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e-companion

EC.1. Overview

This is an online e-companion to the main paper. It has eight sections. First, in §EC.2 we provide a summary

of the main paper. In §EC.3 we provide additional motivation for and discussion about our RQ approach.

Then §EC.4 elaborates on ways that the results can be applied. Next, §EC.5 establishes (mostly reviews)

supporting functional central limit theorems (FCLT’s), the CLT’s that follow from them and their implica-

tions. Then in §EC.6 we develop the functional RQ for the discrete-time waiting time mentioned in Remark

2. In §EC.7 we present additional proofs for some of the results in the main paper. Finally, in §EC.8 we

present additional simulation examples.

EC.2. Summary of the Main Paper

In the main paper we formulated and solved new forms of robust queueing (RQ) for a single-server queue

and showed that the solutions relate nicely to the mean steady-state waiting time and workload in the general

stationary G/G/1 single-server queue and its GI/GI/1 special case. Unlike Bandi et al. (2015), we only

consider a single queue, but in §6 we provide a framework that can be used to develop a new robust queueing

network analyzer (RQNA).

In §2 we introduced a new RQ formulation for the waiting time with a single uncertainty set instead of

two separate uncertainty sets. Corollary 1 shows that, if we choose a single parameter correctly, then the RQ

solution coincides with the classic Kingman (1962) bound for theGI/GI/1 queue and so is asymptotically

correct in heav traffic. Corollary 2 shows that the deterministic time where the RQ solution attains its

supremum is the same order as the relaxation time in the GI/GI/1 queue, exposing how steady state is

approached in the stochastic model. Remark 2 introduces a new functional version of RQ for the discrete-

time waiting time that can be used to expose the impact of dependence among the interarrival times and

service times. That is expanded upon in this e-companion in §EC.6. Finally, we discuss the connection to

related work in Mamani et al. (2016) in Remark 4.

We introduced new parametric and functional versions of RQ for the continuous-time workload in §3.

At the beginning of §3 we noted that it is convenient to work with the continuous-time workload instead of
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the discrete-time waiting time, because the workload process scales with the traffic intensity via direct time

scaling as in (14), whereas the waiting times are more complicated because the interarrival times are scaled

but the service times are not; see the first paragraph after Theorem 1.

The functional version of RQ for the continuous-time workload include the variance of the total input of

work as a function of time. In §4 we introduced the indices of dispersion for counts (IDC) and work (IDW).

These indices of dispersion are just scaled versions of the variance functions, but they are helpful because

the scaling makes them independent of the scale; that facilitates developing the key variability fixed point

equation in (33). We expressed the solution of the functional RQ in terms of the IDW in (28), which is in

a form convenient for applications, provided the IDW is available. In §4.3 we reviewed useful properties

of these important indices and indicated how they can be calculated in stochastic models or estimated from

data. Theorem 4 gives a closed-form expression for the solution, which also provides insight; e.g. it relates

to the variability fixed-point equation in equation (15) of Fendick and Whitt (1989). Theorem 5 shows that

the solution of the functional RQ for the mean steady-state workload is asymptotically correct in both heavy

traffic and light traffic.

We evaluated the new functional RQ for the workload by making comparisons with simulations of queues

with common network structure, as depicted in Figure 1. The simulations show that the RQ solutions serve

as good approximations for the mean steady-state workload as a function of the traffic intensity. They also

confirm that those common network structures can induce strong dependence, which has a significant impact

upon performance.

Finally, in §6 we introduced a framework for developing a new robust queueing network analyzer

(RQNA) based on the indices of dispersion. It remains to exploit that framework to develop such a new

RQNA. The paper shows that the functional RQ is effective in exposing the impact of the dependence

among the interarrival times and service times as a function of time upon the mean steady-state workload

as a function of the underlying traffic intensity at the queue. Overall, the paper supports the initiative begun

by Bandi et al. (2015). Clearly, many more opportunities remain.

EC.3. Additional Motivation and Discussion

In this section we make several remarks to amplify the discussion in §EC.2 and the main paper.
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EC.3.1. Underlying Philosophy

In doing this RQ work, it is good to communicate our underlying philosophy: We view RQ, not as a way

to replace an intractable stochastic model by an alternative deterministic model, without drawing on the

axioms of probability, as suggested in Bandi and Bertsimas (2012), but instead as a way to develop improved

approximations for the performance of a given stochastic model. We think that the stochastic model often

does effectively capture essential features of the uncertainty; the main problem is its intractability. (Of

course, there also may be uncertainty about model parameters and the model itself.) Thus, we judge our

RQ formulations by their ability to efficiently generate useful performance approximations for the given

stochastic model.

In this paper we only considered the problem of describing the performance of a fixed queueing system.

We should emphasize that the approximation methods here and in previous work such as QNA in Whitt

(1983) have important applications in system design and control problems, e.g., as reviewed in §3 of the

survey paper Bitran and Morabito (1996). We think that RQ offers new opportunities in this direction.

indeed, we think that is an important direction for further research.

EC.3.2. Why Does RQ Perform So Well?

Given that robust optimization is a way to obtain bounds in an alternative deterministic framework, without

reference to an underlying probability model, it is natural to wonder why the RQ provides such effective

approximations if we just choose a single parameter appropriately. We have tried to explain right after

Theorem 1 by explaining the close connection between RQ and heavy-traffic approximations. In particular,

they are both based on the central limit theorem (CLT), as we review here in §EC.5. The CLT in turn says

that the probability distribution primarily depends on the mean and variance, which are precisely what

provides the basis for all the RQ constraints.

It is natural to want a still better explanation. We might ask how the RQ for the workload can provide

such a spectacularly good approximation (exact) for the mean workload E[Z] in the M/GI/1 queue, as

shown in Corollary 3, and more generally. A partial explanation is that the net-input process in theM/GI/1

queue and for the RBM heavy-traffic limit is a Levy process (has stationary and independent increments)
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with negative drift (E[N(t) =−mt), finite variance (V ar(N(t)) = vt) and no negative jumps. With such

exceptionally nice structure,

E[Z] = v/2m;

e.g., see see Kella and Whitt (1992) or §IX.3 of Asmussen (2003). A nice simple proof forM/GI/1 appears

in §5.13 of Wolfe (1989). That is the same form as the RQ solutions. It remains to say more.

EC.3.3. The Mythical Renewal Arrival Process

Experience with queueing applications has shown that most arrival processes can be classified as (i) approx-

imately a Poisson process, (ii) approximately a deterministic evenly spaced arrival process, or (iii) a com-

plex arrival process with dependence among successive interarrival times. In other words, non-Poisson

non-deterministic renewal arrival processes are extremely rare in practice. The GI/GI/1 model with inde-

pendent sequences of i.i.d. interarrival times and service times evidently has received so much attention

largely because it is relatively tractable; i.e., it is possible to analyze exactly with sophisticated tools, as in

Asmussen (2003). Explicit numerical results can then be obtained by numerical algorithms, such as numer-

ical transform inversion, as in Abate et al. (1993). The GI/GI/1 model does give a good idea about the

impact of departures from the tractable M Markovian assumption, but experience indicates that it can be

misleading. We might think that it suffices to estimate the scv of a service time or an interarrival times in

order to assess the level of variability, but that misses the dependence, and so might be a big mistake, as

illustrated by Fendick et al. (1989), as reviewed in §9.6 of Whitt (2002).

EC.3.4. The Probability That The Constraints Are Satisfied

It is natural to ask what would be the probability in the stochastic model that the RQ constraints in (3) or (5)

would be satisfied. In fact, it is not difficult to see that, even for the basic M/M/1 model, the probability

is 0. That follows from the law of the iterated logarithm. Nevertheless, the deterministic RQ is useful. Of

course, we could consider only finitely many constraints as in Bandi et al. (2015). With a proper choice the

solution is unchanged.
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EC.4. How Can the Functional RQ Results Be Applied?

This paper helps develop useful diagnostic tools to study complex queueing systems. This paper adds addi-

tional support to Fendick and Whitt (1989) by showing how to measure flows (arrival processes, possibly

together with service times) in complex queueing systems and the value for doing so in understanding con-

gestion at a queue, as characterized by the mean workload and the mean waiting time. In particular, we see

how the variance time curves and indices of dispersion can provide useful descriptions of the flows, enabling

us with the aid of RQ to predict congestion as a function of the traffic intensity quite accurately. These

measurements can fruitfully be applied with either system measurements or simulations. As we indicated

in §4.3, the indices of dispersion can also be calculated for quite complex models.

As in Bandi et al. (2015), the new RQ can help develop improved performance analysis tools for complex

queueing networks. In particular, the methods here provide a basis for improving parametric-decomposition

approximations such as QNA in Whitt (1983) by exploiting variability functions instead of variability

parameters, as proposed in Whitt (1995). In §6 we provide a road map for the way to proceed by introducing

a candidate IDC framework for creating a new RQNA that can capture the dependence in the flows.

One concrete way the RQ here can be applied is to analyze the consequence of changing the service

mechanism and/or the arrival process associated with a single-server queue in a complex queueing network.

For example, assuming that (i) the same arrival process would come to a new service mechanism and (ii)

the new service mechanism produces i.i.d. service times with a distribution that can be predicted, then we

could first measure the IDC of the arrival process and combine that with (35) to obtain an estimate of the

full IDW. Then we could apply RQ to estimate the mean workload at the queue. If we are contemplating

several alternative service mechanisms, we can apply the same techniques to compare their performance

impact.

As a second example, suppose that the arrival rate will increase. If that will occur in a way that corre-

sponds approximately to deterministic scaling of the arrival counting process, then we can directly apply RQ

to predict the performance consequence. On the other hand, if the arrival rate increases by superposing more

streams, as in Sriram and Whitt (1986), then we can apply RQ with (36)-(39) to predict the performance

consequence.
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EC.5. Supporting Functional Central Limit Theorems (FCLT’s)

In this section we establish establish (mostly review) the supporting FCLT’s and the CLT’s that follow

from them. These are for the general stationary G/G/1 model, allowing stochastic dependence among the

interarrival times and service times. §EC.5.1 starts with a basic FCLT for partial sums of random variables

from weakly dependent stationary sequences, as in Theorems 19.1-19.3 of Billingsley (1999) and Theorem

4.4.1 of Whitt (2002).

To state the basic FCLT underlying the RQ approach to the waiting time and workload processes, we

consider a sequence of models indexed by nwith stationary sequence of interarrival times and service times.

In §EC.5.1 we establish the underlying FCLT for the partial sums of the interarrival times and service times.

Then in EC.5.2 we establish a FCLT for other basic processes. In §EC.5.3 we establish different ordinary

CLT’s that support the parametric RQ and functional RQ. Finally, in §EC.5.4 we establish heavy-traffic

FCLLT’s for the waiting time and workload processes.

EC.5.1. The Basic FCLT for the Partial Sums

As in §2, we assume that the models are generated by a fixed sequence of mean-1 random variables

{(Uk, Vk)}, with the interarrival times in model n being Un,k ≡ ρ−1
n Uk. For each n, let the sequence of pairs

of partial sums be {(Sa
n,k, S

s
n,k : k ≥ 1}. Let λn = ρn and µn = 1 denote the arrival rate and service rate in

model n. Let ⌊x⌋ denote the greatest integer less than or equal to the real number x. Let D2 be the two-fold

product space of the function space D and let ⇒ denote convergence in distribution. For this initial FCLT,

we let ρn → ρ as n→∞ for arbitrary ρ > 0. Let random elements in the function apaceD2 be defined by

(

Ŝ
a
n(t), Ŝ

s
n(t)

)

≡ n−1/2
([

Sa
n,⌊nt⌋ − ρ−1

n nt
]

,
[

Ss
n,⌊nt⌋ −nt

])

, t≥ 0.

THEOREM EC.1. (FCLT for partial sums of interarrival times and service times) Let {(Uk, Vk) : k≥ 1} be

a weakly dependent stationary sequence with E[Uk] =E[Vk] = 1. Let Un,k = ρ−1
n Uk and Vn,k = Vk, n≥ 1,

and assume that the variances and covariances satisfy

0< ρ−2σ2
A ≡ lim

n→∞
{n−1V ar(Sa

n)}<∞, 0<σ2
S ≡ lim

n→∞
{n−1V ar(Ss

n)}<∞

and ρ−1σ2
A,S ≡ lim

n→∞
{n−1Cov(Sa

n, S
s
n)}. (EC.1)
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Then (under additional regularity conditions assumed, but not stated here)

(

Ŝ
a
n, Ŝ

s
n

)

⇒
(

Ŝ
a, Ŝs

)

in D2 as n→∞, (EC.2)

where

(

Ŝ
a, Ŝs

)

is distributed as zero-drift two-dimensional Brownian motion (BM) with covariance matrix

Σ=







ρ−2σ2
A ρ−1σ2

A,S

ρ−1σ2
A,S σ2

S






.

Proof. The one-dimensional FCLT’s for weakly dependent stationary sequences in D can be used to

prove the two-dimensional version in Theorem EC.1. First, the limits for the individual processes Ŝa
n and

Ŝ
s
n imply tightness of these processes inD, which in turn implies joint tightness inD2. Second, the Cramer-

Wold device in Theorem 4.3.3 of Whitt (2002) implies that limits for the finite-dimensional distributions

for all linear combinations (which should be implied by the unstated regularity condition) implies the joint

limit for the finite-dimensional distributions (fidi’s). Finally, tightness plus convergence of the fidi’s implies

the desired weak convergence by Corollary 11.6.2 of Whitt (2002).

EC.5.2. The FCLT for Other Basic Processes

As a consequence of Theorem EC.1, we also have an associated FCLT for scaled random elements associ-

ated with Sx
n,k ≡ Ss

n,k −Sa
a,k, k ≥ 1, An(s) and Yn(s)≡

∑An(s)

i=1 Vn,i =
∑A(ρns)

i=1 Vi = Y (ρns), s≥ 0, for A

and Y in (10) and (11). Let the associated scaled processes be defined by

(

Ŝ
x
n(t), Ân(t), Ŷn(t)

)

≡ n−1/2
([

Sx
n,⌊nt⌋ − (1− ρ−1

n )nt
]

, [An(nt)− ρnnt] , [Yn(nt)− ρnnt]
)

, (EC.3)

for t≥ 0. Let B(t) be standard (zero drift and unit variance) one-dimensional BM and let e be the identity

function in D, i.e., e(t) = t. Let
d
= mean equal in distribution, as processes if used for stochastic processes.

COROLLARY EC.1. (joint FCLT for basic processes) Under the conditions of Theorem EC.1,

(

Ŝ
a
n, Ŝ

s
n, Ŝ

x
n, Ân, Ŷn

)

⇒
(

Ŝ
a, Ŝs, Ŝx, Â, Ŷ

)

in D5 as n→∞, (EC.4)

where Ŝx = Ŝ
s − Ŝ

a d
= σXB, with variance function

σ2
X ≡ σ2

X(ρ) = ρ−2σ2
A +σ2

S − 2ρ−1σ2
A,S, 0<σ2

X <∞, (EC.5)
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for ρ−2σ2
A, σ2

S and ρ−1σ2
A,S in (EC.1), while

Â=−ρŜa ◦ ρe d
=−ρσABa ◦ ρe d

= ρ3/2σYBa,

Ŷ= Ŝ
s ◦ ρe− ρŜa ◦ ρe d

= σYB ◦ ρe d
=
√
ρσY B, (EC.6)

where

σ2
Y ≡ σ2

Y (ρ) = σ2
A +σ2

S − 2σ2
A,S, 0<σ2

Y <∞, for all ρ. (EC.7)

Hence, Ŷ
d
= Ŝ

x for ρ=1, but not otherwise.

Proof. We apply the continuous mapping theorem (CMT) using several theorems from Whitt (2002).

The CMT itself is Theorem 3.4.4. We treat the process Sx
n,k using addition. We treat the counting processes

An by apply the inverse map with centering to go from the FCLT for Sa
n,k to the FCLT for the associated

scaled counting processes, applying Theorem 7.3.2, which is a consequence of Corollary 13.8.1 to Theorem

13.8.2, which follows from Theorem 13.7.1. Then the limit for Yn follows from Corollary 13.3.1. However,

it is also possible to give a more elementary direct argument. First, let Ān(t)≡ n−1An(t), t≥ 0, and note

that Ān ⇒ ρe as a consequence of the limit for An. The initial limits all hold jointly by Theorems 11.4.4

and 11.4.5. Then observe that we can apply the continuous mapping theorem with composition and addition

to treat Yn, because we can write

Yn = S
s
n ◦ Ān +An (EC.8)

i.e.,

Yn(t)≡ n−1/2

(

A(nt)
∑

k=1

−ρnt
)

, t≥ 0, (EC.9)

while

(Ss
n ◦ Ān)(t) = n−1/2

(

A(nt)
∑

k=1

−An(nt)

)

, t≥ 0, (EC.10)

We then add to get (EC.9), observing that two terms cancel.

We now derive alternative expressions for the limit process Y. First, directly from (EC.8) we obtain

Y = S
s ◦ ρe+A=S

s ◦ ρe− ρSaρe
d
= σY B ◦ ρe d

=
√
ρσYB. (EC.11)

which justifies the expression for σ2
Y in (EC.7).
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REMARK EC.1. (uniform integrability) Condition (EC.1) implies that k−1V ar(Sx
k )→ σ2

X as k→∞ for

σ2
X in (EC.5). In addition to the conclusions of Theorem EC.2 and Corollary EC.1, we assume that the

appropriate uniform integrability holds, so that we also have the continuous-time analog

s−1V ar(Y (s))→ σ2
Y as s→∞ (EC.12)

for σ2
Y in (EC.7).

EC.5.3. Alternative Scaling in the CLT

Theorem EC.1 and Corollary EC.1 imply ordinary CLT’s for the processesSx
n and Yn(s) by simply applying

the applying the CMT with the projection map π :D→R with π(x)≡ x(1).

COROLLARY EC.2. (associated CLT’s) Under the assumptions of Theorem EC.1, there are CLT’s for the

partial sums Sx
n and the total input processes Yn, stating

(Sx
n −nE[X1])/

√

nσ2
X ⇒N(0,1) as n→∞, (EC.13)

and

(Yn− ρn)/
√

nσ2
Y ⇒N(0,1) as n→∞, (EC.14)

where N(0,1) is a standard (mean-0, variance-1) normal random variable, σ2
X is the asymptotic variance

constant in (EC.1) and (EC.5), and σ2
Y is the asymptotic variance constant in (20) and (EC.7).

Clearly, Corollary EC.2 supports the parametric RQ formulations and indicates how to choose the param-

eters bx and bp in order to produce versions that should be asymptotically correct in heavy-traffic (see the

next section). We now show that there are alternative versions of these CLT’s that support the functional RQ

formulations. First, instead of (EC.13), we can also write

[Sx
n −E[Sx

n]]/
√

V ar(Sx
n)⇒N(0,1) as n→∞. (EC.15)

Second, instead of (EC.14), we can also write

[Y (t)−E[Y (t)]]/
√

V ar(Y (t))⇒N(0,1) as t→∞. (EC.16)
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The numerators in (EC.13) and (EC.15) are identical because E[Sx
n] = nE[X1] and E[Y (t)] = ρt. The

full statements in (EC.13) and (EC.15) are asymptotically equivalent as n→∞ by the CMT, because

Sx
n −nE[X1]
√

V ar(Sx
n)

=
Sx
n −nE[X1]√

nσX

×
√
nσX

√

V ar(Sx
n)

⇒N(0,1)× 1=N(0,1).

The same is true for the CLT’s in (EC.14) and (EC.16).

EC.5.4. The Associated Heavy-Traffic FCLT

Theorem EC.1 and Corollary EC.1 also provide a basis for heavy-traffic (HT) FCLT’s for the waiting-time

and workload processes. To state the HT FCLT, we let ρn → 1 as n→ ∞ at the usual rate; see (EC.18)

below. Let Ŵn and Ẑ
n be the random elements associated with the waiting time and workload processes,

defined by

(

Ŵ
n(t), Ẑn(t)

)

=
(

n−1/2Wn,⌊nt⌋, n
−1/2Zn(nt)

)

, t≥ 0. (EC.17)

Let ψ : D→ D be the one-dimensional reflection map with impenetrable barrier at the origin, assuming

x(0) = 0, i.e., ψ(x)(t) ≡ x(t)− inf06s6t x(s); see §13.5 of Whitt (2002). Here is the HT FCLT; it is is a

variant of Theorem 2 of Iglehart and Whitt (1970); see §5.7 and 9.6 in Whitt (2002). Given Corollary EC.1,

it suffices to apply the Continuous Mapping Theorem (CMT) with the reflection map ψ.

THEOREM EC.2. (heavy-traffic FCLT) Consider the sequence of G/G/1 models specified above. If, in

addition to the conditions of Theorem EC.1,

n1/2(1− ρn)→ η, 0< η <∞, (EC.18)

then

(

Ŵn, Ẑn

)

⇒
(

ψ(Ŝx − ηe),ψ(Ŝx − ηe)
)

in D2 as n→∞, (EC.19)

jointly with the limits in (EC.4), whereψ is the reflection map and Ŝ
x−ηe d

= σY B−ηe is BM with variance

constant σ2
Y in (EC.7) and drift −η < 0, so that ψ(Ŝx − ηe) is reflected BM (RBM).

The HT approximation for the mean steady-state wait and workload stemming from Theorem EC.2 is

E[W (ρ)]≈E[Zρ]≈
√
nσ2

Y

2η
≈ σ2

Y

2(1− ρ)
(EC.20)
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for σ2
Y in (EC.7), which is independent of ρ, using the mean of the exponential limiting distribution of the

RBM ψ(σxB− ηe)(t) as t→∞.

REMARK EC.2. (the two forms of stationarity) As discussed in the beginning of §3.2, there are two forms

of stationarity, one for discrete time and the other for continuous time. When we focus on the waiting time,

we use discrete-time stationarity; when we focus on the workload, we use continuous-time stationarity. So

far in this section, we have built everything in the framework of discrete-time stationarity. However, in doing

so, we automatically can get FCLT’s in both settings. The theoretical basis is provided by Nieuwenhuis

(1989).

REMARK EC.3. (the limit-interchange problem) the standard HT limits for the processes do not directly

imply limits for the steady-state distributions. Strong results have been obtained with i.i.d. assumptions,

e.g., see Budhiraja and Lee (2009), but the case with dependence is more difficult. Nevertheless, supporting

results for theG/G/1 queue when dependence is allowed appear in Szczotka (1990, 1999). We assume that

this interchange step is also justified.

REMARK EC.4. (the asymptotic method) The RQ approach in Theorem 2 corresponds to approximating

the arrival and service processes in the G/G/1 queue by the asymptotic method in Whitt (1982), which

develops approximations for the arrival and service processes using all the correlations. That is in contrast

to the stationary-interval method discussed just before §EC.5, which uses none of the correlations. Our RQ

approach develops an intermediate methods in between those two extremes.

EC.5.5. The Normalized Workload and the IDW: Justifying (26)

We are motivated to develop the functional RQ for the steady-state workload because of the close connection

between the IDW {Iw(t) : t ≥ 0} and the normalized mean workload {c2Z(ρ) : 0 ≤ ρ ≤ 1} established

by Fendick and Whitt (1989). The key asymptotic components are the heavy-traffic (HT) and light-traffic

(LT) limits stated here in (26). Now that we have just developed the supporting HT FCLT, we review the

theoretical support for (26).

First, the HT limit is supported by the FCLT for Ẑn in Theorem EC.2. We use the continuous-time

stationarity, justified by Remark EC.2. For the FCLT’s, we require weak dependence, which is specified by
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relatively complex mixing conditions. Given the weak dependence and the FCLT, we need extra regularity

conditions to get to what is actually stated in (26). First we need the limit-interchange property discussed

in Remark EC.3 to get associated limits for the steady-state distributions. Second, we need appropriate

uniform integrability to get from convergence of random variables to convergence of their moments; see

Remark EC.1.

The LT limit is established in §IV.A of Fendick and Whitt (1989). An important observation made there

is that the LT limiting behavior is much more robust for the steady-state workload than for the steady-state

waiting time. In particular, the LT limit for the steady-state waiting time depends more on the fine structure

of the model. The LT limits provide theoretical insight into why it is easier to describe the mean steady-state

workload than the mean steady-state waiting time, even though they agree in the HT limit.

EC.6. Functional RQ for the Discrete-Time Waiting Times

We now provide extra details about the functional RQ for the steady-state waiting time, paralleling §3, as

promised in Remark 2. We introduce the indices of dispersion for intervals in §EC.6.1. We briefly mention

the heavy-traffic and light-traffic limits in §EC.6.2.

First, paralleling the functional RQ optimization for Z∗
f,ρ in (16), we have the discrete-time analog based

on (9):

W ∗ ≡W ∗
f,ρ ≡ sup

X̃∈Ux
f

sup
k≥0

{Sx
k} . (EC.21)

where Ux
f is defined in (9). For the G/G/1 model stationary in discrete time, the reasoning for Theorem 1

leads to the alternative representation as

W ∗ = sup
k≥0

{

−mk+ bf,d
√

V ar(Sx
k )
}

(EC.22)

instead of (7), where m≡ (1− ρ)/ρ as before. We can alternative representations using indices of disper-

sion, but now for intervals instead of for counts, which we discuss next.

EC.6.1. Discrete Time: Indices of Dispersion for Intervals

We now recast the discrete-time RQ solution in (EC.22) in terms of indices of dispersion for intervals. For

that purpose, we create scaled versions of the discrete-time variance-time functions (sequences) V ar(Sx
k ),
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V ar(Sa
k) and V ar(Ss

k) as functions of k. That yields the indices of dispersion for intervals (IDI), as in

Chapter 4 of Cox and Lewis (1966), defined by

Iak ≡ kV ar(Sa
k)

(E[Sa
k ])

2
, Isk ≡

kV ar(Ss
k)

(E[Ss
k])

2
and Ia,sk ≡ kCov(Sa

k , S
s
k)

E[Sa
k ]E[Ss

k]
. (EC.23)

With (EC.23),

√

V ar(Sx
k ) =E[U1]

√

kIxk , k≥ 1, and σ2
X ≡ lim

k→∞

{

k−1V ar(Sx
k )
}

=E[U1]
2Ix∞ (EC.24)

where

Ixk ≡ Iak + ρ2Isk − 2ρIa,sk for ρ≡E[V1]/E[U1]< 1. (EC.25)

These three IDI’s Iak , Isk and Ia,sk were used to develop queueing approximations in Fendick et al. (1989).

As a consequence, (EC.22) can be rewritten a

W ∗
f,ρ = sup

k≥0

{

−(1− ρ)k/ρ+ bf,d
√

kIxk

}

. (EC.26)

Similar to the continuous-time workload, we focus on the normalized mean waiting time and RQ approxi-

mation defined by

c2W (ρ)≡ 2(1− ρ)

ρ
E[Wρ], and c2W∗(ρ)≡ 2(1− ρ)

ρ
W ∗

f,ρ. (EC.27)

EC.6.2. Heavy-Traffic and Light Traffic Limits

By essentially the same reasoning, we can show that both the parametric RQ and the functional RQ for

the steady-state waiting time W are asymptotically exact in heavy-traffic, with the same HT limit as for

the continuous-time workload, if we choose the constant bf,d in (EC.26) appropriately. The light-traffic

behavior is much more complicated for the steady-state waiting time, as discussed in §IV.A of Fendick and

Whitt (1989) and §1 of Whitt (1989a). That is a major reason for using the workload instead of the waiting

time.
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EC.7. Additional Technical Support for the Main Paper

In this section we provide additional technical support for the main paper. First, a key step in obtaining

tractable solutions of the RQ optimizations is an interchange of suprema. The following lemma shows that

this interchange is justified in all cases.

LEMMA EC.1. (interchange of suprema) The interchange of suprema below holds for any real-valued

function f(x, y)

M := sup
x∈A
y∈B

f(x, y) = sup
x∈A

sup
y∈B

f(x, y) = sup
y∈B

sup
x∈A

f(x, y),

where the joint supremumM is allowed to be infinite.

Proof By symmetry, we need only prove that

sup
x∈A
y∈B

f(x, y) = sup
x∈A

sup
y∈B

f(x, y).

Suppose the joint supremumM is finite, then there exist a sequence (xn, yn)∈A×B such that f(xn, yn)>

M − 1/n, where M is the finite joint supremum. Then, we have

sup
x∈A

sup
y∈B

f(x, y)≥ sup
y∈B

f(xn, y)≥ f(xn, yn)≥M − 1

n
, for all n> 0.

This implies that

sup
x∈A

sup
y∈B

f(x, y)≥M = sup
x∈A
y∈B

f(x, y).

The other direction of inequality is trivial by noting thatM ≥ f(x, y) and taking iterated supremum on both

sides.

For the case where the joint supremum M is infinite, then there exist a sequence (xn, yn) ∈A×B such

that f(xn, yn)>n. Then

sup
x∈A

sup
y∈B

f(x, y)≥ sup
y∈B

f(xn, y)≥ f(xn, yn)≥ n, for all n> 0.

Hence the iterated supremum is also infinite, which completes the proof.
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Proof of Theorem 2. The solutions of the RQ optimizations in (16) are

Z∗
p,ρ ≡ sup

Ñρ∈Up
ρ

sup
s≥0

{

Ñρ(t)
}

= sup
s≥0

sup
Ñρ∈Up

ρ

{

Ñρ(t)
}

= sup
s≥0

{

−(1− ρ)s+ bp
√
s
}

= −(1− ρ)x∗+ bp
√
x∗ =

b2p
4|1− ρ| for x∗ ≡ x∗(ρ) =

b2p
4(1− ρ)2

and (EC.28)

Z∗
ρ ≡Z∗

f,ρ ≡ sup
Ñρ∈Uf

ρ

sup
s≥0

{

Ñρ(t)
}

= sup
s≥0

sup
Ñρ∈Uf

ρ

{

Ñρ(t)
}

= sup
s≥0

{

−(1− ρ)s+ bf

√

V ar(Nρ(s))

}

= sup
s≥0

{

−(1− ρ)s+ bf

√

V ar(Yρ(s))

}

. (EC.29)

where the interchange of suprema is justified by Lemma EC.1.

We now prove Theorem 5. We state and prove two separate results here.

THEOREM EC.3. (RQ in heavy traffic) Let b′z =
√
2 and assume that Iw(x) is non-negative, continuous

and that Iw(∞) ≡ limx→∞ Iw(x) exist, then we have the following heavy-traffic limit for the normalized

RQ optimal value

c2Z∗(1)≡ lim
ρ→1

2(1− ρ)

ρ
Z∗(ρ) = Iw(∞). (EC.30)

To prove Theorem EC.3, we need two lemmas.

LEMMA EC.2. (order-preservation of the RQ solution) Let f, g be two positive functions on non-negative

real numbers, satisfying f(x)≥ g(x) for all x≥ 0. Then we have

Z∗
f >Z∗

g ,

where Z∗
f is the solution to the RQ problem with f replacing Iw.

Proof Let x∗
f denote the optimal solution to the RQ problem specified by f . Then

Z∗
f =−1− ρ

ρ
x∗
f + b

√

x∗
ff(x

∗
f) ≥ −1− ρ

ρ
x∗
g + b

√

x∗
gf(x

∗
g)

≥ −1− ρ

ρ
x∗
g + b

√

x∗
gg(x

∗
g) =Z∗

g .

LEMMA EC.3. (continuity property of the normalized RQ solution) Let c2Z∗(ρ)(f) be the normalized solu-

tion to (28) with Iw replaced by f . Then c2Z∗(ρ) is a continuous function from space (Cb(R
+,R+),‖ ·‖∞) to

R
+, with the former one being the space of all continuous and bounded functions from R

+ to R
+ equipped

with the supremum norm.
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Proof Let f, g ∈ (Cb(R
+,R+),‖ · ‖∞), satisfying ‖f − g‖∞ ≤ ǫ. Then we have

f(x)− ǫ≤ g(x)≤ f(x)+ ǫ, for all x≥ 0.

Since f ∈ Cb(R
+,R+), there exist M > 0 such that f(x)<M for all x≥ 0. Then for all x >Mρ, where

Mρ ≡ (ρb′z/(1− ρ))
2
M, we have

−1− ρ

ρ
x+ b′z

√

xf(x)<−1− ρ

ρ
x+ b′z

√
xM < 0

Hence,

cZ∗(ρ)(g)≤ cZ∗(ρ)(f + ǫ) =
2(1− ρ)

ρ
sup

0≤x≤M̃ρ

{

−1− ρ

ρ
x+ b′z

√

x(f(x)+ ǫ)

}

≤ 2(1− ρ)

ρ
sup

0≤x≤M̃ρ

{

−1− ρ

ρ
x+ b′z

√

xf(x)+ b′z
√
xǫ

}

≤ 2(1− ρ)

ρ
sup

0≤x≤M̃ρ

{

−1− ρ

ρ
x+ b′z

√

xf(x)

}

+ b′z

√

M̃ρǫ (EC.31)

= cZ∗(ρ)(f)+
2(1− ρ)

ρ
b′z

√

M̃ρǫ

= cZ∗(ρ)(f)+ 2(b′z)
2
√

(M + ǫ)ǫ, (EC.32)

where M̃ρ ≡ (ρb′z/(1− ρ))2(M + ǫ) and the first inequality follows from Lemma EC.2. Similarly, we can

prove that

cZ∗(ρ)(g)≥ cZ∗(ρ)(f − ǫ)≥ cZ∗(ρ)(f)− 2(b′z)
2
√

(M + ǫ)ǫ. (EC.33)

Combining (EC.32) and (EC.33), we have

|cZ∗(ρ)(g)− cZ∗(ρ)(f)| ≤ 2(b′z)
2
√

(M + ǫ)ǫ.

Hence the lemma holds.

Proof of Theorem EC.3. Recall that Theorem 4 suggest that the optimal solution is of orderO(ρ2/(2(1−

ρ)2)), we perform a change of variable t= 2(1−ρ)2x/ρ2 in (28) and scale the space by a constant ρ/(2(1−

ρ)). Hence, we have

c2Z∗(ρ) = sup
0≤t≤∞

{

−t+2

√

tIw

(

ρ2

2(1− ρ)2
t

)

}

. (EC.34)
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Since Iw(∞)≡ limx→∞ Iw(x) exist, there exist a T sufficiently large such that |Iw(t)− Iw(∞)|< ǫ for

all t > T . Now, we define

Ĩw(t) =



























Iw(t), t≤ T,

linear, T − ǫ < t≤ T,

Iw(∞), t > T.

By virtue of Lemma EC.3, we need only prove that cZ∗(1)(Ĩw) = Ĩw(∞) = Iw(∞).

Note that continuity and finite limit at x=∞ implies that Ix(x) is bounded, say Iw(x)<M − ǫ for all

x≥ 0. Hence we have

−t+2

√

tĨw

(

ρ2

2(1− ρ)2
t

)

≤−t+2
√
tM. (EC.35)

We assume first that the limit Iw(∞) is strictly positive. The case where Iw(∞) = 0 can be deduced

by considering a sequence of functions fn(x) such that fn(∞) > 0 and |Iw − fn|∞ < 1/n, and applying

Lemma EC.3.

Now, for the case where Iw(∞)> 0, we can choose ρ0 such that

Tρ ≡
2(1− ρ0)

2

ρ20
T <min

{

Iw(∞),2M − Iw(∞)− 2
√

M 2 − Iw(∞)M
}

,

since the right-hand-side of the inequality wil be strictly positive. Then for all ρ> ρ0, we have

sup
0≤t≤Tρ

{

−t+2

√

tĨw

(

ρ2

2(1− ρ)2
t

)

}

≤ sup
0≤t≤Tρ

{

−t+2
√
tM
}

≤ Iw(∞).

But plugging Iw(∞) into the objective function, we have the objective value Iw(∞) by the fact that

ρ2

2(1−ρ)2
Iw(∞)>T and that Ĩw(t) is constant after t > T . This implies that

c2Z∗(ρ)(Ĩw) = sup
Tρ≤t≤∞

{

−t+2

√

tĨw

(

ρ2

2(1− ρ)2
t

)

}

= sup
Tρ≤t≤∞

{

−t+2
√

tIw(∞)
}

= Iw(∞), for all ρ> ρ0.

Hence, we’ve proved that cZ∗(1)(Ĩw) = Ĩw(∞) = Iw(∞).

Next, we state the corresponding result for RQ in light traffic.
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THEOREM EC.4. (RQ in light traffic) Let b′z =
√
2 and assume that Iw(x) is non-negative, continuous

and that Iw(0)≡ limx→0 Iw(x) exist, then we have the following light-traffic limit for the normalized RQ

optimal value

c2Z∗(0)≡ lim
ρ→0

2(1− ρ)

ρ
Z∗(ρ) = Iw(0). (EC.36)

Proof As in the proof for heavy-traffic limit, we perform the same time and space scaling to get (EC.34).

For the same reason, we have (EC.35), which implies that

−t+2

√

tĨw

(

ρ2

2(1− ρ)2
t

)

≤−t+2
√
tM < 0, for all t > 4M.

Hence, we need only consider the supremum in (EC.34) over bounded interval [0,4M ]. Note also that, since

Iw(0)≡ limx→0 Iw(x) exist, for any ǫ > 0, there exist a δ > 0 such that |Iw(t)− Iw(0)|< ǫ for all x∈ [0, δ].

We now choose ρ0 such that 2ρ20M/(1− ρ0)
2< δ, and take a modification

Ĩw(t) =



























Iw(0), t < δ,

linear, δ ≤ t < δ+ ǫ,

Iw(t), t≥ δ+ ǫ,

which satisfies |Iw − Ĩw|∞ < ǫ and

c2Z∗(ρ)(Ĩw) = Iw(0), for all ρ < ρ0.

We then apply Lemma EC.3 to get the desired light-traffic limit.

EC.8. Additional Examples

In this final section we present some additional examples illustrating more complex behavior that can be

seen in the IDW IW (t) and in the normalized mean workload c2Z(ρ). All examples are for single-server

queues in series, as in §5.2. For background on this example, we refer to §4.5 of Whitt (1983), Suresh and

Whitt (1990) and §§5 and 6 of Whitt (1995).
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EC.8.1. The First Example of Queues in Series

Recall that Figure 3 illustrated the performance impact in an H2/D/1→ ·/D/1 . . .→ ·/D/1 → ·/M/1

model with a rate-1 H2 renewal external arrival process, where the interarrival times has scv c2a = 10,

followed by nine single-server queues with deterministic D service times and then a final 10th queue with

an exponential service time distribution. The first 8 queues all have mean service times and thus traffic

intensities of ρk = 0.6, while the 9th queue has mean service time and thus traffic intensity ρ9 = 0.95. We

look at the performance at the last queue as a function of the traffic intensity ρ≡ ρ10 there. Figure 3 shows

that the normalized workload at the last queue as a function of ρ. From (26), we know that the left and right

limits of the normalized mean workload are c2Z(0) = 1 + c2s = 2.0 and c2Z(1) = c2a + c2s = 11.0. Figure 3

shows that the performance is consistent with these limits, even though we cannot see the right hand limit,

because the simulation considered traffic intensities bounded above by a quantity less than 1. Nevertheless,

we see that the performance varies as a function of ρ approximately as predicted by these two limits.

Figure 3 also shows a dip in the middle consistent with the smoothing provided by the the low variability

at the first 9 queues, but the performance does not oscillate too much. Now we illustrate more complex

performance functions that can be obtained with more complex models.

In general, experience indicates that for 10 queues in series the normalized mean workload can be

bounded above and below, approximately, by

min{1, c2a, c2s,k,1≤ k≤ 9}+ c2s,10 ≤ c2Z(ρ)≤max{c2a, c2s,k,1≤ k≤ 9}+ c2s,10. (EC.37)

(The “1” appears in the minimum because the left limit at 0 is 1 + c2s.) For example, this approximate

bound is consistent with the approximatioon for the variability parmeter c2d of the departure process froma

GI/GI/1 queue in formula (38) in Whitt (1983), i.e.,

c2d ≈ (1− ρ2)c2a+ ρ2c2s. (EC.38)

The bound can be obtained by iterating that approximation forward to get an approximation for c2d,9 and

then allowing the previous traffic intensities to vary.
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For this example, the bound in (EC.37) is not too informative, concluding that 1 ≤ c2Z(ρ) ≤ 11, which

corresponds to the left and right limits. Our goal is to say more about c2Z(ρ) for 0< ρ< 1 by using the IDW

and RQ.

However, so far, the examples do not show that too much is going on in the middle except for moving

from one limit to the other. That motivates us to look at the next examples.

EC.8.2. The EHEHE→M Example with Four Internal Modes

We now consider an example of 5 single-server queues in series where the variability increases and then

decreases 5 times, with the traffic intensities at successive queues decreasing. That makes the external arrival

process and the earlier queues relevant only as the traffic intensity increases. Specifically, the example can

be donoted by

E10/H2/1→ ·/E10/1→·/H2/1→ ·/E10/1→·/M/1. (EC.39)

In particular, the external arrival process is a rate-1 renewal process with E10 interarrival times, thus

c2a = 0.1. The 1st queue has H2 service times with mean 0.99 and c2s = 10 (and also balanced means, as

before), thus the traffic intensity at this queue is 0.99. The 2nd queue has E10 service time with mean and

thus traffic intensity 0.98. The 3rd queue has H2 service times with mean 0.70 and c2s = 10. The 4th queue

has E10 service times with mean and thus traffic intensity 0.5. The last (5th) queue has an exponential

service-time distribution. with mean and traffic intensity ρ. As before, we explore the impact of ρ on the

performance of that last queue.

Looking backwards starting from the 4th queue, i.e., the queue just before the last queue, the Erlang

service act to smooth the arrival process at the last queue. Thus, for sufficiently low traffic intensities ρ at

the last queue, the last queue should behave essentially the same as a E10/M/1 queue, which has c2a =0.1,

but as ρ increases, the arrival process at the last queue should inherit the variability of the previous service

times and the external arrival process, and altering between H2/M/1 and E10/M/1 as the traffic intensity

at the last queue increases. This implies that the normalized workload c2Z(ρ) in (25) as a function of ρ should

have four internal modes. (If we also count the left and right ends, there will be six modes.
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This behavior is substantiated by Figure EC.1 (left), which compares simulation estimates of the normal-

ized mean workload c2Z(ρ) in (25) at the last queue with the RQ approximation c2Z∗(ρ) in (29). It shows

that the the normalized workload at the last queue fluctuates and each mode corresponds to a previous ser-

vice process or the external arrival process. Figure EC.1 (left) also shows that RQ successfully captures all

modes and provides a reasonably accurate approximation for all ρ. Note that a new scale in the horizontal x

axis is used in Figure EC.1 (left), namely − ln(1− ρ). Since 4 out of 6 modes lies in ρ> 0.8, the new scale

act to stretch out the crowded plot under heavy traffic.
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Figure EC.1 A comparison between simulation estimation of the normalized workload c2Z(ρ) at the last queue as a function of

traffic intensity ρ with the RQ approximation c2Z∗(ρ) in (29) (left), and the IDW at the last queue over the interval

[10−2,105] in log scale (right).

To conclude on this series-queue example, we show the IDW for the last queue in Figure EC.1 (right).

The x axis of the figure is in log scale for easier display. We see a more irregular plot at the right because

it is harder to directly estimate the IDW Iw(t) for very large t, but the limit as t→ ∞ can be calculated

from (26). Clearly, the IDW has the same qualitative property as the normalized workload as well as the RQ

approximation, as we expect from equation (33).

EC.8.3. A Similar Example with Highly Variable Input

In this section, we consider a similar example where the normalized workload as a function of ρ also has

several modes, but the external arrival here has high variability.
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In this example we use groups of queues in series with the same distribution and traffic intensity in

order to better bring about an adjustment in the level of variability. This device is motivated by the convex-

copmbination approximation in (EC.38). Specifically, this example has 13 single-server queues in series.

The external arrival process is a rate-1 renewal process with H2 interarrival times with c2a = 10. A group of

three queues having E10 service times with mean 0.99 is then added to smooth the highly variable external

arrivals. The next group of three queues has H2 service times with mean 0.92 and squared coefficient of

variation 5. These queues will bring up the variability of the departure process. Then, another group of three

queues with mean 0.9 has E10 service times to smooth the departure process again. The variability is then

raised by yet another group of three queues having H2 service times with mean 0.3 and c2S = 10. Finally,

the last (13th) queue has exponential service times with mean and traffic intensity ρ. As before, we explore

the impact of ρ on the performance of that last queue.

As explained in last example, for sufficiently low traffic intensities ρ at the last queue, the last queue

should behave approximately the same as an H2/M/1 queue, which has c2a = 10, but as ρ increases, the

arrival process at the last queue should inherit the variability of the previous service times and the exter-

nal arrival process, and altering between E10/M/1 and H2/M/1 as the traffic intensity at the last queue

increases. This implies that the normalized workload c2Z(ρ) in (25) as a function of ρ should have several

modes, corresponding to the variability of the external arrival process and the service processes at the first

4 groups of queues.

We then have the similar plots in Figure EC.2, which compares simulation estimates of the normalized

mean workload c2Z(ρ) in (25) at the last queue with the RQ approximation c2Z∗(ρ) in (29) (left) and shows the

IDW for this example (right). Again, we are using the same scale as in Figure EC.1 (left), i.e., − ln(1− ρ),

to stretch out the plot under heavy traffic.

Figure EC.2 (left) shows that the the normalized workload at the last queue again has four internal modes

and that RQ successfully captures all modes and provides a reasonably accurate approximation for all ρ.

Figure EC.2 (right) shows that the IDW has the same qualitative property as the RQ approximation, which

is explained in (33). However, the fluctuations in the simulation values for 0 < ρ < 1 in Figure EC.2 are

much less than in Figure EC.1.
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Figure EC.2 A comparison between simulation estimation of the normalized workload c2Z(ρ) at the last queue as a function of

traffic intensity ρ with the RQ approximation c2Z∗(ρ) in (29) (left), and the IDW at the last queue over the interval

[10−2,105] in log scale (right).

We conclude that (i) the IDW and RQ do capture the qualititative behavior and (ii) the RQ approximation

based on the IDW is reasonably accurate in these difficult examples.
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