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a b s t r a c t

Given measurements of the number of customers in a queueing system over a finite time
interval, it is natural to try to fit a stationary birth-and-death process model, because it
is remarkably tractable, even when the birth and death rates depend on the state in an
arbitrary way. Natural estimators of the birth (death) rate in each state are the observed
number of transitions up (down) from that state divided by the total time spent in that
state. It is tempting to validate the model by comparing the steady-state distribution
of the model based on those estimated rates to the empirical steady-state distribution
recording the proportion of time spent in each state. However, it is inappropriate to draw
strong conclusions from a close fit to the same data, because these two distributions are
necessarily intimately related, even if the model assumptions are not nearly satisfied. We
elaborate by (i) establishing stochastic comparisons between these two fitted distributions
using likelihood-ratio stochastic ordering and (ii) quantifying their difference.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

This paper is motivated by efforts to fit stochastic queueing models to data from system measurements in call centers
and hospitals, for example, as collected in Armony et al. (2011) and Brown et al. (2005). Since the number of customers
in a queueing system typically increases or decreases by one at each transition, it is natural to consider fitting a stationary
birth-and-death (BD) process to the observed segment of the sample path. Clearly, there also are many other applications
where a BD model might be fitted to data.

Since data over a finite time interval will invariably involve only finitely many transitions, it is natural to fit a finite-state
stationary BD process to the data. Thus the typical state space for the BD process is {0, 1, . . . ,m}. With these m + 1 states,
there are 2m parameters, the m birth rates λj in states 0 ≤ j ≤ m − 1, and the m death rates µj in states 1 ≤ j ≤ m. If the
model fit is genuinely good, then the BD model can be very helpful because it is remarkably tractable; see Section 2.

There already is quite an extensive statistical theory for estimating the parameters of queueingmodels and stationary BD
processes; see, for example, Bhat et al. (1997), Billingsley (1961), Israel et al. (2001), Keiding (1975), Ross et al. (2007), and
Wolff (1965). We will be considering the natural estimator of the birth and death rates considered in Wolff (1965); i.e., the
birth (death) rate in each state is estimated by the observed number of transitions up (down) from that state divided by the
total time spent in that state.

It is tempting to validate the BD model fit in that way by comparing the steady-state distribution of the model based
on those estimated rates to the empirical steady-state distribution recording the proportion of time spent in each state.
However, it is inappropriate to draw strong positive conclusions from a close fit to the same data, because these two
distributions are necessarily intimately related, without any model assumptions being made. For example, the actual
system could be highly non-stationary. Nevertheless, under minor regularity conditions, these two fitted distributions are
asymptotically identical as the sample size increases; this is a special case ofmore general empirical global balance equations
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in the sample-path analysis of queues in Ch. 4 of El-Taha and Stidham Jr. (1999). In the queueing literature, the close relation
between these two empirical fitted distributions seems to go back to the operational analysis of Buzen (1976), Buzen (1978),
Buzen and Denning (1980), and Denning and Buzen (1978); see Sections 4.6 and 4.7 of El-Taha and Stidham Jr. (1999) for
discussion and references.

Given that the two empirical fitted distributions are necessarily nearly identical, with virtually no conditions at all, it
is evident that the relation has no direct implication about either (i) what is an appropriate stochastic model, or (ii) the
system performance at other times. These important issues require further properties that must be checked empirically. For
example, in justifying the applied relevance of operational analysis, in Section 2 of Denning and Buzen (1978) the authors
discuss this issue and mention a variety of invariance assumptions to justify predictions at other times. Otherwise, this
relation serves only as a (useful) consistency check on the data processing.

In this paper, after quickly reviewing basic BD theory in Section 2, and carefully specifying the fitting procedure in
Section 3, we elaborate on the relation between these two fitted distributions based on data from a finite time interval in
Section 4 by (i) establishing stochastic comparisons between these two fitted distributions using likelihood-ratio stochastic
ordering and (ii) quantifying their difference. Afterwards, in Section 5, we briefly discuss additional data analysis steps to
fully validate the fitted BD process. In Section 6, we discuss the associated statistical problem of estimating confidence
intervals for the birth and death rates. Finally, in Section 7, we discuss remaining problems.

2. Review of birth-and-death process theory

Let X ≡ {X(t) : t ≥ 0} be a (finite-state stationary) BD process on the state space {0, 1, . . . ,m} with strictly positive
birth rates λi, 1 ≤ i ≤ m − 1, and death rates µi, 1 ≤ i ≤ m. That means that X is a reversible irreducible continuous
time Markov chain (CTMC) with all transitions up one or down one; for example, see Keilson (1979), Ch. 5 of Ross (1996),
and Ch. 6 of Ross (2010). Thus, the characterizing (m + 1) × (m + 1) rate matrix (infinitesimal generator) Q of the CTMC
has elements Qi,i+1 ≡ λi, 0 ≤ i ≤ m − 1, and Qi,i−1 ≡ µi, 1 ≤ i ≤ m, with all other off-diagonal elements 0 and all row
sums 0. Equivalently, the successive holding times in state i are independent and identically distributed (i.i.d.) exponential
random variables with mean 1/(λi + µi), and the probability of an upward transition at each transition time from state i is
λi/(λi + µi), independent of the holding time and all prior history.

An (irreducible finite-state) BD process X has a unique limiting steady-state probability distribution α, i.e.,

αj ≡ lim
t→∞

P(X(t) = j|X(0) = i) for all i, (1)

which is also the unique stationary distribution, i.e.,

αj =

m
i=0

αiP(X(t) = j|X(0) = i) for all t > 0. (2)

Because of the reversibility, the stationary distribution α can be expressed as the unique solution to the local balance
equations

αiλi = αi+1µi+1, 0 ≤ i ≤ m − 1, (3)

such that
m

i=0 αi = 1. The local balance equations (3) can be solved recursively to give

αi =
ri

m
j=0

rj
, (4)

where r0 ≡ 1 and

ri ≡
λ0 × · · · × λi−1

µ1 × · · · × µi
, 1 ≤ i ≤ m; (5)

for example, see Section 6.3 of Ross (2010). It is also not difficult to compute transient performance measures of finite-state
BD processes, as shown by Keilson (1979).

The BDmodels considered inmost applications have special structure. For example, many queueing applications involve
the classical M/M/s/rqueueing model, which has a Poisson arrival process with rate λ (the first M), exponential service
times with mean µ−1 (the second M), s homogeneous servers working in parallel and r extra waiting spaces. Thus the
M/M/s/r model has constant birth rates λi ≡ λ, 0 ≤ i ≤ s + r − 1, and simple death rates, µi ≡ min{i, s}, 1 ≤ i ≤ s + r .
However, it often is of interest to consider more general BD queueing models. For example, when there is balking (arrivals
refusing to join when the line is too long), see Whitt (1999), for example, the arrival rate may be decreasing; when there
is customer abandonment if they have not progressed rapidly enough, the death rate may be increasing more rapidly than
above;when customers have non-exponential patience distributions, it can be effective to approximate by a BDmodelwith a
more general state-dependent death rate; seeWhitt (2005). For complex real applications, it is natural to let the data dictate
what the relevant birth and death rates are. For example, the number of working servers may not be a fixed deterministic
quantity, but nevertheless a BD model could be useful.
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3. Fitting the BD model to queueing system data

Consider a queueing system in which arrivals and departures occur one at a time. Let X(s) be the number of customers
in the system at time s. We now consider fitting a BD model to data collected over an interval [0, t].

Let λ̄i(t) and µ̄i(t) be natural direct estimates of the birth rates and death rates based on sample averages over the time
interval [0, t]. Similarly, let ᾱi(t) be natural direct estimates of the stationary distribution based on sample averages over
the time interval [0, t].

In particular, let Ai(t) be the number of arrivals during the interval [0, t] when the system is in state i; let Di(t) be the
number of departures during the interval [0, t]when the system is in state i; and let Ti(t) be the total time during the interval
[0, t] in which the system is in state i; i.e.,

Ti(t) ≡

 t

0
1{X(s)=i} ds, t ≥ 0, (6)

where 1A is the indicator function of the set A, equal to 1 on A and equal to 0 otherwise. Then let

λ̄i(t) ≡
Ai(t)
Ti(t)

, µ̄i(t) ≡
Di(t)
Ti(t)

and ᾱi(t) ≡
Ti(t)
t

, t ≥ 0. (7)

In general, this estimation procedure need not produce an irreducible BD process, because there can be initial and final
transient states. However, there is a largest subset of states that is the state space of an irreducible BD process, with all other
states being transient. Necessarily, λ̄i(t) > 0 for a1 ≤ i ≤ a2 with λ̄i(t) = 0 otherwise, and µ̄i(t) > 0 for d1 ≤ i ≤ d2
with λ̄i(t) = 0 otherwise, for some constants a1, a2, d1, and d2. There are three possibilities for these ‘‘intervals of positive
rates’’: (i) a1 = d1 − 1 and a2 = d2 − 1, (ii) a1 ≤ d1 − 1 and a2 ≥ d2 − 1, with at least one of these two inequalities being
strict, or (iii) a1 ≥ d1 − 1 and a2 ≤ d2 − 1, with at least one of these two inequalities being strict. In case (i), the process is
irreducible and the state space is {a1, . . . , a2+1} = {d1−1, . . . , d2}; in case (ii), there are transient states, so the BD process
is reducible, with the state space of the irreducible BD process being {d1 − 1, . . . , d2}, while all other states are transient,
being visited by initial or final births, but never by deaths; in case (iii), again there are transient states, so the BD process
is reducible, with the state space of the irreducible BD process being {a1, . . . , a2 + 1}, while all other states are transient,
being visited by initial or final deaths, but never by births. In all three cases, there is a unique stationary distribution, which
places 0 probability on each transient state, if there are any.

For simplicity, henceforth we assume that the irreducible case (i) prevails with a1 = 0 < a2 + 1 = d2 = m. From
Section 2,we see that, under the simplifying assumption of irreducibility, this estimatedBDprocess has theunique stationary
probability distribution

ᾱe
i (t) ≡

r̄i(t)
m
j=1

r̄j(t)
, 0 ≤ i ≤ m, (8)

where r̄0(t) ≡ 1 and

r̄i(t) ≡
λ̄0(t) × · · · × λ̄i−1(t)
µ̄1(t) × · · · × µ̄i(t)

, 0 < i ≤ m. (9)

Equivalently, ᾱe(t) is the unique probability vector satisfying the local balance equation associated with the estimated birth
and death rates; i.e.,

ᾱe
i (t)λ̄i(t) = ᾱe

i+1(t)µ̄i+1(t) for all i, 0 ≤ i < m. (10)

4. The relation between the two fitted stationary distributions

We now establish more precise connections between the distribution ᾱe(t) based on formula (8) using the estimated
birth and death rates and the direct empirical distribution ᾱ(t) in (7) for finite values of t . We emphasize that these two
probability distributions will not have the same support, and thus of course they could not be equal, if the irreducibility
condition above is not satisfied. We thus assume irreducibility below. In practice, the irreducibility can always be achieved
by removing the initial and/or final transient from the sample path if either (or both) is (are) there.

For the stochastic comparison, we use the notion of likelihood ratio stochastic ordering (LR) for probability mass functions
(pmfs); for example, see Section 9.4 of Ross (1996). Let X1 and X2 be two random variables, each taking values in the non-
negative integers, with pmfs pi(k) ≡ P(Xi = k). We say that X1 is stochastically less than or equal to X2 in the LR ordering,
and write X1 ≤LR X2 or p1 ≤LR p2, if

p1(k + 1)
p1(k)

≤
p2(k + 1)
p2(k)

for all integers k, (11)
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where at least one is positive. It is well known that LR ordering implies ordinary stochastic order. We say that X1 is
stochastically less than or equal to X2, and write X1 ≤st X2 or p1 ≤st p2, if

∞
j=k

p1(j) ≤

∞
j=k

p2(j) for all k. (12)

Equivalently, X1 ≤st X2 if E[f (X1)] ≤ E[f (X2)] for all non-negative non-decreasing real-valued functions f on R.

Theorem 1 (Stochastic Comparison of the Two Stationary Distributions). Consider a sample path segment over an interval [0, t]
of a stochastic process with only finitely many transitions, all of which are ±1. Suppose that a BD process is fitted to this data,
as in (7), and suppose that it is irreducible with state space {0, . . . ,m}. For i0 ≡ X(0) and it ≡ X(t), there are three mutually
exclusive and exhaustive alternatives:

If i0 = it , then ᾱ(t) = ᾱe(t);
if i0 < it , then ᾱ(t) ≥LR ᾱe(t);

if i0 > it , then ᾱ(t) ≤LR ᾱe(t). (13)

Moreover, the difference, ∆̄i(t) ≡ ᾱe
i (t) − ᾱi(t), can be quantified by solving the finite recursion (for 0 ≤ i ≤ m)

∆̄i(t)λ̄i(t) = ∆̄i+1(t)µ̄i+1(t) +
ēi(t)
t

with
m
i=0

∆̄i(t) = 0, (14)

where ēi(t) ≡ 1{i0≥i>it } − 1{i0≤i<it }, so that ēi(t) = 0 for all but |it − i0| values of i.

Proof. By the definitions in (7),

ᾱi(t)λ̄i(t) =


Ti(t)
t

 
Ai(t)
Ti(t)


=

Ai(t)
t

(15)

and

ᾱi+1(t)µ̄i+1(t) =


Ti+1(t)

t

 
Di+1(t)
Ti+1(t)


=

Di+1(t)
t

. (16)

However, since all births in state i take the system to state i + 1, while all deaths in state i + 1 take the system to state i,

|Ai(t) − Di+1(t)| ≤ 1 for all i. (17)

We can say more if we look at the initial state i0 and the ending state it . First, if i0 = it , then Ai(t) = Di+1(t) for all i.
Combining this with (15) and (16), we see that ᾱ(t) satisfies the local balance equation (10). Hence, in this case, with i0 = it ,
we must have ᾱ(t) = αe(t), as claimed in (13).

Next, if i0 < it , then

Ai(t) = Di+1(t) + 1 for i0 ≤ i < it; else Ai(t) = Di+1(t). (18)

As a consequence, instead of the local balance equations in (10), in this case, the probability vector ᾱ(t) satisfies the
associated system of inequalities

ᾱi(t)λ̄i(t) ≤ ᾱi+1(t)µ̄i+1(t) for all i. (19)

However, we can immediately rewrite (19) as

ᾱi+1(t)
ᾱi(t)

≥
λ̄i(t)

µ̄i+1(t)
=

r̄i+1(t)
r̄i(t)

=
αe
i+1(t)
αe
i (t)

, (20)

so that ᾱ(t) ≥LR αe(t), as claimed in (13).
By similar reasoning, if i0 > it , then

Ai(t) = Di+1(t) − 1 for i0 ≤ i < it , else Ai(t) = Di+1(t), (21)

so that ᾱ(t) ≤LR αe.
In general, we have (10) and

ᾱi(t)λ̄i(t) = ᾱi+1(t)µ̄i+1(t) + ei/t for all i. (22)

Subtracting these equations directly yields (14). �
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From the three conditions in (13), we see that the two distributions are always identical with appropriate initial and
terminal conditions. The minor differences more generally are only due to ‘‘edge effects’’, just as in the related conservation
law L = λW .

If we add additional regularity conditions, then we can also show that the difference due to these edge effects is
asymptotically negligible as t → ∞.We can also bound the rate of convergence. For this purpose,we consider the estimation
as a function of the interval endpoint t . See Chapter 4 of El-Taha and Stidham Jr. (1999) for related asymptotic results. We
avoid problems caused by dividing by small t by restricting the setting to t ≥ 1. We deduce the following bound on the rate
of convergence from Theorem 1; we omit the proof.

Corollary 4.1 (Bound on Rate of Convergence). If m(t) < m < ∞, 0 < a1 ≤ λ̄i(t) ≤ a2 < ∞ and 0 < b1 ≤ µ̄i(t) ≤ b2 < ∞

for all t ≥ 1, then

|∆̄i(t)| ≤ K/t for all t ≥ 1, (23)

where K is a function of m, a1, a2, b1, and b2.

5. Validating the stationary BD model

5.1. Time stationarity

In many queueing applications, such as call centers and hospitals, there tends to be systematic variation in arrival rates
and performancemeasures over time. Thus, it is important to check that a stationarymodel is really appropriate for the time
interval under consideration. This is a vital step if any stationary stochastic model is used.

Givendata over a time interval [0, t], stationarity can be checkedby considering subintervals [t1, t2]with 0 ≤ t1 < t2 ≤ t .
First, let Ai(t1, t2) be the number of arrivals during the interval [t1, t2] when the system is in state i, and similarly for the
other processes. Then, as in (7), let λ̄i(t1, t2) ≡ Ai(t1, t2)/Ti(t1, t2). Let f be an arbitrary real-valued function on the state
space. We can extend the statistics λ̄i(t), µ̄i(t), ᾱi(t) and ᾱe

i (t) to associated statistics as functions of the triple (f , t1, t2), for
example, by letting

λ̄f (t1, t2) ≡

∞
i=0

f (i)λ̄i(t1, t2). (24)

It is good to check that, for various functions f , the statistics λ̄f (t1, t2), ᾱf (t1, t2) and αe
f (t1, t2) are approximately constant,

independent of the subinterval [t1, t2]. For example, if f (i) = 1 for all i, then λ̄f is the estimated total arrival rate; if f (i) = ik,
then ᾱf is the kth moment of the estimated steady-state distribution. A simple approach is to choose a few representative
functions f , fix t1 = 0, and plot as a function of t2, 0 ≤ t2 ≤ t .

Similarly, if prediction is contemplated for another time, then evidence should be sought that these estimated rates are
still relevant. In the spirit of Section 2 of Denning and Buzen (1978), those are concrete invariance properties to check.

5.2. The BD model assumptions

Given that the system is consistent with a stationary stochastic process for which all transitions are ±1, it remains to
check the Markov property. A manageable way to check that is to use the fact that, within that setting, a BD process can be
characterized by having the times spent in each state and the transition at the transition epoch be random variables that
are mutually independent and independent of the system history. For a practical test, let X (i)

k be the time spent in state i
after arriving in state i from elsewhere, let J (i)k be +1 if the transition at the end of that interval is up one and let J (i)k = −1
otherwise, and let Y (i)

k be the length of time spent away from state i immediately after the interval X (i)
k . The sequence of

vectors {(X (i)
k , J (i)k , Y (i)

k ) : k ≥ 1} should be i.i.d. random vectors with X (i)
k being independent of both J (i)k and Y (i)

k ; for example,

P(X (i)
k > t, J ik = 1) = P(X (i)

k > t)P(J ik = 1) = e−(λi+µi)t


λi

λi + µi


. (25)

With the data, we should check that the empirical distribution (histogram) of X (i)
k is approximately exponential; we

should check that the covariances between X (i)
k and X (i)

k+1, between J (i)k and J (i)k+1, and between X (i)
k + Y (i)

k and X (i)
k+1 + Y (i)

k+1 are
suitably negligible. We may also want to compare estimates of the asymptotic variance for functions of a BD process to the
exact values for a BD process, for which Proposition 1 of Whitt (1992) can be used for comparison.

6. Estimating confidence intervals

Assuming that the validation steps have been carried out, such thatwe think a BDmodel is appropriate, it is natural regard
the sample averages λ̄i(t), µ̄i(t) and ᾱi(t) in (7) as finite-sample estimates of the true, but unknown, model parameters λi
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and µi of a stationary BD model and the associated steady-state probabilities αi. Following standard statistical practice,
it is appropriate to evaluate the effectiveness of these estimates by also estimating the sample variance and confidence
intervals. Given that the data come from a single observed sample path, it is natural to use the method of batch means as
in simulation output analysis in discrete-event stochastic simulation; for example, see Section 3.3 of Bratley et al. (1987).
With that in mind, we suggest two alternative estimation procedures.

The first estimation procedure is based on the observation that the method of batch means applies more naturally to
simple time averages, as for ᾱi(t) in (7). We can work directly with time averages if we estimate γi ≡ αiλi and δi ≡ αiµi by
the time averages γ̄i(t) ≡ t−1Ai(t) and δ̄i(t) ≡ t−1Di(t). We then obtain the associated estimators λ̄γ ,i(t) ≡ γ̄i(t)/ᾱi(t) and
µ̄δ,i(t) ≡ δ̄i(t)/ᾱi(t). These alternative estimators are also consistent, but dividing by the small unreliable values ᾱi(t) can
lead to poor efficiency (high variance).

The second procedure is based on looking only at the total time spent in state i. That can be done by concatenating the
variables X (i)

k in Section 5.2. We also keep track of the transitions at each interval end point. Let U (i)
k and V (i)

k be the intervals
between the (k − 1)th and kth births and deaths, respectively. By the Poisson splitting theorem, Proposition 2.3.2 of Ross
(1996), for a BD process, the associated two counting processes are independent Poisson processes. Thus, for a BD process,
the sequences {U (i)

k : k ≥ 1} and {V (i)
k : k ≥ 1} are mutually independent sequences of i.i.d. exponential random variables

with means λ−1
i and µ−1

i . We use this representation, but, to avoid assuming that the BD model is correct, we work with
batchmeans. To illustrate, suppose that we have n = mk observations of U (i)

k . (Starting from a fixed interval [0, t], the actual
number n is random, which introduces bias, but we shall not consider that issue.) We then form the batch means

Ū (i)
m,k ≡ k−1

mk
j=m(k−1)

U (i)
j , Ū (i,b)

m ≡ m−1
m

k=1

Ū (i)
m,k ≡ n−1

n
j=1

U (i)
j . (26)

and the sample variance

σ̄ 2
U(i,b)
m

≡ s2
U(i,b)
m

≡ (m − 1)−1
m

k=1

(Ū (i)
m,k − Ū (i,b)

m )2. (27)

In great generality, even when the process is not a BD process, the batch means Ū (i)
m,k should be approximately m i.i.d.

normal random variables. If the variance σ 2
U(i,b),m

were known, then the random variable Ū (i,b)
m has a normal distributionwith

variances σ 2
U(i,b)
m

/m. Since the variance is in fact unknown, we act as if Ūb
m has the Student-t distribution withm− 1 degrees

of freedom. Thus, form = 20, a two-sided 95% confidence interval estimate for E[U (i)
] based on the method of batch means

applied to the n = mk observations is

Ū (i,b)
m ± 2.09


σ̄ 2
U(i,b)
20

/19 = Ū (i,b)
m ± 0.48σ̄U(i,b)

20
. (28)

Given an estimated two-sided 95% confidence interval [a1, a2] for E[U (i)
] as in (6), the interval [1/a2, 1/a1] provides an

associated estimated two-sided 95% confidence interval for λi = 1/E[U (i)
].

7. Remaining issues

Even though it is now common to have large data sets, there may not be enough data to fit a general model. The available
data often must be reduced to obtain intervals in which the system can be regarded as approximately stationary. Even for
a system that is approximately stationary over a long interval, having 2m parameters form + 1 states is likely to produce a
model with toomany parameters. If the actual state space is large, then the data formany states will be inadequate to obtain
reliable rate estimates. The statistical analysis discussed in Section 6 should provide guidance. It often will be important to
combine data over multiple subintervals and fit a more restrictive model for which the birth and death rates have structure.
The references offer guidance; see, for example, Keiding (1975); Ross et al. (2007). It is natural to consider piecewise linear
functions, in the spirit of the piecewise-linear estimates of the rate of a non-homogeneous Poisson process in Massey et al.
(1996).
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