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This paper exposes some important open problems in queueing theory. We use simulation and optimization

to evaluate the tight upper and lower bounds for the transient and steady-state mean waiting time in

the GI/GI/1 queue when the interarrival times and service times are partially specified by their first two

moments. For the special case in which the interarrival-time and service-time distributions are two-point

distributions with bounded support, we apply simulation to provide evidence to support the conjecture that

the tight upper bound overall is attained at two-point distributions where the interarrival-time distribution

has one mass point at 0, while the service-time distribution has one mass at the upper limit. To extend

that conclusion, we apply optimization to provide evidence that the tight upper bound over three-point

distributions are attained at two-point distributions. We also obtain results for the tight upper bound of the

supremum over one distribution when the other is specified. We also study the tight lower bounds.
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1. Introduction

This paper contributes to the theory of extremal GI/GI/1 queues. We are interested in tight upper

and lower bounds for the transient mean waiting time E[Wn] and steady-state mean waiting time

E[W ]≡E[W∞] when the interarrival-time cdf F has mean 1 and scv (squared coefficient of variation,

variance divided by the square of the mean) c2a <∞ and the service-time cdf G has mean ρ and scv

c2s <∞, so that the traffic intensity is ρ, 0<ρ< 1.

We now formulate a version of the problem for distributions with bounded support. For that

purpose, let Pa,2(1, c
2
a,Ma) be the set of all interarrival-time cdf’s F with mean 1, scv c2a and support
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Ma, where Ma ≥ 1+ c2a to be feasible. Similarly, let Ps,2(ρ, c
2
s,Ms) be the set of all service-time cdf’s

G with mean ρ, scv c2s and support ρMs, where Ms ≥ 1+ c2s to be feasible.

For the upper bound, we are interested in three problems:

(a) sup{E[Wn(F,G)] : F ∈Pa,2(1, c
2
a,Ma)} for given G∈Ps,2(ρ, c

2
s,Ms),

(b) sup{E[Wn(F,G)] :G∈Ps,2(1, c
2
s,Ms)} for given F ∈Pa,2(1, c

2
a,Ma) and

(c) sup{E[Wn(F,G)] : F ∈Pa,2(1, c
2
a,Ma),G∈Ps,2(ρ, c

2
s,Ms)}. (1)

We wish to identify the distributions that attain these suprema. Since we are optimizing a continuous

funcion over a compact metric space, the optimum values are always attained.

Let Pa,2,2(1, c
2
a,Ma) and Ps,2,2(ρ, c

2
s,Ms) be the subsets of two-point distributions in Pa,2(1, c

2
a,Ma)

and Ps,2(ρ, c
2
s,Ms), respectively. Each of these-sets is a one-parameter family, which can be indexed

by either the lower or upper mass point. Let F0 be the two-point distribution in Pa,2,2(1, c
2
a,Ma) with

one mass at 0; let Gu be the two-point distribution in Ps,2,2(1, c
2
s,Ms) with one mass at the upper

limit of support, ρMs.

The case of greatest interest in (1) is no doubt the overall upper bound in case (c). Our numerical

results support the following conjecture about the overall tight upper bound.

Conjecture 1. (the tight upper bound for 1≤ n≤∞)

(a) Given any parameter vector (1, c2a, ρ, c
2
s) and a bounded interval [0, ρMs] for the service-time

cdf G, where Ms ≥ c2s + 1, the pair (F0,Gu) attains the tight upper bound of the steady-state mean

E[W ], i.e.,

E[W (F,G)]≤E[W (F0,Gu)] for all F ∈Pa,2(Ma) and G∈Ps,2(Ms),

while a pair (F0,Gu,n) attains the tight upper bound of the transient mean E[Wn], i.e.,

E[Wn(F,G)]≤E[Wn(F0,Gu,n))] for all F ∈Pa,2(Ma) and G∈Ps,2(Ms),

where Gu,n is a two-point distribution with Gu,n ⇒Gu as n→∞.
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(b) When both F and G have unbounded support [0,∞), the tight upper bound of E[W (F,G)] is

obtained asymptotically in the limit as Ms →∞ in part (a), i.e.,

E[W (F,G)]≤ lim
Ms→∞

E[W (F0,Gu)]≡E[W (F0,Gu∗)] for all F ∈Pa,2 and G∈Ps,2.

Let Gu∗ in E[W (F,Gu∗)] be shorthand for the limit of E[W (F,Gu)] as Ms →∞ as in Conjecture 1

(b). In Chen and Whitt (2020) we obtained an UB for E[W (F0,Gu∗)], which is remarkably accurate.

(See Theorem 1 and Tables 1 and 2 in §2.3 below.)

In §3 we report results of a simulation study to investigate the special case of two-point distri-

butions. In particular, we experimentally (numerically) verify Conjecture 1 for the restriction to

two-point distributions. We also consider cases (a) and (b) in (1) in the special case of two-point

distributions. These results supplement our recent papers Chen and Whitt (2020, 2021b,a), which

contribute to the substantial literature, reviewed in Daley et al. (1992), especially §10, and Wolff and

Wang (2003). To gain simulation efficiency for the steady-state mean, we exploit the representation

of E[W ] in terms of the idle-time distribution proposed by by Minh and Sorli (1983).

For the maximum over F for specified service-time cdf G in case (a) of (1), by applying Tchebycheff

systems, Theorem 2 (a) of Chen and Whitt (2021b) establishes that F0 is optimal if G is completely

monotone, i.e., can be represented as a mixture of exponentials. Here we experimentally show that

F0 is either optimal or nearly optimal for all two-point G.

On the other hand, for the maximum over G for specified F in case (b) of (1), Theorem 2 (b)

of Chen and Whitt (2021b) tells a more complicated story, consistent with §V of Whitt (1984b)

and §8 of Wolff and Wang (2003). In particular, it concludes that the maximum is attained at G0

(Gu) when the cdf F is strictly concave (strictly convex). (An explanation in terms of singularities

of Laplace transforms is given in Whitt (1984a).) The cdf F0 has neither of these properties. It can

be well approximated by a cdf that is strictly increasing right after 0 and right before Ma, but flat

or relatively flat in between. The complexity of the problems in cases (a) and (b) at least partly

explains the difficulty in establishing Conjecture 1.

This paper has been extracted from an earlier unpublished paper that (unsuccessfully) tried to

prove the following conjecture (which we still think is true).
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Conjecture 2. (three-point extremal distributions) All the tight upper bounds in (1) and the

corresponding tight lower bounds are attained by three-point distributions.

Motivated by Conjecture 2, in §4 we develop a multinomial representation for three-point dis-

tributions and apply it to formulate a non-convex nonlinear program (NLP) for the overall upper

bound over three-point distributions, which we solve by applying sequential quadratic programming

(SQP) as discussed in Ch. 18 of Nocedal and Wright (1999). The SQP algorithm converges at a local

optimum, so we apply it with randomly selected initial conditions. In our experiments, we found

that all local optima for the overall upper bound are two-point distributions and that the best local

optimum always has interarrival-time cdf with one mass at 0.

As reviewed in §2.4.1 of Chen and Whitt (2020), the overall tight lower bound is known, and it is

known to be attained at a three-point distribution, which is not a two-point distribution. Otherwise,

Conjectures 1 and 2 remain to be proved or refuted. In §5 we study the lower bound with bounded

support, which was not considered previously. Finally, in §6 we draw conclusions.

2. Background

We briefly review the GI/GI/1 model in §2.1, the established bounds in §2.2, the two-point distri-

butions in §2.3. and related literature in §2.4.

2.1. The GI/GI/1 Model

The GI/GI/1 single-server queue has unlimited waiting space and the first-come first-served ser-

vice discipline. There is a sequence of independent and identically distributed (i.i.d.) service times

{Vn : n≥ 0}, each distributed as V with cumulative distribution function (cdf) G, which is indepen-

dent of a sequence of i.i.d. interarrival times {Un : n≥ 0} each distributed as U with cdf F . With the

understanding that a 0th customer arrives at time 0, Vn is the service time of customer n, while Un

is the interarrival time between customers n and n+1.

Let U have mean E[U ]≡ λ−1 ≡ 1 and squared coefficient of variation (scv, variance divided by the

square of the mean) c2a <∞; let a service time V have mean E[V ]≡ τ ≡ ρ and scv c2s <∞, where

ρ≡ λτ < 1, so that the model is stable. (Let ≡ denote equality by definition.)
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Let Wn be the waiting time of customer n, i.e., the time from arrival until starting service, assuming

that the system starts with an initial workload W0 having cdf H0 with a finite mean. The sequence

{Wn : n≥ 0} is well known to satisfy the Lindley recursion

Wn = [Wn−1 +Vn−1 −Un−1]
+, n≥ 1, (2)

where x+ ≡ max{x,0}. Let W be the steady-state waiting time, satisfying Wn ⇒ W as n → ∞,

where ⇒ denotes convergence in distribution for any proper cdf H0. It is well known that the cdf H

of W is the unique cdf satisfying the stochastic fixed point equation

W
d
= (W +V −U)+, (3)

where d
= denotes equality in distribution. It is also well known that, if P (W0 = 0) = 1, then Wn

d
=

max{Sk : 0≤ k≤ n} for n≤∞, S0 ≡ 0, Sk ≡X0+ · · ·+Xk−1 and Xk ≡ Vk−Uk, k≥ 1; e.g., It is also

known that, under the specified finite moment conditions, for 1 ≤ n ≤∞, Wn is a proper random

variable with finite mean, given by

E[Wn]≡E[Wn|W0 = 0] =
n∑

k=1

E[S+
k ]

k
<∞, 1≤ n<∞, and E[W ] =

∞∑
k=1

E[S+
k ]

k
<∞; (4)

see §§X.1-X.2 of Asmussen (2003) or (13) in §8.5 of Chung (2001). We will exploit the formula for

the transient mean in (4) in our analysis.

2.2. Background on the Bounds and Approximations

The familiar heavy-traffic approximation for the mean steady-state waiting time is

E[W ]≡E[W (ρ, c2a, c
2
s)]≈

ρ2(c2a + c2s)

2(1− ρ)
, (5)

Formula (5) combines the heavy-traffic limit in Kingman (1961) with the exact Pollaczek-Khintchine

formula when the arrival process is a Poisson process, so that c2a = 1.

The most familiar upper bound on E[W ] is the Kingman (1962) bound,

E[W ]≤ ρ2([c2a/ρ
2] + c2s)

2(1− ρ)
, (6)
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which is known to be asymptotically correct in heavy traffic (as ρ→ 1).

A better upper bound depending on these same parameters was obtained by Daley (1977). in

particular, it replaces the term c2a/ρ
2 by (2− ρ)c2a/ρ, i.e.,

E[W ]≤ ρ2([(2− ρ)c2a/ρ] + c2s)

2(1− ρ)
. (7)

Note that (2− ρ)/ρ < 1/ρ2 because ρ(2− ρ)< 1 for all ρ, 0<ρ< 1.

In Chen and Whitt (2020) we developed algorithms to compute the conjectured tight upper bound.

There we showed that it provides significant improvement to (6) and (7) away from heavy traffic.

Let Gu∗ in E[W (F,Gu∗)] be shorthand for the limit of E[W (F,Gu)] as Ms →∞ as in Conjecture 1

(b). We also obtained an upper bound for E[W (F0,Gu∗)], which is remarkably accurate.

Theorem 1. (an upper bound for E[W (F0,Gu∗)], Theorem 3.2 of Chen and Whitt (2020)) For the

GI/GI/1 queue with parameter four-tuple (1, c2a, ρ, c
2
s), where E[W (F0,Gu∗)] is defined in Conjecture

1,

E[W (F0,Gu∗)]≤ 2(1− ρ)ρ/(1− δ)c2a + ρ2c2s
2(1− ρ)

<
ρ(2− ρ)c2a + ρ2c2s

2(1− ρ)
, (8)

where δ ∈ (0,1) and δ= exp(−(1− δ)/ρ).

In contrast to the tight upper bound that we primarily study, the tight lower bound for the steady-

state mean has been known for a long time; see Stoyan and Stoyan (1974), §5.4 of Stoyan (1983), §V

of Whitt (1984b), Theorem 3.1 of Daley et al. (1992) and references there:

E[W ]≥ ρ((1+ c2s)ρ− 1)+

2(1− ρ)
. (9)

The lower bound in (9) is attained asymptotically at a deterministic interarrival time with the

specified mean and at any three-point service-time distribution that has all mass on nonnegative-

integer multiples of the deterministic interarrival time. The service part follows from Ott (1987). (All

service-time distributions satisfying these requirements yield the same mean.)

Tables 1 and 2 compare the numerically computed values of the conjectured tight upper bound,

E[W (F0,Gu∗)], comparing it to the heavy-traffic approximation (HTA) in (5), the new upper bound
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in (8), the Daley (1977) bound in (7) and the Kingman (1962) bound in (6) over a range of ρ for the

scv pairs (c2a, c
2
s) = (4.0,4.0) and (0.5,0.5).

In these tables we also show the value of δ in the new upper bound (8) (UB) and the maximum

relative error (MRE) between the upper bound approximation and the tight upper bound. The MRE

over all four cases was 5.7%. which occurred for c2a = c2s = 0.5 and ρ= 0.5.

We also display the lower bound (LB) in (9), which is far less than the other values, indicating the

wide range of possible values. The extremely low LB occurs because it is associated with the D/GI/1

model, which is approached by the Fu extremal distribution as the support limit Ma →∞ for any

c2a. Notice that the LB is actually 0 for many cases with low traffic intensity; that occurs if and only

if P (V ≤U) = 1. Hence, the LB looks especially bad for the case (c2a = 4.0, c2s = 0.5), because it is the

same as for the case (c2a = 0.5, c2s = 0.5) in Table 2 and even for (c2a = 0.0, c2s = 0.5) in the D/GI/1

model.

Table 1 A comparison of the unscaled bounds and approximations for the steady-state mean E[W ] as a

function of ρ for the case c2a = 4.0 and c2s = 4.0

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(5) (8) (7) (6)

0.10 0.000 0.044 0.422 0.422 0.000 0.00% 0.444 2.244
0.15 0.000 0.106 0.653 0.654 0.001 0.05% 0.706 2.406
0.20 0.000 0.200 0.904 0.906 0.007 0.19% 1.000 2.600
0.25 0.042 0.333 1.182 1.187 0.020 0.40% 1.333 2.833
0.30 0.107 0.514 1.499 1.508 0.041 0.60% 1.714 3.114
0.35 0.202 0.754 1.868 1.883 0.070 0.79% 2.154 3.454
0.40 0.333 1.067 2.304 2.326 0.107 0.94% 2.667 3.867
0.45 0.511 1.473 2.829 2.859 0.152 1.06% 3.273 4.373
0.50 0.750 2.000 3.470 3.510 0.203 1.15% 4.000 5.000
0.55 1.069 2.689 4.272 4.321 0.261 1.13% 4.889 5.789
0.60 1.500 3.600 5.295 5.352 0.324 1.07% 6.000 6.800
0.65 2.089 4.829 6.632 6.698 0.393 1.00% 7.429 8.129
0.70 2.917 6.533 8.441 8.520 0.467 0.93% 9.333 9.933
0.75 4.125 9.000 11.014 11.102 0.546 0.80% 12.000 12.500
0.80 6.000 12.800 14.917 15.017 0.629 0.67% 16.000 16.400
0.85 9.208 19.267 21.484 21.597 0.716 0.53% 22.667 22.967
0.90 15.750 32.400 34.721 34.843 0.807 0.35% 36.000 36.200
0.95 35.625 72.200 74.621 74.755 0.902 0.18% 76.000 76.100
0.98 95.550 192.080 194.557 194.702 0.960 0.07% 196.000 196.040
0.99 195.525 392.040 394.533 394.684 0.980 0.04% 396.000 396.020



8

Table 2 A comparison of the unscaled bounds and approximations for the steady-state mean E[W ] as a

function of ρ for the case c2a = 0.5 and c2s = 0.5

ρ Tight LB HTA Tight UB UB Approx δ MRE Daley Kingman
(5) (8) (7) (6)

0.10 0.000 0.006 0.053 0.053 0.000 0.00% 0.056 0.281
0.15 0.000 0.013 0.082 0.082 0.001 0.11% 0.088 0.301
0.20 0.000 0.025 0.113 0.113 0.007 0.54% 0.125 0.325
0.25 0.000 0.042 0.146 0.148 0.020 1.35% 0.167 0.354
0.30 0.000 0.064 0.184 0.189 0.041 2.36% 0.214 0.389
0.35 0.000 0.094 0.228 0.235 0.070 3.16% 0.269 0.432
0.40 0.000 0.133 0.280 0.291 0.107 3.82% 0.333 0.483
0.45 0.000 0.184 0.342 0.357 0.152 4.43% 0.409 0.547
0.50 0.000 0.250 0.414 0.439 0.203 5.72% 0.500 0.625
0.55 0.000 0.336 0.515 0.540 0.261 4.62% 0.611 0.724
0.60 0.000 0.450 0.637 0.669 0.324 4.71% 0.750 0.850
0.65 0.000 0.604 0.800 0.837 0.393 4.45% 0.929 1.016
0.70 0.058 0.817 1.017 1.065 0.467 4.53% 1.167 1.242
0.75 0.188 1.125 1.312 1.388 0.546 5.42% 1.500 1.563
0.80 0.400 1.600 1.822 1.877 0.629 2.95% 2.000 2.050
0.85 0.779 2.408 2.646 2.700 0.716 1.99% 2.833 2.871
0.90 1.575 4.050 4.295 4.355 0.807 1.38% 4.500 4.525
0.95 4.037 9.025 9.284 9.344 0.902 0.65% 9.500 9.512
0.98 11.515 24.010 24.271 24.338 0.960 0.27% 24.500 24.505
0.99 24.008 49.005 49.265 49.336 0.980 0.14% 49.500 49.503

From this analysis, we see that conjectured new UB (8) is an excellent approximation for the

conjectured UB E[W (F0,Gu∗)]. Moreover, we see that there is significant improvement going from

the Kingman (1962) bound in (6) to the Daley (1977) bound in (7) to the new UB in (8). We also see

that the heavy-traffic approximation is consistent with the upper bounds in all cases. Moreover, all

the upper bound approximations are asymptotically correct as ρ ↑ 1. The heavy-traffic approximation

in (5) tends to be much closer to the UB than the lower bound, which shows that the overall MRE

can be large and that the heavy-traffic approximation tends to be relatively conservative, as usually

is desired in applications. The very wide range (UB - LB) caused by the lower bound was a major

incentive for adding extra information about the underlying distributions in order to obtain useful

set-valued approximations in Chen and Whitt (2021c). We discuss the lower bound for the transient

mean here in §5.
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2.3. The Two-Point Distributions

Let P2,2(m1, c
2,M) be the set of all two-point distributions with mean m1 and second moment

m2 =m2
1(c

2 +1) with support in [0,m1M ]. The set P2,2(M)≡P2,2(m1, c
2,M) is a one-dimensional

parametric family. Typically, we use Pa,2,2(Ma) and Ps,2,2(Ms) with notations a and s to denote the

sets of probability measures for inter-arrival time and service time. Any element is determined by

specifying one mass point. Let F (2)
b be the cdf that has probability mass c2/(c2+(b−1)2) on m1b, and

mass (b−1)2/(c2+(b−1)2) on m1(1−c2/(b−1)) for 1+c2 ≤ b≤M . The cases b= 1+c2 and b=M

constitute the two extremal distributions. Let F0 ≡ F
(2)

1+c2
and Fu ≡ F

(2)
b for some b ∈ (1 + c2,M)

denote the extremal distributions with masses at the end points m1(1+ c2) and m1b, as in §1.

2.4. Related Literature

Optimization has been used previously to study the bounding problem for queues, beginning with

Klincewicz and Whitt (1984) and Johnson and Taaffe (1990). Due to intractability( e.g., lack of con-

vexity), new approaches have been proposed to simplify the problem, e.g, reformulating the problem

into tractable relaxed convex programs, imposing extra conditions and limitations; see Bertsimas

and Natarajan (2007) and Gupta and Osogami (2011)). Optimal solutions are not difficult to obtain,

but it is difficult to assess the approximation error.

In addition, several researchers have studied bounds for the more complex many-server queue.

Bertsimas and Natarajan (2007), Gupta et al. (2010) and Gupta and Osogami (2011) investigate the

bounds and approximations of the M/GI/c queue. Gupta et al. (2010) explains why two-moment

information is insufficient for good accuracy of steady-state approximations of M/GI/c. Gupta and

Osogami (2011) establishes a tight bound for the M/GI/K in light traffic. Osogami and Raymond

(2013) bounds the transient tail probability of GI/GI/1 by a semi-definite program. Li and Goldberg

(2017) establishes bounds for GI/GI/c intended for the many-server heavy-traffic regime. van Eeke-

len et al. (2019) address the classical extremal queueing problem by measuring dispersion in terms

of Mean Absolute Deviation (MAD) instead of variance. Finally, we mention that optimization also

plays a critical role in recent work on robust queueing, as in Bandi et al. (2015) and Whitt and You

(2018, 2019).
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3. The Simulation Experiments

To analyze the mean waiting times for the two-point interarrival-time and service-time distributions,

we use stochastic simulation.

3.1. The Simulation Methodology

We study various simulation approaches in Chen and Whitt (2020). For the transient mean E[Wn],

we use direct numerical simulation, but for the steady-state simulations we mostly use the simulation

method in Minh and Sorli (1983) that exploits the representation of E[W ] in terms of the steady-

state idle time I and the random variable Ie that has the associated equilibrium excess distribution,

i.e.,

E[W ] =−E[X2]

2E[X]
−E[Ie] =−E[X2]

2E[X]
− E[I2]

2E[I]
=

ρ2c2s + c2a +(1− ρ)2

2(1− ρ)
− E[I2]

2E[I]
; (10)

which is also used in Wolff and Wang (2003). For each simulation experiment, we perform multiple

(usually 20− 40) i.i.d. replications. Within each replication we look at the long-run average after

deleting an initial portion to allow the system to approach steady state if deemed helpful. It is well

known that obtaining good statistical accuracy is more challenging as ρ increases, e.g., see Whitt

(1989), but that challenge is largely avoided by using (10).

We do not report confidence intervals for all the individual results, but we did do a careful study of

the statistical precision. To illustrate, Table 3 compares the 95% confidence intervals associated with

estimates of the steady-state mean E[W (F0,Gu)] for the parameter triple (ρ, c2a, c
2
s) = (0.5,4.0,4.0)

obtained by making the statistical t test to multiple replications of runs of various length. The table

compares the standard simulation for various run lengths N (number of arrivals) and the Minh and

Sorli (1983) algorithm for various run lengths T (length of time, over which we average the observed

idle periods) and numbers of replications n. (See Chen and Whitt (2020) for more discussion.)

3.2. The Impact of the Interarrival-Time Distribution

Figure 1 reports simulation results for E[W20] (left) and E[W ] (right) in the case ρ= 0.5, c2a = c2s = 4.0

and Ma =Ms = 30. (The maximum 95% confidence interval was less than 10−4.) We focus on the

impact of ba (for F ) in the permissible range [5,30] for six values of bs (for G) ranging from 5 to 30.

(Recall that the parameter b was defined in §2.3.)
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Table 3 Confidence interval halfwidths for estimates of the steady-state mean E[W (F0,Gu)] for the parameter

triple (ρ, c2a, c
2
s) = (0.5,4.0,4.0)

Monte Carlo simulation Minh and Sorli simulation

replications N = 105 N = 106 N = 107 T = 105 T = 106 T = 107

20 6.64E-02 2.45E-02 8.01E-03 1.58E-03 4.81E-04 1.55E-04

40 5.59E-02 1.27E-02 4.22E-03 1.20E-03 3.20E-04 9.89E-05

60 3.69E-02 1.20E-02 4.23E-03 8.44E-04 2.88E-04 8.03E-05

80 3.52E-02 1.17E-02 3.72E-03 7.54E-04 2.27E-04 9.55E-05

100 2.61E-02 9.94E-03 3.13E-03 6.06E-04 2.02E-04 7.20E-05

5 10 15
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Figure 1 Simulation estimates of the transient mean E[W20] (left) and the steady-state mean E[W ] (right) as

a function of ba for six cases of bs the in the case ρ= 0.5, c2a = c2s = 4.0 and Ma =Ms = 30.

Figure 1 shows that the mean waiting times tend to be much larger at the extreme left, which

is associated with ba = 5 or F0. However, we see some subtle behavior. For example, for bs = 20,

we clearly see that the mean is not monotonically decreasing in ba, but nevertheless, F0 is clearly

optimal.

On the other hand, a close examination of the extreme case bs = 5 shows that the largest value

of ba does not occur for ba = 5, but in fact occurs at a slightly higher value. That turns out to be

the counterexample. In particular, Tables 4 and 5 present detailed simulation estimates of E[W ] and

E[W20]. In both Tables 4 and 5 we see that the maximum mean waiting time value in the first row,

i.e., over ba when bs = 5 is not attained at ba = 5.0, but is instead attained at ba = 5.25. For emphasis,
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in each case we highlight both the maximum entry in the first row and the maximum entry in the

table. Therefore, for that service-time distribution (which is G0), the extremal inter-arrival time is

not F0.

Table 4 Simulation estimates of E[W ] as a function of ba and bs when ρ= 0.5, c2a = c2s = 4.0 and

Ma = 7<Ms = 10.

bs\ba 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.0

5.0 3.110 3.134 3.117 3.083 3.040 2.997 2.950 2.910 2.863

5.5 3.179 3.026 3.019 3.009 2.975 2.938 2.901 2.860 2.823

6.0 3.191 3.065 2.932 2.907 2.905 2.876 2.844 2.809 2.767

7.0 3.181 3.067 2.942 2.797 2.748 2.720 2.713 2.691 2.670

8.0 3.195 3.056 2.934 2.810 2.664 2.611 2.591 2.564 2.553

9.0 3.239 3.092 2.931 2.792 2.663 2.525 2.472 2.467 2.449

10.0 3.282 3.142 2.986 2.812 2.640 2.507 2.367 2.350 2.349

Table 5 Simulation estimates of E[W20] as a function of ba and bs when ρ= 0.5, c2a = c2s = 4.0 and

Ma = 7<Ms = 10.

bs\ba 5.00 5.25 5.50 5.75 6.00 6.25 6.50 6.75 7.00

5.0 2.497 2.530 2.518 2.497 2.469 2.439 2.406 2.371 2.335

5.5 2.557 2.414 2.420 2.422 2.402 2.378 2.351 2.320 2.288

6.0 2.561 2.447 2.328 2.318 2.328 2.312 2.290 2.266 2.239

7.0 2.549 2.447 2.331 2.204 2.165 2.149 2.154 2.150 2.132

8.0 2.556 2.430 2.319 2.208 2.074 2.029 2.021 2.010 2.007

9.0 2.598 2.456 2.310 2.183 2.068 1.937 1.895 1.903 1.898

10.0 2.626 2.506 2.353 2.188 2.043 1.921 1.786 1.779 1.789

Note that F0 is optimal for all other bs and the difference between max{E[W (F,G0)] : F} −

E[W (F0,G0)] is very small. Moreover, consistent with Conjecture 1, the overall UB is attained at the
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pair (F0,Gu). Finally, note that the difference across each row tends to be greater than the difference

across each column.

3.3. The Impact of the Service-Time Distribution

Figure 1 also shows the impact of the service-time distribution, but that impact is more complicated.

For E[W ] with ba = 5.5, we see that the curve crosses the other curves in the middle. We now

investigate what the optimal value of bs will be over [1 + c2s,Ms] for E[Wn] and E[W ]. For that

purpose, Figure 2 plots the values of E[W10] (left) and E[W20] (right) as a function of bs in the

case ρ= 0.5, c2a = c2s = 4.0, Ms = 300 and ba = (1 + c2a). For these cases, we find bs(10) = 35.1 and

bs(20) = 41.1.
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Figure 2 The transient mean waiting time E[Wn] for n = 10,20 as a function of bs up to Ms = 300. bs(10) =

35.1, bs(20) = 41.1.

As a function of bs, the transient mean waiting time E[Wn] is approximately first increas-

ing and then decreasing at all traffic levels. Therefore, for each n, there exists bs(n) such that

E[Wn(F0,Gu; bs(n))]≥ {E[Wn(F0,Gu; bs)] : bs ∈ [1+ c2s,Ms]}. Another important observation is that

bs(n) is a function of n and bs(20)> bs(10) under traffic level ρ= 0.3.

Now we investigate the extremal bs(n) as a function of n. Figure 3 shows E[Wn] as a function of n

for the light traffic ρ= 0.2 (left) and ρ= 0.3 (right). Figure 3 shows that bs(n) tends to be increasing

with n given ba = (1+ c2a), but is not uniformly so. In particular, for ρ= 0.3 on the right, we see a
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dip at n= 15. We define Gu,n is a two-point distribution with bs(n)∈ (1+ c2s,Ms) that converges to

Gu as n→∞.
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Figure 3 Performance of bs(n) associated with E[Wn(F0,Gu,n)] for 5≤ n≤ 50.

Nevertheless, the upper bound queue over Pa,2,2(Ma)×Ps,2,2(Ms) for transient mean waiting time

E[Wn] is F0/Gu,n/1 with bs(n) primarily increasing with n.

We next directly examine the steady-state mean waiting time E[W ] for set ba = (1 + c2a) and

Ms = 100. We use Minh and Sorli (1983) method with simulation length over a time interval of length

1× 107 and 40 i.i.d. replications. (The maximum 95% confidence interval was again less than 10−4.)

To illustrate, Figure 4 shows the results for the traffic levels ρ= 0.3 (left) and ρ= 0.9 (right).

0 10 20 30 40 50 60 70 80 90 100

b
s
 from 5 to 100

3.1

3.15

3.2

3.25

3.3

3.35

3.4

3.45

3.5

E
W

ρ=0.5, M
a
=5, M

s
=100

0 10 20 30 40 50 60 70 80 90 100
b

s
 from 5 to 100

34

34.1

34.2

34.3

34.4

34.5

34.6

34.7

34.8

E
W

ρ=0.9, M
a
=5, M

s
=100

Figure 4 E[W (F0,G)] for G∈Ps,2,2(Ms) as a function of bs given ba = (1+ c2a).
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Just as in Figure 3, Figure 4 shows that the steady-state mean E[W ] is eventually increasing in bs,

given ba = (1+ c2a), strongly supporting the conclusion that the upper bound is attained at (F0,Gu).

Hence, the optimal bs is Ms. Since E[Wn]→E[W ], we must also have bs(n)→Ms as n→∞.

3.4. Additional Counterexamples When One Distribution is Given

In this section we report additional experiments to provide more counterexamples when one dis-

tribution is given. Recall that strong evidence has already been given in Tables 4 and 5. For the

steady-state mean E[W ], we use simulation method in Minh and Sorli (1983) with simulation length

T ∗ = 1 × 107 and 20 i.i.d. replications to compute E[W ] for the case ρ = 0.5, c2a = 4, and c2s = 4

with ba ∈ [1+ c2a,Ma] (LHS of the following Figure 5). For the RHS of Figure 5, we use Monte Carlo

simulation method with N = 1× 107 and report average results based on 20 identical independent

replications for studying the effects of bs on E[W ] for different cases of ba. It is already known that

when ba = (1+ c2a), the E[W ] is increasing with bs.

Figure 5 shows simulation estimates of the steady-state mean E[W ] as a function of ba in [(1 +

c2a),Ma = 7] for bs = 5, i.e., for G0 (left) and as a function of bs in [(1 + c2s),Ms = 20] for various ba

(right). The optimal values of bs as a function of ba, denoted by b∗s(ba), are: b∗s(10) = 5.0, b∗s(15) =

8, b∗s(20) = 11, b∗s(25) = 18, b∗s(30) = 20.
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Figure 5 Simulation estimates of the steady-state mean E[W ] as a function of ba in [(1 + c2a),Ma] = [5,7] for

bs = 5, i.e., for G0 (left) and as a function of bs in [(1+ c2s),Ms] = [5,20] for various ba (right).
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The plot on the left in Figure 5 dramatically shows the counterexample from Wolff and Wang

(2003)); it shows that the maximum is not attained at F0 when the service-time cdf is G0. The plot

on the right shows the more complex behavior that is possible for bs (the service-time cdf G) as a

function of ba (the interarrival-time cdf F ). When ba = 5 (F0), we see that the mean is increasing

in bs, but when ba > 5, we see more complicated behavior. For the three cases ba = 15,20,25, there

exists b∗s(ba) ∈ (1 + c2s,Ms) such that the extremal service-time cdf is neither associated with bs on

the left (G0) nor with bs on the right (Gu).

4. The Nonlinear Program

In this section we apply numerical optimization for the transient mean E[Wn] to deduce the form

of the extremal distributions for the overall upper bound among three-point distributions. For that

purpose, let Pa,2,3 and Ps,2,3 be the sets of three-point distributions, paralleling Pa,2,2 and Ps,2,2 in

§2.3. In §4.1 we formulate an optimization problem for the transient mean based on a multinomial

representation. We follow in §4.2 by presenting numerical examples applying the algorithm.

4.1. The Multinomial Representation for the Transient Mean E[Wn]

We can represent the transient mean in (4) in terms of two independent multinomial distributions.

Let the cdf G in Ps,2,3 with specified mean ρ and scv c2s be parameterized by the vector of mass points

v ≡ (v1, v2, v3) and the vector of probabilities p≡ (p1, p2, p3). For every positive integer k, define a

multinomial probability mass function on the vector of nonnegative integers k≡ (k1, k2, k3) by

Pk(p)≡
k!pk11 pk22 pk33
k1!k2!k3!

, (11)

where it is understood that ke′ ≡ k1 + k2 + k3 = k. Similarly, let the cdf F in Pa,2,3 with specified

mean 1 and scv c2a be parameterized by the vector of mass points u≡ (u1, u2, u3) and probabilities

q≡ (q1, q2, q3) on the vector of nonnegative integers w≡ (w1,w2,w3), so that

Qk(q)≡
k!qw1

1 qw2
2 qw3

3

w1!w2!w3!
, (12)

where it is understood that we′ ≡w1 +w2 +w3 = k.
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Then, from (4),

E[Wn] =
n∑

k=1

1

k

∑
(k,w)∈I

max{0,
3∑

i=1

(kivi −wjuj)}Pk(p)Qk(q), (13)

where I is the set of all pairs of vectors (k,w) with both ke′ ≡ k1+k2+k3 = k and we′ ≡w1+w2+

w3 = k.

For any given n and any given distributions G in Ps,2,3 parameterized by the pair (v,p) and F

in Pa,2,3 parameterized by the pair (u,q), we can calculate the transient mean E[Wn] by calculating

the sum in (13). We can easily evaluate E[Wn] for candidate cases provided that n is not too large.

Next, for the overall optimization over Pa,2,3(Ma)×Ps,2,3(Ms), we write

sup{E[Wn(v,p,u,q)] : ((v,p), (u,q))∈Pa,2,3(Ma)×Ps,2,3(Ms)}, (14)

using (13). We now write this optimization problem in a more conventional way, from which we

see that the optimization is a form of non-convex nonlinear program (NLP). In particular, for the

moments we write m1 ≡ E[U ] ≡ 1, m2 ≡ E[U 2] ≡ m2
1(c

2
a + 1), s1 ≡ E[V ] ≡ ρ and s2 ≡ E[V 2] ≡

s21(c
2
a +1). Then the NLP for the UB is

maximize
n∑

k=1

1

k

∑
∑

ki=k,
∑
j

wj=k

max(
∑
i

kivi −
∑
j

wjui,0)P (k1, k2, k3)Q(w1,w2,w3)

subject to
3∑

j=1

ujqj =m1,
3∑

j=1

u2
jqj =(1+ c2a)m

2
1,

3∑
j=1

vjpj =s1,
3∑

j=1

v2jpj =(1+ c2s)s
2
1,

3∑
j=1

pj =
3∑

k=1

qk = 1,

Ms ≥ vj ≥ 0, Ma ≥ uj ≥ 0, pj ≥ 0, qj ≥ 0, 1≤ j ≤ 3.

(15)

We solved this non-convex NLP in (15) by applying sequential quadratic programming (SQP) as

discussed in Chapter 18 of Nocedal and Wright (1999). In particular, we applied the Matlab variant

of SQL, which is a second-order method, implementing Schittkowski’s NLPQL Fortran algorithm.

This algorithm converges at a local optimum. Since the algorithm is not guaranteed to reach a global

optimum, we run the algorithm for a large collection of uniform randomly chosen initial conditions.
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We found that the local optimum solution is usually (F0,Gu,n). In the rare cases that we obtain

a different solution, we found that it is always in Pa,2,2(Ma) × Ps,2,2(Ms). Moreover, in these

cases, we can find a different initial condition for which (F0,Gu,n) is the local optimum, and that

E[W (F0,Gu,n)] is larger than for other local optima.

4.2. Numerical Results from the Optimization and Numerical Search

To illustrate our results, we report results from a further experiment in which we performed a

numerical search over the candidate two-point service-time distributions Gu,n for the mean waiting

time E[Wn(F0,Gu,n)] as a function of n using the multinomial exact representation in §4.1 for a class

of models (ρ∈ {0.1, ...,0.9}, c2a ∈ {0.5,4.0}, c2s ∈ {0.5,4.0},Ma =Ms = 10), and n= 1,5, ...,50. For all

these cases, we first found by the optimization that the local optimum was obtained at (F0,Gu,n). We

then conducted the search (using simulation, see §3) to carefully identify the optimal values among

these candidate Gu,n. Tables 6-9 present numerical results for the cases (c2a, c2s) = (4.0,4.0), (4.0,0.5),

(0.5,4.0) and (0.5,0.5)) for a range of n and ρ..

Table 6 Numerical values of E[Wn(F0,Gu,n)] from the optimization for c2a = c2s = 4.0 and Ma =Ms = 10

n ρ= 0.1 ρ= 0.2 ρ= 0.3 ρ= 0.4 ρ= 0.5 ρ= 0.6 ρ= 0.7 ρ= 0.8 ρ= 0.9

1 0.080 0.160 0.240 0.320 0.400 0.489 0.579 0.668 0.758
5 0.269 0.538 0.813 1.095 1.414 1.777 2.140 2.505 2.882
10 0.357 0.716 1.102 1.525 2.056 2.634 3.228 3.869 4.555
15 0.386 0.778 1.220 1.744 2.410 3.137 3.949 4.832 5.776
20 0.395 0.804 1.281 1.871 2.626 3.508 4.499 5.602 6.808
25 0.399 0.814 1.313 1.948 2.781 3.782 4.933 6.242 7.693
30 0.400 0.820 1.332 1.999 2.896 3.992 5.291 6.794 8.508
35 0.400 0.822 1.343 2.032 2.979 4.163 5.590 7.270 9.185
40 0.400 0.824 1.349 2.056 3.040 4.299 5.846 7.696 9.858
45 0.400 0.824 1.354 2.072 3.088 4.411 6.067 8.075 10.423
50 0.400 0.825 1.356 2.084 3.126 4.505 6.260 8.421 11.002
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Table 7 Numerical values of E[Wn(F0,Gu,n)] from the optimization for c2a = 4.0 and c2s = 0.5 and Ma =Ms = 10

n ρ= 0.1 ρ= 0.2 ρ= 0.3 ρ= 0.4 ρ= 0.5 ρ= 0.6 ρ= 0.7 ρ= 0.8 ρ= 0.9

1 0.080 0.160 0.240 0.320 0.400 0.481 0.563 0.644 0.725
5 0.269 0.538 0.807 1.078 1.356 1.638 1.920 2.207 2.499
10 0.357 0.714 1.073 1.447 1.831 2.241 2.702 3.203 3.740
15 0.386 0.772 1.167 1.590 2.074 2.621 3.225 3.902 4.660
20 0.395 0.792 1.206 1.679 2.228 2.860 3.603 4.449 5.411
25 0.399 0.799 1.230 1.730 2.324 3.039 3.888 4.893 6.053
30 0.400 0.803 1.242 1.759 2.393 3.169 4.118 5.262 6.615
35 0.400 0.805 1.248 1.779 2.439 3.268 4.306 5.579 7.114
40 0.400 0.805 1.252 1.791 2.474 3.347 4.460 5.857 7.567
45 0.400 0.806 1.254 1.800 2.498 3.408 4.591 6.102 7.982
50 0.400 0.806 1.256 1.806 2.517 3.458 4.702 6.319 8.364

Table 8 Numerical values of E[Wn(F0,Gu,n)] from the optimization for c2a = 0.5, c2s = 4.0 and Ma =Ms = 10

n ρ= 0.1 ρ= 0.2 ρ= 0.3 ρ= 0.4 ρ= 0.5 ρ= 0.6 ρ= 0.7 ρ= 0.8 ρ= 0.9

1 0.033 0.082 0.147 0.220 0.305 0.400 0.500 0.600 0.700
5 0.051 0.147 0.303 0.515 0.780 1.097 1.465 1.874 2.301
10 0.051 0.151 0.331 0.607 0.982 1.458 2.043 2.723 3.477
15 0.051 0.152 0.335 0.636 1.075 1.654 2.400 3.301 4.338
20 0.051 0.152 0.337 0.647 1.122 1.779 2.648 3.744 5.033
25 0.051 0.152 0.337 0.652 1.148 1.864 2.836 4.097 5.624
30 0.051 0.152 0.337 0.653 1.163 1.923 2.981 4.392 6.141
35 0.051 0.152 0.337 0.654 1.172 1.965 3.096 4.642 6.600
40 0.051 0.152 0.337 0.655 1.177 1.995 3.190 4.857 7.015
45 0.051 0.152 0.337 0.655 1.181 2.018 3.268 5.046 7.395
50 0.051 0.152 0.337 0.655 1.183 2.034 3.333 5.214 7.744
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Table 9 Numerical values of E[Wn(F0,Gu,n)] from the optimization for c2a = 0.5, c2s = 0.5 and Ma =Ms = 10

n ρ= 0.1 ρ= 0.2 ρ= 0.3 ρ= 0.4 ρ= 0.5 ρ= 0.6 ρ= 0.7 ρ= 0.8 ρ= 0.9

1 0.033 0.069 0.106 0.145 0.187 0.230 0.274 0.317 0.361
5 0.050 0.106 0.171 0.248 0.347 0.472 0.626 0.802 1.008
10 0.050 0.107 0.176 0.265 0.386 0.557 0.793 1.096 1.483
15 0.050 0.107 0.176 0.268 0.398 0.590 0.872 1.271 1.813
20 0.050 0.107 0.176 0.268 0.402 0.606 0.917 1.388 2.067
25 0.050 0.107 0.176 0.268 0.404 0.615 0.943 1.471 2.273
30 0.050 0.107 0.176 0.268 0.404 0.619 0.961 1.533 2.446
35 0.050 0.107 0.176 0.268 0.405 0.622 0.973 1.580 2.593
40 0.050 0.107 0.176 0.268 0.405 0.623 0.982 1.616 2.722
45 0.050 0.107 0.176 0.268 0.405 0.624 0.988 1.645 2.834
50 0.050 0.107 0.176 0.268 0.405 0.624 0.993 1.668 2.935

Tables 6-9 illustrate the well known property that E[Wn] is increasing in n, c2a and c2s. We also see

that E[Wn] tends to be slightly smaller for the pair (0.5,4.0) than for the pair (4.0,0.5), but these

are similar, as suggested by the HT limit. In support of the corresponding result for E[W ], we see

convergence well before the final n= 50 for the lower traffic intensities.

It is interesting to compare Tables 6 and 9 above to Tables 1 and 2, which considers the limiting

case of Ms →∞ for same traffic intensities in the cases c2a = c2s = 4.0 and c2a = c2s = 0.5. The values in

Tables 6 and 9 here are consistently lower, significantly so for the larger traffic intensities. That can

be explained by the finite support bound Ms = 10 here as opposed to the limiting case as Ms →∞

in Table 1. Tables 6 and 9 shows that the finite support bound Ms makes a big difference for higher

traffic intensities.

4.3. When One Distribution is Deterministic

Tables 10 and 11 also show optimization results for E[Wn] from (15) for the special cases of the

GI/D/1 and D/GI/1 models with (c2a = 4.0,Ma = 100) and (c2s = 4.0,Ms = 100), respectively. For

the GI/D/1 model, the optimization terminates with the same extremal two-point cdf F0. For the

D/GI/1 model, as in Tables 6-9, we perform an additional search to identify the optimal distribution

Gu,n for each n.
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Table 10 Numerical values of E[Wn] in the extremal GI/D/1 model with Ma = 100, c2a = 4.0 and c2s = 0.0

ρ\n 10 15 20 25 30 35 40 45 50

0.10 0.357 0.386 0.395 0.398 0.400 0.400 0.400 0.400 0.400
0.15 0.536 0.579 0.593 0.598 0.599 0.600 0.600 0.600 0.600
0.20 0.714 0.772 0.791 0.797 0.800 0.802 0.803 0.804 0.804
0.25 0.893 0.965 0.988 1.001 1.009 1.012 1.013 1.014 1.015
0.30 1.071 1.158 1.194 1.217 1.228 1.234 1.237 1.239 1.240
0.35 1.250 1.353 1.413 1.447 1.463 1.474 1.480 1.484 1.486
0.40 1.428 1.562 1.648 1.691 1.719 1.737 1.748 1.756 1.760
0.45 1.607 1.785 1.896 1.958 2.002 2.028 2.047 2.060 2.069
0.50 1.785 2.022 2.159 2.251 2.310 2.353 2.383 2.405 2.421
0.55 1.977 2.274 2.447 2.572 2.656 2.720 2.765 2.800 2.827
0.60 2.183 2.539 2.762 2.922 3.042 3.129 3.200 3.253 3.296
0.65 2.398 2.814 3.100 3.305 3.466 3.590 3.689 3.770 3.836
0.70 2.622 3.106 3.461 3.724 3.931 4.102 4.242 4.358 4.456
0.75 2.859 3.423 3.847 4.182 4.451 4.674 4.865 5.029 5.171
0.80 3.101 3.757 4.262 4.673 5.017 5.309 5.562 5.784 5.982
0.85 3.350 4.108 4.707 5.205 5.631 6.005 6.336 6.632 6.900
0.90 3.611 4.481 5.186 5.784 6.306 6.773 7.194 7.579 7.933

Table 11 Numerical values of E[Wn] in the extremal D/GI/1 model with Ms = 10, c2a = 0.0 and c2s = 4.0

ρ\n 10 15 20 25 30 35 40 45 50

0.10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.15 0.012 0.025 0.025 0.012 0.012 0.012 0.012 0.012 0.025
0.20 0.048 0.058 0.058 0.048 0.048 0.048 0.048 0.048 0.058
0.25 0.091 0.115 0.115 0.091 0.091 0.091 0.091 0.091 0.115
0.30 0.174 0.195 0.195 0.174 0.174 0.174 0.174 0.174 0.195
0.35 0.272 0.300 0.301 0.274 0.274 0.274 0.274 0.274 0.301
0.40 0.407 0.441 0.445 0.418 0.419 0.419 0.419 0.419 0.447
0.45 0.568 0.620 0.631 0.601 0.602 0.603 0.603 0.603 0.640
0.50 0.764 0.833 0.862 0.844 0.848 0.851 0.852 0.853 0.892
0.55 0.985 1.086 1.142 1.139 1.154 1.162 1.168 1.171 1.219
0.60 1.241 1.382 1.472 1.514 1.547 1.569 1.585 1.595 1.642
0.65 1.520 1.728 1.860 1.951 2.017 2.064 2.099 2.125 2.176
0.70 1.837 2.121 2.319 2.462 2.574 2.659 2.728 2.783 2.840
0.75 2.183 2.563 2.843 3.035 3.223 3.362 3.477 3.575 3.658
0.80 2.536 3.038 3.422 3.673 3.978 4.186 4.365 4.520 4.657
0.85 2.924 3.568 4.068 4.371 4.826 5.128 5.394 5.632 5.844
0.90 3.317 4.110 4.747 5.120 5.755 6.171 6.545 6.886 7.200

Tables 10 and 11. showed the extremal transient mean waiting times E[Wn] as a function of n

and ρ. For all those cases, the transient mean was maximized at (F0,Gu,n). We now consider the
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steady-state mean E[W ], applying simulation as in §3. For D/GI/1 and GI/D/1, we implement the

same simulation search for different cases of ba, bs throughout traffic level from ρ= 0.1 to ρ= 0.9. We

use Monte Carlo simulation method with N = 1×107 and report average of 20 identical independent

replications. Tables 12 and 13 shows that the upper bounds are attained by Gu and F0.

Table 12 Simulation search for GI/D/1 over ba with mean 1 arrival

ba\ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

5.0 0.400 0.804 1.242 1.770 2.469 3.496 5.171 8.50 18.41
5.5 0.000 0.450 0.964 1.536 2.262 3.307 5.006 8.34 18.30
6.0 0.000 0.000 0.626 1.271 2.040 3.102 4.812 8.19 18.26
6.5 0.000 0.000 0.206 0.965 1.795 2.896 4.627 8.02 18.01
7.0 0.000 0.000 0.000 0.600 1.526 2.674 4.436 7.83 17.95
7.5 0.000 0.000 0.000 0.163 1.224 2.436 4.232 7.65 17.71
8.0 0.000 0.000 0.000 0.000 0.875 2.182 4.017 7.46 17.50
8.5 0.000 0.000 0.000 0.000 0.468 1.909 3.802 7.26 17.49
9.0 0.000 0.000 0.000 0.000 0.000 1.612 3.573 7.09 17.19
9.5 0.000 0.000 0.000 0.000 0.000 1.277 3.337 6.88 17.05
10.0 0.000 0.000 0.000 0.000 0.000 0.899 3.084 6.68 16.83

Table 13 Simulation search for D/GI/1 over bs with mean 1 arrival

bs\ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

10 0.000 0.058 0.195 0.447 0.893 1.670 3.114 6.23 16.00
11 0.004 0.064 0.200 0.457 0.903 1.682 3.129 6.24 16.02
12 0.007 0.067 0.205 0.462 0.911 1.691 3.141 6.26 16.04
13 0.008 0.068 0.210 0.469 0.918 1.702 3.151 6.27 16.05
14 0.009 0.070 0.211 0.474 0.924 1.709 3.160 6.28 16.06
15 0.010 0.073 0.216 0.476 0.929 1.714 3.167 6.29 16.07
16 0.011 0.075 0.218 0.481 0.934 1.721 3.174 6.29 16.08
17 0.011 0.076 0.221 0.484 0.938 1.726 3.179 6.30 16.09
18 0.011 0.077 0.223 0.487 0.941 1.730 3.184 6.31 16.10
19 0.011 0.079 0.224 0.490 0.945 1.734 3.189 6.31 16.10
20 0.012 0.080 0.227 0.492 0.948 1.737 3.193 6.32 16.11

To sum up, for the transient mean waiting time E[Wn], we find that there exists b∗a = (1 + c2a)

and bs(n) such that the sup{E[Wn(F,G)] : F,G∈Pa,2,2(Ma)×Ps,2,2(Ms)} is attained. We find that

bs(n) is not strictly increasing, but that there exists an n0 after which it is increasing In all cases, we
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find that Gu,n ⇒Gu as n→∞. For the steady-state mean waiting time E[W ], the upper bound is

attained when b∗a is (1+ c2a) and b∗s =Ms. Hence, the upper bound for the steady-state mean waiting

time is attained at (F0,Gu).

5. The Lower Bound with Finite Support

For unbounded support, Ott (1987) showed that the overall lower bound of E[W (F,G)] for (F,G)∈

Pa,2(∞)×Ps,2(∞) is attained asymptotically by the D/A3/1 model where the D interarrival time

with c2a = 0 can be regarded as the limit of Fu with c2s on [0,Ma] as Ma →∞ holding the mean fixed

at E[U ] = 1, while the service-time cdf A3 is any three-point distribution in Ps,2 that has support on

integer multiples of the constant interarrival time 1; also see Theorem 3.1 of Daley et al. (1992). It

turns out that the mean is insensitive to the service-time cdf provided that all support is on integer

multiples of the interarrival time. Thus, the pure-lattice structure of the D/A3/1 model acts to reduce

E[W ]. The resulting lower bound has the convenient explicit formula in (9).

However, the overall LB has not yet been established for distributions with finite support. Moti-

vated by the established extremal property of the lattice D/A3/1 model with unbounded support,

we investigate a new “nearly-lattice” three-point distribution to use with Fu called Gu,bsu. It has

support {0, u, bsu}, where 1< bs ≤Ms is an appropriate positive value and u is the first point of the

cdf Fu at u= 1− c2a/(Ma − 1)∈ (0,1) with Ma > 1+ c2a.

The new Gu,bsu makes the Fu/Gu,bsu/1 model lattice except for the mass at Ma. If the parameter

bs is chosen as a integer value which is greater than 1, then

lim
Ma→∞

E[W (Fu,Gu,bsu)] =E[W (D,A3)] (16)

which is the tight lower bound of GI/GI/1 models over Pa,2 ×Ps,2.

In previous extensive numerical studies we find that Fu is good for F , but G0 and Gu might not

be nearly optimal for G to minimize the mean waiting time. Moreover, Figure 3 shows G0 is the

optimal solution to minimize E[W (F0,G)] over Ps,2,2(Ms) only for Ma = 1+c2a. Thus it is interesting

to explore better service time distribution when F = Fu for Ma > 1+ c2a.
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5.1. The Gu,bsu Service-Time Distribution

To derive the closed form of Gu,bsu, we next solve the moment equations with mass at x1 = 0, x2 =

u,x3 = bsu with bs > 1 and u> 0 (recall u= 1− c2a/(Ma − 1)),

p1 + p2 + p3 = 1, x1p1 +x2p2 +x3p3 = ρ,x2
1p1 +x2

2p2 +x2
3p3 = (1+ c2s)ρ

2 (17)

to obtain a solution as a function of the single variable bs. Note the Gu,bsu has no definition for u= 0.

The probabilities of the points in {0, u, bsu} are then

p1 =
(b2s(u

2 − ρu)+ bs(−u2 +(1+ c2s)ρ
2)− (1+ c2s)ρ

2 +uρ)

(b2su
2 − bsu2)

,

p2 =
ρbsu− (1+ c2s)ρ

2)

bsu2 −u2
and p3 =

ρ2(1+ c2s)−uρ

b2su
2 − bsu2

. (18)

It remains to specify bs. To do so, we conducted extensive simulation experiments. Based on these

experiments, we find that the possible values of bs depend on E[V ] = ρ. In particular, if ρ∈ (u/(1+

c2s), u], bs ∈ [(1+ c2s)ρ/u,∞). When bs = (1+ c2s)ρ/u, then Gu,bsu =G0. If ρ= u/(1+ c2s), then Gu,bsu

is a two-point distribution with mass at {0, u}. Since inter-arrival time distribution Fu has mass at

{u,Ma} and there is no large service time impact, E[W (Fu,Gu,bsu)] = 0. If ρ ∈ (u,1), then there

exists a positive value γ > 0 which is the largest root of the quadratic equation in bs

b2s(u
2 − ρu)+ bs(−u2 +(1+ c2s)ρ

2)− (1+ c2s)ρ
2 +uρ= 0, (19)

such that bs ∈ [(1+ c2s)ρ/u,γ). Therefore, the possible range of bs depends on ρ. In general,

bs ∈
[
(1+ c2s)ρ

u
,1{ρ∈(u/(1+c2s),u]}∞+1{ρ>u}γ

)
. (20)

To sum up, the bs is determined optimally within its valid range via solving

bs ∈ argmin
b

E[W (Fu,Gu,bu)]. (21)

Numerically, the bs can be decided by a simulation search.
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Conjecture 3. Given any parameter vector (1, c2a, ρ, c
2
s) and a bounded interval [0,Ma] for the

interarrival-time cdf F , the pair (Fu,Gu,bsu) attains the tight LB of the steady-state mean E[W ] for

Ma > 1+ c2a, i.e.,

E[W (F,G)]≥E[W (Fu,Gu,bsu)] for all F ∈Pa,2(Ma) and G∈Ps,2. (22)

If Ma = 1+ c2a, the pair (F0,G0) attains the tight LB of the steady-state mean E[W ], i.e.,

E[W (F,G)]≥E[W (F0,G0)] for all F ∈Pa,2(Ma) and G∈Ps,2. (23)

As expected, for each (1, c2a, ρ, c
2
s,Ma) with Ma > 1+ c2a, there exists a proper b∗s ∈ (1,∞) such that

E[W (D,A3)]≤E[W (Fu,Gu,bsu)]≤ inf{E[W (Fu,Gu)] : b∈ [1+ c2s,∞)}. (24)

If Ma = 1+ c2a, we have

E[W (D,A3)]≤E[W (F0,G0)]≤ inf{E[W (F0,Gu)] : b∈ [1+ c2s,∞)}. (25)

5.2. The Impact of Service Time in Fu/Gu,bsu/1

We study the impact of b to E[W (Fu,Gu,bu)] and determine the optimal bs in (20) to minimize

E[W (Fu,Gu,bu)] by Minh and Sorli (1983) simulation with T = 1 × 107 and 20 i.i.d replications.

Following the range of bs in (20), we simulate the model under Ma = 6,8,10 and various settings of

bs (γ−≡ γ− 0.0001. For example, γ− is 19.2 when Ma = 6.)

Table 14 Simulation estimates of E[W (Fu,Gu,bu)] under the case c2a = c2s = 4, ρ= 0.5

b 13 14 15 16 17 18 19 γ− γ− γ− γ−

Ma = 6(u= 0.20) 3.01 2.95 2.89 2.82 2.76 2.72 2.67 2.66 2.66 2.66 2.66

b 10 12 14 16 18 20 22 24 26 28 30

Ma = 8(u= 0.42) 2.36 2.22 2.10 1.98 1.85 1.73 1.69 1.68 1.65 1.61 1.58

b 10 12 14 16 18 20 22 24 26 28 30

Ma = 10(0.55) 1.97 1.87 1.78 1.70 1.61 1.53 1.48 1.44 1.41 1.39 1.37

From the above simulation, we see the E[W (Fu,Gu,bsu)] is monotone decreasing as bs increases.

Thus the optimal bs is γ− when ρ> u or ∞ when ρ∈ (u/(1+ c2s), u].
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5.3. Simulation Comparisons

From extensive simulation experiments, we conclude that the LB for E[W ] is attained, at least

approximately, by the Fu/Gu,bsu/1 model. Following from Figure 1 and 3, we see there exists an

optimal b∗s(ba) such that the lower bound of E[W ] is attained by E[W (Fu,Gu)] over Pa,2,2(Ma)×

Ps,2,2(Ms). Since the mean of Fu/Gu,bsu/1 is monotone decreasing as bs increases, we set bs sufficiently

large for Fu/Gu,bsu/1 and set the optimal b∗s(ba) for Fu/Gu/1 to make a careful simulation comparison

under the case c2a = c2s = 4 under different settings of ba.

Table 5.3 shows the results for the E[W (Fu,Gu)] under optimal b∗s within [0,Ms] (Ms = 1000).

We compare it to Ott’s lower bound, the HTA and conjectured UB and UB Approx.

Table 15 Simulation performance of lower bound with different settings of Ma for the model Fu/Gu/1

(T = 5× 108 and 20 i.i.d replications)

ρ Ott LB Ma = 20 Ma = 10 Ma = 8 Ma = 6 HTA Tight UB UB Approx

0.30 0.107 0.261 0.262 0.307 0.815 0.514 1.50 1.51

0.50 0.750 1.01 1.02 1.70 2.68 2.00 3.47 3.51

0.70 2.92 3.33 6.34 6.95 7.76 6.53 8.44 8.52

0.90 15.8 29.1 33.0 33.5 34.1 72.2 74.6 74.8

We study the simulation performance of E[W (Fu,Gu,bsu)] under optimal b∗s = min{1000, γ −

0.0001} by Minh and Sorli (1983) algorithm with simulation length T = 5× 108 and 20 independent

repetitive experiments.
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Table 16 Simulation performance of lower bound with different settings of Ma for the model Fu/Gu,bsu/1

(T = 1× 107 and 20 i.i.d replications)

ρ Ott LB Ma = 20 Ma = 10 Ma = 8 Ma = 6 HTA Tight UB UB Approx

0.30 0.107 0.151 0.203 0.230 0.685 0.514 1.50 1.51

0.50 0.750 0.857 0.973 1.50 2.66 2.00 3.47 3.51

0.70 2.92 3.17 5.56 6.33 7.56 6.53 8.44 8.52

0.90 15.8 27.2 31.8 32.7 33.7 72.2 74.6 74.8

6. Conclusions

We have studied tight upper and lower bounds for the mean steady-state waiting time E[W ] and

the mean transient waiting time E[Wn] in the GI/GI/1 model given the first two moments of the

interarrival time and service time, specified by the parameter vector (1, c2a, ρ, c
2
s), when the under-

lying distributions have bounded support. Overall, we have exposed important open problems and

constructed and applied numerical algorithms to support Conjectures 1-3.

In §3 we applied simulation to study the special case of two-point interarrival-time and service-time

distributions. For this special case, we have experimentally verified the main outstanding Conjecture

1, which states that the overall upper bound is attained by E[W (F0,Gu∗)], i.e., at the extremal two-

point distributions, modified by a limit, as some have thought. However, it still remains to consider

a broader range of alternatives and, even for this restricted case, to provide a mathematical proof.

We have also studied cases (a) and (b) of (1). For (a), we have confirmed and elaborated on the

counterexample to the optimality of F0 from §8 of Wolff and Wang (2003) involving G0, but mostly

found that F0 tends to be at least nearly optimal. For (b), we see that the upper bound for G either

is Gu or approaches it for all two-point F . This misses the story in §V of Whitt (1984b) and Theorem

2 of Chen and Whitt (2021b), which shows that G0 attains the upper bound when F is completely

monotone or strictly concave, whereas Gu attains the upper bound when F is strictly convex with

finite support. That complexity evidently does not affect the overall tight upper bound in Conjecture

1 because F0 is far from being strictly concave or strictly concave. In summary, our accumulated
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experience is that F0 tends to be an upper bound for all G without mass on 0, whereas the upper

bound for G clearly depends strongly on the structure of F . That complexity is evidently avoided in

Conjecture 1 because we focus on F0 rather than any F .

In §4 we constructed a multinomial representation of the transient mean in the case of three-point

distributions and applied it together with nonlinear programming to numerically conclude that the

overall upper bound over F and G is always attained at two-point distributions, further supporting

Conjecture 1.

In §5 we applied simulation to study the tight lower bound of the transient mean. There we found

that a modification of the three-point lower-bound distribution identified by Ott (1987) holds for the

transient mean.

There are many remaining problems for research. In addition to providing full mathematical proofs

of Conjectures 1-3 or refuting them, it remains to identify the extremal distributions with one dis-

tribution given, as in parts (a) and (b) of (1). It also remains to establish similar results for other

stochastic models. Hopefully this paper will help advance those goals.
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