwidth. In the context of the ¥G;/D/1 queue, we represent
the available bandwidth C as a maximum level of some form of congestion. Then
we want ¢; to be the level of congestion due to source i. However, a basic property
of queueing models is that the level of congestion caused by any one source depends
strongly on the other sources present. This phenomenon is well illustrated by the
formula p/(1 - p) for mean number in system in an M/M/1 queue; the effect of
increasing p (e.g. the derivative of p/(1 — p)) increases as p increases.

It seems reasonable to hope that «; can perhaps be regarded, at least
approximately, as an increasing function of the total level of congestion: It thus seem
reasonable to hope that the congestion x associated with n indépendent sources with
congestion function o;, 1 < i< n, would be the unique fixed point of the ‘equation
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i o;(x) = x. 1.1

i=1

An implication of (1.1) as a general relation is that any n independent sources with
congestion functions o; should be equivalent to a single source with congestion
function ¥_, a;. This property is desirable, but it is not necessarily possible to have
it in practice. We will discuss a situation where this. property does in fact hold.

In this context, a way to get around the non-constancy of the function ¢; is
to compute ¢;(C) at the prescribed critical congestion level C. It is easy to see that
n sources with individual congestion functions ¢; are feasible with a total capacity
C if and only if

i o;(C) < C. 1.2)

i=1

It is important to note that if there is approximately an equality in (1. 2) wnth
n given sources, then Z -10;(C) may be only a very crude upper bound on the
congestion with only the first k sources when k < n. Nevertheless, the notion of
effective bandwidth based on (1.2) may be very useful.

In this paper, as measures of congestion, we primarily focus on the steady-
state tail probabilities of the queue length (number in system) and the workload
(virtual waiting time), but it is important to note that the above reasoning applies
much more generally. We illustrate this generality in section 11 by discussing
effective bandwidths in the context of mean workload instead of tail probabilities.
For the multi-service communication networks using the emerging asynchronous
transfer mode (ATM) technology, it seems natural to develop performance criteria
in terms of tail probabilities because they are natural surrogates for the very small
cell blocking probabilities contemplated for ATM networks. However, the most
appropriate criterion may be different in other appllcatlons

ASYMPTOTICS FOR STEADY-STATE TAIL PROBABILITIES

In great generality, the tail probabllltles of the steady-state queue length and
workload are asymptotically geometric and exponential, respectively, and these
limits are often good approximations for times that are only moderately large as
well as very large; see Tijms [58] Abate et al. [1—-3], and references cnted in those
sources.

In particular, let Q and W denote the steady-state queue length and workload
at an arbitrary tlme We often have

CPQ> K)o B as koo a3
und | o 1.3

emP(W > x) o as x o o;,- . : (1.4)

o
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where f, o, a and 1 are positive constants, independent of k£ and x. In this context,
it is natural to represent the capacity C in terms of the (100p)th percentiles (e.g.
p=1-10" is currently of interest), which are approximately given by

gp = inf(k : o* <1 p) ~ 1284 —lg;;(logﬂ) ~ _lzgflc; D s

for p, o and f suitably near 1, and

w, =inf{x:ae™™ <1-p}= —logd—p)+loga —log(;—p) (1.6)

n

for p and o suitably near 1, and 7 suitably near 0. Note that in (1.5) and (1.6),
attention is focused on the asymptotic decay rates ¢ and 77, and here we shall restrict
attention to these simple parameters.

Given that we will focus on the asymptotic decay rates o and 77in (1.3)-(1.6),
it is natural to consider even weaker (more general) limits, namely,

log P(Q > k)

P —logo as ko e (LD

and

_____logP(1V>x) — -7 as X o oo. (1.8)

Limits of the form (1.7) and (1.8) are naturally considered in the context of large
deviations theory; see Bucklew [10], and Dembo.and Zeitouni [18]. Limits of the
form (1.7) and (1.8) are established in Chang [11], Chang et al. [12], and Glynn
and Whitt {26,27]. . _
Our analysis of steady-state tail probabilities is based on the idea that the
simple percentile approximations in (1.5) and (1.6) are sufficiently accurate for
engineering purposes. It is thus important to note that such approximations might
actually not be sufficiently accurate. The very small target cell blocking probabilities
in the range 1077 that are contemplated for ATM networks suggest that the small-
tail asymptotics in (1.3)—(1.6) should be excellent. However, surprisingly, we have
developed algorithms for BMAP/GI/I queues with superposition arrival processes
and made numerical comparisons of the approximations with exact values that show
that approximations (1.5) and (1.6) can be quite inaccurate for some models with
multiple sources; see Choudhury et al. {14, 15]. The difficulty is that the asymptotic
constants « and f in (1.3) and (1.4) can be very different from 1. This can be
explained by the fact that the asymptotic constants & and S in (1.3) and (1.4) tend
to be asymptotically exponential in the number of sources when the arrival rate is
fixed (achieved by scaling the component arrival processes). The asymptotic constants
become small (large) as the number of sources increases when the component
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arrival processes are more (less) bursty than a Poisson process; see {14]. Here, we
assume that approximations (1.5) and (1.6) are in fact satisfactory. In. applications
of these ideas, this should be checked.

A GENERAL MULTI-CHANNEL MODEL

As a general model for establishing the limits (1.7) and (1.8) and developing
an associated concept of effective bandwidths, we propose the multi-channel quéeue
considered in Iglehart and Whitt {31,32]. In this model, there is unlimited waiting
room and m heterogeneous servers that operate independently of the arrival process.
The arrival process is the superposition of n independent component arrival processes.
The number of arrivals in channel i in the time interval {0, f] is 4;(A;), 1 <i<n.
The parameter A; represents the arrival rate, so that A; = {A;(¢) : t 2 0} is understood
to be a rate-1 process. Customers are assigned to the first available server in order
of arrival, with some specified procedure to break ties. (We conjecture that the tie-
breaking procedure does not affect the asymptotic decay rates, and we do not focus
on it.) The number of service completions by server j during the first £ units of time
that server j is busy is S;(i;1), 1 £ j < m. The parameter y; is the (potential) service
rate of server j, so that §;= {Sj(t) : t 20} is understood to be a rate-1 process. We
assume that '

A

Nh<du =1 (1.9)
i=1 j=1

so that proper steady-state distributions should exist; we assume that they do.

The model we have just described is a conventional queueing model with
discrete customers, which might be cells in an ATM network. However, the processes
A; and S; need not be integer-valued. The analysis here applies to general nondecreasing
processes (and even more generally), including the fluid models considered by
Anick et al. [5], and Elwalid and Mitra {19] and more general ones.

The first main idea is to allow the stochastic point processes A; and S; to be
very general, just as for the heavy-traffic limits in [31,32]. We do not directly make
any independence, Markov or stationarity assumptions about each process. We do
assume that the m + n processes A;, 1 < i< n, and §;, 1 < j < n, are mutually independent,
but even this is not necessary. If we do not have this independence, we can start
with the assumed asymptotic behavior of the “net input” process Y7, A;(4;7)
-~ X721 8;(u;t) (see section 5). The independence property does play a vital role,
however. It allows us to determine the effect of each channel by analyzing-it
separately. - '

ASYMPTOTIC DECAY-RATE FUNCTIONS

The second main idea here is that the asymptotic behavior in (1.7)-and (1.8)
should depend on the limiting behavior of the logarithmic moment generating functions
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of A;,1<i<n,and S;, 1 < j<m. In particular, we define the single-channel asymptotic
decay-rate functions

W () = lim r' log Ee™®), 1<i<n, (1.10)
{— oo
and
ws;(6) = lim ¢ log Ee%i®), 1< j<m. (1.11)
t— o0

We assume that these limits exist for all relevant 6 (see below). The idea is that
the asymptotic decay rate o in (1.7) is €%, where { is the unique positive root of
the queue-length decay-rate equation

5(0) = Ay, (0) + ys(-6) = 0, (1.12)
with

s ©0)= Y Ay, 0) and ws(6) = Y, 1ys; (6). (1.13)

i=1 j=1

In other words, the second idea is to apply large deviations theory, as in
Bucklew [10] and Dembo and Zeitouni [18]. Supporting theory is developed in
Glynn and Whitt [26,27]. Important contribution to both the first two ideas was
made by Chang [11].

A significant feature of (1.12) and (1.13) is the linearity. The decay rate
depends on the component processes A;,...,A4, and Sy,...,S, only via the.
composite asymptotic decay-rate functions Ay, and ;s in (1.13). Hence, the
superposition of n i.i.d. arrival processes {A;(A;t) : 120}, 1 <i< n, has the same
asymptotic decay-rate function as {A;(nA;r) :t=0}, the one component arrival
process with n times its original rate, i.e. Y¥7_; Ay, = ndyy,,.

The associated asymptotic decay rate 77 in (1.8) is

n=3 Ava )= - 3 mvs, (<0, (1.14)
i=1 j=1 ‘

where { is the unique positive root of (1.12). Alternatively, 77 can be determined
directly as the unique positive root of the workload decay-rate equation

Ay, (—!I/s (-0) = 6. ' - (1L13)

leen n from (1.15) and (1.13), we can find the queue-length asymptotic decay rate '
by inverting the relations in (1.14); i.e. o=e™%, where

¢ =-ys'-n) = ylm/A). - (L16)

~We-hasten to point out that we have not yet proved that in full generality the
“asymptotic behavior of Q and Win (1.7) and (1.8) actually is determined by the
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decay-rate equations (1.12) and (1.15). However, there is strong supporting evidence,
some of which we present here. In particular, this procedure has been proved to be
correct for the special case in which all component arrival processes A; and service
processes S; are phase-type (PH) renewal processes in theorem 5 of Neuts [46]. (The
representation in (46] is different but equivalent.) One purpose of this paper is to
show that the paper [46] has important applications to the effective bandwidth
problem. Another purpose is to significantly generalize {46]. We provide supporting
theory in [3,26,27). However, in general, the procedure in (1.12)-(1.16) remains
a mathematical conjecture. Nevertheless, we think that this can serve as a useful
engineering principle.

EFFECTIVE BANDWIDTH BASED ON ASYMPTOTIC DECAY-RATE FUNCTIONS

We now indicate how the asymptotic decay-rate functions and the decay-rate
equations (1.12) and (1.15) can be used to create effective bandwidths. First, we
suppose that system capacity is specified in terms of a percentile g, of the steady-
state queue-length distribution as in (1.5). For a given p, this percentile bound
determines an upper limit on the asymptotic decay rate o* via (1.5). From the
perspective of the queue-length decay-rate equation (1.12), ¢* = —logo*. We assume
that the service processes are fixed. For given service processes S; with rates u;,
1<j<m, we work with the asymptotic decay-rate function yg in (1.13). For any
arrival process A; with rate A;, we let its effective bandwidth be 17 = A; y, (~log o).
We theén say n such arrival processes are feasible if and only if

Yo=Y Ay, (~loga®) € —ys(~{") = ~ysog o) =77, (117)
i=1 i=]

where n* is the workload asymptotic decay rate associated with the service process
S and the critical queue-length asymptotic decay rate ¢*, as specified in (1.14). In
other words, for (1.2) we let the capacity be C = ~ys(log *) and let the effective
bandwidth be &;(C) = Ay, (~logc™). Analysis of (1.12) shows that the actual
asymptotic decay rate associated with the n sources A; is less than or equal to c*
if and only if (1.17) holds.

Moreover, since 0 < 0* < 1 and y5(0) = 0, we see that the capacity —ys(log o )
is positive and increasing in o*. In addition, the effective bandwidths 71} in (L. 16)
are positive-and increasing in both A; and o*.

Alternatively, we can focus on the workload asymptotic decay rate nin (1.8).
Starting with a capacity constraint expressed in terms of a percentile w, of the
steady-state workloads, we obtain a constraint on 17 via (1.6). Now a collection of
arrival processes is feasible if its workload asymptotic decay rate 7 satisfies n 2 n*.
Using (1.15), we let the capacity be n* = — y(~¢") and we let the effective bandwidths
be N7 = AW (Y5 (—1") = Ay, (L), where €% is the queue-length asymptotic
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decay rate associated with n* via (1.14) and (1.16). We then obtain the feasibility
condition

2 Aiya (&) = 21 Va (Ys'ET) < 0t = -y (4D, (1.18)

i=1 i=1

which in fact is identical to (1.17).

It is easy to see why we obtain the same feasibility equation starting with c*
or 7%, assuming that these are consistent. Given ys and o*, n* is determined by
(1.14); i.e. we obtain n* = —ys(log ). Alternatively, given ys and n*, o* is
determined by o* = exp(ys 1(—n")).

ORGANIZATION OF THE REST OF THIS PAPER

In the remainder of this paper, we explain and (partly) justify the decay-rate
equations (1.12)—(1.16), which are the basis for the effective-bandwidth feasibility
criterion in (1.17) and (1.18). Here is how the rest of this paper is organized. We
begin by discussing an illustrative elementary M/M/1 example in section 2. We then
establish basic properties of the asymptotic decay-rate functions in (1.10) and (1.11)
in section 3. In section 4, we relate the asymptotic decay-rate functions of a counting
process and its inverse partial sum process. In particular, we show that these asymptotic
decay-rate functions are themselves, in some sense, inverse functions of each other.

In section 5, we present a simple queueing model for which we can justify
the key equations (1.12)~(1.16) above. In section 6, we indicate how to calculate
the asymptotic decay-rate functions for a large class of stochastic processes. In
section 6, we consider Markov renewal processes and-batch Markovian arrival
processes (BMAPs) as in Lucantoni {37, 38]. These classes include ordinary renewal
processes and Markov modulated Poisson processes (MMPPs) as special cases.
Also in section 6, we present additional theoretical support for the key equations
(1.12)-(1.16)..

In section 7, we discuss an altematlve way to obtain the asymptotic-decay-
rate functions from the asymptotic decay rates actually observed. in test queues.
Also in section 7, we point out that the asymptotic decay-rate functions can be
regarded as relations between the two decay rates o and 7 in (1.3) and (1.4). In
section 8, we discuss heavy-traffic asymptotic expansions for the asymptotic decay
rates, which lead to simple approximations for the effective bandwidths. This analysis
also establishes important connections to heavy-traffic theory, such.as in Iglehart
and Whitt [31,32].

In section 9, we show how the asymptotic decay rates can be used to determine
how many servers are needed, given a congestion constraint and a fixed arrival
process. This is in some sense the dual of the admission control problem.
In section 10, we discuss numerical methods that can be used to calculate the
asymptotic parameters in (1.3) and (1.4). :

.
s
{
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In section 11, we show how effective bandwidths can be determined in the
framework of (1.2) with a criterion based on the mean steady-state workload instead
of percentiles of tail probabilities. Finally, in section 12 we review related literature
and describe the history of our involvement with this problem.

2.  The M/M/1 example

To see what is going on, it is helpful to consider a simple example. Hence,
we consider the X7_ 1M;/M/1 queue, which has an arrival process consisting of n
independent Poisson processes. Since the superposition of independent Poisson
processes is again a Poisson process, this is in fact just the M/M/1 queue. Consider
n independent component Poisson arrival processes with rates A;, 1 <i < n, where
27.1Ai= A< 1, and exponential servive times with mean 1, so that (1.9) holds.
Note that the M/M/1 queue can be constructed from a potential service process S,
which is also Poisson and independent of the arrival process. (The specific construction
is discussed in section 5.)

In this case, the processes A; and S are all Poisson, so that the asymptotic
decay-rate functions in (1.10) and (1.11) are easily computed; they are

Vi@ =ys@)=¢’ -1 2.1
Note that

lwA(e) = Z Aiya (0) = Ae® ~1); (2.2)
i=1 ’

i.e. Y, has the same form of yj, as it should since they all are rate-1 Poisson
processes.
Next note that the queue-length decay-rate equation (1.12) here is

AL -D+EP-D=0. @3

After making the change of variables z =e® we see that (2.3) is easily solved:
equation (2.3) has the two roots 8 =0 and = —logA. Since 0 <A< 1, {= -logd
is the unique positive root of (2.3). Since 07! =¢f, 6= A= P, where p is the traffic
density. Since Q has the geometric distribution P(Q=k)=(1 —p)p k20, the
asymptotic decay rate o is indeed p.

From (1.14), we can calculate the assocmted workload asymptotic decay rate
7; we obtain

= /‘L(e‘1°5" )=—(e‘°£" ~D=1-21 - (2.4)

Altematlvely, we can apply (1.15). For this purpose, we need to compute the
inverse function y3'. From (2.1), we see that

Vi@ =logl +6) and —y3(0)=—logl-0). - @5
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Hence, the workload decay-rate equation in (1.15) becomes

A(e~1e0-0) _ 1y = ,1(]__13 _ 1) =0. 2.6)

Equation (2.6) has the two roots 8=0 and 6=1-A. Since 0<A<1,{=1-A41is
the unique positive root to (2.6). Since P(W > x) = pe{1-P*, the asymptotic decay
rate is indeed n=1~-p=1-A4.

Now consider the effective bandwidths. Suppose that an upper bound ¢* has
been specified for the queue-length asymptotic decay rate o. From (1.17) and (2.1),
we see that the capacity is

C=-yslogc")=1-0"=7" (2.7

and the effective bandw1dth of source i is -

o;(C) = /1.'%,- (—logo™) = 1;( 1* - 1) = A Q—'ZTGQ- (2.8)
c c

From (2.7) and (2.8), we see that the n sources are feasible with capacity 1 - o
in (2.7) if and only if ,
2 A,i < O'*, (29)
i=1

which of course is easy to verify directly for this simple example.

As indicated above, the approximations based on the limits in (1.3) and (1.4)
are exact for all x and k in the M/M/1 model; i.e. c™*P(Q > k) = B for all k and
eP(X > x) = aforall x, where a= 8= A= p, o= Aand n = 1 — A. As a consequence,
the effective-bandwidth procedure for admission control tends to work very well for
the ¥7_, M;/M/1 model considered in this section. As shown in {14], poor performance
can occur when the sources deviate substantially from Poisson processes.

3. Properties of the asymptotic decay-rate functions

We have seen that the asymptotic decay rates o and 7 in (1.3)—(1.8) can be
characterized as roots of equations (1.12) and (1.15) involving the single-channel
asymptotic decay-rate functions yy, and Vs; defined in (1.10) and (1.11). There may
be no root, in which case the theory does not apply. (See example 5 of [1].)
However, there always is at most one root, so that when we succeed in finding a
root, the decay rates are unambiguously determined. The uniqueness follows from
convexity. -Simple algorithms.for ﬁndmg the root when there is one also follow
from convexity. -

For any random variable X, let ‘I’x(e) be the logarithm of its moment generating
function, i.e. - R
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wx(0) = log Ee®®. (3.1)

Obviously, it is possible to have Ee®™ = +, in which case yy(6) = +o0; we will
be concemed with yy(0) in the region where it is finite. The logarithmic moment
generating function Wy in (3.1) is also called the cumulant generating function of
X; see p. 20 of Johnson and Kotz [33]. It plays a key role in large deviations theory;
e.g. see p. 26 of Dembo and Zeitouni [18]. Here, and in the large deviations theory
more generally, it is important that yy is a convex function. This is an easy consequence
of Holder’s inequality; e.g. see p. 47 of Chung [17].

PROPOSITION 1

For any real-valued random variable X, the logarithmic moment generating
function yy(0) in (3.1) is a convex function of @ in the region where it is finite.

Proof
Choose p such that 0 < p < 1. Apply Hélder’s inequality to conclude that

yx(p6) + (1 - p)fy) = log(EerPXell - 110X,

1\p _ 1 \l-p
= log ((Eep elx;) (Ee(1 P )ele—p) ]

< plog Ee®X + (1 — p)log Ee%X

= pyx (61) + (1 - pyx(6,). O

Now let Z = (Z(¢) : t 2 0} be any real-valued stochastic.process. As a stochastic
process generalization of (3.1), let y; be the limiting time-average of the cumulant
generating functions; i.e. let -

y2(0) = lim 1 log Ee%®, - (3.2)

assuming that the limit exists.

We call y; the asymptotzc decay-rate funcnon of the stochastic process Z. Let
(3.2) also apply to discrete-time processes. Then we can let ¢ run through the
positive integers. Alternatively, we can let Z(f) = Y|, for some sequence (Y},
where | ¢] is the greatest integer less than or equal to t.

With (3.2), we are thinking of processes that -have stationary increments or
asymptotically stationary increments, so that yz(0) is typically nondegenerate for
a range of @ of interest. For example, we show. that (3.2) is well defined if the
process Z has stationary and independent increments. For a discrete-time process,
this is just partial sums of i.i.d. random variables. The bounding condition below
is then unnecessary.
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PROPOSITION 2

If the stochastic process Z has stationary and independent increments and
Ee%®) < M < o, 0 < 5<1, then

¥z(6) = ¥zy(6) = log Ee%®), (33)

Proof

Let | ¢| be the greatest integer less than or equal to ¢. By the stationary and
independent increments property,

ECGZ(l) = (ECBZ(I))UJECBZ(I —Lt_]).

Hence,
log Ee%® =] ¢ |log Ee%® + log EeZ¢ U, (3.4)
Since
log Ee92¢-L'D < 1og M,
the desired conclusion (3.3) follows easily from (3.4). |

It is significant that y; in (3.2) is also a convex function whenever the limit
exists, because the limit of a sequence of convex function is convex.

PROPOSITION 3

If the limit in (3.2) exists, then the function y; is convex.

When considering integer-valued random variables and processes (e.g. counting
processes), it is often natural to consider logarithmic generating functions log Ez%,
which is also known as the factorial cumulant generating function; see p. 21 of
Johnson and Kotz [33]. By making a change of variables, we obtain the logarithmic
moment-generating function and the desired convexity. :

We now continue to establish basic properties of asymptotic decay-rate functions.
In particular, we establish a calculus for computing new asymptotic decay-rate
functions from given ones. Chang [11] first developed this calculus for upper
bounds. This calculus parallels the mapping arguments for constructing new functional
limit theorems from given ones in Whitt [60]. We begin with an elementary
superposition result.

PROPOSITION 4 (SUPERPOSITION)

IfZ,,...,Z,are independent stochastic processes with well-defined asymptotlc
decay-rate funcuons, then the superposmon process Z, + . . . + Z, has a well-defined
asymptotic decay-rate function : '

Yz, 4.4z, =Wz, +... Yz, .
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Proof
By the independence,

EeB[Zl(t)+...+Z,(t)] - ﬁ ECGZ"(‘).

i=1
Hence,

n
log EeB[Zl(t)+...+Z,,(t)] = 2 log EeOZ;(t). ]
i=1

We now turn to composition, i.e. a random time change of one stochastic
process by another. Let (Z, o Z,)(t) = Z,(Z,(1)), t 20, with the understanding that
the values of Z,(r) are contained in the time domain of Z;. The following is an
extension of results in Chang [11], and Glynn and Whitt [26].

THEOREM 5 (COMPOSITION)

Let Z; and Z; be independent processes with yz (6) well defined in a
neighborhood of # and ¥z,(6) well defined in a neighborhood of yz, (9) In addition,
suppose that Ee®M®) < o and Ee®M2() < o forall t and 6, in a neighborhood of
'I’zz(e) and & in a neighborhood of 6, where M; {(®) =sup{Z;(s) : 0<s<t}. Then,
V7,02, (@) is well defined and

V2.2,(0) = (Wz,°¥z,) (0) = yz,(vz(0)). (3.5)

Proof
First, condition on the value of Z,(¢) to obtain

EefL @) = j BB ™ ap(zy(0) < x).
Now apply (3.2) to Zy and Z, to 'dédq’ce that for any € there|is a 1o such that
EPB@O) < J' ex¥z ®)+e) AP(Z;(:) < x) + EeMo)
< eV Wz G)rere | gy 6y 3M300) + EefMi(0)
for all ¢ suitably large. Hence,: ﬂ
Tm £ log B @) <y, (g (6) + £) + £.

f-r00

Since £ was arbitrary and ys, is continuous at wl(é),
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im 7 log Ee%2 %) < yy(y7, (9)).

=00
The reasoning in the other direction is essentially the same. 0

It is significant that the order of Z, and Z, is reversed in (3.5), i.e. ¥z.z,
=Yz, ° ¥z An important special case is when one of the functions is constant.
For this purpose, let e be the identity function, i.e. e(t) = t for t 2 0. It is elementary
that

V2.(0) = A0. 3.6)

If we think of y as a map taking stochastic processes Z with time parameter set
[0, =) into real-valued functions yz(@) with argument set (—oo, o), formula (3.6)
says that ¥ maps Ae into Ae.

The following special case of theorem 5 is elementary.

PROPOSITION 6

Assuming that yz is well defined at the relevant arguments,

Vzo2(0) = (W2 o ¥z) () = Ayz(0) 3.7
and

ViZ = Vieoz = Yz ° Wi = Yz(A0). (3.8)

Formula (3.7) states that a deterministic homogeneous change of time scale
by A in Z results in y; being multiplied by A; formula (3.8) states that multiplying
Z by A corresponds to a deterministic homogenous change of time scale by 4 in y5.

4, The asymptotic decay-rate functions of inverse processes

A key ingredient of most queueing models is-an arrival process. An arrival
process can be represented via the counting process A = {A(z) : ¢ 2 0} or its inverse
partial sum process U = {U,: n21}. Then A(#) represents the number of arrivals
in the interval {0, ¢}, t 2 0, while U, represents the arrival epoch of customer n,
n 2 1. The fundamental inverse relation is

U,<tif and only if A(z) = n. “.1)

In this section, we present the relation between the asymptotic decay-rate
functions yy and Yy of inverse processes A and U. In particular, 1//A is closely
related to the inverse of yy; more precisely, we show that w,,(e) = —-yy (- 6). This
inverse relation was first stated in the.original version of thls paper, and first proved
in Glynn and Whitt [27]. :
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It is significant that the process A need not in fact be a counting process. It
suffices to assume that A is nonnegative and nondecreasing. Then the inverse process
can be defined by ‘ '

U(t)=inf(s: A(s)>1}, >0, 42

For example, this extension is useful to cover fluid models.

Given that A(f) and U, are nonnegative for all arguments, the asymptotic
decay-rate functions ¥, and Yy must be nondecreasing as well as convex
(proposition 3). Moreover, ¥4(0) = y(0) = 0. Let

B4 =sup(0:y,(0) <oo} and By =sup{0:y,(8) = yu(~=)} (4.3)

and similarly for B and B,.
We refer to Glynn and Whitt [27] for a careful statement and proof of the
following theorem. The important point is that where the functions are finite,

Yu(0) = —y3'(=60) and y,(0) = ~y5'(-0).
Possible inverse asymptotic decay-rate functions are displayed in the same graph

in fig. 1. The function yy appears in the usual position, while Y, increases to the
left with its argument increasing downwards.

vy (6)

Ya (w)

3
'

Fig. 1. Possible inverse decay-rate functions Yy and
Wi = —W5'(~-) with finite asymptotes B} and f.
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THEOREM 7 (GLYNN AND WHITT {27])

Under appropriate regularity conditions [27], the process A satisfies (3.2)
with asymptotic decay-rate function y, if and only if U satisfies (3.2) with asymptotic
decay-rate function Yy, in which case

—Pu, 6 < By = vy (B),
ya () =< ~yi'(-0), Bu<6<py,
oo, 0 > Bt = —yu(Bh) = —wy(—°),
and
-p4. 6 < B = —-wa(BY),
yu®) = { —¥a'(-9), Py <6< pp,
4o, 0> B = —ya(Bh) = —ya(—o0).

To illustrate, suppose that A= Ae for A> 0. Then, by (4.2), U= A"'e. By
(3.2), w4 = Ae and yy = A"'e. Hence,

yu(0) =170 = yi'(0) = —y1'(-6).

For a more interesting example, suppose that A is a Poisson counting process
with rate A as in section 2, so that y,(6) = e®— 1. Then U is the partial sum of n
i.i.d. exponential random variables with mean 47!, so that yy(6) = —log(1 — 6),
6< 1. Note that indeed theorem 7 holds with B4 = —ce, Wy, (—ee) = —1 = —% and
Bt =B = +o. -

These two examples are quite easy, because for them we can easily compute
both y, and yy. The power of theorem 7 comes when we can easily compute only
one of y, and yy. We illustrate this for renewal processes.

PROPOSITION 8

Let A= {A(@): 120} be a renewal counting process associated with i.i.d.
interrenewal times distributed as -U,;. Then (3.2) is valid for A with asymptotic
decay-rate function W, (6) = — y;'(6), where

vy (0) = log Ee%.

We now combine proposition 4 and theorem 7 to describe the asymptotic
decay rate of the arrival time sequence associated with a superposition arrival
process.
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PROPOSITION 9

Let {U, : n 2 1} be the arrival time sequence associated with an arrival counting
process A=A, +...+ A, If the processes A; are mutually independent and satisfy
(3.2) with asymptotic decay-rate function yy,, 1 <i < m, and appropriate regularity
conditions holds, then U satisfies (3.2) and its asymptotic decay-rate function is
Yu(6) = —y;'(6), where yu= Yy + ...+ Yy,

We can now combine propositions 8 and 9 to obtain the asymptotic decay-
rate function for the arrival time sequence in a superposition of independent renewal
processes. If U is the arrival time sequence associated with A, where A=A +...+ A4,
and A; are mutually independent renewal processes with interrenewal times distributed
as U, then ' ’ ' o '

vu0) = -y (-6),

Va(0) =ya(0)+...+y, (0),

45)
Y (0) =y (-0), 1<i<m,
vyi(0) =logEe™, 1<i<m.

This chain of reasoning closely parallels the approach to heavy-traffic limit theorems
for queues with superposition arrival processes in Iglehart and Whitt {31,32].

5. A basic queueing model

In this section, we show how the asymptotic decay-rate functions discussed
in sections 2-4 determine the asymptotic decay rates of steady-state queueing
distributions. For this purpose, we consider a relatively simple queueing model. In
particular, let /(¢) represent the total input (of work or customers) to a queue in the
time interval {0, ¢} and let O(t) represent the total potential output from the queue
in the interval {0, ¢]. In this section, we assume that the workload can be represented
in terms of the net input process

N© =10 - 0@, 120, | 6.1

In particular, we assume that-the workload at time ¢ is simply the familiar one-sided
reflection map applied to N, i.e.

W(t) = max(W(0) + N(t), N(z) — oisllfsx' N(s)}, t=z20. (5.2)

It is well known that if W(0) = 0 and the net input process N has stationary
increments with N(t) = —oo as t — oo w.p.1, then W(¢) converges in distribution as
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t — oo, a proper limit, say W; see section 6 of Borovkov [9]. We are interested in
the asymptotic relation (1.8) for W.

First, however, we point out that it is by no means automatic to have W(¢)
defined so simply in terms of the basic processes / and 0. Formula (5.2) is valid for
the queue-length process in the M/M/1 queue as in section 2 (so that theorem 10
below justifies section 2), but rarely more generally. However, this construction is
valid quite generally for the workload (or virtual waiting time) process in the
infinite-capacity single-server queue. Then /(¢) represents the sum of the service
times of all arrivals in [0, 7], and O(¢) = . For the workload process, more general
output processes may occur because the server operates in a random environment.
Such a random environment may be due to occasional service interruptions, e.g.
machine breakdowns. Then O(¢) — O(s) is still bounded above by ¢— s, a property
we use in theorem 10 below. ,

For queue-length processes, this model occurs under the “autonomous service”
assumption, see p. 235 of Borovkov [9], which means that the server keeps on
working even if no work is present. For many queue-length processes, though,
this representation serves only as a rough approximation. A key idea is that the
asymptotic decay rates evidently occur as if this model were valid. (This can be
proved in several cases, but remains to be fully proved.)

The following is a positive result in the context of this model. This is a minor
generalization of theorem 4 of Glynn and Whitt [26], which in turn follows quite
quickly from the corresponding discrete-time result in theorem 1 of [26], and
Chang [11]. This discrete-time result generalizes the classical GI/GI/1 result in
Smith [52], and on p. 269 of Asmussen [6] by replacing the independence assumption
by a condition on the logarithmic moment-generating functions. For the discrete-
time result, no upper bound on O(6) is required below Let = denote convergence
in dlsmbutlon

THEOREM 10 (CHANG [11], AND GLYNN AND WHITT {26})

Suppose that the net input process N has stationary increments and EI(1)
< EO(1) < e, Also, suppose that W(0) =0 and there is a constant M such that
0(6) <M w.p.1 for all sufﬁc1ent1y small . If there exists a function yy and
positive constants 8° and &* such that
i)  rliog Ee®Y 5 yy(8)as t — o for |0 - 0% < €,

(ii)  yy is finite in a neighborhood of 0" and dlfferentxable at 8" with yx(0") =0,
Gii) r!log Ee® ¥ < oo for all t> 0, then W(z) = W as t — o and (1.8) holds, i.e.

x‘llogP(W >x)o—0" as x— eo.

For applications, the point of theorem 10 is that the asymptotic decay rate 1
of the steady-state queueing variable W is determined by the asymptotic decay-rate
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function yy of the net input process N. In particular, 7 is the positive root of the
equation yy(0) = 0. Since yy(0) =0 and yy is convex (proposition 3), there is at
most one positive root to this equation. In theorem 10, it is significant that the input
process I and the potential output process O need not be independent. However, if
they are independent, then

WO = Vi@ +yo(-6) 53

and the key condition (ii) in theorem 10 is of the form (1.12).

We now want to apply theorem 10 to justify, at least heuristically, the queue-
length and workload decay-rate equations (1.12) and (1.15), and the auxiliary equations
(1.14) and (1.16). Moreover, we want to relate the workload decay-rate equation to
a corresponding waiting-time decay-rate equation in the single-server model.

The general idea is that these decay-rate equations can be obtained from the
net input process as described above, even though that simple model is often not
precisely correct. For the queue-length process in the multi-channel model of
section 1, the net input process (obtained by assuming that the servers work
continuously) is ¥, A;(A;t) — Z =151 (2). By virtue of the composition property
in theorem 5, the asymptotlc decay rate function of this net input process is

Ay (0) + ys(-0) = Zl Y4 (6) + Zu,wS , (5.4)
i=1 ] 1 .

just as in (1.12). Thus, assuming that the simple model applies, theorem 10 justifies
(1.12). However, such a representation is not valid in general. It is valid, however,
in the ¥G;/M/1 queue and the discrete-time YG;/D/1 queue, in which all arrivals
occur at integer multiples of the deterministic service time. This last model is a
natural candidate for ATM networks, and is in fact used by Chang [11] and
Sohraby [53,54].

More generally, though, (1.12) represents a natural conjectured generalization
of theorem 10. We conjecture that (1.12) is still valid even though the reflection
map representation in section 5 does not hold. In the next sectlon we present
additional support for (1.12).

Turning to the workload, we see that the net input process (again assuming
that the servers work continuously) is the sum of all service times:assigned to the
arrivals in [0, ] minus ¢ (assuming that the sum of the service rates is 1). In other

words, 7
N =Vyan -t t20, (5.5)

where V, is the nth service completion time in the superposition of the service processes
S(8) = X7., Sj(ujt) and A(Ar) = A(A4t) +...+ A(A,). Let yy be the asymptotlc
decay- rate function of the process V = {V nz1}. :

Note that V is the inverse process of S. Hence, we can combine theorems 5
and 7 and proposition 6 to obtain the asymptotic decay-rate functions
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yv(0) = —y5'(-0), (5.6)
N (0) = Wy.4.1(0) = Ay (~y51(0)), 6.7

which is of the same form as (1.15). Hence, if this model is valid, theorem 10
implies (1.15).
Now, doing a change of variables 8 = — ys(— ), (5.7) above becomes

Aya(w) + ys(-0) = 0, (5.8)

which is just (1.12). Hence, we have the following important result.

THEOREM 11

A root { of (1.12) exists if and only if a root 17 of (1. 15) exists. If these roots
exist, then (1.14) and (1.16) hold .

Now we consider the wamng -time sequence in a smgle server model The net
input process is now the sequence {V,— U,: n=1}, where V, is the nth service
completion time and U, is the nth arrival time ‘Let yy(0) and yy(6/A) be the
asymptotlc decay-rate functions of {V,} and {U,/A}. Then the asymptotic decay-
rate function of the net input process (again assuming the server is working continuously)

is
wv(0) + yu(-8/1) = ~y5' (-6) - yi' (-0)/1). (5.9

The waiting-time decay-rate equation thus can be written as’
~Ys(-0) = yi'(-6/4). . © (5.10)

Applying the function Ay to both sides, we see that (5.10) is equivalent to (1.15).
In other words, the asymptotic decay rates of the workload and waiting time in_a
single-server queue coincide. For further discussion, see Abate et al [2] and Glynn
and Whitt [26].

6.  Arrival processes with Markov structure_»'

‘The definition of the asymptotic decay-rate function y; in (1.10) shows how
an arrival process A contributes to the asymptotic decay rates ¢ and 7 in (1.3)—
(1.8) via the asymptotic behavior of its logarithmic moment-generating function.
(We will focus on-arrival processes, but what we:say also applies to service processes.)
For applications, it is also important to know how to compute the:-asymptotic decay-
rate function y, in terms of basic model parameters.. For renewal. processes -and
superpositions of renewal processes, we have indicated how to do the calculations
in propositions 8 and 9. We now- consider other arrival processes. - :
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A large class of arrival processes can be represented as batch Markovian
arrival processes (BMAPs). A BMAP is a convenient representation of the versatile
Markovian point process in Neuts [43,47] or N process in Ramaswami [49].
The BMAP and the BMAP/GI/1 queue were introduced and investigated by
Lucantoni [37]. A tutorial on the BMAP/G/1 queue is in Lucantoni [38]. The BMAP
is a generalization of the Markovian arrival process (MAP) introduced by Lucantoni
et al. [39] allowing batch arrivals. The MAP includes Markov modulated Poisson
processes (MMPPS), phase-type (PH) renewal processes and superpositions of these
proceses as special cases. The MMPP models changes of phase without .arrivals and
arrivals without changes of phase; the MAP models these as well as arrivals and
changes of phase occurring simultaneously. Since independent superpositions of
MAPs and BMAPs are again processes of the same kind, this is a good framework
to study the multi-channel queues introduced in section 1.

In addition to the arrival counting process A, in a BMAP there is an aulezary
phase process J, assuming values in {1,...,m}. The process (A, J) = {(A(®), J(£)) : 1 2 0}
is modeled as a continuous-time Markov cham with a specially structured infinitesimal
generator matrix 0. In particular O can be represented in block form as -

Dy Dy D, Dy
o "Dy, Dy Dy - :
A Dy D | - D
)

where A is the overall arrival rate, Dy, k>0, are m X m matrices, D, has negative
diagonal elements and nonnegative off-diagonal elements, and D = Y;_qoD; is an
irreducible infinitesimal generator. (Our formulas are somewhat different from those
in Lucantoni [37] because we factor out in A in (6.1). A transition from (i, j) to
(i + k, I) corresponds to a batch arrival of size k and a transition from auxiliary state
i to auxiliary state /. It is possible to have transitions between auxiliary states
without arrivals (nondiagonal elements of Dg) and it is possible to have arrivals
without changing the auxiliary state (diagonal elements of D, for k 2 1). An MAP
is the special case in which the matrices D, are matrices of 0’s for k> 2.

Let 7 be the steady-state probability vector associated with D, i.e. determined
by nD =0 and me = 1, where e is a vector of 1’s and 0 is a vector of 0°s (which
should be clear from the context) A fundamental role is played by the BMAP matrix
generatzng Junction

D@ = 3 Dt - (62)

k=0

We assume that D(z) has a radius of convergence z*> 1. When D; is a matrix of
0’s for all & 2 ky, as is the case for the ordinary MAP (then kg =2), z* = oo, Having
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z*> 1 -implies that ‘D(z) can be regarded as an analytic function of a complex
variable z for |z| < z*. The kth derivative D®)(z) is then finite and analytic for all
k and |z{< z* as well.

Specifying the overall arrival rate A separately in (6.1) means that

z( S ka]e =aDW(e = 1. (6.3)
k=1

As in Lucantoni [37], let the marginal conditional distribution of (A(z), J(?))
be given by

PBj(n,1)y = P(A() = m, J(9) = j|A0) =0, J(0) = i) (6.4)
and let _ -
Pz, = Y P(n,pz" (6.5)

n=0 ‘

be the associated counting process matrix generating function, which is 'given
explicitly by
P'(z,)=eP®, 120, (6.6)

see eq. (8) of ref. [37].
Given any initial vector 7 on the phase space, the counting process A(z) has
probability distribution

PBRIN®=m =Y iﬁ,-n-j(n, 1) = &P(n, e 6.7)
i=1 j=1 v

and moment generating function
| EpzA® = ZP*(zyf)e = % exp(D(2)t) e. | (6.8)

Hence, the asymptotic decay-rate function y, of the BMAP A with initial phase
distribution % can be expressed as .

Ya(©) = lim ' log ﬁe’_’<°"'>'e. B (6.9)

 Theorem 1 of Choudhury and Whitt [16] shows that the asymptotic decay-
rate function ¥ can be characterized in terms of the Perron—Frobenius eigenvalue
of the matrix D(z), say pf (D(z)). This Perron—Frobenius eigenvalue is well defined
for 0 < z < z*; see chapter 1 and section 3 of Seneta [51], and section 3 of Abate
et al. [3]. :

THEOREM 12 (CHOUDHURY AND WHITT [16])

- For any @ with @<logz* and any initial probability vector 7,
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ya(0) = pf(D(e®)). (6.10)

As indicated at the beginning of this section, many processes are special
cases of BMAPs; see Lucantoni [37,38], and Neuts [47] for background. For the
special case of an MAP, D(z) = Dy + Dyz, so that (6.10) becomes

Ya(6) = pf(Dy + Dyef). (6.11)

An MMPP is a special case of an MAP with Dy=M — A and D; = A, where M is
the infinitesimal generator matrix of the Markovian environment provess and A is

the associated diagonal matrix of Poisson arrival rates. Hence, for an MMPP
characterized by the pair (M, A), (6.11) becomes

va(0) = pf(M — A+ Aef). (6.12)

A PH renewal process with representation (¢, T) as in chapter 2 of Neuts [44] is
a special case of an MAP with Dy =T and D, = (~Te)a. Hence, for a PH renewal
process, (6.11) becomes

Ya(0) = pf(T + (~Te)ae?). (6.13)

So far in this section, we have characterized the asymptotic decay-rate function
of a BMAP. The BMAPs are also important because they provide a specific
structure in which we can rigorously justify the assertions in section 1, in particular,
the decay rate equations (1.12) and (1.15), and the auxiliary equations (1.14) and
(1.16). Under regularity conditions, the limits (1.3) and (1.4) are shown to hold in
BMAP/GJ/1 queues and MAP/MSP/1 queues in Abate et al. [3].

The structure of a BMAP that is a superposition of independent BMAPs is
easily treated using the Kronecker sum @®; e.g. see p.243 of Neuts [46]. The
following is theorem 3 of Choudhury and Whitt [16].

THEOREM 13 (CHOUDHURY AND WHITT [16})

Consider n independent BMAPs characterized by pairs (A4;(), Ji(t)) with
arrival rates A;, m; X m; matrices Dy, k=0, 1 <i<n, matrix generating functions
D;(z), and asymptotic decay-rate functions Y. Then the pair (A(z), J(2)), where

A =A[(0) +. ..+ A1) and J(2) = (J3(8), . . . , J()) determines another BMAP with

arrival rate A=A, +...+ 4,, associated m x m matrices D, where m = []7_,;m;
and

ADg = 11Dy @...@ ADy, k20, | (6.14)

and matrix generating function

D(z) = (—’-}) D) ®...0 (’17) D), (615
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which has Perron—Frobenius eigenvalue

A
Pf(D(Z))'- 2 pf(D1(Z))+ .t T"pf(Dn(Z))- (6.16)
The single-channel asymptotic decay-rate function ¥, is thus

Aya(0) = 41y (0) + ... + A, (0). 6.17)

Proof

First, (6.14) and (6.15) involve the standard construction. Then (6.16) holds
because pf(M, ® M;) = pf(M,) + pf(M,) for matrices for which pf is well defined.
Finally, (6. 17) then follows from theorem 12. O

The limits (1.3) and (1.4) for BMAP/GI/1 queues established in [3] requires
regularity conditions. The weaker limits (1.7) and (1.8) hold for this model in
greater generality by virtue of Glynn and Whitt [26] and theorem 1 of Choudhury
and Whitt [16]. The limits in Glynn and Whitt [26] show that even the BMAP
structure is not needed.

So far, we have not yet said anything about rigorous support for (1.12)—(1.16)
for multi-server queues, and indeed much here remains only a conjecture. However,
strong positive support for (1.12)-(1.16) exists in the results for GI/PH/m
queues with heterogeneous servers established by Takahashi [57], and Neuts and
Takahashi [48]. The single-server MAP/MSP/1 results in [3] extend to the multi-
server MAP/MSP/m model by the same arguments used for treating PH/PH/m or
GI/PH/m models; see p. 206 of Neuts [44].

An alternative general framework for arrival processes instead of BMAP:S is
Markov renewal processes (MRPS) or semi-Markov processes (SMPs) These processes
are characterized by an SMP transition matrix F(x), with Fi;(x) being the probability
starting with an arrival in state i, the time until the next arrival will be less than
or equal to x and the next state will be j. The arrival-time asymptotic decay-rate
function yy(@) = -y, (- ) is given by log pf(F (—9)), where pf is the Perron—
Frobenius eigenvalue and F(s) is the matrix Laplace—Stieltjes transform of F, i.e.,

Ei(s) = J e dF;(x), (6.18)
o |

see p. 237 of Neuts [46] and the appendix of Neuts [47]. Note that an ordinary
renewal process is a special case of a one-dimensional MRP; then pf (F(-0) =F (-0).

In fact, as pointed out by Lucantoni and Neuts [40], a (B)MAP can be
represented as a special case of a (batch) Markov renewal process. A batch Markov
renewal process is specified by a sequence {F.(x) : k= 1} of semi-Markov matrices
with the (i, j)the element of F(x) representing the probability that the time until the
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next batch arrival is less than or equal to x, that the size of the batch is &, and that
the phase just after the arrival is j, given that the phase just after the previous batch
arrival is i. The BMAP is represented as a batch Markov renewal process via

X
F(x) = JeD“‘D,‘ du = (1 - ePo*) (~DghH)Dy. (6.19)
0
It is instructive to look at MMPPs because they are special cases of both

MRPs and BMAPs. In the framework of MRPs, an MMPP has SMP transition

matrix .

F(x) = fekp[(M —Aul]Adu, x20, (6.20)
0

where M is the infinitesimal generator matrix of the Markovian environment process
and A is the associated diagonal matrix of Poisson arrival rates. In this case,

F(s)=(sI =M + A)'A, (6.21)
so that

vy (0) = log pf((—0I — M + A)1A). 6.22)

We can now independently derive the asymptotic decay-rate function y; for
an MMPP given in (6.12) by applying (6.22) and the inverse relation in theorem 7.

PROPOSITION 14

From the MRP formula (6.22) and theorem 7, it follows that for MMPPs
(6.12) holds, i.e., ‘

Ya(0) = pf((e®? —~DA + M).

Proof
Given (6.%2), let x be a right (positive, real, unique up to constant multiple)
eigenvector of F(-0) corresponding to e = e¥?®_ Then 0 = yg'(—y) = —y4(y)
and '
ex = (Y — M + A) 'Ax,
so that

ya()x = ((¢” — DA + M)x. B ' (6.23)

Finally, we apply section 2.3 of Seneta {51] to confirm that (6.23) implies that
() is the Perron—Frobenius eigenvalue associated with the matrix (e” — 1)A + M.
(Its off-diagonal elements are nonnegative.) O
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7. Test queues and relations between decay rates

It is significant that the effect of one arrival or service process on the asymptotic
decay rates o and 7 in a multi-channel queue depends on this process only via its
asymptotic decay-rate function. Thus, the individual arrival and service processes
can be analyzed separately. Indeed, an alternative way to define and/or characterize
the asymptotic decay-rate functions is to use an indirect operational approach,
paralleling the definition of the normalized mean workload in Fendick and
Whitt [24]. ' ‘

In particular, we can define the asymptotic decay-rate function y, of an
arrival process A in terms of the asymptotic decay rate that actually prevails in a
convenient test queue with arrival process A. A natural test queue for this purpose
is a single-server queue with deterministic service times having mean 1. Then we
let n7(A) be the workload asymptotic decay rate in (1.4) that actually prevails in a
G/D/1 queue with arrival process {A(At) :t=0}. To obtain a full function, we
consider this decay rate n(A) as a function of the arrival rate A, where the arrival
rate varies over the full range 0 < A < 1. Since the service times are deterministic
with mean 1, the service-time asymptotic decay-rate function is y5(6) = 6. Hence,
by (1.15), n;(A) is determined by the equation

ApamA) =n(d), 0<A<l 1.1

Given the function n(4), 0 < A< 1, we can define y4(0) as the unique increasing
function satisfying (7.1).
Equivalently, if o(A4) is the queue-length decay-rate in (1.3), we can apply
(1.12) to obtain
Ay, (—logo(A)) = —-logo(A), 0< A<l (1.2)

Equations (7.1) and (7.2) are in fact equivalent, because for deterministic service
time

nA) = —ys(=4(A) = {(A) = —log 6(A) (7.3)

by (1.14). _

- The function {o(A) : 0 < A< 1} in (7.2) is the caudal characteristic curve in
Neuts [46], and the function {n(4):0< A< 1} in (7.1) and (7.3) is the delay
analog. The asymptotic decay-rate function y; is obtained as a function of these
curves in a test queue. :

‘ Similarly, we can define the asymptotic decay-rate function y; in terms of
the asymptotic decay rate 77(A) that actually prevails in a D/G/1 queue when the
service process is S, as a function of the arrival rate A. Setting Ay, (6) = A0 in
(1.15), we obtain the.equation ; )

AR =n(A), 0<A<l, (7.4)
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which is equivalent to
vs(-n(A)/A) =-n(A), 0<A<l (7.5)

Starting with (1.12), we also obtain (7.5). The asymptotic decay-rate ys is the
unique increasing function satisfying (7.5) for 0< A< 1.

Note that eq. (7.1) is similar to, but not identical to, eq. (7.5). Recall that the
congestion is in general not the same in a D/G/1 with service process S and
a G/D/1 queue with arrival process S and common arrival and service rates.

We have used a D process to create test queues. We could also use other
processes for this purpose. For example, if the arrival or service process is Poisson,
then the asymptotic decay-rate function is as in (2.1).

From (1.14), we see that the asymptotic decay-rate functions Ay, and g
each can be thought of as functions mapping potential queue-length decay rates {
into workload decay rates 7. Similarly, by (1.16) the inverse functions —wg’ and
Vi 1 (./A) map the other way. Each asymptotic decay-rate function determines a
relationship between o and 77. Combining arrival and service asymptotic decay-rate
functions Ay, and s then determines o(A4) and 1(A) themselves. Thus, we see that
two relations between the queue length and the workload asymptotic decay rates
determine the decay rates themselves. This seems to be closely related to H = AG -
(the extension of L = AW); see {62]. Indeed, it may be a consequence of the distributional
version of L = AW; see section 8.4 of [62]. From that perspective, we would want
to replace the workload by thé waiting time, which we should be able to do because
they should have the same asymptotic decay rates, as indicated at the end of
section 5; also see [2].

8. Heavy-traffic asymptotic expansions

Due to the convexity of the asymptotic decay-raie functions, the decayfrate
equations (1.12) and (1.15) are often not difficult to solve. Nevertheless, it is useful
to consider approximate solutions obtained by approximating the asymptotic decay-
rate functions y/A‘.(O) in (1.10) and ys.(6) in (1.11) by Taylor series expansions
about @= 0. As shown in Abate et al. [f], Abate and Whitt [4], and Choudhury and
Whitt [16], this analysis leads to heavy-traffic approximations for the asymptotic
decay rates ¢ and 717 in (1.3)-(1.8); i.e. we obtain

_ 2 _ k
n(p)=cx(1—p)+6292—m+.‘..+ckg%--+... @.1)

and
: ) Nk
o)™ = di(1 - p)+ ds “—29)— totd '(l—k,—p)—’ 8.2)

where p = A is the traffic intensity. For example, for the BMAP/GI/1 queue; the first
seven values of the coefficients ¢, and-d; in (8.1) and (8.2) are given in Choudhury
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and Whitt [16]. (These expansions are in fact obtained from the logarithmic generating
functions log Ez*®), instead of the logarithmic moment generating function log Ee®4)
used here.)

This analysis is important because it reveals which properties of the processes
the asymptotic decay rates o and 7 primarily depend upon. In particular, for general
stationary point processes, the coefficients ¢, and d; in (8.1) and (8.2) depend on
the first k + 1 asymptotic cumulants of the processes A;, 1 <i<nand §;, 1<j<m.
The first terms in (8.1) and (8.2) coincide with the familiar heavy-traffic approximations,
obtained by letting p — 1. It is significant that the order of the two limits x — oo
and p — 1 does not matter. In other words, when p is not too small, the small-tail
asymptotic approximations considered here tend to be close to heavy-traffic
approximations. This simple heavy-traffic approximation is »

n=0"1-1=q1-p), (8.3)
where 5 .
0= w575, (84
! AL'% + c§ ( )
with
2 i, &=y i, (8.5)
i=1 j=1
. Var A . VarS;(9)
. 2_ =1 —_—tn 2_ = __._j— (8.
¢4 = lim 2t and cg; ’ILnL v (8.6)

In (8.5), cA is the limiting value of the index of dispersion for counts (IDC) of A;
as t — o and lc,, is the asymptotic variance of A;; e.g. see Iglehart and Whitt
[31,32], Sriram and Whitt [55], Fendick et al. [22,23], and Fendick and Whitt [24].
These simple one-term approximations have been independently proposed by
Sohraby [53,54].

This heavy-traffic analysis also suggests how the congestion mlght be
characterized without asymptotics. Paralleling the use of the IDC in [24], we might
characterize an arrival (or service) process A by first £ cumulants of A(f) as
functions of time.

9. How many servers are needed?

We have focused on the question: How many arrival processes can a queue
support, with given service process and given congestion percentile criterion? By
essentially the same reasoning, we can instead consider the arrival process as fixed
and ask the question: How many servers of different kinds are needed, w1th given
congestion percentile criterion?

_ For this purpose, suppose that a multi-channel arrival process with asymptotic
decay-rate function Ay, is given. Also, suppose that an upper bound o* has been
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placed on the queue-length asymptotic decay rate ¢. Paralleling (1.17), we conclude

that the m service processes Sj,...,S, with asympiotic decay-rate functions
1 Ys,s . - - Bm s, are feasible if and only if
m
— 2 wiys, (log 6°) 2 Ayu(-log 6*). 9.1)

i=1

We could call Ay,(-log c®) the overall service requirement and y; ys,(log 6*) the
effective service units provided by server i. The feasibility criterion (9.1) says that
the sum of the effective service units provided must be at least the overall service
requirement.

10. Numerical methods

The discussion so far has been focused on how the asymptotic decay rates
o and 7 in (1.3) and (1.4) depend on the model structure (the arrival and service
processes) and on the basic model data (e.g. the interrenewal-time distributions in
the renewal process case). For the purpose of actually computing the asymptotic
parameters-in (1.3) and (1.4), however, there are simple procedures that do not rely
on these results.

First, given any method for calculating the tail probabilities (including estimation
from data), we can estimate the asymptotic parameters by taking logarithms. For
example, the parameters 7 and « in (1.4) are the slope and intercept for the limiting
linear form of log P(W > x). These parameters can be estimated by linear regression.

Second, given an explicit expression for the transform of the steady-state
distribution of interest, we can perform elementary asymptotic analysis to determine
the asymptotic parameters. For example, suppose that we are given the Laplace—
Stieltjes transform Ee~*¥ of the steady-state workload W. Then the associated Laplace
transform of P(W > x) is

oo

N  a—SW ’
We(s) = f e P(W > x)dx = l-—b;e—— o

0

We can find the asymptotic decay rate 77 and the asymptotic constant « in (1.4) by
finding the right-most singularity of W¢(s) and often by exploiting the final-value
theorem for Laplace transforms:

a = lim ePPW > x)= lim (s + MWe(s + 1), (10.2)
xX— o0 s—-n ‘

for which we assume that the limit (1.4) is valid, which means that the singularity
is a simple pole; see Abate et al. [3]. This assumption is supported by extensive
experience showing that (1.4) indeed is typically valid. (There are exceptions,
however; e.g. see example 5 of [1].)
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If we can represent We(s) as N(s)/D(s), where the singularity is a root of
D(s) =0, then we can also express « analytically as

a=NCEn/D'(-n), (10.3)

where D’ is the derivative of D.

Finally, we mention that Choudhury and Lucantoni [13] have developed
methods for numerically calculating the asymptotic parameters in (1.3) and (1.4)
based on calculating higher-order moments from moment generating functions.

11. Effective bandwidths for a mean-workload criterion

In this section, we show how the general effective bandwidth procedure
based on (1.2) can be applied with the mean steady-state workload. As before, we
let the service rate be fixed at 1. Of course, as an approximation, we can regard
EW = 1/n for n in (1.4), so that the mean workload and the reciprocal of the
asymptotic decay rate can serve as rough approximations for each other. Moreover,
in [1] the product nEW is proposed as a rough approximation for the asymptotic
constant ¢« in (1.4), so. that we can use approximations for EW to obtain a full
approximation based on (1.4). However, here we consider EW directly.

Heavy-traffic approximations for the mean workload in multi-channel queues
follow from Iglehart and Whitt [31,32], and Fendick et al. [22,23], but experience
has shown that the quality of these heavy-traffic approximations deteriorates significantly
with a large number of arrival or service channels. (Interestingly, a similar phenomenon
can occur with the limits (1.3) and (1.4); see Choudhury et al. [14].) Indeed, different
asymptotics then come into play, in which the number of channels becomes large
as the traffic intensity approaches 1; see Whitt [61]. Hence, in*Sriram and Whitt
[55], Heffes and Lucantoni [29], and Fendick and Whitt [24], refined approximations
for the mean workload in YG;/G/1 queues were developed, based on indices of
dispersion (variance-time curves), and these could be considered here. In the context
of common deteministic service times of primary concem here, the index of dispersion
for work (IDW) in [24] reduces to the index of dispersion for counts (IDC), defined
by '

‘Var A;(?)
EA® ’

where Var is the variance. Indeed, with i.i.d. service times that are independent of
the arrival process, and ‘that have squared coefficient of variation cf, the IDW is
L(t) = I(t) + c%; see eq. (59) of ref. [24].

The mean workload in a ¥G;/D/1 queue can be written as

L) = e20, auy

0] | o
EW = o0 - (112
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where c,z(l) is called the normalized mean workload. As discussed in [24], it reflects -
the variability contribution of the input to EW.

A main theme of [23] and [24] is that the normalized mean workload cf(l),
and thus EW itself, can be approx1mated reasonably well based on the IDW or, in
our case, the IDC, which in turn can be estimated from data or calculated analytically
from models.

In contrast to the multi-class M/G/1 queue considered -in Kelly [34] and
Fendick et al. [22], in general the normalized mean workload c2(4) can vary significantly
as a function of A, which limits the possibilities for effective bandwidths. Moreover,

c2(A) need not be an increasing function of A. (A simple example is the Ey/M/1
queue in fig. 1 of [24].). Hence, even though we can apply (11.2) to express the

constraint EW £-C as
A(1+ £-2<C—'”) <1 (11.3)

as in eq. (3.7) of Kelly [34], we cannot do as much with it, because czz(l) is not
necessarily increasing.

However, a simple way to obtain a sufficient condition (rather than a necessary
and sufficient condition) for feasibility is to work with the maximal normalized
mean workload, which we define as

&QA)y= sup cZu), (11.4)
AoSu<i

where Aq is some minimal traffic intensity that we are certain the system will not be
operating below. We include A4 because there often is a decrease in c,z(l) near 0.
However, the important point is the upper limit A in (11.4). By considering the
supremum up to A in (11.4), instead of over [0, 1], we succeed in avoiding known
common steep increases in cz(l) in the neighborhood of l— 1, as shown for
model 2'in fig. 2 of ref. [24].

Paralleling eq. (3.7) of Kelly [34], we can obtain a sufﬁment condition (rather
than a necessary and sufficient condition) for feasibility using (1.2) with effective

bandwidths .
' 2
0(C) = A{z + C—((:’Q) 11.5)

and the constraint Za <1.

It is appropriate to point out a difference between our setting and that of
Kelly [34]. Here, we are considering the YG;/D/1 model with common fixed service
times having mean 1. In contrast, in-[34] the arrivals bring ‘in their ‘own work
requirements. This case is treated by simply changing A; above to p; = 4;7; above,
where 7;is'the mean service requirement for each class-i customer. This is equivalent
to-working with IDW instead of the IDC. Note that with this interpretation, (11.5)

-
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reduces to eq. (3.7) of ref. [34] in this case of the multiclass M/G/1 model considered
there. (That example is also discussed in [22].)

To apply (11.4) and (11.5), we need a formula for c,"(l). For this, we can
apply the IDC, which itself can be estimated from data or calculated analytically for
models. As in eq. (56) of ref. [24], suppose that each IDC is based on scaling giving
it rate 1. If the component processes actually have rate A; with YA; = A, then for.
superpositions of independent processes, :

Ic(A_'t) = 2 (}1‘_) 1 (A1) (11-6)

i=1

Notice that we have linearity in (11.6), as in (1.2) and (1.12), subject to appropriate
time scaling. _

The fundamental problem in developing the approximation is relating the
time ¢ in I,(A#) to the traffic intensity A in c2(A). One simple approximation considered
in [24], which was motivated by the concept of relaxation time, is

cH(A) = I(«(A)), (W)
where A=)
t(A) = 2(1—‘:157 (11.8)

see eq. (14) of ref. [24]. Formulas (11.6)-(11.8) could be used to compute the mean
workload associated with multiple sources. (Other approximations are also discussed
in [23] and [24].) _

Even though c2(1) need not be increasing in A, it is easy to show by a
sample-path argument that the steady-state mean and, in fact, the entire steady-state
distribution increases as additional sources aré added. Indeed, to see that the workload
at any time (starting empty) increases with the addition of a new source, apply egs.
(21)-(24) of ref. [24] and note that all increments of the net input process necessarily
increase. : ' -
Thus, we can apply (11.6)—(11.8) with a criterion of mean workload to
determine whether or not to admit each successive source. Because of the monotonicity,
when sources leave, feasibility will be maintained.

12. History

The emerging high-speed networks exploiting ATM technology have stimulated
an enormous literature. So many people have written about topics related to:the
present paper that it is difficult to: properly trace the development of key ideas.
Nevertheless, it scems that some history might be helpful, even if it is only one
‘person’s view. As:indicated at the outset, Roberts [50] gives a broad overview.

»
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My interest in queues with superposition arrival processes goes back to the
heavy-traffic studies in Iglehart and Whitt [31,32]. On the surface, the analysis here-
may seem quite different, but there are many similarities in the two kinds of
asymptotic analysis, some of which we pointed out in section 8. In particular, the
linearity in (1.13) also occurs in the heavy-traffic formulas in (8.5). Motivated by
applications to statistical multiplexing, I worked on this problem further in Sriram
and Whitt [55], Fendick and Whitt [24], Fendick et al. [22,23], and Berger and
Whitt [8].

My interest in effectwe bandwidths stems from discussions with Richard
Gibbens in 1990. He suggested that it was an interesting idea, but I was skeptical.
At that time, I wrote some (largely negative) notes about effective bandwidths,
which were evidently the basis for the acknowledgement in Kelly [34]. At that time,
I did not appreciate the power of the reasoning using (1.2). My interest in effective
bandwidths was rekindled by the papers by Kelly [34], and Gibbens and Hunt [25].
A seminal paper in the whole area was Hui [30]. Another key paper that appeared
concurrently with [25] and [34] is Guerin et al. [28].

From these papers, the power of (1.2) and the relevance of asymptotic decay
rates and logarithmic moment generating functions are evident, but it is no doubt
fair to say that a general theory of asymptotic decay rates for multiple sources was
missing. At that time, I realized that a substantial basis for such a theory of
asymptotic decay rates already existed in Marcel Neuts’ work on asymptotic
decay rates [44—48], especially his fundamental paper on the caudal characteristic
curve [46]. A contribution here is to point out the importance of Neuts’ work for
the effective bandwidth problem. Variants of the general decay-rate equation (1.12)
were obtained, evidently for the first time, by Neuts [46]. In particular, theorems
4 and 5 there focus on multiple channels, and yield versions of (1.12). The effective
bandwidth analysis here in (1.17) follows easily from (1.2) and (1.12).

Independently of effective bandwidths, in 1992 I began studying approximations
for steady-state tail probabilities in queues with Joseph Abate and Gagan L. Choudhury.
At first, we focused on the GI/GI/1 queue, but we soon considered more general
models. With the help of David Lucantoni, we began looking at tail probabilities
in the BMAP/GI/1 and GI/PH/1 queues [1-4, 14-16]. A significant component of
this work was developing algorithms for computing the steady-state distributions,
but we were also. interested in developing and evaluating approximations based on
asymptotics, as in (1.3) and (1.4). The power of these asymptotic approximations
is pointed out by Tijms [58]. There is a substantial history in risk theory, .as is
pointed out on p. 269 of Asmussen [6]. Recent related work is contained in Van
Ommeren [59], Asmussen and Perry [7], and references in these sources. A significant
feature of [1], [2], [4] and [16] is the development of effective approximations for
the asymptotic parameters in (1.3) and (1.4).

While working on these asymptotics, it occurred to me that what we were
learning ought to be relevant for the effective bandwidth problem. In particular, as
indicated in section 6, the BMAP/GI/1 queue is a natural model for studying the
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superposition arrival processes arising in the effective bandwidth problem, because
superpositions of independent BMAPs are again BMAPs. Hence, I wrote the first
version of this paper. However, beyond pointing out the relevance of known theory
about asymptotic decay rates, such as in {46}, the first version of this paper was
largely speculative, certainly much more so than the present version. This final
version incorporates many things I have learned since then. In particular, my completed
papers [3], [16], [26] and [27] were significantly motivated by the desire 1o substantiate
conjectures in the first version of this paper. Thé main ideas in this paper were
already in the first version, but theoretical justification has been added.

I had the opportunity to hear Chang talk about his work [11] at Performance’92
in Newport. However, -at that time his focus was primarily on ‘bounds (the analog
of theorem 10 here, theorem 3.9(ii) of [11], appears only in the 1993 revision).
Hence, T did not at first realize the importance of his work for asymptotics. It is
significant that he develops the general approach using logarithmic moment generating
functions. Chang’s minimum envelope rate (MER) is a traffic characterization essentially
equivalent to the asymptotic decay-rate functions here. Thus, for the effective bandwidth
problem, Chang [11] was evidently the first to develop a general framework like
that proposed here. Like the first version of this paper, the first version of [11] did
not make contact with general large deviation theory, such as the Girmer—Ellis
theorem. However, the final version of [11] and Chang et al. [12] do. An additional
paper:is by Kesidis et al. [35]. ‘

I learned about the relevance of the Gértner—Ellis theorem and general large
deviations theory from Peter Glynn, who helped me to obtain the substantial supporting
theory in [26,27]. As indicated above, [26] overlaps with Chang [11], and Chang
et al. [12].

At the same time I was writing the first version of this paper, Anwar Elwalid
and Debasis Mitra were writing their effective bandwidth paper [19]. Anwar Elwalid
and Debasis Mitra evidently had obtained their effective bandwidth tesults in [19,20]
quite a bit earlier; see the citation to [20] in [21]. However, I did not see [19] until
after I completed the first version of this paper, and I did not see [20] until it was
issues in 1993. Even though Anwar Elwalid and Debasis Mitra are my colleagues,
their work came largely as a surprise to me. I knew that they were thinking about
the effective bandwidth problem, but from their previous ‘work I had thought they
were primarily focusing on full spectral expansions. Elwalid ‘and Mitra [19]
independently arrive at essentially the same solution as in (1.17) for a special class
of Markov-modulated fluid models, and provide strong theoretical support. Their
essential reasoning in [19] and [20] follows from the seminal paper by Anick et al.
[S]. ‘Additional contributions appear in Mitra [41], Elwalid et al. [21], hnd'Steni and
Elwalid [56]. Formula (7.24) of ref. [20] is essentially the same as’ decay-rate
equation (1.12) here for the MMPP/MMPP/m model, which is a special case of the
MAP/MSP/m model discussed here at the end of section 6. In addition to addressmg
the effective- bandwidth problem this work is 1mportant because lt treats the full
spectral expansion.
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One of the main ideas in my work with Joseph Abate and Gagan Choudhury
[1,4,16] is developing heavy-traffic asymptotic expansions for the asymptotic decay
rates, as discussed here in section 8. We later learned that Sohraby [53,54] had
similar ideas, although he considers only the first term, as in Neuts [46].

More recently, with our algorithm for the BMAP/GI/1 queue, Gagan Choudhury,
David Lucantoni and I have been investigating the quality of the effective bandwidth
approximation. As indicated in section 1, we found that the quality of the approxi-
mation can deteriorate dramatically as the number of sources increases, even when
the target tail probability is very small, such as 10~ [14]. In a simulation study, our
colleague Kiran:Rege reached a similar conclusion (but for larger blocking probabilities,
e.g. 107%). The effective bandwidth approach to admission control may nevertheless
be effective, but these numerical results indicate that some caution is needed,
because there can be serious difficulties in some parameter regions. The difficulties
we discovered with the effective bandwidth approximation are consistent with previous
difficulties encountered with queues having superposition arrival processes, i.e. in
models of statistical multiplexing; see Sriram and Whitt [55], Fendick and Whitt
[24], Fendick et al. [22,23], and Berger and Whitt [8].

As shown in Chang et al. [12], the asymptotlc decay rates can be very
effective for speeding up simulations to estimate tail probabilities. This shows that
the effective bandwidth theory may have important applications beyond those originally
intended.
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