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1. Introduction

Our purpose is to provide satisfactory connections between
current theories in macroeconomiecs and microeconomics. This stu-
dy differs from the majority of past efforts in this direction
because in a microeconomic context it focuses on money, credit,
and financial institutions. From the point of view of monetary
theory, the novelty lies in our efforts to connect individual
gconomic behavior with the behavior of the economy as a whole
and to apply mathematical models for this purpose. From the
point of view of the more closely related mathematical litera-

’ ture on n-perscn games end competitive equilibrium analysis, the
novelty lies in ocur efforts to explicitly consider money, credit,
and financisl institutions. We believe that an explicit trestment
of money, credit, and financial institutions is necesssry for

forging links between macroeconomics and microeconomies.
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The study of money and credit poses many different problems.
These concern information, uncertainty, risk, trust, convenience
of exchange, and so forth, of.(12)., Our object is to comstruct
end analyze mathematical mcdels which will yield adequate theo-
ries to cover these different features. We belleve that in ap- '
propriate mathematical models the prototypes of institutions fa- -
miliar to modern economics will naturally emerge. Thus we claim
that although particular institutions such as commercial, cen-
tral, and investment banks, insurance companies, loan societies,
and stock markets may refleci particular institutional details
pertaining to specific societies, the essential functions that
these institutions perform cazll for the existence of entities to
perform these functions in any complex economy. This premise
has a significant bearing on our modelling approach. Instead of
incorporating as many as possible financial institutions into
our models at the ocutset, we want to see how each of these insti-
tutions arises out of necessity. We thus begin with an overly-
simpiified medel, not only because it is easier to analyze, but
because we want to explicitly represent economic behavior when
important features are missing. We want tc establish the funda-
mental need for the various financial institutions. Furthermore,
we are thus able to evaluate the possible forms these institu~
tions can take. For example, in (11]) the notion of an optimal

bankruptey law is introduced. (See also [10}.)

Having set forth our general objectives, we must say that
the results to be reported here constitute only a first step in
the overall program, We consider a nighly-simpiified medel which
only addresses s few of the problems posed by money and credit
While it is our intent to extend the analysis t¢ more sophisti-
cated models in the future, we believe it is important to stress
the virtues of simple models. Among these virtues are :

{i) The simplicity enables us to obtain a rather complete

mathematical solution,
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(ii) The effect of missing features can be observed in
the solutiocn,

(iii) By considering only one or two of the features, the
effects of different features are isolated and, hope-

fully, better understcod.

We now give a brief overview. We begin by regarding our
simpiified economy as a deterministic noncooperative seguential
game. The modelling is discussed in Section 2 so we shall not
dwell on it here. As a consequence of viewing the economy as a
nencooperative sequential game, we confront a system of interde-
pendent dynamic programs, cf. {2.2). We first investigate the
case of 2 players and n perieds. While we could start by norma-
lizing our game, that is, we could convert it immediately into
an equivalent static game, it does not appear to be fruitful to
do so. For example, ocur geme is never constant-sum, and even if
we converted it to constant-sum, which is possible in some cases,
the number of strategies is infinite. Furthermore, the normali-
zation seems to destroy the nice properties in the payoff func-
tion. Hence, instead of normaelizing, we apply the standard back-
ward recursion of dynamic programming. In this way, we verify
under fairly general conditions.the existence of a unique non-
cooperative equilibrium solution. We also describe this solution
in detail. These answers were discovered by rather painful ana-
lysis of the fouvr-period problem, but of course the proofs here

are by induction.

We next consider infinite~horizon extensions of our two-
player sequential game. It is not difficult to see that with
discounting the infinite-horizen version possesses all the pro-
perties of the finite-horizon versions. In faet, the infinite-
horizon solution coincides with the n-period solutions for all n
sufficiently lerge because then the (n+1)-period and n-period

solutions agree. These answers are obtained by direet argument
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employing our finite-horizon sojutions. Again, +he existing
{sequential} game theory literature does not appear to be very
helpful.

We next extend our model by edding more players. Of course,
this is the way in which we intend t¢ relate micro and macro
theory. It turns cut that the analysis of even a 2-period game
for 3-5 players is gquite complicated, but great simplicity is
achieved when many players are present. If the pumber of players
is sufficiently large with each player sufficiently small in re-
lation to the economy as & whole, then we verify the existence
of 2 -unique noncooperative equilibrium solution which has a very
simple form. In this solution each player uses his myopic or
one-period optimal strategy which dictates spending all nis avai-
lable money sach period. It is signifiecant that the nonunique-
ness possibilities for two players disappear in the large econc-—
mies. Furthermore, the complex dynamies in which players ex-
ploit their money asdvantage over several time periods alsc dis-

appears.

For comparison, we conclude by investigating the set of
constrained competitive equilibria. We show for economies of
any size that there is eglways a unique competitive equiiibrium
solution. This solution alsc involves each player spending all
his money in each period. Thus, for sufficiently large econo~
mies, the set of noncooperative equilibrium solutions coincides
with the set of competitive equilidrium solutions. This is to
be distinguished from recent related work by Aumann (2), Brown
and Robinson (3), Hildenbrand (6},(7), and others involving the
core and the set of competitive equilibria because here "large"
means finite instead of infinite. Our two solution concepts
coincide in large finite economies. Hence, there is no need to
introduce infinite spaces of players and there is no need to
prove a limit theoren {which is not to say that these devices

are not very useful in other contexts).
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We now turn tec Section 2 for a definition of our model.
The results appear in Section 3 and the proofs appear in Sec~
tions L-6,

2. A Simple Money Game

2.1 - Goods, Money, and the System of Exchange.

We shall study the distribution of real goods and money
over time in a fiat money economy. We assume there is a single
nondursble good which goes on the market in constant quantity
each of a finite or denumerably infinite number of time periods.
(In (12) a model was studied in which players could choose %o
keep goods off the market, thus causing only part of the real
goods to be monetized., This will not be the case here). Each
player owns a fraction of this market or, equivalently, esch
player brings this fraction of the real good to the market. We
keep these fractions of ownership fixed over time. Each pericd
8ll of the commedity on the market is distributed to the players
for consumption. By "nondursble", we mean thet all of the real
good available each period is consumed during that pericd. Non-
durable real goods can not be inventoried.

We also assume the existence of an "institutional stuff"

called money whose quantity is fixed. It is neither created nor
destroyed over time. Furthermere, each period all the money 1is
initially in the hands of the players. The important point is
that we prohibit barter. All real goods must be purchased at
the market with money. This money mey be thought of as having a
physical existence such as poker chips or green pieces of paper;
or it may he thought of as a set accounting numbers whose owner—
ship may ve transferred. Its value is established by fiat ;
i.e., by our assumption here that goods can only be obtained in

exchange for money.
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We can now describe the exchange over time. Each player
begins with certain fractions of the total meney supply and of
the total ownership of the market. Each period each player must
make just one decision : how much money to spend to purchase the
real good that period. We assume that the real good is distri-
buted to the players in proportion to the money spent. Further-
more, the money taken in by the market is given back to the
players in proportion to their ownership. A player's money at
the end of the period thus eguals the money he had left over
after spending vlus his share of the market tske. This model
has interest because of each player's conflicting desires : to
spend more now to get more real goods now or to spend less now

to get more real goods later.

2.2 « Credit.

We distinguish sharply between money and credit. In this
initial model no credit is granted. In perticular, this means
that there is no market for current meney in exchange for claims
on future money or goods. In an economy which haé.neither cre-
dit nor barter sll exchanges are in the form of z payment of
current money for real goods. Obviously, this should make money
play a more prominent role than it otherwise would, and this is
confirmed by our results. First, players starting with a frac-
tion of money greater than their fraction of ownership are often
able to reap a significant advantage in real goods over time
vhich would not be possible with credit. Second, the noncocpe-
rative equilibrium solution and the prospective competitive equi-
librium allocations turn out not to be Pareto optimel if players
have different time discounts. Without credit, the model has
difficulty responding to time preferences for goods. Thus, when
money is introduced without credit, there exist motivations for

introducing credit.
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2.3 - Individual Preferences.

We assume that individual i has preferences which can be

represented by a utility function of the form '
k=n-1 "

(1) U, (x) = kzo B; v;lx)
vhere n (1< n <) is the number of periods, x = (x1,...,xn)
is the vector of resl goods to be received (and consumed) in
successive periods, Bi is the discount factor for individual i ,
0 < Bi <1, %k in B? is an exponent instead of a superseript,
and ¢; is the one-period utility function. For the most part,
We assume the one-period utility function v is of the special
form '¢i(x) = x, but the principal results for the case of many
pleyers hold for quite general v; . The importent point is that
money does not appesr in (1). Money is valued only as a means

to obtain more real goods.

2.4 - Sokution Concepis.

2.4.1 - Noncooperative Game., TFor the most part, we shall
view our market as a noncooperative game. Therefore, our object
is to identify the set of noncooperative equilibrium state stra-—
tegy solutions. Such a solution consists of an n-period strate-
gy Tor emch player with the property that no individuel acting
slone can improve his position by altering his strategy. For
specified initial conditions, an eguilibrium point is determined
by an appropriate schedule of spending for all the players. It
is important to distinguish between eguilibrium in this game
theoretic sense and equilibrium as it may exist in the dynamies
of a particular schedule of spending. For example, within our
equilibrium solution the situaticn in which each individual's
fraction of money equals his fraction of ownership is a stationa-
ry state or an equilibvrium point. In other words, if at any pe-

riod this situation prevails, then it will prevail in every pe~
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riod thereafter if we follow the scheduie of spending associsated

with the noncooperative equilibrium solution.

Since we are viewing the market as an m—person n-period
noncooperative game in which the utility functions are separable
(as indicated in (1)), the cbject is to identify the noncoope-
rative solutions to a system of m simultaneous n-period dynamic
programs. In particular, individual i has a payoff function

which can be defined recursively as

i - LA
(2) U {p;.v;) = og;l:ax . Co K (xypeeix ) ]
i<P;*Y4
i m
+ BlUn-T(Pl’Yi_xl+Pi(J§1xJ)}
vhere
f xiG
- s xj > 0 for some j,
i ) .2 %3
K (x1,. ,xm) =1 j=1
L 0] s x1 = s = xm =0
B; is i's fractiocn of ownership, 0 < p; < 1,
. .y . _ _
pi+Yi is 1's fraction of money, p; < Yy < 1 D; »
m is the number of players,
n is the number of periods remaining,
xj is the amount of money J spends in the first of

n periods,

is i's one-periocd utility function,

i
is the total amount of the real good to be distri-
buted,
-and Bi is i's discount factor, 0 < Bi <1 .

Of course, U: depends not only on p; and Yi but 8lso on all the

other variables, especially xj for j # i. Note that n indicates
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the number of periods remaining. The representation in (2) is
fine as long as n < e but would have to be altered with an infi-
nite horizon. With discounting, we would then naturally count

time forwards and obtain instead of (2)
i o k-1 i
(3) Ul(pi,*ri)= max 1 8 05 (K (x
{xik,k>1} k=1

X

Ik’...’ m.k) ]

such that
. LY.
xlk < Pl Ylk

D
s

Tiee1) T Yik T Rk T , ik

il e~

J
If we restrict attention to stationary strategies, then we con-
sider the functional equation in {2) where both U; and U;_1 are
placed with ut . Finally, if there is no discounting in the in-
finite horizon, then an entirely different criterion is needed,

e.g., average return per period.

2.4.2 - State Stnategies. In terms of general geme thecre-
tic¢ consideraticns, a strategy is a complete plan of play which
might depend in detail upon all aspects of previous history. In
particular, a strategy may depend delicately upon information
conditions. In oligopolistic financial markets there is ample
evidence that information conditions do play a vital role in de-
termining strategies., However, in the models explored here a
considerable limitation and simplification of informaticn condi-
tions is assumed. Furthermore, we limite ourselves to an extre-
mely special set of overall strategies which can best %be des-
cribed as simple state strategies where an individual's behavior
depends only upon the state and period that he is in and not
upon the history of how he arrived in that state. In this par-
ticular model the restriction to state strategies does not ap-
pear to be particularly binding, but for us it remesins an as-—
sumption. We start by sssuming that the dynamic programming re-

cursion is justified.
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2.4.3 - Competitive Equilibrium. More deeply rooted in eco-
nomics is the concept of e competitive equilibrium. A competi-
tive egquilibrium is a set of prices (one price per period here)
and a set of allocations (of real goods to each player each pe-
ricd) such that for all i the allocations to individusl 1 are
optimal for him alone subject to all budget constraints being
met and the outcome being Pareto optimel. Pareto optimelity
means the players cannct all simultaneously do better by choosing

different strategies.

In the customary definition of the competitive equilibrium,
budget constraints (i.e., limits on an individual's purchasing
power in terms of the net worth of an individual's ownership
eveluating the gocds at the given market prices) but not cash
flow constraints are sctive. This is as though either perfect
trust exists for the whole trading period or, equivaleantly, cre-
dit is freely available. We consider a modified competitive
equilibrium where the individuals have money and its amount 1s
fixed (there is no credit) and trade is carried out in money.

In this model the cash flow constraints are of importance.

As before, neither the amount of money in the system nor
the amount of real goods put on the market each period changes
from period to period, so the prices must be chosen accordingly.
The concept of competitive equilibrium is primarily intended for
perfect competition where the influence of each individual rela-
tive to the market as a whole is negligible. In such & situa-
tion it is reasonaeble to consider the economic behavior in terms
of many isolated or decentralized maximization problems taking
place simultaneously with each individual ignoring his influence
on the market. While the notion of competitive equilibrium is
most meaningful when associated with perfect competition in-
cluding no credit constraints, we can nevertheless identify the

set of competitive equilibria given cash flow limitations. In
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the notation of (2) individual i is confronted with the opti-
mization problem :

n~1
(k) max | 8% ¢ (x

i)
& i Ttk
{xik} k=0

subject to :
) i
xikak < Mk , 1<k<gn,

i_
M1 = (Pi+Yi)M’

ne-g

M;=M, 1<k <n,
1

1

i3
and ) x.=G, 1gkgn,

where Mi is the money 1 has available in period k,
a is the price in period k,

and M 1is the total money in the system.

We shall be interested in comparing the set of (constrained)

competitive equilibria with the set of noncooperative equilibria.

7.4.4 - Othen Sofutions. There are many other solution con-
cepts which we could consider but which we will not. Among these
are the cooperative game theory solution concepts such as the
core, velue, nucleclus, and b&rgaining set. A rather different
approach would be to use a behevioral model in which individuals
are assumed to use heuristics or limited optimizations in order
to make their decisions. For example, the individuals might
respond adaptively over time or spend a random amount sach pe-
riod. Behavioral models differ from more general optimization
problems in degree rather in kind, but they are usually charac—
terized by having & relatively simple mechanisms which produces

decisions. In terms of the mathematical analysis, the problem



L1z SHUBIK AND WHITT

is not one of complicated optimization to yleld decisions, but
one of describing the evolution of the system when the decision-—
generation mechanism is specified. An example of the behevioral
approach to an optimization model is the technique of stationary
analysis in inventory theory, cf. Part IV of (1). 3Behavioral
models have gonsiderable appeal for representing actual human
behavior because of limitations in human information processing
ability. However, it is difficult to avoid ad hoc modelling.

Thus, we will not consider this approach at this time.

3. Results

3.1 - Noneooperative Game with Two Players and Finife Horizon.
Consider the system of dynamic programs in {2) with the
additional assumptions that m = 2, 1 $ n < , and ¢i{x) = x ,
x>0, 1=1, 2. Since the one-period payoff function is now
homogeneous of degree zero, we can let G = 1 without loss of
generality. For notational simplicity, we drop the subseripts
on p1 and Y1 and use 1-p and -y for pz and y2 .  Furthermore,
we stipulete that vy » 0 so that the first player always begins
with at least as much money as ownership. It turns out that the
money adventage y rather than the initial money supply pty de-
termines the strategic character of a player. We thus refer to
the first player as the strong player or just I and the second

player as the weak player or just IT .

To place our game in perspective, first note that it is not
constant-sum. It almost is when 81 = 82, but it is not because
1] =0 for x, =x,=0. If wve let K(0,0) = 1/2, then we

2 1 2
would heve & constant-sum geme when 81 = 32 . Even in this

K(x1,x

special case it does not seem possible to deduce much directly
Trom the existing game theory literature. However, we are able
to draw some interesting conclusions from a straight-forward ap-

proach.
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Theorem 1. There exists a noncooperative equilibrium solution.

Theorem 2. There is only one solution whenever one of the fol-
lowing conditions holds :

(1) 8,<8, 3

(ii) there are only two periocds ;

(1i1) 8, < m%}é;—;ﬂ

and 82 < pry

(iv) BPA + 61(1-p) < 1, where

-1 n-1
A=z=n ) (8,/8,)
J=0

and there are n periods.

Remark. More refined conditions for uniqueness when 82 > 81 are
still needed. It is evident that uniqueness holds when 82 > 61
in many other situations besides the ones we mentioned. However,
it does not always hold. We give a counterexample involving a
three-period geme in Case b of the proof of Theorem 2 in Sec-

tion 4 .

The following theorems and corollaries desecribe a (often

the) ncncooperative egquilibrium solution in more detail.

Theorem 3. The second player alvays spends all his money each

period.

Remark. Theorem 3 depends critically on the discount factors
31 and 82 being less than or equal %o one. It is rather con-
trary to intuition when 32 > 61 + Evidently the relatively un—
favorable initial money distributions still gives IT a solution
at his boundary. Note, however, that it is precisely when

82 > 81 that uniqueness can fail.
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4. If Al{n) represents the first period im which 1 spends
morey, then

x(k-1)

max {k : 1<k <n, 61 2 >c }, B1 > ¢

Aln) = and n 3 2,

1 81 <e or n=1

1~p=Y
1-p

Corollary 5.

(a)

{v)

(c)

(&}

{e)

Remark.

If B, =1 and v > 0, then 1 never spends all his money
until the last pertod .

Iy B, < 1,then 1 spends all before the last period if
the horizon 18 sufficiently long.

IF B, < c,then both players spend all their money in

the first period.

If &(n) = k, then both players spend all their money

each period from k to n.

If Aln) = k < n, then Aln+m) = k for all m > 0.

As a consequence of Corollary 5, we refer to the state

in whiceh ¥y = 0 or, equivalently, the state in which both players

spend all their money as the equilibrium or stationary state

within the noncooperative equilivrium sclution.

Theorem

(a)

6. If Aln) = k, then

in the first period 1 spends

. k=1 _ x-1)
X1 =¢ K 8, 2 - (1-p-v)
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(v) 1in period j (2 < J < &) the total money spent is
-~ E.ll g "(k—j)

11T X T K By

=}

(e) the discounted value of the real good consumed by I in

period § is

- k-1 k-1 1
2371 2 g, -8,2 (-p)EF (1-pv)k, j<k
1 *13
—_— ._1 _
*157%2; B‘: o » k< j<n

.
(d) the discounted value of the real good consumed by 11

in period j is

51 k-2J +1 k-1 i
g1 2 B, By 2 (1-p) K (1-p-y)", <k
2 T2 .
X .+£ . '_1 .
[ 8y (1-p) s k<j<n

{e) The n—périod uttlities U;(p,y) and U§(1—p,y) are conti~
nuously differentiable strictly increasing functions
of v, which are convex in (0, 1-p) and (0,p) respecti-
vely.

Virtually all aspects of this solution are now easy to des-

cribe. We 1list a few additional properties.

Corollary 7. If Aln) < n, then the (n+m)-pertod solution coin-—
etdes with the n-period solutiom during the first n pertods for
all m = 1. At the end of period n, vy = 0, 8o that both players
spend all thereafter.

Corollary 8. If A{n) =k, then II's utilities from consumption
during the first k periods imcreases or decreases according to
whether 82 > 81 or 82 < B1 . If 52 = 31 s then I1's wtility
From consumption in period j is :
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k-1 k-1 1
g 4712 8,2 (1-p) ® (1pv)E , 1<j<xk
1 %oy
- s j~1 .
X 5% % 897" (i-p) Lkl g i<

Remark. Corollary & gives an interesting characterization of the
selution. If I spends all his money for the first time in period
k, then his spending is such that II's discounted utility from

consumption would be constant over the first k periods if he used

I's discount Tfactor B

1

Corollary 9. I 4ln) = k and 8, < 1, then both I's actual con~
sumption and his utilittes decrease from pericd to period during
the first k periods. If By = 15 then Aln) = n and I's actual
consumption as well as utility each period is

X, n-1. 1
— W =9 T o
= = = 1- (1-p) & {(i-p-y)0
X5 * xp3 .
Let Vn represent the excess utility I receives beyong what
he would receive if he received goods egual te his ownership
every period. In other words, let

1

1 notoy
(1 v (p,v) = Up.y) - D RZO B

Corollory 10.
(&) IFf Aln) = k, then Vj =V, for j >k and Vipy > Vj for
1< < k-1

{v) If B, =1, then

v (5,1) = a(1-p)(1-c'/®)

; ; = (1= N
lim V_(p,y) = ~(1-p) log(s 1_P)
n->e
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and

lim lim Vn(p,y) = =
y+{1-p} noe

where ¢ is defined in (6).

Corollary 11. Players I1's amount of money is strictly in—
ereasing from 1-p—y wnitil (1-p) ts reached. IF A{n) = k, then
II's amount of money increases from period to pertod by a factor
of e 8;1 =1 for 3 j < k-1

Theorem 12. If B, = 82 »
solution is Pareto optimal, but if B, # 82 , then none is.

then every noncocperative equilibrium

3.2 - Infinite Horizon.

We now consider infinite-horizeon versions of cur 4two-person

sequential game. We still assume that ¢.(x) =x, x> 0
-

3.2.1 - Bi < 1. If the discount factors are both less than
one, then we cen use the discounted utility funetions in (3). If
we restrict attention to stationary strategies, then we can use

the functional equations in (2) with both U; and U;_ replaced

1
by Ul , namely,

(3) Ul(pi,Yi) = sup {Kl(x1,x2)
O <P tYy

i
+ BiU (Pi ,Yi‘xi+Pi(x1+xg) )}

We use supremum instead of maximum because the maximum might not

be attalned.

If B, = 82 y Our game i1s almost, but not quite, striectly
competitive or constant-sum. It is not constant sum because of
the cne-period distribution of goods at (0,0) spending. If we

redefine the one-period distributions at (0,0} to be
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KI(O,O) =‘K2(0,O) = 1/2, then our game would be constant-sum.
The resulting model is then similar to the deterministic version
of Shapley's (9) stochastic game. It is not guite the same ,
though, because Shapley only considered finite sets of stetes
and actions. However, it is known that the theory also espplies
to various infinite sets under additional assumptions. In par-
ticular, this is evident from the fundamental paper by Denardo
(5). Another treatment in the spirit of Blackwell (3} has re-
cently been provided by Maitra and Parthasarathy (8)., Unfortu-
nately, none of these papers appears to be directly applicable
here, although the flexible framework provided by Denarde (5) is
promising. In the more general context of nenconstant-sum se-
quential games, the recent paper by Sobel (13} is also related
but again not directly applicable. The discontinuity of K in

(2) at (0,0) is the prineipal source of difficulty.

Although the game theory literature dces not appear very
helpful, we can easily apply our previous finite-~horizon results
to this infinite-horizon model. PFor this purpose, define A{w)
just es in (5). Siace By < 1, A{«@) < » ., On the basis of Corol-
lary T, it is obvious that the infinite-horizon model has the

same properties as the n-peried problem for n > A(w) . Let

- . o
. - i k
(9) r!:l(pi,*ri) U (p;sv;) * b I o8
k=n
Obviously W; represents the infinite-horizon utility to indivi-
duezl 1 when both players follow the n-period solution for the

first n periods and are in the steady-state thereaiter.

Corollary 13. If A(=} = X and n > k, then (w:l, ”’i) défined in
(9) Ze a solution to the infinite-horizon funcitional equations
in {8). Moreover, the allocations and spending agree with the
n~period solutiom for the first n periods and are in the steady-
state thereafier.
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It seems that the solution to (8) above should be the only
one which is bounded beiow by 0O and above by (1-Bi)-1. It also
seems that nothing would change if we allowed non-stationary
strategies. However, we do not yet have proofs.

3.2.2 - 31 = 82 = 1. When there is no discounting, the
criterion is usually changed to average return per period, but
we shall not consider this eriterion here. Instead, we shall
consider the infinite-horizon functional equations related to
the excess utilities Vi in {7). Corocllary 10 (b) suggests such
a system might have a finite solution. In particular, we shall

consider the funetional equations

{(10) Vl(pi,vi) = max {Kl(xi,xe)-p.
R i

i
+ v (pi,y x; + p(x1+x2))}

for i =1, 2 and K* in (2).

Thecrem 14, The limit in Corcllary 10 (b) is a solution to (10)
and the limit in Theorem 6 {(a) 1s the amount I spends initially,

t.2.,

v1(P’Y) == V2(1‘P‘Y} = - {1-p) log(i- ?¥;)
and

;‘11 me-K= p(::lp;-v)

Remarks. Since the proof of Theorem 14 is easy, we ocmit it. It
is easy to see that the same result holds for I is 82 < 1.2 Then
82 must be included in the functional equation inveolving V- . Of
course, II spends all every period. Again we have not yet re-

solved the issue of unigqueness.

Corollary 15. The solution gbove is not realized by I following
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the indicated strategy. Conswmption each period equals ouner-—

ship and I carries his extra money y inte the future.

Since the optimal value cannot actually be attained, we lock

for strategies which can come arbitrarily close.

Corollary 16. A4An s—optimal (stationary) strategy for I can be
obtatned by ustng an appropriate optimal finite-horizon strategy.

3.3 - Many Players.
We now consider our sequential money game with more than
two players. In the beginning we still assume that wi(x) = X,

x > 0, but later we show how this can he generalized.

When there are more than two p}.ayefs, each player can still
think of himself being in a two~person game because he can lump
all the other players together, but as the number of players in-
creases, the number of cases and the complexity of the snalysis
increases. Even a two-period version with ten players would pre-
sent a formidable task. The m-person game does reduce to a two-
person game in some special cases however. In particular, this
occurs if all the players or all but one player would be at the
boundary {spending all their money in the first peried) in the
essociated two-person game in which all other players are lumped
together. The two—person results in Sections 3.1 and 3.2 thus

immediately imply the following twe coroliaries.

Corollary 17. ({No Big Strong Player). If ;<0 or
B, < (1—pi—yi)/(1—pi) for each individual i, then everyone
spending all their money in every period ylelds a noncooperative

equilibrium solution.

Corollary 18. (One Big Sirong Player). If Y, >0 and
B, > (1—p1-y1)/(1—p1) while either v; < Cor 8, < (1~pi-yi)/(1—pi)
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for all 1 » 2, then there exists a nonccoperative equilibrium
solution in which individual 1 follows the two—person strategy
for player I in Sections 3.1 and 3.2 and the others spend all
each periocd.

Remark. We have not yet successfully characterized uniqueness in
Corcllaries 17 and 18, but it 1s easy to verify for a finite ho-

rizon in specizl cases of interest as we illustrate below.

We now apply Corollary 17 to investigate large eccnomies in
& state approaching perfect competition. We obtain a "law of
large numbers” comparable to the ¢lassical probability theorem
with that name. Just as in the probabilistie setting, we need
£0 require not only that the number of individuals be large but
also that each one be asymptotically negligible in relation to
the whole. Since P; and Pi*Y; represent the fracticns of tetal
ownership and money respectively, it suffices for these to be

small.

Theorem 19. (Perfect Competition) If p, < nt, v, < LI
8, < 1=8 <1 for gach individual i, then for sufficiently large
n there exists an equilibrium solution in which each individual
spends all his momey every period. If the horizon is finite, |

then this is the only solution.

& similar result corresponding to Corellery 18 also holds.

Theorem 20. (One Fat Cat) Let P, and Y, > 0 be independent of
n. If p, < n—1 s Bi < n ! y ad Si < 1-8 < 1 for each individual
iz 2, then for sufficiently large n there exists an equilibrium
solution in which each individual i, for i > 2, spends all his
money every pertod. If the horizom 18 finite, then this is the
only sclutton.
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Remark. Theorems 19 and 20 zo beyond Corcllaries 17 and 18 by
providing uniqueness. Unfortunately, ocur uniqueness proofs in
Section 5 only apply to arbitrary finite horizons. It seems in-
tuitively obvious that uniqueness should alsc hold for the model
with an unbounded horizon but a proof eludes us. Since the ac-—
tual horizon out there in the world appears to be unbounded, it
is natural to question the value of our finite-~horizon results.
Eewever, our finite-horizon resuits do have a natural interpre-
tation in the infinite horizon. You can think of each player
using a2 rolling strategy ; that is, each period each player looks
a specified finite number of periods into the future and selects
his strategy assuming the world or his interest in the world ter-
minates at the end of those pericds. This process is repeated
each pericd so that the players are alweys making their decisions
based con the present plus z specified number of periods of the
future. With the time discounts, each player knows, in our mo—
del at least, that the part of the future ne is failing %o con-
sider is negligible. It is significent thet in the setting of
Theorems 19 and 20 the solution in succeeding periods after the
first is the same (everyone spends all) using a rolling strategy
or the second period strategy from a Fixed finite-horizon stra-
tegy. We also expect the right argument will yield unigueness in
the infinite herizon, which would imply thet the rolling strate-

gy solution coincides with the infinite-horizon solution.

Remark. The results in this section obviously hold for quite ge-
neral one-period utility functions 2 ef. (2) . When N is
changed, we must specify the total amount G of the good to be
distributed. It is then natural to let G grow linearly in m as
m, the number of playérs, incresses. Suppose that ey is twice-
differentiable with ¢£ > 0 and W; < 0 . Then it is easy to see
that Corollary 17 still holds if', for each 1 ,
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\ Gxi )
Pl -
ei(GIp; * (1‘p£)(Pi+Yi~x;7 177 6lh-p;-v,)

(11}

for 0 < X < BYY, - Tc get (11), it suffices to have

]
v (G {D.+y, 1) g8.(1-p.)
(12) 1 '[pl Yl > 1 pl
vi(Gpi) G(1~pi—vi)
where the right side is less than "', The uniqueness in Theo-

rems 19 and 20 alsc obviously carries over to more general L

but we have no nice conditions.

3.4 - Constrnained Competitive Equilibria.

For comparison, we now investigate the set of competitive
equilibria. In particular, assume each player is confronted with
the optimization problem in (4). We look for a set of prices and
allocations such that the allocstions are cptimal for each indi-
vidual st those prices, the constraints are met, and the overall

solution is Pareto optimal.

Theorem 21. If B, =B <1 for all i, then there is a unique com-
petitive equilibrium solution. The price is M/G every peritod and
the players spend all their money every period. If B; # Bj For
some 1 and j, then Pareto optimality is lost.

Corellary 22. Under the conditions of Theorem 18, the set of non—
aooperative equilibrium sclutions coineides with the set of com-
petitive equilibrium solutions for .sufficiently large n .

"Remark. Coroliary 22 is striectly correct only when Bi = g for all
i, but is true more generslly if we relax the requirement of

Pareto optimality in the definition of 2 competitive equilibrium.
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As we have noted before, the current models without credit dec not
cope with uneven time preferences for goods. This has been il-
iustrated here wiih different interest rates. It can alsc be il-

lustrated by allowing ownership to change over time.

4, Proofs for the Two-Person Finite-Horizon Games.

Proof of Theorem 1 : Existence.

Our procf will be by induction. We will thus want to com-
bine our existence proof (Theorem 1) with the descripticn proofs
(Theorems 3, b4 and 6 plus associated coroilaries). All the re-
sults are trivizl for one period since each player is clearly mo-
tivated to spend all his money regerdless of what the other does.
Hence, we shall verify that the solution described in Section 3.1
is in fact 2 solution for n+1 pericds assuming that it is for k
pericds for each k¥, 1 €k <n . To simplify expressions, we
shall let K = (1-p-v) and ¢ = K/(1-p).

Case 1 : Player I's Optimization when A(n+1) = k < n+1 .

We first look at I, assuming that II spends all his money in
the first period as well as every period thereafter. Suppose
A(n+1) « n+1, where A(n) is defined in (5). Player I's optimal

value is thus

x
1 1 1

(3) (o) = mex  flos8.0ls, (1-0) (prvox ))}
n+1 ] 1<P+Y x1+K 1™n 1

where K = 1-p-~y . We will drop the subsecript on 51 since the

other discount 82 will be of no ccncern to I. Using Theorem U,

Corollary 7, and the induction hypothesis, we have

(1) v, (mpMeryx)) = U (p, (1-0) (o+y—x,)) + 26"

n{n-1)
ir g @2 < c, where we let e, = (1-p-yn)/(1-p) with '

ot 11 e e Dby e 2y, o,
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denoting I's excess money at the beginning of the second period
(with n of n+1 periods to go). Here

1-p-(1-p) (pHy-x,}

(15) ¢ = T = 1-p-y+x,

nl{n-1)

Hence, for x> g 2 ~K, we can substitute U;_ n-1

- i
1+ps for Un
inside (13} which means U;+1(p,7) = U;(p,y) + g% . Then, by

Theorem & {a),

k-1 (k-1)

(16) ;11 =c kK g 2 -K
k{k-1)
>8 2 -K
. n{n-1)
so thet x,, 28 2 -K as required. If %X = n, then we use the
" n(n+1)
hypothesis that A(n+1) < n+1 to get g8 2 < ¢, which implies
. n{n-1)
that x,, > 8 2 -K.

It remains to show that I does not want x, for which

ni{n=1 . . n{n-1)
8 _LTZ'l > ¢, or, squivalently, for which X, < g - K .
n{n-1)
If 8 2 >c then by Theorem 6 {c),
1 - _ _
(17) U (esy,) = U (py (1-p)(pty=x,))
n-1 n-1 1 n§1 o
=-n82 (1-p) B (i-p-y )0 +

J=0

a-1 1 n=1 .
- HST (]—p)(1—p—Y+x1 )n + z sJ
j=0

Next we differentiate (13) using {17) to get
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( ) df(xl} X g%l ) - {n=1)
18) '{x,) = = -8 (1-p){x.+K n
1 dx (x}ﬂ()e i
and : )
n+i 2n=1
(19)  f(x) = = g2 (1) (ED(x+k)T T B
{x,+K) a

where f(x) denctes the expression inside the maximum in (13) when
(17) is used. If we set f'(x1) = 0, then we get the unigque solu-

tion

i~

(20) x,=c™ g2k

We now must verify that f"(;11) < 0 %o show that (20) gives a ma-
ximum. This is not immediately obvious because (19) contains one
positive term as well as one negative term. However,

n+1 o+l
2 n=1,,— n
('E")(x11+K}

{21) f"(EH) (;11+K)_3 [—2K+(1—p)s

n+1
~{x; %) 3107 g2 x

on (n+1) n+1
L. - n
S T)cB (x,,+K)
n+1
where _—
oo Gl o (2 gt s
(E:T)CS > eR 2 = [¢" '8 = (x11+K)
_ n{n-1)
Now note that X1, in {20) exceeds 8 2 - K because
n{a+1)
8 < ¢ . Hence, the maximum velue pessible for
n{n-1)
x, <8 2 - K oceurs at the boundary, i.e.,
- n{n-1)
(22) x, =8 2 -K

1
We now must verify that I prefers {16) to (22) . Applying the

induction hypothesis with (18), we have
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) act o a1l n=1 1 .
(23) f{x,,)> [ 8 -n8 2 (1-p) B (1-p—y)" + pg
j=0 |

noo. n-1 1 n
= 7 8 -8 2 (i-p)e® - {1-p)B

where the inequality is due to our using the solution generated
oy Aln) = n . If A(n) < n, then (23) is a striet inequality. Cor-

responding to (22), we have

n(n-1)
(2h) £z, ) ==K
1 n{n-1)
g 2
n-1 . n=1 n-1 n{n~1}
+ 8l § 8l-ng 2 (1-p) © [T*P-(1"p)[1-8 2 ]]
j=0
n . _ n{n-1)
= 7 8 -«xs 2 - a(1-p)g"
§=0
Comparing (23) and {2L), we see that
_ n(a-1) n-1 1

(1-p)"1[f(;t”)-f‘(3€11)] > e Z + ng” -~ ng 2 R -g"

n
LI SR UL
S (1172 n RESE 3

(o - 8") - ng" M (a-8)

Con-i
k_n-k~ -1
= (a=B) ( ] o Y L
k=
(25) =0
-1 1 _ {n-1)
where K = 1-p~y and ¢ = K{1~p) = as before, a = c B > 8
akﬁn—k“1 > 8. We have thus shown that if Aln+1) < n+1, then the

{n+1)-period solution for I is the same as the n-period solution
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except I gets 8'p more in the (n+1)5% period. We have in fact
shown a bit more, namely, that the prospective strategy in (22)
is dominated by the strategy in (16} with k¥ = n, which in turn

is dominated by the optimal strategy.

Case 2 : Players I's Optimization when A(n+1) = n+1 .
n{n+1)
Now we assume that B 2 > ¢ . As in Case 1, T will spend

less than all his money each period until the last period, begin-
n{n-1)

ning in the second period, if x, € 8 2 - K . Assuming this

j

to be the case, we get the solution generated by §A1 in (20) .
n(n+1) n(n-1)
However, since 8 2 > c¢ now, X,, < 8 - K, so k., ig the

11 11
natural caandidate for the initisl spending which generates the

optimal seluticn. The return using X,. in (20) is eesily caleu-

1

lated :
x n
- .1 1 _ T -8
f(x'ﬂ) = §11+K + Bun {Ps {1 P) [1‘ c 8
K n-1 . -l -1 1
=l-—g——F*8 7 8lmg 2 (1-p) 1 {(1-p=y )2
o+l =2 4=0
¢ B
n . _ n n
= 3 3d - ke~ (n+1) 82
J=0 1
n;'&'; e B A oo
-ng = {1-p) B 1'p-(1-p)(‘!—cn+1 8 2]
n . o 1
= 7 g - (a+1) g2 (1-9}#1_ (1-p-y)E¥T
j=C
(26)

The second step in (26) is justified because

a{n-1} 1-o-y, n_a
2 = —— = n+1 2
(27) 8 >, - c B
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a{n+1)
since 8 2 > ¢ by assumption.
n{n-1}
It remains to rule out x, > 8 2 < K. As in (13)-(16)

of Case 1, we would obtain U;+1(p,y) = U;(p,y) + Bnp if X, is

a{n-1)
constrained to be bigger than 8 - K. The propsective so-

lution would then be generated by X., in {16) for some k < n .

11
n(n~1)

If §11 >8 2 ~-K, then X,, is & legitimate candidate. For

)

11
this case it suffices to show that f(i}1) > f(§11) with f(EH

in (26) and

1

R n . k-1 %_ n o,
(28) £(x,.) = ] 8 -k82 (i-p)eX - (1-p) ] g
J=0 J=k
for any k <« n . In faet, it is easier to prove a stronger re-

sult. We shall show that (28) is strictly increasing im k. For
x<a,

(1-p) 720z, ) -£(x,,) ]

K+ %
B2l 1 ko1
= kg 2 oK + g - (k#1) g2 o K¥T

k k -
= B% [B%—} - [CH—I‘IF“TT] }_kahéi E+T %_ ck-(k""i)
J

1
W
o=
———
™
| —
]
(£
b
i
+|—=
-
L S
w
1
e 1
=
N
-~
|
[
|
——
[e]
o
W
+
—_
—
. [
=
=
i
noj—

b}
w
i
™
n—
o
-
-
+—
—_—
0~
™
i
1
e}
-
=
i
o]
E)
.
— 1

(29)
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which is positive because

1 —Tl——y
52 - Ck k+1 > 0

and . .

-] k —

3 2 cx(k+1) - ck(k+1, >0
siace k(k+1) a{n+1)

g8 2 > B 2 >c

)
k41

Furthermere, the argument above shows that f(i = f(z

if Bk k§1 =c .

)
1My 11

There 1s still one point more %o dispose of in this case.
n(n-1)
<8 - K. Applying (19). and (21)

is a meximum and f(x1) decreases as

It could happen thet §11

for kK € n, we see that §11

X, moves away from x Therefore, the candidate to be consi-

1 11°
dered is §11 in (22) instesd of X1 in {16). Thus, it remsins to
show that £(X,.,) > f‘(?c'ﬂ) for £(X,,) in (26) and f(EH) in (24},

but

2 -
87 2 (1-9)7! (8GR, )-1(%, )]

1

_n _n{a-1) 0 o 1
=8 2 |cB 2 + ng" = (n+1) g2 oBFT

o 1 1 n2
- n [32 . c'rF'i-T] [CFI' —cs"?]
L 1 1 ne ; né n o n
= [82 - cn+‘l l n - Cm B- éﬂ [82_ - cn+1 ][SE - ch'-T-'I' }l
J

2 .
1 1 -
= [8121 - c:ﬁi ] ( - .n—ﬁ- B_ % nz“ [8121-]

(30)

which is positive because

1

=T
g - cn ! > 0

o |
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and
1 _n? nj a~j-1 a-j _ n{an-j)
Cn+1 2 2 82 e n+1 = Cn+1 8 <1,
since
n{n+1)
g 2 > e

This completes the proof for I.

Case 3 : Possible Advantage for Player II.

We now show that the weak player spends a1l his money every
period. Continuing the induction proof, we assume IT spends ail
his money every period in each X-period problem for Kk € n and we

use the strategies just verified for I.

We begin by assuming 81 < ¢ so that I spends all his money
in the first pericd. Then I loses his money advantage in the se-

cond period., The new advantage to I with n periods to go Decomes

=<
1]

Y + px, = (1-plx,
(31)

H

- p(1-p*v—x2) <0,

where x, is II's initial spending. Hence, II's optimization pro-

2
blem is
(32) U§+1(1—P5 _Y) = max g(xe):
OSx2<1-p—Y

where

%2 2

alxy) = x, * X, * 80 ey (xp))
(33) ., )
= P + SQUn(1_P’ p(1-p-y-x2)).

Note that U§(1—p, +y)} in {33) corresponds to I's strategy in pe-

riod n with p and 1-p switched, obtained via the induction hypo-
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thesls, because now II has the money advantage. We know the se-
cond term in (33) increases as X, decresses and as 32 increases,

so let B, = 1. This will only make :221,

for II, smaller. Then

the initial spending

(36)  UZ(1-p, +v)

)

2
Un(l-p, p(1-p-~r-x2)}

n-1 1 1
np B = np(pry+e, )P

(P'Yn)

by virtue of (26) or Theorem & (c). Then

(35)  @'(xy) = —2— - —
(x2+P+Y) (x2+p+y)—ﬁ_
and
(36)  g'ixy = —2r) 2
(x2+p+y) =
n(x2+p+v)

for g in {33). Setting g'(xz) = 0, we get the unigque solution
]n/(n+1}

(37) ., = (1’11

o1 5 - (p+y)

vhich is obviously strictly greater than X = 1-p-y for y > 0
Also g"(iéT) > 0 because

2(p+v) p{n~1)
(38) ——= > —
- e
(egyrety) n{X_ +p+y) B
21 ~
or,equivalently,
+1
on  DFY - 9 oty
(39) = > (x21+p+Y) =5

This means Eé1 is indeed a maximum. Since Eé1 > 1-p-v , II's

initial spending should be

(ko) i21 = 1-p-y .
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The present case demonstrates that II will not spend less
to capitalize on a money advantage he could obtzin over I. We

have shown this for X, = pHY, but it also applies to =all

1__
ie., ok = RUZETY)

other possible X, T

{34) that

2
dUn(1 B, Y) - ( _?,__
dy -y

< X, < ptYy . Note from

(41) y(mt)im

The largest money advantage II can obtain at the end of the first
period cccurs when I spends all his money in the first period.
Hence,

2
au (1-p, v} ay D {n=-1)/n

—2 < ¢ ) p<Lp .

(42)
de dx

Bhytx

2 2

Cn the other hand, the least marginal advantage II can obtain
from spending in the first pericd occurs at the point where he
spends all his money. This rate is

x

1-a a
(L3) — = {(1-p=7) {1-p) =201,
(x1ev)®
for x, = c® - XK, 0<a <1, vhich covers all x,, ¢-K < x, < ptv.
Comparing (b2) and (43), we see that the conclusion in this case

applies to all x, which I might select as optimal following the

1
strategies previously determined for him.

Case 4 : The Possibility of II Reducing I's Advantage.

The critical difference between this case and the one be-
fore is that now II is considering spending less so that I will
have a smaller money advantage in the second period instead cof
spending less so that II can achieve an actual money advantage

for himself. We shall see that II still spends all his money.

We have treated A{n+1} = 1 in the last case. Now suppose

Aln+1) = x > 2 with I's advantage
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{Lb) Y

Then, instead of {33}, we have

*2 2
{45) glx,) = X+, + BQUnU-p, -Yn(x)).
if x, = (1-p—v), then
= 1-p-y
)t e
c k 31 2
k-2 1
k-2 2= e k=2 .
5kt ke i
+ 8.8, (1-p) (1-p-v,) _{_ (8,/8,)
3=0
_ K
T k=1 ko1
X 2
A 1
k-2 E{% k=1 k=1 |57 k-2 .
+ 8,8, (1) j(1p)e ¥ g~ T2 I (8,80
(46) J=0

by virtue of the induction hypothesis. If By = B, s then

o-1 .
2 - J 1 .
Un(1—p, —Yn(x)) = jZO By = Un(p, Yn(x)), but if 8, # B,s then

we must include the last sum in (L46).

It is evident that both terms of the derivative in (45}

are decreasing in x Hence, it suffices to consider the deri-

o
vative evaluated at the largest possible value of Xy - In other
words,
g'(xy) > g'(1-p-y) =

Z=K

5~ Ph » k=2

z

k-2

(47) 2K k-2 S k-2

z=K _ T (o1 T k-1 J
> - P88, 2 (k-1) =z I (8807, k>3

z J=0
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where

(48) z=c¢ck g~ o

If A{n+1) = 2, then (47) reduces %o

J1/2 E471/2 -
g'(1-p-v) = - - pB,
cB
1
_ ~1/2  1/2 _ _
=c B [8,(1-p) + p8, ]
{49) 2i-1=0
because 8, > ¢ . Hence, IT will spend all his money every pericd

if A{p+1) = 2.

For A{n+1) = k¥ > 3, it suffices to let 8, = t. This can

only make the negative term in {U47) larger in sbsoclute value.Then

EI(T-P-Y) > ﬂ - ﬂ
2 L (k=2 /(1)
- =5 1 {1-plc - 52
=z 0 e/ (k) o8,
> B;(k—e)/a - (1-p) - ps;(k-z)/e
(50) > (1-p) (B;(k-e)/e -1) 20

Hence, the weaker player always spends all his money.

Related Theorems and Corollaries.

The proof of Theorem 1 has employed Thecrems 3, 4 and &.
Therefore, to properly complete the proof of Thecrem 1, we must
verify that these descriptions prevail in the (n+1)-pericd pro-

blem. The only parts remaining are (b)-(e) in Theorem 6.
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Theorem 6 (b) is easy to verify directly for j = 2 and by induc-
tion for j > 2 . Using (b), it is easy to compute the money each
player has in the beginning of period j . Then the next consump-
tion is easy to determine, from which (c) and (d) follow easily.
Part (e) is evident for a given strategy. The argument in {29)

shows there is no difficulty at the transition points.

The remaining corollaries in Secticn 3.1 follows easily
from Theorems 1, 3, 4 and 6. In Corollary 10 {(b) the first limit

. . -1 -
can be obtained by applying Taylor's Theorem to cB = ell 1log c.

Proof of Theorem 2 : Uniqueness
We now consider whether the solution just obtained is the
only solution. We show that it is if either 82 < 81 or 81 < ¢
where
—=- Ty — +{ 1-
iy, 1-pmyvopx, {1 p)x1

cn = i-p = 1~p

However, we do not obtain uniqueness when 31 > cn , that is, when
the strong player is not motivated to spend all his money in the
second pericd. After proving uniqueness where it holds, we give

a counterexample to uniqueness when 82 > 51 and 81 > e,

Again our proof will be by induction. Just as with the
existence, the uniqueness is obvious for one period. Therefore,
we shall show it is true for n+! periods given that is true for

k periods for each k € n

Case 1 : Boundary Values .

Let (xT, xe) denote the initiel spending by I and II for a
prospective second solution with n+1 perieds. First, note that
O0<x, <p+ty and 0 < x

1 2
previous solution would be obtained. Furthermore, we have seen

< 1-p-y . If X, = 1-p-y , then the

in Case 3 of the last proof that II spends all whenever I does.

Hence, %, < p+y . Finally, zero spending for either player is
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obviously not an equilibrium point. The other player is then mo-
tivated to select an arbitrarily small positive initial spending
in order to get all the goods in the first period without signi-~
ficantly Jecpardizing his position in the second peried. Of
course, this does not yield a well-defined strategy, but even if
it did, the player who had planned to spend nothing would then
himself be motivated to spend a small positive value. In other
words, we can begin by considering solutions in the interior of

the possible spending intervals.

Case 2 : B 1 = Bg

In the interior of the possible spending intervals all pos-—
sible solutions are sclutions tec the pair of equations cbtained
by taking derivatives of the return functions. We allow arbitra-
ry spending in the first pericd but we use the previous solution
thereafter. In other words, we apply the induction hypothesis.
If I's money advantage in the second period is nonnegative, that
ig, if

(51) Y. =y + DX

0 . (1—p)x1>o,

and if AE(H) =k » 2, vwhere Ag(n) is the number of the period
beginning with the second when I first spends all his money, then

the two equations are :

X, 31(1-p)(1-p)(k‘1)/k g E1/2
(x1+x2}2 (1_P_Y__px2+(.|__p)x‘l)(k-1)/k
(52)
X g ma(1-p) K71/ (e=1)/2
(x1+x2)2 (1—p—Y-px2+(1_P)x1)(k‘1)/k
where
-1 k-1 .

J=0
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The equations in {52) come from (c) and (&) of Theorem 6 or (26)
and {4€). As an immediate consequence, we get a relationship
between %, end x2 namely,
X B,pA
(5L) x, = _—-—81(1—1)} Xy
Substituting (SU) into (51) we get
(55} Yy = v+ (1-plx, [(8,/8,8)~1]
so that Y, > v if and only if 82 < B,I. If 82 < 81 , then

_ 8,{1-p) [1-p-y-px, I 1-(.452/31)]](1\:—1)/}:
=17k, (k-1)72
1

%2

(8 08+8, (1-9)1 2(1-p)

(1-9)1/k[(1-p-v)[1-p [1~(A82/61H
2 (k-3)/2
178,

]](k—1)/k

=

/& (1_P_y)(k-1)/k

K 53, ko
[szA+61{1-p)]—K— g, 2 K

_ (1-p)

1/k Y)(1:-1)/1;

> (1-p) {(1-p-

2 1-p-Y.

Hence, we have a contradiction with cur requirement thet
0 < X, < 1-p-y . The only solution with 81 p-3 82 is the one
previously determined. In the second step of {56) we have made

the right side smaller by replacing x. with (1-p-v).

2

Case 3 : Ae{n) = i
Suppose now that 52 > B1 . If

(1+p)(1-p-y) -
8, < (1-p) and By < Pty
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then, for ail x, and X, ,'81 < ¢, if T, 2 0 and 82 < e, if
Yn < 0, where

=P‘(“Yn) P+

c

n P b

ef.Theorem 2 (iii). Note that this is alweys true for two pe-
riods, ef. Theorem 2 (ii). In this case the eguations in {52)
or {68) reduce to

X

(57) —=2— =5 (1)
(x1+x2)
and
X
1
= g.p -
(x1+x2)2 2

We again get {5L4) but with A = 1. Substituting (54) into {57},

we get
8,(1-p)
(58) X, = -5
[81(1—p) + Szpj
and
x, +x, = [8.(1-p) +8.p] "
1 2 1 2
g0 that x1+x2 > 1 unless 81 = 82 = 1, However, if 81 = 82 =
then %, = 1-p » 1-p~y . Eence, there is no other solution for

2
kX = 1. This case completes the uniqueness proof for the two -

period problem.

Case 4 : A Counterexample to Uniqueness if By > B,
Suppose 82 > By s Ae(n) > 1, and Y, > 0. Then we still
have (52) and the first equation in (56). If

(59) BpA + 8.(1-p) < 1,

which is not necessarily to be expected now, then
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L = 31(1—p} cn(k'i)/k 51- (k-1)/2

> (1-p) cn(k_1)/k

(60)

c(k-1)/k 1/& )(k—1)/k

z (1-p) = (1-p) (1-p-v
=2 1-p-r .
However, without (59), unigueness can be lost. We demoastrate

this for Ae(n) = 2, which corresponds to & three-period geme. We

then have
1/2
1 1
81/2(1-5) /2 1-prrpx, 1 (35,7801
(61) z, = = >
[8pa + &,(1-p]]

or
(62) ax° - ox. - K = 0

2 2 !
where a > 1, b > C, and K = 1-p-y . 1In perticular,

4,08 + 8, (1p)] °

{63) a = NSRSy

and v o= p [(A82/81) -1]

It is evident that (62) has exactly one positive real root,

namely, /
1/2

. 2 ,
_ b+ (b" + kaK)
(6L) 5 T 2a
Now we show that it is possible to seleect a, b, and X appropria-

tely so that 0 < x, < pty = 1-K and 0 < x. < 1-p—yv = K. It turns

out that haphazard1selections of p, v, 81? and 82 will not do.
Tt is impertant to.make 4 and B;l very large. For example,

think of 5;1 as 10'00 although t?is may be 2 bit bigger %than
necessary ; we shall just let 51 = N with the understanding

that ¥ is big. Let p = 1-p = 1/2 ; let 82 = 1 and let K = 1/2,
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using ¥ and generic constants s iz,

We get A
(65) X,
Moreover,
(66) x,
and
Yn
(67)

Case 5 : Y, € 0

!

1/4, We shall express X, approximatively
c1N, a = C2N5, o = c3N2, and
1/2
2 2.4 5
c3N + (c3N + hKczN )
2c2N5

chN—S/z <K

B, DA
= —a = o Nox = -1/2 -
= 81(1‘9) X5 C5N X, c6N < 1K

=Y - px, [(A82/81) - 1]

-5
Y - pchN c.N

2
7

2
¥ CSN =0

We have not discussed the case in which Y, < 0, that is,

vhen the advantage shifts to II. Instead of (52), we have

{k-1)}/k 8 (x-1)/2

81(1-1:)1: 5

(pty+px, - (1-1::)x1)(k-ﬂ7k

ngAp(k"1)/k 82(k-1)/2

x
(68)
2
(x1+x2)
X
and
(x1+x2}

Again we obtain (54).

of (68), we get

(py+px, - (1-p)x1)(k'1)/k

Substituting it into the first eguation
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{k-1)/x
31(1-p)[P+Y+(1‘p)x1 P(B1/A82)'ﬂ:

2 P(k—1)/k 82(k—n/e

Xe—
[e,(1-p) + 84p]

2 {k-1)/x
8, (1-p) [p+y+(1-p) (g0 ) (8, /a8,)-11

2 P(k—1)/k 82(k—1)/2

Z

[8,(1-p) + B 47

(69) i ) .
81(1'P)(P“"Y)(k RG [8,(1-p)+8,Ap] (k 1)/k82(k Vi

2 P(k-1)/k 82(k—1)/2

-

[8,(1-p) + B,4p ]

{x=1}/k
= 8,(1-p) (&%) x

—(k+1)/k g " [ (x-1){x+2)/2 ]

[81(1-p)+82Ap] 5

where the second step involves replacing x, by p+y on the right.

1
Since 81 can be arvitrarily smell, {69) is rather difficult +to
work with directly. If we assume (59), then we can apply (5k)

plus (69} to obtain

(k-1)/x
X tx, > [81(1-p} + BAp] (Egl) %
{ [6,(1-p) + SEAPI-(k+1)/k 62~{(k—1)(k+1)/21
T0)
vy, (ETD/E 1%, A (x=1){x+1)/2]
= (&0 [8,(1-p)+a 40 '* 8, A
> 1,

which contradicts the basic spending constraints ; X, < PHY and
X, € 1-p-y . Hovever, {70) is not possible without (59) .

A counterexample for Ag(n) = 2 1is easily constructed here just
as in (61)-(AT). This completes our discussion of uniqueness.

In particular, we shall neither attempt to provide more detailed
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conditions for uaiqueness when 82 > 81 nor attempt to describe

the other noncooperative equilibrium solutions at this time.

Proof of Theorem 12 : Pareto Optimality

If 81 = 82 , then ocur game is constant-sum except for the
case in vwhich both players spend nothing. Sinee such spending
never oceurs in any solution, cf. Case 1 of the Proof of Theo-
rem 2, any solution is Parete optimal when 81 =8
it 8, # 85,
judiciously (cooperatively) spending less initially. Since both

5 " However,

then both players could simultaneously de better by

players spend strictly positive amounts in any sclution, both
‘players are always free to spend less. The returns to I and II
using positive x. and x_, initially and the optimal strategies

1 2
thereafter are

X
1 X 1 e
(11) Rn+1(p.Y) = —0m t 8,0 (p, Y+OX, (1-p)x,)
2 *5 2
end R ,,(1-p, -v) = x5, +8,U (1-p), y+puy,=(1-p)x,)

For 81 = 62 , it is easy to see that

2 1 1
avc(1-p, ~y) aUu {p,y) 4du {p.0)
n _ n n
= — > =
dy dy dy

{12) -

If 31 > 82, then it is easy to verify that

2 1
dUn(1-p, -y) dUn(p,Y)

(73) - Iy < 3y

Hence, R;+1(p,Y) can be kept constant by decreasing both X, and

X, 2 small amount so that I's first period loss equals his fu-

ture gain. This can be done in many ways. Then II's first pe-

riod gain cecineides with I's first period loss, but II's second
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period loss is less than I's second period gain because 82 < 81.
Hence, II is better off while I is indifferent. A parallel ar-~

gument applies to 8, < 52 .

5. Proofs for Many Players

Proof of Theorem 19 : Perfect Competition
The bounds on By and v, imply that

1 =-p, - v. 5

= i 1 R7e
(Th') Ci - 1 - pi = n

so that Bi € 1-8 g c; for sufficiently large n . Hence, the

condition of Corollary 17 is satisfied. We now investigate uni-
gqueness beginning with two periods. Suppose some player, say I,
does not spend all his available money in the first period. This

means that I, faced with the rroblen

X
1
{75) max { e 8. (o +y,=x +plx +y)) }
O, <p. +y 1
11T N
m
where y = z x.-x1 , elects to spend
j=1 9
1/2
[ > _ _y____.[ - -1
{76) X, = { 31(1—9) J ¥ <Pty € 2n

which he obtains by differentiasting in {75) as in Seetion b. It

is easy to see from (T6) that we must have y < nl . First, §11
is increasing iny for 0 € ¥ £ [h8(1-p)]_1 and decreasing in y
for [148(1—}_:)]—1 Sys< o7y, » If y=1-p,-y, , then

- ) .=

X4 > p1+~(1 since 81 ¢y If y=n , then

-1/2

(11) £y, = 8720 TV ETVRLT S @R
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.. -1 ..
Since y <n , one of the remaining players must spend less

m
than [n{n-1)] 1 because ¥y = Z x;7%
J=1

] and m>»n . These

two arguments can be repeated fo show that y < (n—1}-k and

£11 < (n—1)-(k+1}

guished player changes each time. This argument, easily made

for ell k » 1, where of course the distin-

precise by induction, demonstrates that there is no spending at
all in the first period, which is a contradiction because zero
spending is obviously not an equilibrium solution. Hence, there
is ne second solution with some players spending less than all
their money in the first period. This proof was for two periods.
Tt is extended to any finite number of periods by induction. For
sufficiently large n, the position in the second of several pe-
riods will correspond to the initial position with two periocds,
which we have just analyzed in detail. For example, player i's
money supply in the second period can be no greater than Epi+Yi.
Hence, c; > (n-3)/n—1in the second period and the spending is
bounded above by 3n . Thus, by virtue of the induction hypo—-

thesis, I is again faced with (75} and the same argument applies.

Proof of Theorem 20 : One Fat Cat
The proof above appiies to show that none of the small
players will spend less than all their money each period. This

guarantees uniqueness.

6. Constrained Competitive Equilibrium

Proof of Theorem 21
First, consider the one-period problem. Everyone is

clearly motivated to svend all available money at any price.

m
Since ) x; = G, the price must be M/G. Next, assume the theo-
i=1
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rem to be true for n periods and consider the (n+1)-period opti-
mization problem in (L) . By virtue of the induction hypothesis,

it reduces to the following two period problem for each indivi-

dual
( 18) max {x, + Bx.} ’
3 2
{x.} .
i
subject to .
xa, < (p; + v, .

M— -
X, g = (p1 + Y1)M x,2 + pjca1

1

ir M-< a1B , then each player wants x, instead of x, .

G _ 2 1
This would lesd to zero spending in the first peried. If
% = a18 , then each player is indifferent between X, and Xy

If B8 < 1, then both cases cen be ruled out because the price in
the first period musit be less than or equal to % since no more
than M will be spent for the total goods ¢. If B = 1, then

a, = v is only possible if each player spends all his money in

1 G
the first period. If %'>-a15, then each player prefers X to
X5 Hence, each player will spend 21l his available money in
the first pericd. The associated price i3 then % .

If Bi = 8 for all i, then the allocations are constant-sum
and thus obviously Pareto optimal. If Bi > Bj for some i, j,
then both players could simultaneously do better if j gave i some

goods in the future in exchenge for some geoods in the present.
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