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We establish functional large deviation principles (FLDPs) for waiting and depar-
ture processes in single-server queues with unlimited waiting space and the first-in
first-out service discipline. We apply the extended contraction principle to show that
these processes obey FLDPs in the function space D with one of the nonuniform Sko-
rohod topologies whenever the arrival and service processes obey FLDPs and the rate
function is finite for appropriate discontinuous functions. We apply our previous
FLDPs forinverse processes to obtain an FLDP for the waiting times in a queue with
a superposition arrival process. We obtain FLDPs for queunes within acyclic net-
works by showing that FLDPs are inherited by processes arising from the network
operations of departure, superposition, and random splitting, For this purpose, we also

. obtain FLDPs for split point processes. For the special cases of deterministic arrival
. processes and deterministic service processes, we obtain convenient explicit ex-
_pressions for the rate function of the departure process, but not more generaily. In

 genéral, the rate function for the departure process evidently must be calculated nu-

merically. We also obtain an FLDP for the departure process of completed work,
which has imiportant application to the concept of effective bandwidths for admis-
sion control and capacity planning in packet communication networks. '
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1. INTRODUCTION

The purpose of this paper is to establish functional (or sample path) large deviation
principles (FLDPs) for stochastic processes arising in queues and acyclic networks
of queues. A distinguishing feature from previous work in this direction, notably by
de Veciana, Courcoubetis, and Walrand [37] and Chang [7], is our focus on FLDPs
in the function space D with the (noruniform) Skorohod [33] topologies, where the
rate functions may be finite on some discontinuous functions.

Establishing such general FLDPs is challenging and interesting mathemati-
cally, but there also is substantial practical engineering motivation, which we first
describe. In recent years there has been great interest in large deviations principles
(LDPs) for queueing models, primarily motivated by the problems of admission
control and capacity planning in emerging high-speed packet communication net-
works. These LDPs were especially important because they provide a theoretical
framework supporting a concept known as an effective bandwidth (see Chang and
Thomas [9], Kelly [19], de Veciana et al. [38], and Whitt [40]).

In a packet retwork, sources do not receive dedicated bandwidth (e.g., circuits)
for the entire duration of a connection, but instead emit packets at a variable rate.
However, admission control and capacity planning in a packet network can be greatly
simplified if each connection can be treated as if it required a constant “effective”
bandwidth throughout the active period of the connection. A given set of connec-
tions can then be deemed feasible if the sum of the effective bandwidths is less than
the total available capacity. By using effective bandwidths in this manner, the prob-
lems of admission control and capacity planning can be addressed as in circuit-
switched networks. For capacity planning, we can apply stochastic loss networks, as
in Ross [31].

It is evident that an effective bandwidth should be some value between the
average rate and the peak (maximum) rate of the connection, but any actual value
must be an approximation. In this setting, a commonly expressed goal is to admit as
many connections as possible, subject to the constraint that the long-run average
probability of packet loss is suitably small. Since this loss probability target is usu-
ally set very small, e.g., at 1072, it is ndtural to consider large deviations theory. The
problem of identifying appropriate effective bandwidths has been approached by
considering a fluid queueing model with unlimited buffer, constant ocutput rate, the
first-come first-served (FCFS) service discipline and an input composed of the su-
perposition of several independent nondecreasing stochastic processes each with
stationary increments. With this model, the loss probability constraint is represented
by the constraint

P(L>b)=<p, )

where L is the steady-state workload (buffer content). The large deviations analy-
sis is based on the limit as b — oo and p — 0 in Eq. (1.1). The large deviations
analysis indicates that, under regularity conditions, the effective bandwidth of source
i should be : '

e; = o;(8*)/0* for 6*=—(logp)/b (L2)
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where p and b come from Eq. (1.1) and «;(8) is the asymptotic logarithmic moment
generating function (almgf), i.e.,

a(6) = lim g Elexp(64, ()], a3

with A,(t) representing the input (arrivals) from source i in the interval [0,7]. (We
assume that A;(r} has stationary increments.)

The present paper was motivated in part by two remaining problems. The first
is the desire to extend the effective bandwidth concept from a single queue to a
network of queues (because acommunication network does not act as a single queue).
The second is the desire to extend the effective bandwidth concept from the FCFS
service discipline to other service disciplines such as priorities and generalized pro-
cessor sharing, which are very important for providing appropriate grades of service
to very different sources, e.g., voice, data, and video.

It turns out that both problems can be approached by establishing 1L.DPs for
departure processes. If we can establish an LDP for a departure process, then we can
extend the effective bandwidth concept to acyclic networks of queues. Significant
progress on that program was carried out by de Veciana et al. [37] and Chang (7).
They found, again under regularity conditions, that the departure process (of com-
pleted work) D(t) has the almgf

58) = a(f), p<@d 14
@) =1a@)+c6~-8), 6>4, -4

where ¢ is the constant output rate from the queue, a{8) = Za;(8) is the almgf for
the aggregate arrival process, defined as in Eq. (1.3), and é is a “decoupling” band-
width defined by a’(6) = c.

Akey to establishing Eq. (1.4) was exploiting a functional (or sample path) LDP
(FLDP). However, the FLDP used, involving the uniform topology, places strong
restrictions on the input processes for which Eq. (1.4) can be established. In partic-
ular, it was necessary to work in discrete time and the almgf in Eq. (1.3) is required
to be finite everywhere. This finiteness requirement is satisfied if the increments of
A;(t) are bounded, which is perhaps an acceptable condition from an engineering
perspective, but we want to know what happers more generally. For example, that
FLDP does not imply Eq. (1.4) even for the M/D/1 fluid queue (with a single P01s-
son arrival process).

In this paper (Section 5) we show that Eq. (1.4) is valid much more generally In
particular, it suffices to assume that FLDPs hold for the input processes A;(z) in the
function space D with a nonuniform Skorohod topology. Our LDP for departure
processes (based on an assumed FLDP for the arrival processes) is applied in Berger
and Whitt [3,4} in order to establish the exact large-buffer-asymptotic admlsS|ble set
when there are several priority classes. Unfortunately, this admissible set with pri-

- orities does not have a single linear boundary, so it does not directly support the

concept of effective bandwidths. However, a natural approximation for the exact
admissible set has a linear constraint for each priority class, which supports a new
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notion of effective bandwidths. With priorities, this analysis indicates that there
should be multiple effective bandwidths, one for the given priority class and one for
each lower priority class.

The model of interest for effective bandwidths, for which we establish Eq. (1.4),
is a fluid queue. It is natural to ask what happens in the standard G/GI/1 queue,
which has i.i.d. service times with a general distribution and a general stationary
amrival process. As should be expected, we show that the discussion above applies
essentially unchanged to the G/D/1 model with deterministic service times. How-
ever, we find that the departure-process LDP is much more complicated with non-
deterministic service times. (A related observation has been made by Chang and
Zajic [10].) We show that, in general, it is necessary to solve an optimization prob-
lem in order to calculate the LDP rate function for the departure process. We dem-
onstrate that the departure-time rate function does not simplify by deriving the rate
function in the special case of deterministic interarrival times (Thm. 4, Cor. 2). We
propose using an upper bound for the departure-time rate function as an approxi-
mation (Rmk. 4.4). A promising direction for future research is the application of
mathematical programming to calculate these rate functions systematically.

Our goals here extend beyond the communications network application to try to
establish FLLDPs in D with appropriate nonuniform topologies for queueing pro-
cesses in queueing networks. Here we focus successively on waiting times, depar-
ture times, the departure process of completed work, and split point processes. This
paper parallels that of Chang [7], which establishes FLDPs with the uniform topol-
ogy for discrete-time processes in acyclic queuneing networks, which in turn parallels
much earlier heavy-traffic FCLTs for queues in Iglehart and Whitt [18]. This paper
complements that of Puhalskii [28], where FL.LDPs were obtained for the queue length
process and the virtual waiting time process in the GI/G1/1 queue. This paper is also
a sequel to that of Pubalskii and Whitt {30], showing how FLDPs for inverse pro-
cesses established in [30] can be applied to queueing models. The FLDPs for inverse
processes enable us to obtain an FLDP for the waiting times in the 35, G;/G/1
queue, which has an arrival process that is a superposition of arrival processes (Thms.
3.2 and 3.3, below). The inverse FLDPs also play a role in establishing FLDPs for
randomly split point processes, which arise when departures from one queue are
routed to one of several other queues or leave the network.

Just as functional central limit theorems (FCLTs) are useful to establish ordi-
nary central limit theorems for various functionals of stochastic processes [6,39], so
are functional (or sample-path) large deviation principles (FLDPs) useful to estab-
lish ordinary large deviations principles (LDPs) for various functionals of stochastic
processes [25]. The contraction principle and its extensions play the role for FLDPs
that the continuous mapping theorem and its extensions play for FCLTs. The non-
uniform Skorohod topologies are important in part to avoid measurability problems
for continuous-time stochastic processes with discontinuous sample paths-using the
uniform topology (see Billingsley [6, Sect. 18]).

We close this introduction by mentioning a few other related papers, in parnc-
ular, Anantharam [1], Bertsimas, Paschalidis, and Tsitsiklis [5], Chang, Heidel-
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berger, Juneja, and Shahabuddin {8), Chen [11], Dobrushin and Pechersky [14],
O’Connell [23], and Tsoucas [34].

2. TECHNICAL PRELIMINARIES

We shall work in the function space D = D([0,00), R} of right-continuous real-
valued functions with left limits, endowed with the Skorohod [33] J; or M, topolo-
gies, or a modification of the M| topology denoted by M) ; we refer to Billingsley [6],
Lindvall [20}, Pubalskii and Whitt [30], and Whitt [39] for details. (We take this
opportunity to correct here a slip on p. 365 of [30]: The M topology is stronger, not
weaker, than the weak topology; that was the purpose of introducing it.) These spaces
are metrizable as separable metric spaces and have Borel o-fields coinciding with
the usual Kolmogorov o-field generated by the coordinate projections. We shall also
use the subset E T of nondecreasing nonnegative functions x with x () — co as £ —> co,
We shall exploit continuity properties of standard functions on D such as addition.
Continuity results for the most familiar J; topology are established in Whitt [39], but
analogs also hold in the other topologies; e.g., such continuity results were estab-
lished by Pomarede [24].

We say that a function /(x) defined on a metric space S and taking values in
[0,00] is a rate function if the sets {x € §: I(x) =< a} are compact foralla = 0, and a
sequence {P,, n = 1} of probability measures on the Borel o-field of S (or a sequence
of random elements {X,,, n = 1} with values in S and distributions P,) obeys the LDP
with the rate function I if

— 1
lim —log P,(F) = —inf I(x) 2.1)
n—o R xsF
for all closed F C §, and
1
lim — log P,(G) = —inf I(x) 2.2)
n=oon =G

for all open G C S. Here we call the LDP an FLDP if it is for a sequence of normal-
ized processes in the function space D, i.e., given a stochastic process (X(t),7 = 0),
the normalized processes are (n~'X(nt), 1= 0), n= 1. We refer to Dembo and Zeitouni
[13], Puhalskii [25-29], Shwartz and Weiss [32], and Varadhan {35,36] for addi-
tional background. We remark that it is possible to express the LDP with incompat-
ible topology and o-field [13, p. 51, but we always use the Borel o-field. So far we
see little advantage in having a non-Borel o-field. In particular, for applications in
D we want the Kolmogorov o-field. On D we-could use a topology such as the
uniform topology (comesponding to uniform convergence on bounded intervals)
which makes the Kolmogorov o-field non-Borel, but this does not seem helpful. On
the other hand, whenever we have an FLDP with rate function that is equal to infinity
at discontinuous elements of D, we can extend it to an FLDP for uniform topology
and Kolmogorov o-field (see, e.g., [27, Thm. C]). However, it is often important to
consider rate functions that are finite for some discontinuous functions.
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We establish new FLDPs from previously established ones by applying the
contraction principle or an extension [25, 28, Sect. 2]. The contraction principle
states that if {X,, n = 1} obeys an LDP with rate function 7 and if f is continuous, then
{f(X,),n = 1} obeys an LDP with rate function

I'(y)= inf I(x). (2.3)
xf(x)=y

The extended contraction principle states that if {X,,,n = 1} obeys an LDP with rate
function I, if { f,,n = 1} is a sequence of measurable functions, if the function f is
continuous when restricted to the sets {x: I{x) = a}, a = 0, and if f,(x,) = f(x) as
n — oo for all x, for which x, = x as n — oo for all x for which /{x) < oo, then
{ £,(X,),n = 1} obeys an LDP with rate function (2.3). An important special case is
f. =/ as in the contraction principle, where f is continuous at each x with I(x) < co.
In either case, if in addition £ is a bijection, then we can write /'(y) =I{f ! (»)). The
applications here illustrate the importance of the extended contraction principle.

3. WAITING TIMES

We now establish FLDPs for waiting times in a single-server quene with unlimited
waiting room. We use lowercase letters to define the basic random variables and
associated capital letters for the associated normalized processes in the function
space D. Let v, be the service time of the nth customer and et u, be the interarrival
time between customers z and (n + 1). Let a Oth customer arrive at time O to find an
empty system. (More general initial conditions can be treated too; e.g., [28, Rmk.
5].) Then the waiting time of the nth customer satisfies

w, ={w,—y +x,-1}" =5, — min{s,: 0 <k < n},
where x, = v, — u,, S, =xp + -+ + x,_ and 54 = 0. Hence, introducing the processes

I T L)
Un(t) = n;l 2 Ui—1, ‘fn(t) = n_l Z UVi-15 wn(t) = n—-lwl_m}’ t= 0!
i=1 F=1

3.1
we have
W,=R(V,—-U,), n=]|,
where R is the one-dimensional reflection map on D, defined by
R(x)(1) = x(t.) —inf{x(s):0=s5=<1} A0, t=0. (3.2)

We start by stating a technical lemma about the reflection map, which is a
version of Lemma 4.6 of [28]. For a function x of finite variation on bounded inter-
vals, we denote by x = x{ + x; its Lebesgue decomposition with respect to Lebesgue
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measure, where xj is the absolutely continuous component with x{(0} = 0 and x} is
the singular component.

LemMa 3.1: Let a function x have finite variation on bounded intervals with x;
increasing. Then a function z is the reflection of x, i.e., 7 = R(x) where R is the
reflection map in Eq. (3.2), if and only if z is nonnegative, has finite variation on
bounded intervals, zt = x4, 21(2) = x{(¢) a.e. on the set {z(t) > 0} and 3} (1) = O a.e.
on the set {z(t) = 0}. Also z{(t) = O a.e. on the set {z(t) = 0}.

Below we mostly apply the lemma to the case when x is absolutely continuous.
Note that if we introduce

y)=2z2()—x@), =0, y0)=0, (3.3)

then we get the standard characterization of the reflection map as z=x+y, where y

is nondecreasing and increases only when z(t) = 0 (e.g., [17, p. 19)).
Let 1 4 be the indicator function of the set A, which is 1 on A and 0 elsewhere. In

the next theorem and below we set by definition co-0 = 0.
THEOREM 3.1:

@) If {{U,,V,),n =1} for U, and V, in Eq. (3.1) obeys an FLDP in D X D for
(the product topology associated with) one of the topologies J,, M, or M|
with rate function Iy y where Iy, y{u,v) = oo if both u and v are discontin-
uous, then {W,,n = 1} in Eq. (3.1) obeys an FLDP in D for the same topol-
ogy with rate function

IW(W) = u.uriEI})fxD:{IU'V(u’ U)} 3.4)

w=R{v—u)

(b) In addition, suppose that Iy y(u,v) = Iy(u) + Iy(v), where Iy and I, are
integrals of ([0,00]-valued, lower semicontinuous with compact level sets)
local rate functions Ay and Ay, e.8.,

Iy(w) =J; Ay(a(e))dt (3.5)

for absolutely continuous nondecreasing u with u(0) = 0 and I;(u) = oo
otherwise, then for nonnegative absolutely continuous w with w(0) = 0

) = [ wirma i, Phute = w(0) + A2

+ ) A oot 66

while fw(w) = oo otherwise.
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(c) If, in addition,

Ay(z) = sup {az — ¢y(a)} and Ay(z)= sup {az = ¢v(a)}, (3.7

where Yy () and Yy (a) are convex, nondecreasing finite real-valued func-
tions with r;(0) = ¢ry(0) = 0, then for nonnegative absolutely continuous w
withw(0) =0

) = | Lcomar s9p189() = (=) ~ by (B

+ 1gpony SUp{—¢y(—B) — 'J’v(ﬁ)}f Lwin=03dt,  (3.8)
B=0 0

where p = gry(0)/ iy (0) with Yry(0) and ¥, (0) denoting left and right de-
rivatives, respectively, and ly(w) = co otherwise.

PrOOF: As Iy y{u,v) is infinite when both x and v are discontinuous, as subtraction
v — u is continuous when one of v and u is continuous by [39, Thm. 4.1] (the con-
tinuity is only established for the J; topology in [39], but Theorem 4.1 there holds for
the other two topologies as well), and as the reflection map is continuous ([39, Thm.
6.4]1), we can apply the extended contraction princtple in {25, Thm. 2.2] (see also
[28, Sect. 2, 30]) to obtain the FLDP for {W,,» = 1} in D for the same topology with
rate function Iy in Eq. (3.4).

Turning to part (b), we apply Eq. (3.4), Lemma 3.1, and [28, Lem. 3.3] to obtain
(with y from Eq. (3.3))

() = Mg},fxp{ f Ao (0) + My (5] dz}

V=i~ ik y

o0

=f inf {Ay(i(t) + Ap(6()}

0 u=sla+y

- '. -
w=i—u

- fo Lmar inf Ao(0) + 4, @)} dr

+ J; lywiy=0y inf {Au (@)} + A (0(2))} dt,

Oso=a

from which Eq. (3.6) follows. _

Finally, for (c); apply the argument of [28, Sect. 4] (which includes a minimax
theorem on the second line, see, e.g., [2, Thm. 7, Ch. 6, Sect. 2]) to obtain, in analogy
with (3.6),



FUNCTIONAL LARGE DEVIATION PRINCIPLES 487

Iy(w) = J; inf {asggk{ait(t) — ¢yla) + Bi(1) ~ WV(B)}} dt

.
w=i—a+ty

= [ { inf {aﬂ(t)—l#u(a)+ﬁt>(t)—l/fv(l3)}} dt

0 «BER| ity

= [ teucrsor sup (B9~ dole) = pu(8) + int (o + B0} ds
o a, BER (=0

+ f l{wcn=o}SUP{—¢u(a)—slfv(ﬁ)+ inf  {ai(s) + ﬁiz(r)}} dt
0 L N: ]

(Y=o (ry=0

=f ltw(y>0y Sup {Bw(t) — yyla) — Yv(B)}dt p
0 a+p=0

+ sup {—¢y(a) —'ﬁv(ﬁ)}fo lywn=oy dt,

a+pB=0

which equals Eq. (3.8), because ¢/ (a) and ¢( 8) are nondecreasing. For the second
term in Eq. (3.8), note that ¢(8) = —¢y(—B) — ¥v(B) has left derivative 95(0)_ =
#u(0) — ¢ (0). If $(0) = 0, then the supremum is attained at 8 = 0, and equals 0
since ¢(0) = 0. On the other hand ¢(0) < 0 if and only if $y(0) > ¥, (0). .

Remark 3.1: The natural sufficient condition for {(U,,V,), n = 1} to obey an FLDP
for the M/-topology with rate function Iy v(u,v) = Iy(u) + Iy(v} is for {U,,n = 1}
and {V,,n = 1} to be independent and separately obey FLDPs with rate functions
Iy(u) and Iy(v). The familiar special case is an i.i.d. sequence: If {«,} is i.i.d. and
Eexp(au,} < oo for some a > 0, then {U,} obeys an FLDP for the M;-topology
with rate function

Iy(u) = J:o sgg_{aizf(t) — log Eexp(au, )} dt + a*uf(co), 3.9

where, as above, u = uf + uf is the Lebesgue decomposition of 1 with uf being the
absotutely continuous component with uf(0) = 0, #f(z) its derivative and £ is the
singular component, a* = sup{a: E exp(au;) < oo}; see [30, Eq. (6.5), 28, Lem.
3.2,21,22]. If @™ = oo, then I;(u) = oo whenever x is not absolutely continuous and
the FLDP holds for the J, -topology; otherwise this is not the case. If @* < oo, then
we can have Iy(u) < oo for discontinuous z. We thus obtain an FLDP for the GI/
GI/1 queue if both E exp(au,) <o and E exp(av,) < oo for some « and one holds
for all «. In order for the extra condition in Theorém 3.1(b) to hold, we thus need to
have both finite for all a. Then, the condition of Theorem 3.1(c) holds as well.
FLDPs for partial sums of dependent variables have also been established; e.g., see
Chang (7], Dembo and Zajic [12], and Puhalskii [26, Cor. 6.6]. '
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Remark 3.2: The conclusion of Theorem 3.1(c) is consistent with the more general
formula given for the GI/GI/1 queue without proof at the end of {28, Sect. 1]. The
more general formula allows both 7;(x) and I;/(v) to be finite for discontinuous
arguments. Then Iy (w) is finite for discontinuous arguments, too. It remains to prove
the more general result.

Remark 3.3: 'We will show in Section 4 below that the rate function of the departure
process has the form required for the arrival process in part (a), but not in parts (b)
and (c), of Theorem 3.1.

Remark 3.4: We can also obtain an FLDP in D for the virtual waiting time process
in a general single-server queue by essentially the same argument, extending the
GI/GI/1 result in Puhalskii [28] (the key parts of the proof are already given in

[28]).

Because the rate function [y in Eq. (3.6) is infinite at discontinuous arguments,
we can apply the extended contraction principle with the projection map to obtain an
LDP for the sequences {wy,,;/n, n = 1} in R. For sufficiently large 7, we can directly
read off (but not rigorously prove) an LDP for the steady-state waiting time distri-
bution. (One cannot even guarantee the existence of a steady-state waiting time
distribution under the hypotheses.)

CoROLLARY 3.1: If, in addition to the assumptions of Theorem 3.1(b), Ay and Ay
are convex functions with Ay(v) = Ay(u) = 0 for some points u andv with0 <p <
u (as anticipated for p =< 1), then for each t > 0 {wy,;/n,n = 1} obeys an LDP in R
with rate function

Lip(@ = inf {1y (0} =2( inf (Ax(0)2}), (3.10)
z=x(r)
where

Ax(z) = inf{Ay(y) + Ay(y + D)} (3.11)
If Ax(0) > O, then, for all t sufficiently large, |
Ln(z) = z( )i’g(f,{hx(y)/y})- (3.12)

ProoF: Under the assumptions, the second term in Eq. (3.6) vanishes. Next; a direct
argument shows that the function Ay in Eq. (3.11) is convex. Suppose that we stip-
ulate that y is the measure of the set in [0, 1] on which w(z) > 0. Then, we can take
the mﬁmum in the f' rst mtegral m Eq (3 6) to obtam '

lﬂf {Iw(x)} )’Ax(Z/y) - (3.13)
z-—x(r) - : :

We thus obtain Eq. (3.10) by taking the infimum’ of Eq. (3 13) over all Y, 0 =y={,
and replacing z/y by y. Formula (3.12) follows since Ax( y)/y —owasy—>0if
Ax(0) > 0. v |
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Remark 3.5: Note that Eq. (3.11) simplifies to Ax(z)} = Ay(v — z) when z < v and
Ax(z) = oo when z > v if the service times are determiristic with value v, and to
Ax(z) = Ay{u + z) if the interarrival times are deterministic with value u.

COROLLARY 3.2: Under the assumptions of Theorem 3.1(c), Eq. (3.11) becomes

Ax(z) = sup {Bz— ¢yy(—8) — ¥v(B)}. (3.14)

If, in addition, Yy (—B) + ¥v(B) < 0 for some B, then
L, (2) = 2x* (3.15)
for t sufficiently large, where x* = sup{8: ¥y (—8) + ¢yv(B) = 0}.

ProoF: The proof of Eq. (3.14) follows by applying a minimax theorem and was
essentially carried out in the proof of Theorem 3.1(c). Equality (3.15) follows by
substituting (3.14) into (3.12) and applying a minimax theorem if one notes that
Ayx(0) = 0if and only if ¥y, (—B) + ¥ (B8) = 0 for ali 8.

Remark 3.6: Note that the large ¢ result in Corollary 3.2 is consistent with the resuit
for the steady-state waiting time in Glynn and Whitt [16].

Remark 3.7: We can also apply the contraction principle to obtain an FLDP for the
maximum waiting time process M,(f) = n”'my,,, t = 0, where m, = max{w;:0 =
k < n}. It is easy to see that the rate function has the same forms as Egs. (3.6) and
(3.8) for nondecreasing functions w. The rate function for m,/n is the same as in
Eq. 3.10) fort=1. u

We now apply Theorem 3.1 and our previous paper [30] to obtain an FLDP for
waiting times in a queue with a superposition arrival process. We start with FLDPs
for the component arrival times; we apply the inverse map to get FLDPs for the
associated arrival counting processes; we add to get an FLDP for the aggregate
superposition counting process; and we apply the inverse map once again to get an
FLDP for the arrival times of the superposition process. This program parallels pre-
vious heavy-traffic FCLTs for queueing networks [18,39]. '

Assume that there are k component arrival processes and let u,f be the ith inter-
arrival time in component process j. Let U/ be the normalized arrival time process
for component process j, defined as in Eq. (3.1), and U, be the normalized arnval
time process for the superposition process.

Forx € E , we define the inverse function x~? by x~'(z) =inf(s > 0: x(s) >1).

THEOREM 3.2: Consider the =, G;/G/1 model in which the k component arrival
processes and the service-time sequence are mutually independent. Assume that the
processes Uj; J and V, satisfy FLDPs in E Tand D, respectively, thh one of the 1, M;,
or M| topologies and rate functions IU; and Iy,1=j= k B

(a) If Iyi(u) = oo for all u that are not smcn'y increasing, for all but one ,Hl1=
j=k, then{U,} abeys an FLDP in (D, M)} with rate function I;.
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(b) If I i(u) = oo for all u that are not strictly increasing for all j, then Iy(u) =
oo if u is not strictly increasing.

(c) If, in addition to the condition of part (a), either Iy i(u) = oo for all discon-
tinuous u,1<j =<k, or I,{v) = oo for all discontinuous v, then the conditions
of Theorem 3.1(a) hold with Iy, y(u,v) = Iy(u) + I,{(v).

(d) If, in addition to the condition of part (a),

Iyi(x) = -I; - Ayi{x(e)) dt, 1<=j=k, (3.16)
and
Iy(x) = j; nc,A.,,(ic(t)) dt (3.17)

with I i(x) = oo and I'y/(x) = oo if x is not absolutely continuous with x(0) =
0, where

Ayi(z) = sup {az—yyi(a)} and Ay(2) = sup {az —¢y(a)} (3.18)

with ;5 and ¥y convex, nondecreasing finite real-valued functions with
Yy i{0) = 0 and yry(0) = 0, then the conditions of Theorem 3.1(c) hold with

bola) = —gi'(—a),  dy(a) =dpla) + -+ Ppela) (3.19)

and

Yni(a) = —ygi(—a). (3.20)

PrOOF: (a) We apply the inverse map and [30, Thm. 3.3] to get FLDPs in ET for the
associated counting processes with rate functions Iy, which satisfy Iy /(x) = I, {x~").
As Iy i(x) = oo for discontinuous x for all but one j and addition is continuous in the
M|-topology at summands with no common discontinuity (the proof is simitar to the
one in Pomarede [24]), we obtain an FLDP for the superposition process by apply-
ing the extended contraction principle with addition, yielding

Iy(x) = =, inf ) {Ivi(xy) + -+ + Iye(x)}

..... Xp
x=xy+ e
Finally, we obtain an FLDP for {U,} by applying the inverse map again. As we need
not have Iy(x) = co for strictly increasing x, we apply the contraction principle with
[30, Thm. 3.3] to get the FLDP for {U},} in E T with the M] topology.

(b) Under the extra condition, Iy(x) = co if x is not continuous, so that I;(x) = co
if x is not strictly increasing. ‘ -

(c) If, in addition, Iy,i(#) = oo for all discontinuous u, 1 = j < k, then Iyi(x) =
Iyi(x~1) = co for all x that are not strictly increasing. Hence, Iy{(x) = oo for all x not
strictly increasing, so that I;(x) = Iy{(x™!) = oo for all discontiruous x. Hence, the
condition here ensures that the conditions of Theorem 3.1(a) are satisfied.
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(d) The conditions here imply the conditions in (c). The form of the rate function
is determined by [15, Thm. 1] and [30, Thm. 3.4). The argument is as in the proof in
[30, Thm. 3.4]. =

We now consider the case in which the interarrival times and service times are
iid.
THEOREM 3.3: Consider the T*_; GI,/GI/1 model. Let Eexp(au]) < oo, 1 =j =<k,

and E exp(av,) < co for some a > 0.

(@) An FLDP holds for {U/} in (ET,M}) with I;i(x) = oo for all x that are
not strictly increasing, as needed for Theorem 3.2(a), if and only if
P(uj =0) =

(b) In addition, I;i(x) = oo for all discontinuous x if and only if E exp(au]) <
oo for all a. Then, Egs. (3.16) and (3.18) hold with

Yyi(a) = log Eexp(ani),

so that the conditions on U] in Theorem 3.2(c) hold.

(c) An FLDP holds for {V,} in (ET,M}) with Iy(x) = oo for all discontinuous x
if and only if E exp(av,) < oo for all a.

Proor: The general FLDPs allowing (x) < oo for discontinuous x are stated in [30,
Eqgs. (6.4) and (6.5)]. See Eq. (3.9) for one. |
4. DEPARTURE TIMES

In order to obtain LDPs for waiting times of queues within an acyclic network, we
need to obtain an LDP for departure processes. We consider these processes as ran-
dom elements of E . Recall that the departure time of the nth customer is

d,= D iy +w,+uv,, n=0. 4.1)
i=1 .

Let D, be the associated normalized process, defined by

D,(t)=n"ld,,, =0 - (4.2)

THEOREM 4.1: Assume that the conditioﬁs of Theorem 3.1(a) kold with Iy v(u,v) =
oo if v either is not continuous or does not start at 0. Assume that the U, have paths
unbounded above with probability 1.

(@) Then{(W,,D,),n=1} obeys an FLDPinD X E T for the same topology with
rate function : . ‘

IW.D(W: d) {]U V(us U)} . (4‘3)

d'f'ﬁﬁ;(ﬂ.;)ui)- u
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Moreover, {D,,n =1} obeys an FLDP in E" for the same topology with rate
function

Ip(d) = iﬂf {1 U.V(H,U)}- 4.4)
d=u-:'f¥('u—u)

(b) If, in addition, the conditions of Theorem 3.1(b) hold, then

Iy p(wod) = f Lo [Au(d(r) — w(0) + Ap(d(e)] de

+ fo i{w(,)=0}[)«u(d(t>) + nf Av(y)] d
(4.5)

if w and d are absolutely continuous, w is nonnegative with w(0) =d(0) =0
and Iy p{w,d) = oo otherwise.

(c) If, in addition, the conditions of Theorem 3.1(c) hold, then

Iwp(w,d) = fo Lpwin>o0) f};’é’n{(“ +B)d(2) — a(t)
- 4u(@) - pr (B
+ [ lewa_sp_fat B - pole) = pu(B) b

(4.6)

Proor: The argument for part (a) follows the proof of Theorem 3.1(a) using D, =
U,+W,+ Z,, where

Zn(t) = n_lv[nrjy té 0.

We first note that D, is arandom element of E T as U, has unbounded paths, and W,
and Z, are nonnegative. Next, Z,,(¢) is dominated by the largest jump in V,. Because,
by the contraction pnnc:ple, {V,,,n = 1} obeys an FLDP with I/ (v) = o if v is not
continuous or v{0) # 0, Z, £75 8, where 8(t) =0, t = 0, and PV denotes super
exponential convergence in probability [30]; see the proof of [30, Thm. 5.1]. (The
argument there is for the J; topology, but essentially the same argument applies to
the other topologies.) Hence, {(U,, V,.,.Z,),n = 1} obeys an FLDP with rate function

Iy, z(1,0,2) = Iy v(u,v) + 8(2),

where 8(z) =0ifz=60and S(z) oo otherwise by [30, Lem., 4. l(b)] AsD, =V, +
(U,— V)TVO+Z,,,wherex () =sup,«, x(s), Iy v(u,v) = co when vis discontinuous,
and both supremum and reflection map are continuous functions on D ([39, Thms. 6.2,
6.3, and 6.4]), applying the extended contraction principle concludes the proof
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of part (a). For part (b), we apply the reasoning in the proof of Theorem 3.1(b) to
get '

Iy.ow,d) = fo T inf {AsG) + AN ds

w= u-—u+y
d=w+ir

which implies Eq. (4.5). Finally, part (c) follows directly from (b). L

Remark 4.1: By Remark 3.1, the condition in Theorem 4.1(a) holds in the GI/GI/1
queue if E exp(au,) < co for some a > 0 and E exp(av,) < oo for all a. Theorems
3.2 and 3.3 provide sufficient conditions for the conditions in Theorem 4.1 to be
satisfied in the =5, G;/G/1 queue.

In general, an explicit expression for the rate function I5(d) in Eq. (4.4) seems
difficult to obtain analytically from Egs. (4.4)-(4.6). However, those expressions
provide a basis for calculating the rate function I5(d) numerically. We also can
deduce the form of the rate function in special cases. In particular, we now consider
deterministic service times, as in de Veciana, Courcoubetis, and Walrand [37] and
Chang [7]. The rate function of the departure times then is identical to the rate
function of the arrival times, in the region where it is finite. The following result
enables us to obtain FLDPs for waiting times at each queue of an acyclic network of
queues with all service times deterministic.

COROLLARY 4.1: [f, in addition to the assumptions of Theorem 4.1(b), the service
times are deterministic, so that Ay(x) = 0 for x = v and Ay(x) = co otherwise, Ay is
convex and Ay(u) = 0 for some u=v (p = 1), then

Ip(d) = fo Ap(d(2)) dt, | @.7)
where
Ay(2), =
)m(Z)={ e 43)

ProoF: The infimum in Eq. (4.5) is attamed by assigning w(z) = 0 for all £. To see
this, note that we must have 4(f) = v a.e. on the set {w(f) > 0} in order for the rate
function to be finite. On the set {r:w{z) > 0} we must have the average of w(t)
always nonnegative. Hence, by convexity of Ay and the inequality-v = u, the first
integral is bounded below by

[+2] oo :
Ay(v) f Lw (=03 L iagy =0y 41
0

so that taking {w(z) = 0} gives the infimum of the rate function. u
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We now consider the case of deterministic interarrival times. This case illus-
trates that the infimum of Eq. (4.5) over w need not be attained at w(z) =0,1= 0.
This case also demonstrates that the rate function /p cannot always be written as the
integral of a local rate function A, that depends only on the derivative d(t). In this
case we can use 2 local rate function that is a function of the two variables d(¢) and
d(t) — ut.

COROLLARY 4.2: Inaddition to the assumptions of Theorem 4.1(b), assume that the
interarrival times are deterministic, so that Ay(x) = 0 for x = u and Ay(x) = oo
otherwise, and that Ay(v) = 0 for some v =< u. Then Ip(d) = 0 when d(t) = ut,
t = 0, and, provided that d(t) — ut = 0 for all 1,

Ip(d) = j Ap(d(e) — ut,d(1)) dt, 4.9)
0
where
Ap(y,2) = Ay(2) Liysop + Disfingv(x)l{Fo}- (4.10)

Otherwise Ip(d) = oo.

Proor: Asw(t)=0a.e.on{w(z) =0}, we musthave d(f) —w(f) =uae., sow(t) =
d{t} — ut, hence, d(t) = ut. The result follows. u

Remark 4.2: In Corollary 4.2, in order to obtain a finite rate function, the derivative
d(r) is required to alternate between intervals on which it is equai to u and d(¢) = ut
(which contribute 0 to /(d)) and intervals over which its averages starting from the
left end point of the interval exceed u. The number of intervals on which Ap(d(2))
can be positive can be finite or infinite. To illustrate, if d (8) =2ulpp 1y(2) + ul(z..0(2),
then Ip(d) = Ay(2u) + Ay(0). On the other hand, if d(z) = 2ul(y 5 (t) + ulp (1),
then Ip{d} = oo.

Remark 4.3: Given FLDPs for the departure times in Theorem 4.1 and Corollaries
4.1 and 4.2, we obtain FLDPs for the corresponding continuous-time departure pro-

cesses by applying [30].

We tend to have more arrivals when the interarrival times are small. The fol-
lowing result gives a general result for small interarrival times.

CoROLLARY 4.3: In the general setting of Theorem 4.1(b), if A is convex, A‘U'(u) =
0 for some u and Ay(v) for somev < u,d(t) =c <ufor 0=t < tyand d(t) = u for
t =1y, then .

In(d) = tAp(c) @.11)

for
Ap{z) = Ay(2) + oisl;g—,z Av(y). (4.12)
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Proor: Under the assumed condition on d{t), the infimum over w in Eq. (4.5) is
attained at w(1) =0,2=0. n

Remark 4.4: Under the conditions of Theorem 4.1(b), an upper bound for the rate
function I is

Ip(d) = fo - Ap(d(D) dt, (4.13)

where Ap is given in Eq. (4.12), which is obtained by having w(z) = 0 for all ¢.
Corollary 4.2 shows that the infimum need not be attained at this expression. Nev-
ertheless, Eq. (4.12) seems like a good basis for an approximate rate function. Thus,
for the departure process from »n queues in series, we suggest Eq. (4.13) as an ap-
proximation with

Ap (2) =~ Ay(2) + 2‘1 olnf Ay (y), (4.14)

where Ay, is the service-time local rate function at queue i.

The approximation (4.14) helps show how the service times can make the LDP
behavior of the departure process different from the LDP behavior of the arrival
process. Assuming that Ay (v;) = 0 for 0 < v; < u for all i, we see that the likelihood
of long service times play no role in long interdeparture times from the perspective
of the LDP (z > u in Eq. (4.14)) whereas the likelihood of short service times can
influence short departure times (z < v; < u in Eq. (4.14)). As Ap, in Eq. (4.14) is
increasing in n, we anticipate that large waiting times are less likely at later queues
(given the same service-time distribution). '

Remark 4.5: We can also establish FLDPs for the waiting times at all queues for n
queues in series. For example, the appropriate continuous mapping for the waiting
times at the second queue of two queues in series is

wy = R(vs ~ u, — R(v; — uy))
which, using Lemma 3, can be expressed as
S

where all the functlons on the right side are nonnegative and L. (>0 ¥i = 0 fori=
1, 2. However, the challenge is to determine the rate functions.

5. THE DEPARTURE PROCESS OF COMPLETED WORK

Motivated by communication network models [7,10,371, in this scéﬁdﬁ we consider
an autonomous service model (which we will relate to the previous mode]) Leta(r)
denote the input in work and s(z) the potential processing of work i in the interval
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[0,1] for t = 0. We assume that (a(t),7 = 0) and (s(¢), = 0) are nonnegative, non-
decreasing stochastic processes. Assuming that the system starts empty, we define
the workload at time ¢ and the completed work in [0,¢] by

£(2) = R(a — s){1), t=0, (5.1)
and

c(t) = a(r) — €(1), t=0, (5.2)
where R is the reflection map in Eq. (3.2). In the standard, single-server queueing
model,

N{r)
a(t) = 2 UVilg, t= 0, (5-3)
i=1 .

where v, is the service time of the nth customer,

k
N(1) = max {kzzu,-_, Et}, t=0, 5.4)
i=

u, is the interarrival time between customers z and n + 1 and s(¢) = 1,1 = 0, The
communication network models may have input of random jumps at random times
as in Eq. (5.3) or input continuously at a random rate, or both. The communication
network models typically have s(z) = rt, t = 0, for some constant r, but Chang and
Zajic [10] have considered generalizations. When s(t) is random, we can think of the

server as working at a random rate.
Paralleling Eq. (3.1), we now introduce the normalized processes

A,(t) = n'a(nt), S.(t)=n"s(nt),
L.(t)=n"¢(n), C,()=n""c(n).
From Egs. (5.1) and (5.2), we get
L, =R(A,~S,) and C,=A,—R(A,—-S,).

An FLDP for L, was established in Puhalskii [28]. It was established for the GI/
GI/1 model, but it is easily extended to the case in which an FLDP holds for (A,, S,,)
with appropriate conditions on the rate function. Hence, here we are primarily in-
terested in the normalized completed work process C,.

(5.5)

THEOREM 5:

@) If {(A,,S,),n=1}for A,and S, in Eq. (5.5) obeys an FLDP in D X D for
(the product topology associated with) one of the topologies J,, M,, or M
with rate function Iy s where I, s(a,s) = o if s is discontinuous, then
{L,,n=1}and{C,,n =1} obey FLDPs in D for the same topology with rate
functions | ,
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I.(£) = 1nf {IA s(a,s)} (5.6)
C—R(a—s)
and
Ie(cy= inf o Has(a,s)} (5.7)
e= 'a— (a—s)

(b) Assume, in addition, that s(t) = rt,t = 0, and {A,, n = 1} obeys the FLDP
with rate function

B@ = | M@0 dr+ avalen), 58)
0

where A 4(X) = supa<q(ax — g (@) with 4 (a) convex taking onvalues in
(—o0, o] finite in a neighborhood of 0, Y1,(0) = 0 and a* € (0, »].

Let my = sup{x:As(x) =0} and k(c) = esssup {r > 0:6(t) < r}. If
my < r, then

(=]
@ = [ My

0
when c is absolutely continuous, c(0) = 0, ¢{t) < ra.e. and k(c) = o0, and
Ic(c) = oo otherwise. If my = r, then

k(c)
le(c) = fo A

when ¢ is absolutely continuous, ¢(0) = 0, ¢é(t) = r a.e. and I-(¢) = oo
otherwise.

ProoF: Part (a) follows by continuity of the reflection map and the contraction
principle. For part (b), first note that I, s(a,s) = Iy(a) when s = re, where e = ({,
t = 0), and I, s(a,s) = oo, otherwise so that s = re in the infimum in Eq. (5.7).
Next, by Lemma 3, if ¢ = a — R(a — re) for some a with I4(a) < oo, then c is
absolutely continuous, c(0) =0, é(t) < r a.e. and a(t) = ¢(¢). Moreover, Lemma 3
implies that @{(¢) = é(t) a.e. on the event {a(t) = ¢(2)} and a(t) = c(t) a.e. on the
event {¢(z) < r}. Hence,upto a set of Lebesgue measure zero,

{t:e(t)<r}C {t: al(@@) =¢@)) N {t:alr) = c(1)}. - (5.9)

Let k(c) = co. We will now show that the infimum in Eq. (5.7) is attained at abso-
lutely continuous a such that a(¢) = é(¢) for almost all 7. First, the definition of k{c)
and Eq. (5.9) imply that there exists a sequence {t,,n = 1} of numbers with 7, = 0
such that a(z,) = c(¢,). By the hypothesis on A, and Eq. (5.9), we have for a < a”
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f A O L) = P+ a® f " 1e() = ) dal(2)
0 0

> fo " (@ (t) = val@) 1(e(e) = P di + a fo " 160 = ) dak(s)

= aj:n 1{é{2) = rYda(t) — () fo’n 1{¢(t) = r)d:

= aa(t,) — a.”rﬂ 1(¢{t) < r)da(r) — () ff" 1(¢(8) = r) dt
0 0

= ac(t,) — a f " 1) < Pe) di - a f " 1) < r) dak(e) — (@)
0 (4]

X f: 1{é(r) =r) dt

In

= (ar — wA(a])j;” 1(6(r) =r)dt — af 1(é(r) < r)dai(r)

i}

with ¢, () < co. Therefore, as o < a*,

[ Ao de+ aaitey)
0

In

= (ar — ¢¥(a)) J:I 1{(é(t)=r)dt— aJ’ 1(¢(2) < r)dai(t)

¢

In

+ J"n MA@y <ryde+ a"f 1(é(2) < r) dai(r)
0 ,

0
= (ar— IIIA((I))J;" 1(¢(1)=r)dr +sz\A(é(r))1(é(t) <r)dt.

Taking on the right-most side supremum over a < a*, we arrive at the inequality

| Mtascorar+ avatiey = f " e s,
0 0

which proves the claim.
Finally, let k(c) < co. Then, for T > k{c), by Jensen’s mequalny,

-’;(c) Aq(a(s)) dt + a*ai(co) = A, (a( T)— Z((C)(C))

)(_r- k(c)).
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As a(T) = ¢(T) = r(T — k(c)) + c(k(c)) for m, < r, we have that, for all large 7,
(a(T) — a(k(c)N/(T — k(c)) > my4 so that A,((rT — a(k(c))/(T —~ k{c)) is bounded
away from zero. This proves that [, As(a(?)) dt + a*aj(c0) =

If m4 = r, then, by the preceding argument and the fact that A4(m,) = 0 (since
A,(e) is lower semicontinuous), it is optimal to take a(t} = ¢(¢) for t =< k{c) and
a(t) = my for 1 = k(c) which implies Ic(c) = fE@ A,(é(2)) dr.

Remark 5.1: Tt follows from [28, Lem. 4.3] that, for the GI/GI/1 model, if
P(u, > 0) = 1 and Eexp(8u,) < o and E exp(fv,) < oo for some 6 > 0, then
{A,,n = 1} obeys an FLDP in (D, M{) with rate function

Ii(a) = f sup {szf(‘) +0,}dt + B‘ag(m),
0 8<p* 8, <a”
B{g)ta(8)=0
where a* = sup{@: E exp(Qu,) < oo}, B* = sup{@:Eexp(bv,) < «}, a(f) =
log E exp(6u,) and B(8) = log E exp(8v,,). To apply [28, Lem. 4.3], we apply the
contraction principle with the coordinate projection map (noting that the infimum
over a of the rate function I5(f) + I*(a) there is not attained at the function a
making I*(a) = 0). In the special case of M/G/1, the input process (A(2),t = 0) is
compound Poisson, a(#) = log(A/(A — €)) and a* = A for some A. Then

I(a) = _I; ) sup{ﬁa.(t) Y.(0)}dt + B*aj (09),

where 7,(8) = A(E exp(8v,) — 1). The FLDP for a compound Poisson process was
obtained earlier by Lynch and Sethuraman [21]. ;L

We can apply Theorem 5 to obtain an LDP in R for the departure process of
completed work and an associated limit for the cumulant generating functions. This
corollary gives the same answer as obtained by de Veciana et al. [38] and Chang [7]
but under more general conditions (note that if in the conditions of Theorem 5 a* =
oo, then A4(x) is an arbitrary nonnegative, convex and lower semicontinuous func-
tion with min.cg A4(x) = 0). In particular, now the cumulant generating function of
the input process need not be finite everywhere.

COROLLARY 5: Under the assumptions of Theorem 5(b), t~'c(t) satisfies an LDP
in R as t — oo with rate function

AA ] = )
Ic(z)={ (2) Z=r,

o0, Z>r.

Moreover,

y -

(5.10)

H

> @
vV IA

. 4.(6),
Fion ™ log Ee™™ = 4.(6) = {df &)+ 0)r

)
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where 1,(8) = sup,er(8z — A,(2)) for A4 from Eq. (5.8) and 6 = X,(r) with X,
denoting the left derivative (equivalently, y,(8) = r).

ProoF: Apply the contraction principle with the projection map to get the LDPin R.
Then apply Varadhan’s integral lemma (noting that c(z) < rt) to get Eq. (5.10). &

6. SPLIT POINT PROCESSES

We now discuss random splitting, which can be regarded as the inverse of super-
position. Random splitting arises in a queueing network when departures from one
queue are routed to one of several other queues or depart from the network. Obtain-
ing FL.DPs for split processes enables us to obtain FLDPs for arrival processes within
an acyclic network. Random splitting is an alternative to the deterministic routing of
multiple streams through a queue considered by O’Connell [23].

Given a point process or counting process (N(t),z = 0), let each successive
point be randomly assigned one of k labels. Let Y; be a k-dimensional random vector
with a 1 in the ith place and 0’s elsewhere if the jth point is assigned label i. Then the
resulting k-dimensional counting process obtained from the splitting is

N

[NL(8),...,N¥(5)] = Ei G 120, (6.
=
We have in mind i.i.d. splitting in which (N(¢),¢ = 0) is independent of
{Y;,j =1} and {Y}, j = 1} is i.i.d. Note that an independent splitting of a superposition
process typically does not reproduce the original component processes. However, this
does occur in the special case of independent Po;sson processes withrates A;, 1 =i=<
k, when P(Y; =i} = A, 2 A
Let N,, Z,, and N} be the normalized processes defined by

N,(t) = n7'N(ns), t=0, (6.2)
Lne] . _
Z()=n1Y, t=0, 6.3
j=t
and ‘ .
Ni#)=n"'Ni(nt), t=0.- (6.4)

Also let £/ be the jth interval between points in the- :th spllt stream and let X} be the

normalized process

Lnz)
Xi()=n"" 2 g, =0 (6.5)

The key to establishing FLDPs for the processes (N/,...,N¥) and (X},...,X%)
of interest is the recognmon that they are related to previous processes by the com-
position and inverse maps, i.e. '

(N},...,NE) = Z N,.,
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where o is the composition map as in [39, Sect. 3}, and X! = (N} + n7')7! as in [30,
Eq. 7.4].

THEOREM 6.1: Assume that (N(1),1 = 0) and {Y,,j = 1} are independent. Also as-
sume that N, in Eq.(6.2) and Z ,in Eq.(6.3) obey FLDPs inE™ and (ET)* (with prod-
uct topology), respectively, for one of the J,, My, or M topologies with rate functions
Iy and I, where either Iy{x) = oo for discontinuous or not strictly increasing x, or
Iz{z) = e for = (z,,...,2;) with at least one discontinuous component if the topol-
ogy is Jy, In(x) = oo for discontinuous x and either I;(2) = oo for z=(z,, ..-, 2z) with
at least one discontinuous component or Iy{x) = oo for not strictly increasing x if the
topology is My, In(x) = oo for discontinuous x and for x with x(0) # O and either
Iz(z) = oo for z = (zy,...,2) with at least one discontinuous component or In(x) =
oo for not strictly increasing x if the topology is M. Then (N},...,N¥) in Eq. (6.4)
obeysan FLDP in (E TVt for the product topology associated with the same topology
with rate function

Iy N*(xh xk) = zl'_l:ﬁghx:{fz(zh---’zk) + IN(I)}- (6.6)

X;=z0x

PrOOF: By the assumed independence, (Z,, N,) obeys an FLDPin (ET)* X ET with
rate function

IZ,N(ZIS"'sZk)x) = Ip(21,..., 7} + In(x). - (6.7)

Next, as in [30, Lem. 4.3], apply the extended contraction principle with the com-
position map to obtain Eq. (6.6) from (6.7). u

COROLLARY 6.1: If, in addition to the assumptions of Theorem 6.1, {Y,,n = 1} is
i.i.d. with an assignment of label j with probability p; and

W) = | sup fa - 20wl 8)

when x is absolutely continuous with x(0) = 0 and Iy(x) = co otherwise, where
¥ (0) = 0 and y{a) < oo in a neighborhood of 0, as is typical of renewal processes
and superpositions of renewal processes (Puhalskii [28, Thm. 3.1], Puhalskii and
Whitt [30, Thms. 6.1, 7.11), then the FLDP holds for the Jy-topology and the rate
Sfunction for the split process assumes the form

-~} k
Iyt (X, x) = f 5_‘, %;(t) log k" + sup {a - J'rj(t)gb(a)}
0 j=1 2 # (t) a<a® i=1

when x; is absolutely continuous with x;(0) = 0,1 < j =< k, where 0log 0 = 0, and
Iy, N*(Xh-- .,xk) = 0o otherwise. )
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Proo¥: For the case in which {¥,, 7 = 1} is i.i.d. with an assignment of label j with
probability p;,

ok
Ee(S-Y]) — E pjesj
=1

so that {Z,,n = 1} in Eq. (6.3) obeys the FLDP in E(J,) with rate function

IAz1s..02) = f sup {2 a; 7;(1) — logz p;e }

0 Qpe-n oy
when z; is absolutely continuous with z;(0) = 0, 1 =< j =< k and Iz(zy,...,2;) = o0
otherwise (e.g., [27, Thm. 2.3] applies). Straightforward calculations yield

k o Z-(t)
IZ(er---szk) = E f Z.j(t) IOg < dl',
=1 J0 Pj

when z; is absolutely continuous withz;(0) =0, 1=j<kand 3}_, #;(t) =1 ae., and
I(zy,...,2;) = oo otherwise,

Therefore, the infimum in Eq. (6.6) can be taken over x such that x(z) =
Ef=| x;() so that the claim follows by the fact that if x; = z; o x, then

cmzklz':j 2‘25) j; zz,(x(t))x(z) log 4 (x(t))
f m_ix,(t)l og — x’(‘) dt. -
° p,E 5 (8)

In applications, we will be interested in the arrival process to another queue,
which is one component of the vector [N(z),...,N*(¢)].

COROLLARY 6.2: Under the assumptions of Corellary 6.1, N} obeys an FLDPinE'
for the J\-topology with rate function

Ivi(x) = J; - sup (a — x(t)y;(a)) dt,

< aj
where
a; = sup{a:¥la) < —_log_(,l =pks

B
1—- (1= pexpy(a)’

when x is absolutely continuous with x(0) = 0, Iyi(x) = oo otherwise.

Pi(a) = ¢(a) + log
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Proor: The proof follows because, by Corollary 6.1, the contractlon principle and
the minimax theorem

we(Xp,een, X)

INJ(x) lnfx INl

+a-— 2 M y(a){dr. B

=1

=f sup \inf_ zx;(t) log —— 1)
a<a® F11:-04,
0 %=% P 2', x;(t)

Note that the form of Iy; is the same as if N were a renewal process.

Now vector analogs of [30, Thms. 3.1-3.3] can be applied to yield FLDPs for
the sequence {(X,,...,X5), n = 1} defined in Eq. (6.5), assuming that [y _y: in
Eq. (6.6) satisfies the conditions there. To illustrate, we state the result for the M;
topology.

THEOREM 6.2: Assume that the conditions of Theorem 6.1 hold for the M| topology.
Then (X1,...,X%) obeys the LDP in (E1(M}))* with rate function

I, X"(xh“-,xk) = Iyt N*(xl_l:---axk_l)- (6.9)

We conclude by considering FLDPs for centered processes. As in [30] we will
work in the framework of triangular arrays for the initial point process, i.e., instead
of a single point process (N(2),¢ = 0) we consider a sequence of point processes
(NJ(1), t = 0),n=1,2,.... The split processes [N, (), ..., N¥(t)] are still defined by
Eq. (6.1) with N, (¢) substituted for ¥(r), and the normalized processes are defined as
in [30]: given a, > 0,

N.(1) = a7'Ni(a.t),  1=0,

la,1]
zZ,n=a' X 1, 1= 0,
j=1

and
Ni(t) = a;'N'i(a,1), 1=0.

For appropriate normalizing constants ¢, below, see [30, Thm. 6. 2] and Corollary
6.3.

THEOREM 6.3: Assume that {Y;,j = 1} and (N;(2),1 = 0) are independent for n =
1,2,.... Also assume that there are k-tuples A, = A and constants u, » u > 0
and ¢, = o such that {c,(Z, — eA,), n = 1} and {c,(N, — ep,), n = 1} obey
FLDPs in D* (with product topology) and D for one of the J,, M, and M| topol-
ogies with rate functions Iz and Iy, respectively, where either I(z),...,2;) = 0 if
z; is discontinuous for some j, 1 < j =k, or Iy(x) = o if x is discontinuous. Then
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{c,,[(N,,i,...,N,f) — pqer,], n = 1} obeys an FLDP in D* for the same topology
with rate function
Iy (X, X)) = in {I(zy,....20) + Iy(x)}. (6.10)

----- (Z “Zp X) Dk+)
xi=ziope+ A x

ProoF: Note that
cﬂ((an!"‘iN:) _Fne'{n) = Cn(zn - eAﬂ) ONH + AHCH(NH _”ﬂe)!

so that we can apply the maps k,(x,y,z) =x°y-+A,zand h(x,y,z) =x°y+ Azasin
[39, Thm. 5.1(i)]. If, for one of the topologies J,, M}, or My, x, > x,y, > yand z, —
z,then, as A, — A, we have thath,(x,,, Y., 2.) = k(x, y, z) when y is continuous, strictly
increasing and equals 0 at 0 and no discontinuities of x ¢ y coincide with discontinu-
ities of z. (As above, though, the continuity is only established for the J, topology in
[39], Theorem 4.1 carries over to the other two topologies as well, cf. [30, Lem. 4.3].)
By the assumed independence, the pair [c,(Z, — eA,), ¢, (N, — i, e)] obeys an FLDP
inD¥X D w1th rate function Iz + Iy. By [30, Lem. 4.2(b)]} and the convergence
=, N, £, pe.By [30,Lem.4.1(a,b)], [, (Z, —eA,), N,, c,{N,— u,e}] obeys an
FLDPin D* X D X D with rate function I7{z) + 8(y — ue) + Iy(x), where 8(y — ye) =
0if y = pe and co otherwise. Finally, by the extended contraction principle, we obtain

IN ..... N*(xls xk) = (zi... in . X)EDY*2; {IZ(zls szk) + 5()’ _#3) +IN(x)}

—z,°y+A i X
which reduces to Eq. (6.10). [ ]

COROLLARY 6.3 If, in addition to the assumptions of Theorem 6.3,{Y,,n=1}isi.i.d.
with an assignment of label j with probability p;, ¢, = Va,/n where a,/n — ® as
n — oo, and

=+

1
In(x) = 202 ; ()2 dr, (6.11)
when x is absolutely continuous with x(0) = 0 and Iy(x) = o otherwise, as is typical
of renewal processes and superpositions of renewal processes (Puhalskii and Whitt
[30, Thms. 6.2 and 7.2]), then the LDP holds for the J\-topology and the rate func-
tion for the split process assumes the form :

(B () )

when x; is absolutely continuous with x;(0) =0, 1 = =j= = k, andlyi. N_k"(xb e Xy) =
oo otherwise. o '
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Proor: We take A, = (py, ..., pi) so that by [26, Cor. 6.7], {c.(Z, — eA,), n = 1}
obeys an FLDP for the J;-topology with rate function

1 0 k 2'(1)2
A2y zi) = —f A dr
Z\&] k) 2 A ; p}
if z; is absolutely continuous with z;(0) =0, 1 =j =<k, and pIpi z;(t)=0a.e., and
Iz(zy,...,2;) = oo otherwise. Therefore, in the infimum in Eq. (6.10) x(7) =
2f=1xj(t) and z;(1) = x(p7't) — p; S x:(u'r). Substituting this into
I(z1,-..,2%) + Iy(x) yields the result. u

Straightforward minimization over the other components in Iyt (xy, ..., X3)
provides an LDP for one component of the vector [N(¢),...,N*(1)].

COROLLARY 6.4: Under the assumptions of Corollary 6.3, {c,(N{ — u,p;e},n =1}
obeys an FLDP in D for the J|-topology with rate function

1 o
T (x) = 2(up;(1 — p;) + pja?) J:) *(0)* dr,

when x is absolutely continuous with x(0) = 0, Iyi(x) = oo otherwise.

Note that up;(1 — p;) + p? o? is “the variance per unit time” in the CLT for the jth
component of the split process if the initial process obeys the CLT with mean uf and
variance o2t

Again, vector analogs of [30, Thms. 5.1, 5.3, and 5.4] can be applied to give
FLDPs for the centered processes of partial sums of time intervals between the
events in the components of the split process.
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