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This paper proposes an indirect approach to estimate average production intervals (the length of time between starting
and finishing work on each product) using work-in-process inventory measurements. The idea is to apply a modified
version of Little’s law (L = AW) from queueing theory to cope with stochastic processes that are not directly observable.
When the actual amount of completed product to be produced from the current work-in-process is not known, we
suggest working with an appropriate expected amount of completed product associated with current work-in-process,
taking care to properly account for such features as partial yields, changing lot sizes and reconstituted lots. This indirect
estimation procedure can be applied to computer simulation as well as direct system measurement. The approach also
can be used to calculate expected values of steady-state random variables in mathematical models.

To manage manufacturing systems, it is usually
important to know how long it takes to manu-
facture each product. We call this time the production
interval; it is sometimes called the throughput time or
the cycle time, and in general queueing terminology,
it is called the sojourn time. The production interval
includes all the processing (service) time plus all the
waiting time (the time spent while resources to carry
out the next processing step are unavailable). In man-
ufacturing, the total processing time is often called the
butt-to-butt time; that is, what the production interval
would be if all the processing steps could be carried
out successively without any delays. Unfortunately,
delays often constitute a significant portion of the
production interval. Consequently, queueing theory
can help to analyze manufacturing systems. In this
paper we apply queueing theory to help estimate
average production intervals. The indirect estimation
methods proposed here are intended to help analyze
actual production systems, i.e., to help analyze data
from factories, but the indirect estimation methods
can also be applied to computer simulation and
mathematical models, and to other problems besides
manufacturing.

When Are Production Intervals important?

Production intervals tend to be less important in high
volume production, where each item need not be
identified and demand can be satisfied with inventory.
Production intervals are more important in custom
manufacturing, where special products are produced
in response to individual orders. The production inter-
vals determine how long it takes to meet the orders,
i.e., the lead-times in inventory analysis. Production
intervals are especially important in the development
of complex products, such as large electronic switching
systems, which are composed of many custom com-
ponents and subcomponents. The production inter-
vals are also important for production scheduling.
With the trend toward more flexible manufacturing,
production intervals will evidently become more
important.

Defining Production Intervals

There are difficulties defining what we mean by a
production interval in a specific manufacturing set-
ting. First, we must identify the scope of the production
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system. The scope might include one factory, one line
in a factory or even one portion of a line, e.g., the test
area or the final assembly area. On the other hand,
the scope might include more than one factory
because the production intervals within one factory
can be dominated by the raw material delays. For
example, electronic switching systems require circuit
packs that are produced at other factories; in turn, the
circuit packs require integrated circuits and other
components produced at other factories. Experience
indicates that delays caused by component shortages
often contribute significantly to production intervals.

Furthermore, it is not always clear what it means to
start work on a product. For example, a product may
be assembled from more than one part, and work may
start on these different parts at different times. Also,
products may not maintain their identity from start
to finish. As production proceeds, the lot sizes often
change. At some stages lots are combined; at other
stages lots are split. There is also the issue of yield;
i.e., some of the product may be scrapped before
completion. Finally, some material may require
rework and different partial lots may be combined to
produce reconstituted lots.

We do not try to resolve all these issues here. In
fact, it is evident that these issues must be addressed
in each application. However, the indirect estimation
methods we propose can be applied very broadly, e.g.,
they are not limited to one specific scope of the
production system or one specific interpretation of
what it means to start work on a product. We will
present a concrete example to fix these ideas.

A Statistical Problem: Time Stamping and Simple
Averages

Production intervals typically fluctuate due to factors
such as changes in the product mix, the labor force,
machine availability and yields, so that it is necessary
to address the statistical problem of summarizing
somewhat diverse production interval data. In this
paper we are concerned with estimating average pro-
duction intervals.

The standard direct approach is to time stamp some
or all of each product at the start and finish. For each
product, this yields a sequence of observed production
intervals {I,: k = 1}. We then compute the average
production interval for n observations in the usual
wayasI,=n"' 3t I,.

Because of the fluctuations, it is usually appropriate
to view this average production interval T, as an
estimate of an unknown quantity obtained via a sta-
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tistical experiment. Consequently, it is usually appro-
priate to apply statistical techniques to determine the
precision of this estimate; e.g., to estimate confidence
intervals. However, elementary methods to obtain
confidence intervals based on independent observa-
tions are rarely applicable because the successive
production interval observations usually are highly
dependent. The problem caused by the dependence of
successive observations and the cost of extensive time
stamping can be alleviated by only occasionally time
stamping products. This obviously reduces the num-
ber of observations, and so, reduces the statistical
precision of the estimate based on data over a given
time period. These are the same statistical issues that
arise in the analysis of simulation output; see Bratley,
Fox and Schrage (1983) and Law (1983).

An Alternate Indirect Estimation Method

Time stamping is often inconvenient and costly. We
must record when each product starts and finishes. In
factories, this typically requires special equipment
and/or special operator actions. With highly sophisti-
cated computer-controlled production systems such
information may be readily available, e.g., Dunietz et
al. (1986), but with less sophisticated systems, time
stamping may be difficult. Even when time stamping
is easy to do, it is helpful to have another method to
compute average production intervals to serve as an
additional consistency check.

Time stamping is also achieved with simulation, but
extensive time stamping can easily violate limits on
available memory on a small computer. Long runs
may fail to produce any useful results because memory
limits are eventually violated, and cause the program
to abort.

The purpose of this paper is to show how to estimate
average production intervals via an indirect method
based on measurements of work-in-process inventory
(WIP). The idea is to apply a modified version of
Little’s law, L = AW, from queueing theory; see Little
(1961), Stidham (1974) and Section 11.3 of Heyman
and Sobel (1982).

However, the indirect estimation must be done with
care because there are complications. In particular, we
want to properly account for such factors as partial
yields (defective product that is discarded), rework
and changing lot sizes. For example, there may be a
substantial amount of defective product that is dis-
carded relatively early in the production process. We
do not want to underestimate the average production
interval of good product by counting the short times
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spent in the system by defective product. In this paper,
we are concerned with estimating the average produc-
tion interval for good product. To illustrate, we give an
example motivated by experience with integrated cir-
cuit manufacturing; see Burman et al. (1986).

Basic Example

Consider a production facility with five workstations
where a single product (whittjits) is produced. The
standard sequence of workstations visited by each unit
is (1, 2, 3, 4, 2, 3, 5), but exceptions exist because of
partial yields and rework. (In integrated circuit man-
ufacturing, a thin silicon wafer is transformed into an
integrated circuit using photolithography. Several lay-
ers are superimposed on the wafer, requiring basic
operations to be repeated, so that the product typically
visits the same workstation several times. In the basic
sequence of our example some stations are visited
twice.) A production flow and queueing diagram for
this example appears in Figure 1.

New units enter the system before station 1 in lots
of size 5 at a rate of 10 lots per hour. The lots go to a
machine at station 1, where individual units are pro-
cessed one at a time. Units from station 1 go next to
station 2 in lots of size 4, where they are processed in
batches of 20 units. Processing does not begin at
station 2 until 20 units are available. After the batch
of 20 units is processed, it is moved to a buffer. From
this buffer, units are transported in lots of size 5 to
station 3.

Before describing the rest of the operations, we point
out that, in general, the units can be in one of three
places at each station: waiting to be processed, being
processed, or waiting after being processed. Hence, in
Figure 1 there are at least two buffers at each station.
(There are three buffers at station 3.) The essential
point is that we should be careful to count each unit

DEFECTIVE
PRODUCT

EXTERNAL
PRODUCT STARTS
10 LOT8/Mr
50 UNITS/hr

12 LOTS/hr
43 UNITS/hr

UNITS |
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only once. For example, individual units are processed
one at a time at station 1, but we must also count the
other units in the same arriving lot because they are
in service too. Furthermore, there is the transport
system. It is often reasonable to neglect it, as we will
do, but sometimes it is important to include.

Station 3 is an inspection station. Individual units
are tested one at a time. Of the units not tested before,
10% fail completely and are junked, 20% fail and are
sent back to station 1 for reprocessing (rework), and
the remaining 70% are sent to station 4. The units
passing inspection move to station 4 in their original
lots, which are of size 5 if no units in the lot fail the
test, but are less than 5, otherwise. For simplicity, we
assume that the failure events for units within a lot
and among successive lots are mutually independent.
Consequently, the probability that all 5 units in a lot
fail is (0.3)°> = 0.00243; since it is small, we neglect it.
This means that we assume for each lot tested there
always is a lot of good units going from station 3 to
station 4. The average size of the partial lot on the
first pass is 5(0.7) = 3.5.

Units sent back from station 3 to station 1 for
rework are first set aside in a buffer. The units are
reconstituted in this buffer into lots of size 5 and then
transported to station 1. These units are processed at
stations 1 and 2 and tested at station 3, just like new
units. Of these reworked units, 20% fail their second
test at station 3 and are junked, while the remaining
80% pass the test and move to station 4. (Rework is
done at most once for each operation step.) Again the
units leave station 3 in their arriving lots, which may
be reduced by units failing the test. The average size
of these reworked lots is 5(0.8) = 4.0. The average
flow rate of lots (units) per hour arriving at station 4
for the first time is 10 + 0.2(50)/5 = 12 lots/hr.
(10(3.5) + 2(4.0) = 43 units/hr.).

At station 4, entire lots are processed one at a time

DEFECTIVE
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Figure 1. Production flow and queueing diagram for the basic example.



by one of three available machines and then sent to
station 2. (A queueing model would have a three-
server queue.) On this second visit to station 2 (not
counting reworks), units are processed in batches of
size 30, but sometimes processing is done with partial
batches. The average service batch size is 25. After the
batch is processed at station 2, it is moved to a buffer,
from which units are transported to station 3 in lots
of size 10, where they are tested again, one unit at a
time.

We now describe the test percentages for the units
processed at station 4. On the first pass, 5% of the
units tested fail completely and are junked, 20% fail
and are sent back to station 4 for rework (from that
point on in the basic sequence), and 75% pass and are
sent to station 5. Of those being tested at station 3 for
the second time after being processed at station 4,
10% fail and are junked, while 90% pass and are sent
to station 5. (Again, rework is done once at most.)
Finally, assume that all the failure events are mutually
independent. In particular, the failure probabilities
after reaching station 4 are independent of the history
before station 4 (whether or not rework was required
before reaching station 4). Indirect estimation can be
done without the independence assumption, but the
test percentages must then be described in more detail.

Lots containing the units that pass this second
inspection step at station 3 move directly to station 5.
Since full lots of size 10 are formed after processing
on this visit to station 2, the average flow rate to
station 5 for products not requiring rework at station
4 is 4.3 lots/hr. and 32.25 units/hr. Units requiring
rework at station 4 are collected in a buffer at station
3, from which reconstituted lots of size 5 are formed
and sent back to station 4 to undergo the final proc-
essing steps (4, 2, 3, 5). At station 5, individual units
are processed one at a time and sent out. The flow
rate of good product out of station 5 is 32.25 +
(0.86)(10)(0.9) = 40.0 units/hr.

In this example, the production interval of good
product is not difficult to define. For each good unit
sent out from station 5, it is the length of time between
the original product start for this unit at station 1 and
the completion time. With time stamping (of units,
not lots), this measurement is readily available. With-
out time stamping, we want to estimate this average
production interval of good product using WIP meas-
urements plus the external product start rates and the
testing percentages, which might be readily available
as described above. Of course, they way we use WIP
measurements depends on what we can measure. At
some places it may be convenient to count lots, while
at other places, it may be convenient to count units.
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There is also the issue of identifying what stage of
production each unit or lot is in. A variety of infor-
mation conditions are possible. When counting WIP,
we might or might not be able to distinguish between
new units (or lots) and units (or lots) requiring rework;
we might or might not be able to distinguish between
those units (or lots) that have been to station 4 and
those that have not. It may be possible to apply the
indirect estimation method to all these situations, but
careful accounting must be done to properly reflect
the prevailing information conditions.

We apply our indirect estimation procedure to this
example in Section 2. With additional specification
(service-time distributions, queue disciplines, buffer
sizes, etc.) and under additional conditions, we can
also predict the average production intervals without
measurements using mathematical models, either by
analytic approximations (e.g., Whitt 1983, 1987) or
simulation. However, note that we would have to
describe the system in much greater detail. It is signif-
icant that the estimation based on measurements does
not require such additional information. Even some
of the information we provided is unnecessary for
measurement. For example, we do not need to know
the number of machines at station 4. We also do not
need to know the average service batch size at station
2 if we can count the number of units in the batch in
service.

Organization of the Paper

In Section 1 we review Little’s law and discuss its
implications for measurements. Section 2 discusses
the problem of unobservable processes and the need
to modify Little’s law to obtain useful indirect
estimates. We also analyze the basic example. In
Section 3 we begin to investigate the validity of in-
direct estimation, and introduce a special class of
indirect estimators called conditional-expectation
observable estimators. In Section 4 we treat estimators
based on a detailed classification of WIP, which
includes the basic example. Section 5 shows that
multiclass queueing networks described in terms of
one-step transitions are covered by the general frame-
work of Section 4. Finally, the conclusions are
presented in Section 6.

1. Estimates Based on Little’s Law

To set the stage, we briefly review Little’s law. Let
{N(t):t=0}, {A(t): t = 0} and {I,: k = 1} be stochastic
processes representing, respectively, the number of
units in the system at time ¢, the cumulative number
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of product starts (arrivals) in the interval [0, ¢] and
the production interval of the kth starting unit. Little’s
law relates the limiting averages. (All limits are under-
stood to be with probability one without mention.) In
particular, given

A = lim 7'A(t)

11—

= lim ¢! f N(s) ds,

t—c0

and

2 I, (1)

W=I1m n!

n—oo

Little’s law concludes that L = AW. Hence, to know
the long-run average production interval W, it suffices
to know the long-run average WIP L and the long-
run arrival rate A; i.e., we can use W = L/\. Little’s
law alse helps determine the existence of the limits;
e.g., if the limits associated with A and W exist, then
so does the limit associated with L.

In many mathematical models, the limiting aver-
ages L and W coincide with the expected values of
steady-state random variables. Then Little’s law pro-
vides a relationship between these expected values.
Similarly, the following discussion of estimating aver-
age production intervals also applies to calculating the
expected value of a production interval in steady state,
given the expected values of the inventories in steady
state, but we only discuss the averages.

Discrete Averages and Continuous Time
Averages Based on Measurements

Applications based on measurements do not involve

the infinite limits in (1). Instead, we observe the finite
averages

]V(t)=t"J;N(s) ds, A@)=1t"A@®)

and
I,=n'YI 2

for some fixed ¢ or n. (In our notation, we use L, A
and W to designate the limits and N, A and I to refer
to observations and finite averages.) If the averages
are sufficiently close to their limits, then

I,=~ W=L/\~ N()/\ = Nt)/A(2). 3)

Our first idea is to invoke (3) and approximate W or
I, by N(¢)/x or N(¢)/A(¢).

Typically, the rate of production starts, A, or its
sample average A(t) is readily available, so that to
implement this indirect estimation procedure is tan-

tamount to calculating the average WIP, N(¢). The
motivation for the indirect procedure is that N(¢) is
often much easier to calculate than I, because N(¢)
involves counting WIP at one time ¢ only without
identifying individual products, whereas I, involves a
careful time measurement of the start and finish for
an individual product. However, at first glance, this
advantage may seem to be outweighed by the replace-
ment of the relatively simple discrete average I, by the
continuous time average N(t) in (2); ie., N(@)
involves an integral instead of a sum. However,
it is not too difficult to calculate this integral be-
cause N(t) is a step function: there are times ¢; with
O0=¢t<t<...<t,=tsuch that

N@)=1t" J; N(s) ds @

=t! § Nt = timr);
k=1

i.e., the integral representation for N(¢) in (2) imme-
diately reduces to a simple sum. The times ¢; in (4)
are, of course, the times at which N(¢) changes value.
Indeed, (4) is the standard transaction-based proce-
dure to estimate the time-average queue length in a
discrete-event simulation, e.g., pp. 81-83 of Bratley,
Fox and Schrage, so that the integral in (2) really
imposes nothing new. (Statistics such as N(¢) and 4(¢)
in (2) are also called time-persistent statistics; see
Pritsker and Pegden 1979.)

Nevertheless, it may be inconvenient to calculate
the time average N(¢) in detail via (4). Then we can
estimate N(¢) by something easier. For example, we
can simply observe N(¢) at k separate time points and
take the sample average k™' Y%, N(¢,). The special
case of t; = it/k, 1 < i < k constitutes the standard
discretization procedure, which is also discussed by
Bratley et al. A special case of great practical impor-
tance is k = 1. One can often obtain a reasonable,
rough estimate of the average production interval by
walking into the factory, counting WIP once and
invoking Little’s law!

Two Issues: Statistical Precision and the Cost of
Obtaining the Estimate

We see that there are several possible estimators for
the long-run average production interval W in (1);
e.g., I, in (2) and N(¢)/X or N(t)/A(t) in (3), with N(¢)
determined via the transaction-based sum in (4) or
some sampling procedure. How do we choose from
among these procedures?

We suggested alternatives to T, in (2) because they
may be more convenient, i.e., overall, they may be



more cost effective. An important aspect is the statis-
tical precision of these different estimators. It turns
out that the relations among the stochastic processes
that yield Little’s law (L = AW) also yield important
information about the statistical precision of the dif-
ferent estimators. This was first discovered for the
M/G/1 queue by Law (1975), extended to the GI/G/s
queue by Carson and Law (1980), and extended to
the general case (covering the kind of models discussed
in this paper) by Glynn and Whitt (1986a, b, c¢). In
general, under some reasonable conditions, it is more
asymptotically efficient to estimate W directly by T,
than indirectly by N(z)/\ given that the system is
observed for the same length of time and that A is
known. (Similarly, it is more asymptotically efficient
to estimate L indirectly by AT, than by N(¢) when X is
known.) However, if A must also be estimated from
the same data, then the asymptotic efficiencies are
equal. (Note that these are large-sample results.)

Thus, assuming that A is known and that each
estimate can be calculated with equal effort, we prob-
ably should prefer the direct estimator T, in (2). How-
ever, this does not take account of the effort required
to obtain the estimate. A proper notion of efficiency
should account for both statistical precision and the
cost to obtain the estimate, as suggested by Glynn and
Whitt (1986d). We are motivated to consider N(z)/A
instead of T, because of the cost to obtain the estimate.

We do not intend to resolve the many statistical
issues here. For example, given that we are going to
estimate N(z) in (2) by a finite sample average
k™' %, N(t;), how should the time points #; be
selected to obtain good statistical precision? See Halfin
(1982) and the references there for past work on this
important problem.

2. The New Twist: Partially Observable
Processes

What we suggested in Section 1 amounts to a direct
application of Little’s law to obtain a new estimator
for the long-run average production interval Win (1).
However, there is a fundamental difficulty in this
approach, which is directly linked to the difficulty in
defining a production interval, as mentioned in the
introduction.

As illustrated by the Basic Example, some products
produced may be defective. If defectives are discovered
early in the production process and discarded, then
the time spent in the system by these defective items
may be significantly less than the time spent in the
system by good product. Thus, we may want to stip-
ulate that the average production interval refers only

Production Intervals Using Little’s Law [/ 313

to good product. In particular, we wish to estimate
the average time from start to finish, conditional on
the item turning out to be good product.

Thus, what we want to observe for Little’s law is
only the WIP of product that will eventually be good.
However, this good WIP is not directly observable.
Some units are already defective but have not yet been
inspected, while other units are still good but will
become defective in some future operation. To address
this problem, we suggest working with an appropriate
expected amount of good product associated with
current WIP. However, this requires some care.

There is another difficulty with the definition that
is important to note. We may want to know the time
from some product start until a good product is com-
pleted (for a product started at that time or later). If
the given product at that epoch turns out good, then
the quantity we focus on, the average production
interval given that the product is good, is the correct
quantity. However, if the product is destined to be
defective, we have to include the delay from that
product’s start epoch until the next start epoch of a
product that is destined to be good. Since the actual
value of this additional delay cannot be observed in
advance, we suggest working with a long-run average
delay. This is the average interval between product
starts divided by the proportion of defectives. How-
ever, henceforth, we focus on the average production
interval for good products, where this is defined as the
average production interval counting good products
only.

If the production system produces custom products
to order, then in many cases, special new items must
be started at the beginning of the line to replace items
that are defective. If these additional product starts
are not counted separately, then we apply Little’s law
without making any special adjustment for defectives.
We can think of these additional restarts to replace
defectives as reworks, so that there are no defectives.

Whether or not we represent partial yield (defectives
discarded before the end of the production process),
other difficulties remain. We typically do not observe
one overall WIP. The product is typically observed in
different stages of production. It may only be conven-
ient to count lots, but lot sizes may change from
workstation to workstation, and the lot sizes may be
unknown (random), as in the basic example (arrival
at station 4).

The Proposed Procedure

What we propose, then, is a detailed classification of
WIP. We define a WIP vector [N,(¢), N=(¢), ...,
N,(2)], where N;(t) is the observable amount of WIP
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at state i of production, in whatever units are conven-
ient, and define an expected overall WIP of good
product by

N(t) = 2 Ni(t)a, (5)

where o; is the expected amount of good product
produced from each item of WIP at stage i (appropri-
ately adjusting for any differences in measuring units).
The superscript O designates good product. We then
estimate the average production interval of good
product by

NO@2)/N°,

where

No@t) = ¢! JO‘ N°(s) ds; (6)

ie, N °(¢) in (6) is defined like N(¢) in (2) using N°(¢)
in (5) insead of N(z). In (6), we can use either the
completion rate of good product A° or its estimate
A°(t), defined as A(¢) in (2), where A°(¢) is the amount
of product started in the interval [0, ¢] that will
eventually be good. In fact, since we cannot observe
this arrival process 4°(z), we suggest using the depar-
ture process D°(¢): the amount of good product com-
pleted in the interval [0, ¢ ]. With the proper measuring
units,

A0 = lim 7'4°(¢) = lim 7' D°(¢). 7)

11— [~

(See Section 2 of Glynn and Whitt (1986a) for rela-
tions among the limiting averages of the arrival and
the departure processes.) It is significant for applica-
tions that the weighted sum in (5) yields a single
process to monitor. Moreover, the time average in (6)
reduces to a simple sum, as in (4). We can now proceed
by applying (5) through (7) to the basic example in
the introduction.

The Basic Example Revisited

As shown in Figure 1, there are at least three places
WIP can be located at each station for each operation.
Since the chance of good product depends on the
rework history, we should know whether or not units
were tested and if they required rework. A possible
classification into 43 classes appears in Table 1. This
classification assumes that material requiring rework
can be identified. It also assumes that we can identify
whether or not lots or units have reached station 4.
Finally, it assumes that we can count units in batch
service at station 2. We have separate classes for lots

and units waiting to be processed at station 2 (classes
23 and 24, and 34 and 35), because both may be
present. Note that some classes involve units and some
involve lots, and some of the lots have fixed size while
others have random size.

The factors o; in (5) that give the conditional
expected number of good units produced from each
class-i item depend on the expected number of units
per class i item and the probability or proportion of
class i units that will eventually be good product. (We
use “item” to refer to the class i object, which in
general may be a unit, a lot, a batch or something
else.) It is easy to determine the probabilities of even-
tually being good product from the specified test per-
centages. A testing event tree (like a decision tree) for
this basic example appears in Figure 2. There are two
standard tests, each may be repeated once because of
rework. The conditional probabilities of being good
product for this example are displayed in Table II.
(We use the independence assumption to eliminate
the rework history prior to station 4 after reaching
station 4.) Finally, the overall conditional-expected-
good-product factors «; in (5) are computed by mul-
tiplying the expected number of units in each class
item times the probability that each unit of class i
is good. The data for this example are displayed in
Table III, as are the flow rates for each class item.
For example, we stipulate that lots of size 5 start at
10 per hour; thus 50 units start per hour. Since 80%
of starting units ultimately become good product
(Table II: 0.525 + 0.126 + 0.029 + 0.120 = 0.800),
the completion rate is A° = 40 units per hour. (We
omit entries for classes 23 and 34; we convert lots into
units in the waiting space before station 2.)

Our indirect estimate of W9, then is (6) with \° =
40 units/hr. and N°(¢) defined in (5) with «; expected
good units per class- item given in Table III.

Aggregation with Less Information

In some cases, it might not be convenient to classify
WIP in such detail. For example, in the basic example
it might not be expedient to identify material that
requires rework. We can then aggregate the classes,
which in this case, reduces the number from 43 to 23,
asshown in Table IV;e.g., classes 1 and 11 are grouped
together to form a single class.

The new class flow rate is the sum of the flow rates
for the component classes. The new expected number
of units per class item is then the average of the
previous individual class values, weighted by the item
flow rates per class. The new probabilities that units
are good is the average of the previous individual class
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Table 1
A Definition of Classes for the Basic Example
Class Class Definition
Index
1 New lots waiting at station 1 to be processed
2 New units being processed at station 1
3 New units waiting at station 1 after being processed
4 New lots that have not been to station 4 waiting at station 2 to be processed
5 New units that have not been to station 4 being processed at station 2
6 New units that have not been to station 4 waiting at station 2 after being processed
7 New lots that have not been to station 4 waiting at station 3 to be tested
8 New units (that have not been to station 4) being tested at station 3
9 Units (that have not been to station 4) waiting at station 3 for rework
10 New lots (that have not been to station 4) waiting at station 3 after testing to go to station 4
11 Rework lots waiting at station 1 to be processed
12 Rework units being processed at station 1
13 Rework units waiting at station 1 after being processed
14 Rework lots (that have not been to station 4) waiting at station 2 to be processed
15 Rework units (that have not been to station 4) being processed at station 2
16 Rework units (that have not been to station 4) waiting at station 2 after being processed.
17 Rework lots (that have not been to station 4) waiting at station 3 to be tested
18 Rework units (that have not been to station 4) being tested at station 3
19 Rework lots (that have not been to station 4) waiting at station 3 to go to station 4 after testing
20 Lots on first pass to station 4 waiting at station 4 to be processed
21 Lots on first pass to station 4 being processed at station 4
22 Lots on first pass to station 4 waiting at station 4 after being processed
23 Lots from first pass to station 4 waiting at station 2 to be processed
24 Units from first pass to station 4 waiting at station 2 to be processed
25 Units from first pass to station 4 being processed at station 2
26 Units from first pass to station 4 waiting at station 2 after being processed
27 Lots from first pass to station 4 waiting at station 3 to be tested
28 Units from first pass to station 4 being tested at station 3
29 Units from first pass to station 4 waiting at station 3 for rework
30 Lots from first pass to station 4 waiting at station 3 to go to station 5
31 Rework lots waiting at station 4 to be processed
32 Rework lots being processed at station 4
33 Rework lots waiting at station 4 after being processed
34 Rework lots (after station 4) waiting at station 2 to be processed
35 Rework units (after station 4) waiting at station 2 to be processed
36 Rework units (after station 4) being processed at station 2
37 Rework units (after station 4) waiting at station 2 after being processed
38 Rework lots (after station 4) waiting at station 3 to be tested
39 Rework units (after station 4) being tested at station 3
40 Rework lots (after station 4) waiting at station 3 to go to station 5 after testing
41 Lots that did not require rework after station 4 waiting at station 5 to be processed
42 Lots that required rework after station 4 waiting at station 5 to be processed
43 Units being processed at station 5

probabilities weighted by the unit flow rates per class
(item flow rate times expected number of units per
class item).

It is important to note, however, that there is no
guarantee that this aggregation will yield the desired
results. To see this, we could aggregate everything into
a single class by the scheme just specified. This would
be tantamount to replacing (5) by (X7 N:(2))a for
some single parameter «. While the reduction in Table

IV may be reasonable, we should not expect a total
aggregation into one class to perform well. Indeed, it
clearly is not reasonable because we would add the
number of units at one place to the number of lots at
another place.

From the discussion above, it is evident that we
have not said anything about when the indirect esti-
mation procedure is appropriate. We address this
question next.
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figure 2. Testing event tree for the basic example.

3. Conditional-Expectation Observable
Estimators

In this section we introduce a class of indirect esti-
mators that are consistent (asymptotically correct).
When the proposed estimator (6) takes this form, then
it is consistent.

As in (5) to (7), let a superscript O refer to good
product; let N°(¢) be the number of good units even-
tually produced from current WIP at time ¢; let 4°(¢)
be the number of good units eventually produced from
product starts in the interval [0, ¢]; and let I° be the
production interval for the kth unit started that is
eventually good product. We index I{ in the order of
arrival, which for the purpose of determining long-
run averages is usually equivalent to indexing in order
of completion. However, this is not always the case;
some products could have extraordinarily large delays

Table II
Conditional Probabilities of Being Good Product
Given Testing History

Classification ngg‘:g&gf
Not yet tested 0.800
Requires rework after first test 0.744
Reaches station 4, but not tested 0.930
afterward
Requires rework after station 4 0.900

that distort the averages; see Example 1 of Glynn and
Whitt (1986a).
In addition to the limits in (1), we assume that

L% =lim ¢! NO(s) ds, A0 = lim 7' 4°(z)
11— {—>

and

WO=1limn" Y, IO (8)

n—x k=1

From Little’s law, we know that L = AW and L° =
AW°, We want to estimate W° assuming that we
know or can estimate A°. Our plan is to invoke Little’s
law in the form W° = L°/\° and estimate L°. How-
ever, we cannot apply (8) directly because N°(¢) is
unobservable.

A consistent observable estimator obviously is any
observable process {N°(¢): ¢ = 0} for which

t t
lim ¢! J(: N°(s) ds = lim ¢! J; N°(s) ds. (©)
t— t—>00

Given such a process, we can estimate L° by
t™ [§ N(s) ds. A sufficient condition for (9) is

E N°(t) = E N°(¢t) forall ¢ (10)
and both

t t
limt“‘f E N°(s) ds=limt“f N°(s)ds
t— 0 t—> 0

(11)
limt"J;E]\7°(s)ds=1imt“‘fN°(s)ds.
t—>o0 0

P
We propose a general procedure to construct the
observable process N°(¢) that satisfies (10) using con-
ditional expected values. Let H, represent a full or
partial history of the system up to time ¢ for ¢ = 0, i.e.,
an increasing family of o-fields; see Chapter 4 of
Breiman (1968) or Chapters 2 and 9 of Chung (1974)
for background on sigma fields and conditional ex-
pectation. For the observable process N°(¢), we use

N°(t)=E(N°(¢)| H,), t=0. (12)

We assume that H, represents information that is
available at time ¢, so that N(¢) in (12) is observable
at time £. A basic property of conditional expectations
is that

E[E(N°(1)| H))]=EN°(2), (13)

so that (10) is always satisfied by (12); see Section 9.1
of Chung. We may now verify or directly assume the
relatively technical condition (11). For applications,
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Table II1
The Conditional-Expected-Good-Product Factors «; in (5) for the Basic Example

Probability Overall

Class Flow Rate Expected No. Each Unit  Factor

Probability Overall

Class Flow Rate Expected No. Each Unit  Factor

Index i (per hour) of Units Is Good o« Index i (per hour) of Units Is Good o
1 10 5 0.800 4.00 23 - 3.58 0.933 3.34
2 50 1 0.800 0.80 24 43 1 0.933 0.93
3 50 1 0.800 0.80 25 43 1 0.933 0.93
4 12.5 4 0.800 3.20 26 43 1 0.933 0.93
5 50 1 0.800 0.80 27 4.3 10 0.933 9.33
6 50 1 0.800 0.80 28 43 1 0.933 0.93
7 10 5 0.800 4.00 29 8.6 1 0.900 0.90
8 50 1 0.800 0.80 30 4.3 7.50 1.000 7.50
9 10 1 0.744 0.74 31 1.72 5 0.900 4.50

10 10 3.50 0.933 3.27 32 1.72 5 0.900 4.50
11 2 5 0.744 3.72 33 1.72 5 0.900 4.50
12 10 1 0.744 0.74 34 — 5 0.900 4.50
13 10 1 0.744 0.74 35 8.6 1 0.900 0.90
14 2.5 4 0.744 2.98 36 8.6 1 0.900 0.90
15 10 1 0.744 0.74 37 8.6 1 0.900 0.90
16 10 1 0.744 0.74 38 0.86 10 0.900 9.00
17 2 5 0.744 3.72 39 8.6 1 0.900 0.90
18 10 1 0.744 0.74 40 0.86 9.00 1.000 9.00
19 2 4.00 0.933 3.73 41 4.3 7.50 1.000 7.50
20 12 3.58 0.933 3.34 42 0.86 9.00 1.000 9.00
21 12 3.58 0.933 3.34 43 40.0 1 1.000 1.00
22 12 3.58 0.933 3.34

the problem is to compute the conditional expectation
in (12).
The estimator for L° associated with (12) is

W(t)=t"£E(N°(s)|Hs)ds, t=0; (14)

we call N°(z) and N°(¢)/\° conditional-expectation
observable estimators for L° and W°,

There is a different conditional-expectation observ-
able estimator for L° associated with each family of
histories {H,: ¢t = 0}. It we could choose, we would
want to pay attention to as little information as pos-
sible. The best situation is to observe nothing (the
trivial o-field) and use the no-information estimator
E(N°(t)| H,) = E N°(¢) for all z. However, in this case
we must know E N°(¢) in advance, which invariably
we would not.

More generally, conditioning on less implies lower
variability. If {H}: ¢t = 0} and {H}: ¢ = 0} are two
families of o-fields with H} C H?, then

E([(EN°(2)| H;) — EN°(t)]%)

<E([EW°(t)| H}) —E N°(t)I") (15)
as can be seen by first conditioning on H? ; see Section
9.1 of Chung. So, in this sense too, we prefer to use
less information.

On the other hand, the histories can be very rich;
indeed there is no limit to the amount of information

to include. The obvious choice is to use the least
information (smallest possible o-fields) such that it is
possible to compute E(N°(¢)| H,). (To choose appro-
priate histories is similar to the problem of defining
appropriate states to make stochastic processes Mar-
kov.) In fact, it may be difficult to obtain a family of
histories {H,; ¢t = 0} for which it is possible to obtain
a reasonable estimate of E(N°(¢)| H,); then perhaps,
the indirect estimation procedure should not be
attempted.

From the practical perspective, we can think of all
the relevant information. When H, represents all the
relevant information up to time ¢, we call (14) the full-
information observable estimator. We usually want to
work with information somewhere in between no
information and full information. Indeed, for a direct
application of Little’s law, we want to work with the
overall WIP N(¢). We now introduce two assumptions
that make this possible.

Assumption A. For all + = 0, E(N°(¢)| N(t)) =
E(N°(t)| H,) where H, represents all the relevant
information up to time ¢; i.e., all the relevant infor-
mation at time ¢ is contained in the total WIP N(z).

Assumption B. For all =0, E(N°(¢)| t)) = N(t )« for
some known a.

Note that the conditional expectations in Assump-
tions A and B are random variables; equality is
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Table IV
The Aggregate Conditional-Expected-Good-
Product Factors «; in (5) for the Basic
Example, after Reducing the Number of
Classes from 43 to 23

ow Probability Overall
In(c:llizZi i Rate Exggc[idi tI:O’ Each Unit Factor
(per hour) Is Good a;
1, 11 12 5 0.791 3.96
2,12 60 1 0.791 0.79
3,13 60 1 0.791 0.79
4, 14 15 4 0.791 3.16
5,15 60 1 0.791 0.79
6, 16 60 1 0.791 0.79
7,17 12 5 0.791 3.96
8,18 60 1 0.791 0.79
9 10 1 0.744 0.74
10, 19 12 3.58 0.933 3.34
20, 31 13.72 3.76 0.928 3.49
21,32 13.72 3.76 0.928 3.49
22,33 13.72 3.76 0.928 3.49
23, 34 — 3.76 0.928 3.49
24, 35 51.6 1 0.928 0.93
25, 36 51.6 1 0.928 0.93
26, 37 51.6 1 0.928 0.93
27, 38 5.16 10 0.928 9.28
28, 39 51.6 1 0.928 0.93
29 8.6 1 0.900 0.90
30, 40 5.16 7.69 1.000 7.69
41, 42 5.16 7.69 1.000 7.69
43 40.00 1 1.000 1.00

required with respect to all possible realizations (with
probability one).

Under Assumption A, E(N°(¢)| H,) = f(N(t)) for
measurable £, see p. 299 of Chung, so that it is much
easier to work with the conditional expectation, e.g.,
to verify (11). For example, if {N(¢): ¢ = 0} is stationary
and ergodic, so is {f(N(¢)): t = 0}; see pp. 105 and
119 of Breiman. Similarly, regenerative structure for
N(t) carries over to f(N(t)). Of course, we could
choose to work with E(N°(¢)| N(t)) even if Assump-
tion A fails. Assumption A is not critical, but if it fails,
we are likely to make an error calculating
E(N°(¢)| N(t)); the obvious error is caused by acting
as if Assumption A holds when it does not.

For applications, we need Assumption B. In fact,
Assumption B makes the problem formulated in this
section relatively trivial; we simply invoke Little’s law
for all units in the form (1). However, it is important
to realize that in many manufacturing applications,
Assumptions A and B do nor hold. More general
estimators such as (14) circumvent these problems.
The following sections further exploit the additional
structure. While Assumptions A and B often do not

apply, natural modifications of the assumptions often
do.

4. A More Detailed Classification

As in our analysis of the basic example in Section 2,
we now classify the WIP in more detail, e.g., in accord-
ance with its stage of production. In particular, for 1
< [ < n, let N;(t) be the number of class-i items at
time ¢. The classes might simply represent the work-
station where a unit is currently located or other
relevant aspects of the history, for example, reworks
(as in Section 2). Note that we have not focused on
N(t) = Ni(t) + --- + N,(t) because the sum may be
meaningless, e.g., we might be adding apples to
oranges; this is why we have the o; factors in (5). We
also do not need to define N°(¢) because we do not
need to associate the eventual good product directly
with the class-i WIP items.

We can apply the technique of Section 3, including
the simplifications provided by Assumptions A and
B, if we make some modifications.

Assumption A’. For all ¢ = 0, E(N°(¢)| [N (), ...,
N.(2)]) = E(N°(t)| H,) where H, represents all the
relevant information up to time ¢; i.e., the general
conditional expectation of the number of good units
eventually produced from current WIP given that all
the relevant information coincides with the condi-
tional expectation of the number of good units even-
tually produced from current WIP given only the
vector [N,(¢), ..., N.(2)].

Assumption B’. For all ¢ = 0, E(N°(¢)|[N,(?), ...,
N.()]) = ¥ Ni(t)a; for some known parameters «;
(which are independent of 7).

As in Section 3, only Assumption B’ is critical.
Assumption A’ is an extra property to avoid pitfalls,
that is, to ensure that E(N°(2) | [NV, (¢2), . . ., N,(¢)]) can
be calculated relatively directly. As with Assumptions
A and B, Assumptions A’ and B’ provide natural
simplifications, but the latter often are much more
realistic than the former. Under Assumptions A’ and
B’ and (11), (6) is consistent.

The discussion may seem to belabor the obvious
because no difficulty is apparent in the basic example
analyzed in Section 2. However, the indirect estimator
N°(t)/A° in (6) is appropriate because we implicitly
assume A’ and B’. In fact, for the basic example, A’
and B’ are implied by the failure event assumptions
(Figure 2).

The importance of Assumptions A’ and B’ began
to emerge when we considered possible aggregation



procedures. In particular, A’ and B’ are typically
violated with the aggregation. We also illustrate the
importance of these assumptions in the following
simple examples.

Example 1. Consider a production line with n work-
stations in series. Let units enter the line at rate A, but
only a proportion p; of the units entering workstation
i proceed; a proportion 1 — p; of the work at station i
is defective and is scrapped after processing at station
i. As usual, we want to estimate the average production
interval of good product, but we can only observe the
WIP at each station over time, and do not know
whether it will eventually be good product or bad. In
this case, we apply the indirect estimator No(t )/A% in
(6) with the parameters «; defined by

@ =DiDi+1 -+ Dy 1<isn (16)

Here, obviously A\° = \«,. However, the validity
requires additional properties such as Assumption B’,
as we illustrate below.

Example 2. Consider the special case of Example 1
with two workstations in series. Let units arrive deter-
ministically at the first station at rate A = 1. Let the
processing time also be exactly 1 at each station, so
that no queues form. Let the system start off empty,
with the first unit arriving at station 1 at time 1.
Assume that each unit at each station is scrapped with
probability %2, independent of all other events, so that
p1 = p, =Y. Thus, only 1 of 4 units started turns out
to be good product. These probabilistic assumptions
obviously satisfy Assumptions A’ and B’, so we use
the estimator N°(¢)/\° in (6) for W° with «; in (16)
and \° = A\, = ¥4, which is

N°(t) 4J.N"(s)afs 17)

where the full information observable process is
N°(t) =E(N°(t)| H.)

=EW°(0)[ N:i(2), N2(2))

=Ni(1)/4 + Na(1)/2; (18)

that is,

N°(t) le(s)ds+2z lsz(S)dS (19)

which converges to 2 as ¢ — o, as it should because
the actual production interval for each unit that is
good product is exactly 2. (In contrast, the average
time spent in the system by a// units is %2.) For this
system, the first station always has exactly 1 unit after
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the first arrival, i.e., N;(¢z) = 1 for ¢t = 1. The second
station either has one unit or none; it has one when-
ever the previous processing step at station 1 was
successful (was not scrapped). Therefore, by the
law of large numbers, ™' [§ No(s) ds — V2 as t — oo,
Consequently, N°(A\)/A° — W° = 2 as t — oo,
as claimed.

However, as mentioned in Section 2, it is important
to be aware that we estimate the average production
interval for the units that turn out to be good product,
which is not the same as the average length of time
from a product start until the next good product,
started at this time or later, is produced. If we wanted
to know the average wait until a good product is
completed, then in this case, because units are proc-
essed one at a time in order of their arrival, it suffices
to add the average wait until the next product start
that will turn out to be a good product (here it is 3,
using the geometric distribution) to the average pro-
duction interval of a unit that turns out to be a good
product (which is 2). In this case the average wait until
the next good product is completed is 5, much larger
than the average production interval for good product,
which is 2.

Example 3. Consider the following modification of
Example 2. Assume that precisely every other unit at
each station is scrapped, starting with the first unit
processed. The WIP at each station and the units
eventually scrapped are depicted in Figure 3. Note
that this is one possible realization of the scrapping
sequences at the two stations in Example 2, but
the modification causes Assumptions A’ and B’
to be violated. The full-information observable
E(N°(t)| H,) is also depicted in Figure 3. In this case,
we apply the estimator N°(¢) for L° in (14) to obtain
an estimator for W°, namely

o .
MO _ ¢ [ vy 20)
A t Jo

which converges to W° = 2 as ¢ — o In this example,
however, it turns out that the simple estimator (6), «;
in (16) and \° = X\q; still gives the correct answer. In
this case everything averages out correctly, so that
Assumptions A’ and B’ were not critical. (A’ and B’
are sufficient for consistency, but are not necessary.)
We use (6) because it satisfies (9). The next example
shows that this is not always the case.

Example 4. Consider the following modification of
Example 2. Suppose that service at station 2 is per-
formed in batches of size 2; i.e., service at station 2
does not begin until there are at least two units ready
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Figure 3. The WIP over time at each station and the
conditional expected good product in the
system for Example 3 (an X indicates that
the job will eventually be scrapped).

to be processed, and then the two units are processed
together in 1 time unit. A typical realization of the
WIP at the two stations is shown in Figure 4. Now at
station 2 the WIP at any time can be 0, 1 or 2. In fact,
it is easy to see that the WIP at station 2 at successive
integer time points is a discrete-time Markov chain
on the state-space {0, 1, 2} with transition probabilities
Py = Poy = P,y = Pi3 = Py = P, =" and P; = 0,
otherwise. This Markov chain is irreducible and aper-
iodic with stationary probability vector (Y4, Y2, %) on
{0, 1, 2}. As in Example 2, each unit at each station is
scrapped with probability Y2, independently of all
other events, Assumptions A’ and B’ still hold and
we can estimate the average production intervals for
good product W° by the simple indirect estimator
N°(t)/\° in (6) with «, defined in (16), as given by
(17) to (19), but here ¢t~ [§ N*(s) ds converges to 1
instead of ¥, so that N°(t)/\° — W° =3 as t — o,
Now make another modification. At station 2
assume that the last unit to arrive in each service batch
is always scrapped, while the first unit in each service
batch is always good product. This is depicted in
Figure 4: At station 2 the units labeled 1 are good
product and the units labeled 2 are scrapped. As
before, exactly one half of the units processed at each

station are scrapped, but as in Example 2 precisely
every other unit at station 2 is scrapped.

With this second modification, Assumption A’ is
satisfied, but Assumption B’ is not. In particular, the
simple indirect estimator N°(¢)/\° in (6) is no longer
an appropriate estimator. We apply (14) with

E(N°(t)| H,)
= 27'(1{Na(t) = 0 or Nx(2) = 2})
+ min{N,(¢), 1}. 21)

where 14 is the indicator function of the set 4, i.e.,
14(x) = 1if x € 4 and 0, otherwise. The first term in
(21) corresponds to the first station: Note that a good
unit from station 1 will be the first unit in a service
batch at station 2 one time unit later if and only if
N>(t) = 0 or N,(t) = 2; an arbitrary unit at station 1
is good with probability 2.

This last modification illustrates that Assumption
A’ might hold without Assumption B’, so we cannot
apply (6). Moreover, unlike Example 3, N°(¢)/A° in
(6) does not give the correct answer. From (21), we get
W? = 4 as we should, whereas (6) and (16) yield 3, as
in the first part of this example. We expect that the
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Figure 4. A possible realization of the WIP over time
at each station and the conditional
expected good product in the system for
Example 4 (an X at station 1 and a 2 at
Station 2 indicate that the job will even-
tually be scrapped).



simple indirect estimator N°(z)/A° in (6) is often
appropriate, but this example illustrates that we really
need Assumption B’.

Example 5. Examples 1 to 4 had factors «; defined by
(16), so that a; < 1. We can also have «; > 1; o; need
not be a probability. In the setting of Example 1,
suppose that the lot sizes are changed from station to
station; that is, on average, 1 unit from station i is
split into v, separate units for station i + 1 if y; = 1
or ;' units from station i are combined to form 1
unit or station i + 1 if vy, < 1. After the final station
n, v, indicates the number of units of good product
produced from each completed unit at station n. We
can still apply the direct estimator N°(¢)A° in (6) when
we redefine «; in (16) as

o; = (DY) (Piv1Yie1) =+ (PaYn)- (22)

As before \° = Aa;. (The basic example in Section 2
also had «; > 1 for some i; see Table III.)

Example 6. This example illustrates an application
outside of manufacturing, although it may be viewed
as a special case of Example 5. Here we do not use
the full-information observable estimator. Consider
the following simple model of a packet-switched data
communication network, depicted in Figure 5. Mes-
sages arrive at an initial access interface of the network
at a rate \. At the initial access interface, messages are
packetized, i.e., they are divided into small packets to
be transmitted over the network. The expected num-
ber of packets per message is v. When messages arrive
at the initial access interface, they wait in a message
queue to be packetized; then the packets wait in an
output packet queue to be transmitted. The packets
are transmitted through the network to a terminal
access interface, where they wait in an assembly queue
until all other packets of the message arrive, so that
the message can be reassembled. Afterward, the mes-
sages wait in the output message queue for transmis-
sion from the network to the ultimate destination.
Inside the network, packets are occasionally retrans-
mitted when packet errors are detected. At the access
interfaces, messages are occasionally retransmitted
when message errors are detected. Various congestion
control schemes may also be employed to aid perform-
ance, e.g., windows and other flow control schemes.
However, we assume that no messages are lost and
that the system can eventually handle all messages, so
that the departure rate of messages from the network
is also A.

For this system, suppose that we wish to estimate
the average message transmission time, by which we
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Figure 5. The packet-switched data communication
network of Example 6.

mean the average length of time from when the entire
message arrives at the initial access interface until the
entire message departs from the terminal access inter-
face. If we know how many messages are in the system
at each time ¢, then we can apply Little’s law directly,
but suppose that we do not keep track of the messages
after they have become packetized. (We simply count
what we see at each time ¢.)

We describe how to use our indirect estimation
procedure. Let N°(¢) be the number of messages in
the system at time ¢. Let N,(¢) be the number of
messages in the initial access interface message queue
(or associated input buffers), counting each message
as a full message as soon as the entire message arrives
and until the message begins to be packetized. Let
N,(t) be the number of packets in any message being
packetized in the output packet queue of the initial
access interface, in the network or in the assembly
queue of the terminal access interface. Let Ns(¢) be
the number of messages in the output message queue
of the terminal access interface, counting the message
as a full message until the complete message is trans-
mitted out of the network. We assume that an assem-
bled message goes immediately from the assembly
queue to the output message queue of the terminal
access interface (or is retransmitted if necessary) when
the message is reassembled.

With these definitions, we apply the estimator (6)
with a; = a3 = 1 and oy = 1/’Y, i.e.,

N°(t) = N,(¢) + @ + Ns(t). (23)

In this case, Assumptions A’ and B’ are typically not
satisfied because E(N°(z)| H,) # E(N°(@), |[N:(2),
N,(t), N3(¢)]), where H, is the full-information history,
but nevertheless, it is easy to see that N°(¢) in (23)
satisfies (9).
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5. One-Step Transitions

An important, special case in Section 4 arises in the
context of an open network of queues with multiple
job classes; e.g., Kelly (1979). Our general classes
encompass this model because our class index can
specify both the queue number and the job class.
However, these network models are usually specified
in terms of individual, one-step transitions, and they
allow an unlimited number of transitions. For exam-
ple, suppose that, on average, each class-i item in one
transition produces 8; units of good product immedi-
ately and 7;, class-j items. Then the average number
of good units eventually produced by each class-i item
satisfies the system of equations

=8+ 2 e, (24)
i=1

which can be viewed as a reverse-time variant of the
usual system of traffic rate equations in queueing
networks, generalized to allow 7;; not to be probabili-
ties. Of course, we must assume that (24) possesses a
proper solution for the «;.

With a solution to (24), we apply the indirect esti-
mator N°(z)/A° in (6) to general network models. We
still require Assumptions A’ and B’ after «; is defined
by (24). We also need the flow rate of good product,
\°. We can give an expression for \° if we know the
external arrival rate of each class item. Let \; be the
external arrival rate for class i. Then

=Y N (25)
i=1

(Example 1 is the special case in which \° = \a, 8,
=p,m=p,forj=i+land 1 <i<n-1,and g
= y5,; = 0, otherwise. Example 5 is the special case in
which \° = \ay, 8, = Puyn, 0y =piyiforj=i+ 1 and
l<i<n-1,andB; = n; =0, otherwise.)

Example 7. We consider a simple model of a produc-
tion line with unlimited reworks. We also include
reconstituted lots and partial yields as in the basic
example. Let there be three stations in series; the
second station is an inspection station. Units are proc-
essed at station 1 in lots of size 5. New lots of size 5
arrive at station 1 at rate A. Lots completing processing
at station 1 go immediately to station 2. Of the units
(not lots) inspected for the first time at station 2, 5%
must be scrapped immediately, while 10% require
rework and are sent back to station 1. The rest proceed
to station 3. At station 1, reconstituted lots of size 5
are formed from the units requiring rework. Of the
units inspected at station 2 that previously required

rework, 10% must be scrapped immediately, while
20% require rework and are sent back to station 1.
(We assume that these percentages are approximately
independent of the number of reworks.) Units passing
inspection at station 2 proceed to station 3 for pack-
aging. Partial lots at station 3 are reconstituted into
packages of 5 units for shipping.

Suppose that we want to know the average produc-
tion interval for a good unit. Let N, (¢) be the number
of units at either station 1 or 2 at time ¢ that have not
been inspected. Let N,(z) be the number of units at
either station 1 or 2 at time ¢ that previously required
rework. Let N;(z) be the number of units at station 3
at time ¢. (We assume these are observable). As before,
let N°(¢) be the (unobservable) number of units in the
system at time ¢ that will eventually be good product.

We apply (24) and get a system of three equations

a; = 0.10a; + 0.85a;

a; = 0.20a; + 0.70a3 (26)
a3 =1

which has the solution

a; = 09375, a, =0.875 and o3 =1, (27)

s0 that the full-information observable estimator is
NO(£)/\°, where \° = 5Aa; = 4.69\ and

N(t) = BN H) = 3 Nit)au

= 0.9375N,(t) + 0.875N,(t) + Ns(¢). (28)

6. Conclusions

We suggested a way to estimate average production
intervals indirectly via WIP measurements. On the
positive side, Little’s law provides alternative esti-
mators, even if the WIP process is not directly observ-
able. On the negative side, indirect estimation must
be done carefully to obtain reliable estimates. In part,
this is due to difficulties in defining what we mean by
a production interval.

We illustrated how the indirect estimation proce-
dure typically should be applied in practice with our
basic example in Section 2. The proposed estimator is
(6), which requires monitoring only the single process
(5). In Sections 3 and 4 we provided conditions for
the indirect estimation procedure to be valid, i.e.,
consistent (asymptotically correct). These conditions
are primarily expressed via conditional expectations.

It remains to test the indirect estimation procedure.
However, we are not certain what a good test should



be. For example, we could simulate the basic example.
To do so, we would have to specify the model in much
more detail. If we can construct whatever model we
choose, consistent with the specification so far, then
we can construct the model with natural Markov
properties so that conditions A’ and B’ in Section 4
are satisfied; then we can theoretically deduce that the
indirect estimator is consistent. We would only be
observing what was mathematically proven. That
leaves little to learn about consistency, although we
would learn about statistical precision. Interpreting
results about statistical precision is somewhat difficult;
we need experience to put the results in perspective.

On the other hand, we could deliberately choose the
model so that Assumptions A’ and B’ in Section 4
are violated. Constructing a meaningful experiment
in this case is also difficult because it is not obvious
how to calibrate how far the conditions are from being
satisfied. The important issue seems to be whether the
indirect estimation procedure works reasonably well
in real systems, rather than whether or not the proce-
dure works in a model when the conditions clearly do
or do not. We think a good next step is to compare
direct and indirect estimates of average production
intervals using factory data (where time stamping is
performed). We hope to report on such experiments
in the future.

Although we did not test the indirect estimation
procedure in a realistic factory setting, we have ana-
lyzed several small examples in Sections 4 and 5.
These examples clearly demonstrate how the indirect
estimation procedure helps and how it breaks down.
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