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Abstract

0.J. Boxma and J.W. Cohen recently obtained an explicit expression for the M/G/1 steady-state waiting-time distribution
for a class of service-time distributions with power tails. We extend their explicit representation from a one-parameter
family of service-time distributions to a two-parameter family. The complementary cumulative distribution function (ccdf’s)
of the service times all have the asymptotic form F°(¢) ~ at™>? as t — oo, so that the associated waiting-time ccdf’s
have asymptotic form W °(¢) ~ Bt~"% as t — oo. Thus the second moment of the service time and the mean of the
waiting time are infinite. Our result here also extends our own earlier explicit expression for the M/G/1 steady-state
waiting-time distribution when the service-time distribution is an exponential mixture of inverse Gaussian distributions
(EMIG). The EMIG distributions form a two-parameter family with ccdf having the asymptotic form F(¢) ~ ar~¥2e™"
as t — oo. We now show that a variant of our previous argument applies when the service-time ccdf is an un-
damped EMIG, i.e., with ccdf G(¢) = e"F°(¢) for F°(¢) above, which has the power tail G°(¢) ~ ar™>? as ¢t — oo.
The Boxma—Cohen long-tail service-time distribution is a special case of an undamped EMIG. Published by Elsevier
Science B.V.
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1. Introduction

The steady-state waiting-time distribution in the
M/G/1 queue is available via the classical Pollaczek—
Khintchine transform. It can be readily computed by
numerical transform inversion, when the service-time
Laplace transform is available, e.g., as shown
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in [2]. Nevertheless it is interesting to have ex-
plicit formulas. When the service-time distribution
has a rational transform, so does the waiting-time
distribution, and the transform can be inverted an-
alytically. More generally, the transform can be
inverted analytically, yielding the BeneS formula,
which is an infinite series containing n-fold con-
volutions of the service-time stationary-excess dis-
tribution for all n; e.g.,, see [8, 4.82, p. 255].
Because of the complexity of the Bene$S formula,
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however, it is natural to look for more explicit for-
mulas.

A more explicit formula for a non-rational
service-time distribution was evidently first ob-
tained for the gamma service-time distribution with
shape parameter 1/2 in (9.21) of Abate and Whitt
[2]. This result was extended in Proposition 8.2 of
Abate and Whitt [4] to all exponential mixtures of
inverse Gaussian (EMIG) service-time distribu-
tions. These service-time distributions have prob-
ability densities with asymptotics of the form
f(t) ~ at™32e " as t— o0, where f(t) ~ g(t) as
t — oo means that f(¢)/g(t) — 1. Because of the
e " term, these EMIG distributions do not have
a long (a heavy) tail. However, recently, Boxma
and Cohen [7] obtained an explicit expression for
the M/G/1 waiting-time distribution for a class of
long-tail service-time distributions. In this paper,
we extend Boxma and Cohen’s result to a larger
class of long-tail service-time distributions. In par-
ticular, we extend our result in [4] to undamped
EMIGs, i.e., to distributions with complementary
cumulative distribution functions (ccdf’s) G°(¢) =
1 — G(¢t) = e"F°(t), where F¢(¢t) is an EMIG ccdf.
The Boxma—Cohen service-time distributions are a
subclass.

Here is how the rest of this paper is organized.
In Section 2 we give the explicit solution for the
steady-state waiting-time distribution. In Section 3
we show that the service-time distributions used in
Section 2 can be represented as undamped EMIGs.
In Section 4 we show that both EMIGs and un-
damped EMIGs are completely monotone (mixtures
of exponentials) and give their mixing densities.
In Section 5 we give the asymptotic behavior of
undamped EMIGs as t—0 and as t—oo. We ap-
ply that result to give the first two terms of the
asymptotic expansion for the waiting-time ccdf in
Section 2, which agrees with Boxma and Cohen
[7]. In Section 6 we discuss the heavy-traffic ap-
proximation due to Boxma and Cohen [7]. For
the service-time distributions considered here, we
derive their limit from the explicit waiting-time
ccdf. We conclude in Section 7 by discussing other
service-time distributions for which explicit represen-
tations of the waiting-time distribution are possible,
but the greater complexity make them of dubious
value.

2. The explicit solution

Consider a service-time probability density function
(pdf) g(¢) with Laplace transform

g(s) = /000 e Yg(t)dr =1

S
GRS,
(2.1)

which has mean m;(g) = u~" and all higher moments
infinite. The pdf ¢ has two parameters, the displayed p
and the scale, which has been omitted. Both can range
over the positive reals.

The Pollaczek—Khintchine formula involves the as-
sociated stationary-excess pdf g.(t) = nuG(t), t=0.
Its Laplace transform has the nice form

1

s L—g(s) I
= ) T ervmaee Y
For u # 1,

A u 1 1

= — 2.3
) <1 —u) <u+¢5 1+¢5>’ @2
so that, by 29.3.37 of Abramowitz and Stegun [6],

ge(t) = uG(t) = < ) () — pp(pe)), =0,

24)

where

Y(t) = ¢ erfe(Vi)~ ﬁ as t— o0, (2.5)

with erfc being the complementary error function, i.e.,

e du = 20°¢ (\/Et), (2.6)

erfe(t

fe(t) = f
where @¢(¢) = 1 — &(t) is the standard (mean 0, vari-
ance 1) normal complementary cumulative distribu-
tion function (ccdf); see 7.1.1 and 26.2.29 of [6]. We
will establish further properties of G and G, in the
next section.

The case i = 1 was considered by Boxma and Co-
hen [7]. The case =1 also corresponds to a subclass
of beta mixtures of exponential (BME) pdf’s consid-
ered by Abate and Whitt [5]; we will discuss this con-
nection further in the next section. Boxma and Cohen
show that the service-time ccdf when u =1 is

G(t) = (2t + () — 2+/t/m, =0, (2.7)
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for {y in (2.5). In the next section we will show that
the associated stationary-excess ccdf is

GS(t) =2/t/m — (2t — D)Y(1), t=0. (2.8)

We now consider the steady-state waiting-time dis-
tribution in the M/G/1 queue with arrival rate A. It
has an atom of 1 — p at the origin, assuming that p=
Au < 1, but otherwise a pdf. The Laplace transform
of the ccdf is

W(s) = 20— iy(s)). (29)

where 1, (s) is the Laplace transform of the conditional

waiting time pdf, given that there is a positive wait,

ie.,

(1 = p)ge(s)
1 —pg.(s)

Paralleling Proposition 8.2 of [4], we can find an ex-

plicit expression for W °(s) and analytically invert it.
From (2.2)—(2.10), we deduce the following.

Wp(s) = (2.10)

Theorem 2.1. For the service-time pdf g(t) with
Laplace transform §(s) in (2.1),

Hpls) = (il_—pv)zﬂ (Vz —& NIRRT —: \/§> 211y

and

6= (e~ i)
(2.12)

so that

e = (3) — (), 213)

where \y is given in (2.5) and

2
ml;“#(ﬁ“) —(—pp (214

Proof. Algebra yields (2.11) and (2.12). The Laplace
transform (2.12) is easy to invert using 29.3.43
of [6]. [

The case u=1 (withv;=1+,/pand v, =1-,/p)
was obtained by Boxma and Cohen [7]. They included
an atom at the origin in the service-time distribution,
which we could do as well. The atom at the origin

simply gets absorbed in p, i.e., corresponds to chang-
ing the arrival rate 1. This property is most easily seen
from the virtual waiting time, which has the same dis-
tribution as the actual waiting time in M/G/1. A cus-
tomer with 0 service time causes no change in the
virtual waiting-time process upon its arrival. By the
Poisson thinning property, the arrival process of cus-
tomers with positive service times is also a Poisson
process but with reduced arrival rate A(1 —#), where n
is the atom at 0 in the service-time distribution. Hence,
having an atom of mass # at 0 in the service-time dis-
tribution is equivalent to changing the arrival rate to
A(1 —n) and considering the service-time distribution
without the atom, i.e., the conditional service-time dis-
tribution given that it is positive.

3. Undamped EMIGs

We obtain the service-time transform g(s) in (2.1)
by undamping an exponential mixture of inverse
Gaussian (EMIG) ccdf’s. The EMIGs were discussed
in Section 8 in [4].

Introducing a slight change of notation, we start
with the Laplace transform of an EMIG pdf

uw+1
p+V1T+s’

Formula (3.1) is obtained from (8.9) in [4] by first
replacing p by p + 1 and then introducing the scale
parameter » = 1/2(u+1),i.e., f(s)=p(s; 0, u+1) =
p(ws, 1, u+ 1) for that . Paralleling g(s) in (2.1), an
extra scale parameter can be added to f (s)in (3.1).

The moments of the pdf with transform in (3.1)
can be derived from the inverse Gaussian moments by
using (8.3) and (8.10) of [4] (# should be #n in (8.3)).
They are

f(s)= (3.1)

1
mi(F) = m,
1 “(n+1—k)n+k)
my I(F): 7
* (2 4 2u)rt1 ; k!
k
x (’“‘TH> (3.2)
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and squared coefficient of variation (variance divided
by the mean) ¢? = u + 2. For the case u =1, (3.1)
is the BME transform 6(1/2,3/2;s) studied in [5] and
the moments in this case are m, =n!f,/(n+ 1) where
ﬁn = (Znn) 4",

Paralleling (8.13) and (8.14) of [4], the ccdf has
the Laplace transform

ey = 1210
- 1 (3.3)
(VI +V1+s) '

1 1 1
_M1(1+\/1+s /J—&-Ml—&-s)’
u#1. (3.4)
From (3.4) we see that EMIG stationary-excess pdf is

“L sz - 210, (35)
uw—1 u—1

fe(t) =

from which we obtain the simple moment recurrence
for u # 1

!

() = 5 P = ) (3.6)
The recurrence formula (3.6) is recommended over
(3.2) to calculate the moments. It is noteworthy that
the moments m,(F) are always integer sequences
when p is an integer and they are scaled by the factor
(2 4+ 2u)". Except for the cases u = 0 and 1, none of
these integer sequences are found in [12]. For exam-
ple, the moment sequence for u =2 is 1, 5, 51, 807,
17445, 479565, ...

From (3.1) and 29.3.37 of Abramowitz and Stegun

(6],

f(O)=u+1) (f/—;—; — pe® W erfe (u\/3)>,

1=0. (3.7)

Going from (3.7) to (3.2) is surprisingly difficult. It
can be done by applying the Gosper—Zeilberger algo-
rithm, e.g., see Section 5.8, especially p. 236, of Gra-
ham et al. [10] or Petkovsek et al. [11]. The associated

EMIG pdf in [4], which unfortunately was inadver-
tently omitted from (8.10) of [4], is

Veft/2v

V2mvt
27 (v = e erfe (v — 1)4/1/2v).

p(t;1,v) =

(3.8)

To obtain (3.7) and (3.8), first scale ¢ by the factor
2v, then let v=pu + 1.
Similarly, from (3.4), we have for p # 1,

1
F(t)= —1(,ue(”2_l)t erfe (uv/1)
[

—erfc(V1)), t=0, (3.9)
whereas for = 1, we invert (1 + /1 + )72 to get

F(t)=(142t)erfc (V1) —2+/m/te™, t=0.

(3.10)

In the case u = 1, the pdf f(¢) in (3.7) coincides
with the beta mixture of exponentials (BME) pdf
v(1/2,3/2;¢) in [5], which in turn coincides with
the RBM first-moment pdf 4;(¢); see Table 3 in [5].
The associated cdf in (3.10) is v(3/2,3/2;1)/4. (See
the next section for further discussion.)

For all u > 0, the asymptotic expansion for F °(¢) is

—t oo
FC(z)NCMZ(—l)"“kn(u)n!ﬁnz*" as 100,
n=1

N
(3.11)

where f3, = (2:) 47" is the moment sequence of the
gamma pdf y(z) = e~'//nt as in Table 3 of [5] and

2n—1 1 1
kn(p) = E #k:—<1—j>,
k=0 p—l H

drawing on 7.1.23 of [6]. Note that k,(1) = 2n.

As in our construction of B,ME ccdf’s from BME
ccdf’s in [5], we define the ccdf G ¢ associated with
g(s) in (2.1) by undamping the ccdf F°(z), i.e., by
letting

(3.12)

Go(t)=e'F(1), t>0. (3.13)
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Combining (3.3) and (3.13), we obtain

A ne B 1
G(s):F(s—l)—('qu\/g)(lJr\/g) (3.14)
and
n 1 AC _1_ S
M=l =G &= G A+ ey
(3.15)
just as in (2.1). Moreover,
ae, _ L—=gJs)  [(u+1 1
Gel) =" ( u >\/5<1+\/5)
“(arow) =
p(l—p) ) 1+ /s
1 1
_ 3.16
(u(l—u)>u+\/§’ (3-10)
so that, by 29.3.37 and 29.3.43 of [6],
G:(t>=ﬁ(u-‘w(u2r>—w(m, 120, (3.17)

for Y in (2.5).

In the case u=1, we can apply the BME and B,ME
calculus in [5], in particular, (1.20), (1.7) and Table
3, to get

ge(t) = G°(t) = V£(1/2,3/2; 1) = €' V(1/2,3/2; 1)

= (1/4)e'v(3/2,3/2;1)

=Q2t+ DyY(t) — 2+/t/n (3.18)
and
GE()=V5(3/2,1/2;t) =€V °(3/2,1/2;1)
=(3/4)e'v(5/2,1/2;1)
=2/t/m — (2t — 1)(2), (3.19)

as given in (2.8).

4. Representation as a mixture of exponentials

We now show that EMIGs and undamped EMIGs
are both completely monotone, i.e., can be expressed
as mixtures of exponentials. As a consequence, they

can be approximated arbitrarily closely by hyper-
exponential (finite mixtures of exponential) distri-
butions; see [9]. Of course, the hyperexponential
approximations never match the asymptotic tail behav-
ior. Nevertheless, the associated M/G/1 waiting-time
distributions are also matched arbitrarily closely;
see [9].

Theorem 4.1. An EMIG is completely monotone; in
particular, the ccdf can be expressed as

1
F°(t):/0 e Pw(y)dy, (4.1)
where
ptl Vi—y
w(y)= i <l—|—(u2—l)y>’ 0<y<l. (42)

Proof. We regard the Laplace transform F<(s) in
(3.4) as the Stieltjes transform of the spectral density,
i.e., initially assuming that

Fe() = /0 e px) dy, 43)
we obtain

ey [ L

F (s)—/0 S_l_xqﬁ(x)dx. 4.4)

We can then calculate the alleged spectral density
¢(x) by inverting its Stieltjes transform, Widder [14,
p. 126], i.e.,

(z)(x):_ImF;(—x)
B 1 Vx—1 Vx—1
s ()
DW=
- % x> 1. 45)

The mixing density w(y) is related to the spectral
density ¢(x) by w(y)=y"2¢(y~"). Hence, from (4.5)
we obtain (4.2). [J

We can combine (3.13) and Theorem 4.1 to obtain
a corresponding result for undamped EMIGS.
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Corollary 1. Anundamped EMIG is also completely
monotone, i.e.,

1
G = [ e 1wy ay (46)

= / h e Fw(z/(z+ 1) (1 +2)"2dz  (4.7)
0
for w(y)in (4.2).

In two special cases the EMIG is a beta mixture of
exponentials (BME), as considered in [5]. Recall that
the beta density is

I'(p+gq) =1

_ )1
F(p(g)” W

b(p,q;y) = 0<y<l.

(4.8)

Corollary 2. For =0, w(y) = b(1/2,1/2; y); for
p=1, w(y)=>b(1/2,3/2; y).

Hence, in the notation of [5], the EMIG in (3.1) is
v(1/2,1/2;¢) when u=0 and v(1/2,3/2;¢) when p=1.
For those cases additional properties are given in [5].
Recall that the special case considered by Boxma and
Cohen [7] is u = 1. Thus their case is the B,ME pdf
v2(1/2,3/2;¢). By Theorem 8 of [5], it can also be
expressed as a gamma mixture of Pareto distributions.

More generally, we can express the mixing pdf w(y)
in (4.2) as a linear combination of beta pdf’s. To do
so, we expand (1 + (u®> — 1)y)~! in (4.2) in a power
series.

Theorem 4.2. For > 0 with u # 1,

Z( o B <2n+13/2 >

(4.9)

where 3, = (2:) 47", the moments of b(1/2,1/2; y).

5. Time asymptotics

Combining (3.9) and (3.13), we obtain the un-
damped EMIG ccdf G°(¢). From that form, we can
obtain the asymptotics as ¢t — 0 and as t — oo. In
particular, from (3.11), we obtain the following.

Theorem 5.1. For the undamped EMIG distribution,

G(t)~1 —=2(u+ 1)\/t/t as t—0, (5.1)
c ,u+l) 1

G(t)~ as t— o0, 5.2
® ( 2u* ) (52)

and

GE(1) <“+1) L s ¢ (5.3)

~— | —= — 00. .

¢ po) /mt

Similarly, we obtain the large-time asymptotics for
We(t) from (2.13). For other M/G/1 waiting-time
asymptotics, see [15,1,7].

Theorem 5.2. With the undamped EMIG service-time
pdf transform §(s) in (2.1),

W) ~ %Gé(t)

(1+u)P —2(1-pu

1 —
2(1 = pyuit

as t—00. (54)

Formula (5.4) here agrees with formula (3.12) of
Boxma and Cohen [7] for the case u= 1.

6. Heavy-traffic asymptotics

Boxma and Cohen [7] establish general heavy-traffic
limits and approximations as p — 1. We obtain their
result for our special case directly from the explicit
representation in Section 2.

Theorem 6.1. If p—1, thenvi —1+pu, vo/(1—p)—
/(1 + p) and

WE(tfo) — Y(1) (6.1)
for y(t) in (2.5), where
1—p)? g

_( pzp) <ﬁ) . (62)

Based on (6.1), we would use the approximation
We(t) ~ y(at) = ™ erfc (Vat) (6.3)

for o in (6.2). Since p> —1 as p— 1, the factor p? in
(6.2) plays no role in the heavy-traffic limit. However,
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it makes the heavy-traffic approximation (6.3) asymp-
totically correct as # — oo for each p as well. We could
further simplify the right-hand side of (6.3) by replac-
ing erfc (1/at) by its asymptotic form as o — 0, but the
numerics performed by Boxma and Cohen [7] show
that it is better to keep the error function. This phe-
nomenon very closely parallels our asymptotic normal
approximation for the M/G/1 busy-period distribution
in [3]. Indeed, the same approximating functions are
involved.

7. Other explicit expressions

Smith [13] first observed that if the service-time
distribution has rational Laplace transform, then so
does the M/G/1 steady-state waiting-time distribu-
tion, so that at least in principle it can be inverted
analytically. This is easy to see in two steps: (1)
going from the service-time cdf G to its associated
stationary-excess cdf G, and (2) going from G, to the
waiting-time cdf exploiting the Pollaczek—Khintchine
formula. The other explicit representations obtained
so far can be viewed as generalizations of this re-
sult. If the service-time distribution has a Laplace
transform that is a rational function of s', then it
is easy to see that so does the M/G/1 steady-state
waiting-time distribution. For general #, this property
seems difficult to exploit, but for =2, we can exploit
it, because we can relate the transform involving +/s
to the error function.

For example, at least in principle, we can obtain
the explicit M/G/1 waiting-time distribution when the
service-time distribution is a mixture of £ undamped
EMIGs. By the usual partial fraction expansion (as-
suming no multiple roots), we can represent the
waiting-time distribution as a linear combination of
undamped EMIGs. However, the additional complex-
ity seems to make this approach unattractive.
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