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Abstract

This paper studies the stationary customer flows in an open queueing network. The flows
are the processes counting customers flowing from one queue to another or out of the net-
work. We establish the existence of unique stationary flows in generalized Jackson networks
and convergence to the stationary flows as time increases. We establish heavy-traffic limits for
the stationary flows, allowing an arbitrary subset of the queues to be critically loaded. The
heavy-traffic limit with a single bottleneck queue is especially tractable because it yields limit
processes involving one-dimensional reflected Brownian motion. That limit plays an important
role in our new nonparametric decomposition approximation of the steady-state performance
using indices of dispersion and robust optimization.
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1 Introduction

In this paper, we establish heavy-traffic limits for the stationary flows in a non-Markov open

queueing network (OQN). By flows, we mean the departure processes, flows from one queue to

another, superpositions of such processes and thus the internal arrival processes.

1.1 The Flows in an OQN

The flows are special stochastic point processes, for which there is a well-developed general theory,

as in [18, 19]. There also is a substantial literature on the general structure of stationary point

processes in queueing systems, as in Chapter 1 of [3] and [42], but concrete results, such as explicit

formulas describing the stochastic variability of the flows over time, are extremely rare. The

familiar exception is the Markovian Jackson OQN analyzed by Jackson [33], for which there is a

substantial theory, as in Ch. 4 of [45], but even in Markovian Jackson networks, the flows can be

quite complicated. First, by reversibility, for Jackson networks, the departure processes out of the

network from the queues are independent Poisson processes, but the internal flows need not be

Poisson, even though the product-form property holds. In particular, the flows are Poisson if and
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only if they are not part of a loop; see [36, 44]. For non-Markov open networks, the flows are even

more complicated. As discussed in [17, 21] and references there, the stationary departure process

from a GI/GI/1 queue is a renewal process (ordinary or stationary) if and only if the queue is an

M/M/1 queue, in which case it is a Poisson process.

In this paper, we consider an OQN with K single-server stations, unlimited waiting space,

and the first-come first-served service discipline. We assume that we have mutually independent

renewal external arrival processes, sequences of independent and identically distributed (i.i.d.)

service times and Markovian routing. Such a system is called a generalized Jackson network (GJN),

because it generalizes the Jackson network in which all the interarrival times and service times have

exponential distributions.

The heavy-traffic limit for the flows in a GJN here extends the heavy-traffic limit for the

stationary departure process in the GI/GI/1 model in [49]. That was evidently the first paper

to establish a heavy-traffic limit for a stationary flow (other than an external arrival process) in a

queueing model. Our main result in this paper is Theorem 3.2, which expresses a joint heavy-traffic

limit for the centered flows with other processes. The limit for the flows is the final term in (3.11),

which depends on the limits of other terms. However, Theorem 4.2 and Theorem 4.3 show that the

limit simplifies dramatically when there is only a single bottleneck queue.

As before in [49], for our proof we rely heavily on the justification for interchanging the limits

t → ∞ and ρ ↑ 1 in a GJN provided by Gamarnik and Zeevi [23] and Budharaja and Lee [8]. By

allowing an arbitrary subset of the queues to be bottleneck queues (have nondegenerate limits),

while the rest have null limits, we follow Chen and Mandelbaum [10, 11]. Even though the proofs

follow quite directly from the existing literature, the asymptotic results here are evidently new.

As a preliminary step for our heavy-traffic limit, we establish conditions for the existence of

stationary flows in a GJN and for convergence to those stationary flows as time evolves. For that

we rely heavily on the Harris recurrence that was used to establish the stability of a GJN under

appropriate regularity, as in Dai [14] (see the remark after Theorem 5.1 for earlier literature); also

see Ch. VII of Asmussen [1].

1.2 The Index of Dispersion (IDC) of a Stationary Point Pricess

In addition to contributing to a better understanding of the stationary flows in GJNs, we are partic-

ularly interested in the application of heavy-traffic limits in the approximation of key performance

measures in non-Markov OQNs.

2



Jackson OQN’s are remarkably tractable because the vector of steady-state queue lengths (num-

ber in system) has a product-form distribution, just as if the queues were independent M/M/1

queues with the correct arrival rates. However, relatively little is known about the exact steady-

state performance of a GJN. The major theoretical advance for GJN’s more general than Jackson

OQN’s has no doubt been the heavy-traffic limit theory [12, 38, 48] (which did not consider the

flows). However, the practical application of that theory remains challenging, largely because the

different queues in an OQN may have widely varying traffic intensities, with only a few being bot-

tlenecks. The heavy-traffic limits can be extended to that case, as shown by Chen and Mandelbaum

[10, 11], but there remains a need for effective numerical algorithms for computing performance

measures, which properly account for a range of traffic intensities. See [16, 28] for previous algo-

rithms.

This paper is part of our effort to develop a new improved non-parametric decomposition

approach based on the indices of dispersion for counts (IDC) of the stationary flows [49, 50, 51, 53],

which have similar computational efficiency and ease of use as QNA in [46].

As in §4.5 of [13], the IDC is a scaled version of the variance-time function; i.e., given a stationary

arrival counting process A(t) with rate λ, the IDC is the function

Ia(t) ≡
Var(A(t))

E[A(t)]
=

Var(A(t))

λt
, t ≥ 0. (1.1)

The second equation follows from the fact that E[A(t)] = λt for stationary point process A(t). The

IDC measures the variability over time, independent of the rate λ.

Even though the IDC is a partial characterization of an arrival process, defined directly in

terms of the rate and variance-time curve of the arrival process, it characterizes the variability of

an arrival process much more completely than the usual variability parameters, such as the variance

of a single interarrival time or the lag-1 correlation. Indeed, for a renewal process, the inter-renewal

time distribution can be calculated from the rate and the IDC of its stationary (or equilibrium)

renewal process, and vise versa. Thus, the GI/GI/1 model, involving only renewal processes, is

fully specified by the rate and IDC for both the arrival and service stationary counting processes;

see [52]. Moreover, Theorem 5 of [50] shows that the new robust queueing algorithm based on

indices of dispersion for the general G/G/1 queue is asymptotically exact in both light and heavy

traffic limits.
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1.3 New Theory Supporting the RQNA

Given the strong motivation for working with the IDC, the major challenge is to develop an effective

approximation for the IDC of each internal arrival process within the OQN. Our main idea can

perhaps best be seen by first considering a feed-forward GJN. Then the performance at each queue

depends on the full model only through the service-time distribution at that queue and the arrival

process to that queue. However, that arrival process tends to be relatively complicated, primarily

because it tends to be non-renewal and depends on all the model parameters of the previous queues.

In response, we partially characterize the stochastic properties of each stationary arrival process

by its rate and IDC. For a feed-forward GJN, it is relatively easy to approximate the IDC of the

arrival process at each queue, because the service times are independent of the arrival process.

We can rely on the heavy-traffic limit for the stationary departure process in [49]. Based on that

heavy-traffic limit, in (74) of [49] we developed an approximation of the IDC of a departure process

by a convex combination of the IDCs of the arrival and service processes as

Id(t) ≈ wρ(t)Ia(t) + (1− wρ(t))Is(t), t ≥ 0, (1.2)

where the weight wρ(t) has closed-form expression.

The approximation of the IDC in a GJN with customer feedback is considerably more difficult,

because of the correlation between the service times and the arrival processes. To develop such

an approximation, we rely on the heavy-traffic limits for the flows established in this paper. For

the full RQNA algorithm, including the extension to non-feed-forward OQN’s, see [51, 53]. The

heavy-traffic limits here in the single-bottleneck special case are used in the RQNA algorithm. This

limit is exceptionally tractable because they can be expressed in terms of one-dimensional reflected

Brownian motion (RBM). The IDC in the heavy-traffic limit can then be calculated in closed-form

by applying Corollary 5.1 of [49].

1.4 Organization

The rest of the paper is organized as follows. We specify the model and establish the existence and

convergence results (as time increases) for the stationary flows of a GJN in §2. We establish the

main heavy-traffic limit for the stationary flows in §3. In §4 we treat the special case of a GJN with

only one bottleneck queue, which is useful because it involves only one-dimensional RBM. We show

that the approximation technique of feedback elimination discussed in §III of [46] is asymptotically

correct in the HT limit. In §5, we demonstrate how the HT limits in the present paper can be
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applied to approximate the IDCs of the stationary flows in a GJN. Finally, we draw conclusions in

§6. In the appendix we give an additional literature review on (i) heavy traffic and (ii) the stability

of GJN’s.

2 The Stationary Flows in an Open Queueing Network

In this section, we establish the existence of unique stationary flows in a GJN and convergence to

those stationary flows as time increases. These issues are complicated, but they are manageable

under appropriate regularity conditions, in particular, if we construct a Markov process representa-

tion and make assumptions implying Harris recurrence as in §5 of [14], Chapter VII of [1], [23] and

references there. In §2.1 we specify the model. Then in §2.2 we make assumptions implying the

Harris recurrence and establish the existence, uniqueness and convergence result for the stationary

flows.

2.1 The OQN Model

We start by formulating a general OQN model that goes beyond the assumptions we make to

establish Harris recurrence. Let there be K single-server stations with unlimited waiting space and

the first-come first-served (FCFS) discipline. We assume that the system starts empty at time 0,

but that could be relaxed. We associate with each station i an external arrival point process A0,i,

which satisfies A0,i(t) < ∞ with probability 1 for any t. Let A0 ≡ (A0,1, . . . , A0,K) denote the

vector of all external arrival processes.

Let {V l
i : l ≥ 1} denote the sequence of service times at station i and define the (uninterrupted)

service point (counting) process as

Si(t) = max
n≥0

{

n
∑

l=1

V l
i ≤ t

}

, t ≥ 0,

which we also assume to have finite sample path with probability 1.

In addition to external arrivals, departures from each station may be routed to other queues or

out of the network. To specify the general routing (or splitting) process, let θli ∈ {0, 1}K indicate

the routing vector of the l-th departure from queue i. Following standard conventions, at most one

component of θli is 1, and θ
l
i = ej indicates that the l-th departure from the i-th queue is routed to

station j for 1 ≤ j ≤ K, where ej is the j-th standard basis of the Euclidean space R
K . The case

θli = 0 indicates that the l-th departure from the i-th queue exits the system. The distbution of θli

is specified in Assumption 2.1. Finally, we define the routing decisions up to the n-th decision at
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station i by

Θi(n) ≡ (Θi,1(n), . . . ,Θi,K(n)) ≡
n
∑

l=1

θli,

and let Θi,0(n) denote the number of among the first n departing customers that exit the system

from station i.

For the internal arrival flows, let Ai,j be the customer flow from i to j. Each internal arrival

flow Ai,j splits from the departure process Di according to the splitting decision process Θi,j, so

that

Ai,j(t) = Θi,j(Di(t)), t ≥ 0, 1 ≤ i ≤ K, 0 ≤ j ≤ K. (2.1)

Let Aint(t) ≡ (Ai,j(t) : 1 ≤ i, j ≤ K) denote the matrix of all internal arrival flows.

For total arrival process at station i, let

Ai(t) = A0,i(t) +

K
∑

j=1

Aj,i(t)

and let A(t) ≡ (A1(t), . . . , AK(t)) be the vector of total arrival processes.

As observed in (7.1) and (7.2) in §7.2 of [10], the queue-length and departure processes at each

queue are jointly uniquely characterized by the flow balance equations

Qi(t) = Qi(0) +Ai(t)−Di(t)) and Di(t) = Si(Bi(t)), t ≥ 0, 1 ≤ i ≤ K, (2.2)

where Bi(t) is the cumulative busy time of server i up to time t, which by work conservation satisfies

Bi(t) =

∫ t

0
1Qi(u)>0du, t ≥ 0, (2.3)

where 1A is the indicator function with 1A = 1 on the set A and 0 elsewhere.

For the flow exiting the queueing system, let Dext,i denote the flow that exits the system from

station i. Hence

Dext,i(t) =

Di(t)
∑

l=1

θli,0 = Θi,0(Di(t)), t ≥ 0.

Finally, let Dext(t) ≡ (Dext,1(t), . . . ,Dext,K(t)) be the vector of external departure processes.

2.2 Existence, Uniqueness and Convergence Via Harris Recurrence

In this section we establish the existence of unique stationary flows and convergence to them as

time increases for any initial state. Toward that end, we make three assumptions, the first one

being
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Assumption 2.1 We assume that the OQN is a GJN, in particular:

(i) The K external arrival processes are mutually independent (possibly null) renewal processes

with finite rates λi, where the interarrival times have finite squared coefficient of variation

(scv, variance divided by the square of the mean) c2a0,i for 1 ≤ i ≤ K.

(ii) The service times come from K mutually independent sequences of i.i.d. random variables

with means 1/µi, 0 < µi <∞, and finite scv c2si for 1 ≤ i ≤ K.

(iii) The routing is Markovian with a substochastic K ×K routing matrix P = (pi,j)1≤i,j≤K such

that pi,j ≥ 0, pi,0 ≡ 1 −
∑K

j=1 pi,j ≥ 0 and I − P ′ is invertible; For each 1 ≤ i ≤ K, the

sequence {θ1i , θ
2
i , . . . } is i.i.d. with P (θli = ej) = pi,j and P (θli = 0) = pi,0 ≡ 1−

∑K
j=1 pi,j.

(iv) The arrival, service and routing processes are mutually independent.

For completeness, we also assume that the network starts empty at time 0, so that no customer is in

service or waiting, but this can be relaxed. The condition of finite scv’s is used in the convergence of

the distribution and in the next section; for relaxed assumptions, see the discussions below Theorem

2.1 and Theorem 2.2. Note that I−P ′ is invertible if we assume that all customers eventually leave

the system; see [12] or Theorem 3.2.1 of [34].

Let U(t) denote the vector of residual external arrival times at time t; let V (t) be the vector of

residual service times at time t, set to 0 when the server is idle; and let the system state process be

S(t) ≡ (Q(t), U(t), V (t)), t ≥ 0. (2.4)

Under our assumption, the initial condition is specified by S(0) = (0, 0, 0). The system state

process S in (2.4) is an element of the function space D([0,∞),R3K) of real-valued functions on

the half-line [0,∞) taking values in the Euclidean space R
3K that are right-continuous with left

limits. As stated in §2.2 of [14], which draws on [20], Assumption 2.1 implies some basic regularity

conditions.

Theorem 2.1 (strong Markov process) Under Asusmption 2.1, the system state process S is

a strong Markov process.

We remark that Assumption 2.1 is stronger than needed to ensure the strong Markov property.

Since S is a piecewise-deterministic Markov process (defined in §3 of [20]), §4 of [20] showed that if
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the expected number of jumps on any interval [0, t] is finite, then the process possesses the strong

Markov property.

We now state the stability assumption in the sense of the traffic intensities. Let λ0 = (λ0,1, . . . , λ0,K)

be the external arrival rate vector and let λ = (λ1, . . . , λK) denote the vector of total arrival rate.

We obtain λ by solving the traffic-rate equations

λi = λ0,i +
K
∑

j=1

λj,i = λ0,i +
K
∑

i=1

λjpj,i, (2.5)

or, in matrix form,

(I − P ′)λ = λ0,

where I denotes the K ×K identity matrix and P ′ is the transpose of P . Let λi,j ≡ λipi,j be the

rate of the internal arrival flow from i to j. Finally, let ρi ≡ λi/µi be the traffic intensity at station

i.

Assumption 2.2 The traffic intensities satisfy maxi ρi < 1.

Following convention, we say that the OQN is stable if the system state process in (2.4) is stable,

i.e., if there exists a distribution π on Z
K
+ ×R

2K
+ for S(0) such that S(t) has that same distribution

π for all t ≥ 0. Here Z+ denote non-negative integers and R+ denote non-negative real numbers.

We now state the additional assumption to ensure the uniqueness of the stationary distribution π

and the convergence of the distribution of S(t) to π.

Assumption 2.3 Each non-null external arrival process has an interarrival-time distribution with

a density that is positive for almost all t.

Our assumption here implies the key assumption (A3) in both [14] and [15] that the distribution

is unbounded and spread out, see also [14] and Chapter VII of [1]. This clearly avoids periodic

behavior associated with the lattice case, but otherwise it is not restrictive for practical modeling.

The following theorem follows from Theorem 2 of [23] or Theorem 5.1 of [14] or Theorem 6.2

of [15], which extend earlier work on stability for OQNs in [5], [41] and [22].

Theorem 2.2 (existence, uniqueness and convergence) Under Assumptions 2.1-2.3, the sys-

tem state stochastic process S in (2.4) is a positive Harris recurrent Markov process. There exists a

unique stationary distribution π and for every initial condition and the distribution of S(t) converges

to π as t→ ∞.
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If a strong Markov process is Harris recurrent, the existence of a stationary measure (unique up

to a constant multiple) is shown in the early [2], which in turn draws on [25]; see also [24]. (More

precisely, they assume that the process is a Hunt process). If the measure is finite, it can be

normalized to a probability measure and the process is called positive Harris recurrent. It is shown

in [14] that S is positive Harris recurrent, hence the existence and uniqueness of a stationary

distribution. [14] assumed Assumption 2.1, Assumption 2.2 and a weaker version of Assumption

2.3: the interarrival times are unbounded, spreadout and have finite mean, and the service times

have finite mean; see (1.2)-(1.5) there. The convergence in distribution follows from the convergence

in total variation norm in Theorem 6.2 of [15], where they assumed finite p+ 1 moment for p ≥ 1.

Since our primary focus is the application to Robust Queue using the variance function, we content

with the assumption of finite second moment, as in Assumption 2.1.

We now state the strong implications of Theorem 2.2. For that, we consider the system that

starts at time s. For the system state processes, let Qs(t) = Q(s + t), Us(t) = U(s + t) and

Vs(t) = V (s + t), so that Ss ≡ (Qs, Us, Vs) is the system state process with initial condition S(s).

Let ⇒ denote weak convergence. Theorem 2.2 implies that

Corollary 2.1 Under Assumptions 2.1-2.3, we have

Ss ⇒ Se ≡ (Qe, Ue, Ve), as s→ ∞,

where Se is the system state process with initial condition Se(0) distributed as the stationary distri-

bution π and ⇒ denote weak convergence in each coordinate.

Proof. From Theorem 2.2, we have the convergence of one-dimensional distribution

Ss(t1) ⇒ Se(t1), for all t1 ≥ 0.

To extend the convergence to any finite-dimensional distribution, we utilize the Markov property

of S(t) in Theorem 2.1. For any t2 = t1 + δ1 > t1, the conditional probability distribution of the

state S(t1), conditioning on the past values up to the time t1, depends only on the current state

Ss(t1). Apply Theorem 2.2 again with initial state Ss(t1), we have

(Ss(t1),Ss(t2)) ⇒ (Se(t1),Se(t2)), for all 0 ≤ t1 < t2.

By induction, the convergence can be extended to any finite-dimensional distribution. The weak

convergence of the process Ss then follows from Theorem 12.6 in [4].
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Now, we turn to the existence of stationary flows. Define the auxiliary cumulative process C,

as in §VI.3 of [1], by

C(t) ≡ (B(t), Y (t)),

where Bi(t) is the cumulative busy times for server i over interval [0, t] and

Yi(t) ≡ µi(t−Bi(t)) (2.6)

is the cumulative idle time of station i, scaled by the service rate µi.

To focus on the flows, we describe the GJN by the aggregate process

M(t) ≡ (S(t), C(t),F(t)),

where

F(t) ≡ (A0(t), Aint(t), A(t), S(t),D(t),Dext(t)) (2.7)

is a vector of cumulative point processes, with the processes defined in §2.1. We refer to F in (2.7)

as the flows. We say that a flow is stationary if it has stationary increments. We refer to [42] and

Chapter 6 of [7] for background on stationary stochastic processes and ergodicity.

For the flows, let A0,s(t) = A0(t + s) − A0(s) be the external arrival counting process that

starts at time s. Similarly, let Aint,s(t) = Aint(t + s) − Aint(s), As(t) = A(t + s) − A(s),Ds(t) =

D(t+s)−D(s),Dext,s(t) = Dext(t+s)−Dext(s), Bs(t) = B(t+s)−B(s) and Ys(t) = Y (t+s)−Y (s)

be the corresponding processes that starts at time s. The service processes Ss(t) are more subtly

defined by

Si,s(t) ≡ Si(Bi(s) + t)− Si(Bi(s)), for i = 1, 2, . . . ,K, (2.8)

which is a vector of delayed renewal processes with first intervals distributed as V (s), the vector

residual service time and at system time s (its i-th component is also the residual service time of

the process Si at time Bi(s)). This definition of the service process allow us to write the departure

process as a composition of the two processes Ss and Bs via

Ds(t) ≡ D(s+ t)−D(s) = (S ⊙B)(s + t)− (S ⊙B)(s) = (Ss ⊙Bs)(t), t ≥ 0,

where ⊙ is understood as component-wise composition, i.e. Di,s = Si,s ◦ Bi,s for all i. Finally, let

Cs ≡ (Bs, Ys) and Fs ≡ (A0,s, Aint,s, As, Ss,Ds,Dext,s).
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Theorem 2.3 (Existence and convergence of the stationary flows) Under Assumptions 2.1-

2.3, there exists unique stationary and ergodic cumulative processes (with stationary increments

satisfying the LLN)

Ce ≡ (Be, Ye), Fe ≡ (A0,e, Aint,e, Ae, Se,De,Dext,e)

and a unique stationary process

Se ≡ (Qe, Ue, Ve),

such that, as s→ ∞,

Ms ≡ (Ss, Cs,Fs) ⇒ (Se, Ce,Fe) ≡ Me,

where ⇒ denote weak convergence in each coordinate. Furthermore, A0,e is the vector of equilibrium

external arrival renewal processes, Se is a vector of delayed renewal process with first interval

distributed as Ve(0).

Proof. By Corollary 2.1 and the definition of Ss in (2.8), the convergence of Vs(0) = V (s)

implies the convergence of Ss to Se, with the later one being a delayed renewal process with first

interval distributed as Ve(0) and other intervals distributed as a generic service time. Similarly, the

components of A0,s are delayed renewal process with the first interval distributed as the components

of Us(0), which is converging to the vector A0,e of the equilibrium external arrival processes. By

the convergence of Ss, we have as s→ ∞

(Qs, Us, Vs, A0,s, Ss) ⇒ (Qe, Ue, Ve, A0,e, Se) . (2.9)

We now turn our focus to the cumulative busy time process defined in (2.3). Let h : R+ → R

be a continuous function defined by h(t) = t ∧ 1 ≡ min{t, 1}, t ≥ 0. Then the busy period process

can be written as

Bi,s(t) =

∫ s+t

s

1Qi(u)>0du =

∫ t

0
1Qi,s(u)>0du =

∫ t

0
h(Qi,s(u))du, for 1 ≤ i ≤ K. (2.10)

The busy-period process thus has stationary increments because it is a measurable integrable func-

tion of Qi,e, which is itself stationary. (Recall that general measurable functions of stationary

process are stationary; see Proposition 6.6 of [7].) Let C(R+,R) denote the space of bounded con-

tinuous functions from R+ to R, equipped with uniform norm. The mapping defined in (2.10) is

a continuous mapping from D to C(R+,R); see Theorem 11.5.1 in [48]. The continuous mapping
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theorem then asserts that Bs ⇒ Be, where Bi,e(t) ≡
∫ t

0 h(Qi,e(u))du for t ≥ 0 and all i. For the

cumulative idle-time process Yi,s(t) ≡ Yi(t+ s)− Yi(s) = µi(t−Bi,s(t)), we note that t and Bi,s(t)

have continuous sample path, so that the linear function in (2.6) is continuous. Hence, we can

extend the convergence as s→ ∞ in (2.9) to

(Qs, Us, Vs, A0,s, Ss, Bs, Ys) ⇒ (Qe, Ue, Ve, A0,e, Se, Be, Ye) .

The convergence established so far now implies associated convergence for the flows because

the flow process Fs is determined by the state process Ss. To make the connection, we introduce

random vectors (Ts, Js), where Ts is the time of the first jump in some coordinate of Ss and Js is

the type of jump (external arrival to queue i, flow from queue i to queue j, or external departure

from queue i), defined by

Ts ≡ min {T a
s , T

d
s }, where

T a
s ≡ min {Ui,s(0) : 1 ≤ i ≤ K} and

T d
s ≡ min {Vi,s(0) : Qi,s(0) > 0, 1 ≤ i ≤ K}.

For the types of the jumps, Js = (0, i), (i, j) or (i, 0) if the minimum in the definition of Ts is

attained, respectively, by T a
s with index i, T d

s with index i and the routing is to j, T d
s with index i

and the routing is to outside the network. Note that the type is well defined because Assumption

2.3 implies that P (T a
s = T d

s ) = 0.

We observe that the we can regard (T, J) : (s,Ss) → R × N , where N is a finite set, as a

continuous map, so that (Ts, Js) ⇒ (Te, Je) as s → ∞. We also observe that Ts is a stopping time

with respect to the strong Markov process {Ss(t) : t ≥ 0}, so that we can repeat the construction

for all successive jumps after time Ts.

In this way, we get convergence of the process of successive jump times and jump types (indexed

by k)

{(Tk,s, Jk,s) : k ≥ 1} ⇒ {(Tk,e, Jk,e) : k ≥ 1} in (R×N )∞ as s→ ∞.

That in turn implies convergence for the associated flow counting processes by applying the inverse

map in §13.6 of [48] as stated. For example, we can write

Ns(t) ≡ min {k ≥ 0 : T1,s + · · ·+ Tk,s ≤ t} and

Ai,j,s(t) =

Ns(t)
∑

k=1

1Jk,s=(i,j).
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3 Heavy-Traffic Limit Theorems for the Stationary Processes

To set the stage for our heavy-traffic limits, in §3.1 we present a centered representation of the

flows. This representation parallels those used in [10, 11, 14, 38], but here we focus on the flows.

Then in §3.2 we establish our main heavy-traffic limit.

3.1 Representation of the Centered Stationary Flows

Recall that the external arrival rate vector is λ0, so the total arrival rates are given by λ =

(I − P ′)−1λ0 as in (2.5). For service, we start with rate-1 base service process S0
i for station i and

scale it by µi so that the service process at station i is denoted by Si ≡ S0
i ◦µie with e(t) = t being

the identity function. Let the center processes be defined by

Ã0,i = A0,i − λ0,ie, Ãi = Ai − λie, D̃i = Di − λie,

Θ̃j,i = Θj,i ◦ (Sj ◦Bj)− pj,iSj ◦Bj , and S̃i = Si ◦Bi − µiBi. (3.1)

Furthermore, let X(t) be the net-input process, allowing the service to run continuously, defined as

X ≡ Q(t)− (I − P ′)Y,

where Y is defined in (2.6).

The next theorem expresses the queue length processes, the centered total arrival and the

centered departure flows in terms of the centered external arrival, service and routing processes.

Let ΨP be the K-dimensional reflection map with reflection matrix P ; e.g., see Chapter 14 of [48].

Theorem 3.1 (Centered representation) The net-input process can be written as

X = Q(0) + Ã0 + Θ̃′1− (I − P ′)S̃ + (λ0 − (I − P ′)µ)e, (3.2)

while the queue length process can be written as

Q = X + (I − P ′)Y = ΨI−P ′(X), (3.3)

where ΨI−P ′ is the K-dimensional reflection mapping with reflection matrix I − P ′. In addition,

the centered total arrival and departure processes can be written as

Ã = P ′(I − P ′)−1 (Q(0)−Q) + (I − P ′)−1
(

Ã0 + Θ̃′1
)

,

D̃ = (I − P ′)−1
(

Q(0)−Q+ Ã0 + Θ̃′1
)

,

where the centered processes are defined in (3.1).
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Proof. With the standard flow conservation law, we can write the queue length process in terms

of the centered processes

Qi = Qi(0) +Ai − Si ◦Bi

= Qi(0) +A0i +

K
∑

j=1

Θji(Sj ◦Bj)− Si ◦Bi

= Qi(0) + (A0i − λ0ie) +
K
∑

j=1

(Θji(Sj ◦Bj)− pjiSj ◦Bj)

−
K
∑

j=1

(δji − pji) (Sj ◦Bj − µjBj) +

K
∑

j=1

(δji − pji)µj (e−Bj)

+ λ0ie−
K
∑

j=1

(δji − pji)µje.

Because Yi ≡ µi (t−Bi) is the cumulative idle time, we can express Q in matrix form as

Q = Q(0) +A0 + Θ̃′1− (I − P ′)S̃ + (I − P ′)Y + (λ0 − (I − P ′)µ)e.

Furthermore, we have Q = X + (I −P ′)Y. Because Y is non-decreasing, Y (0) = 0 and Yi increases

only when Qi = 0, (3.3) follows from the usual reflection argument.

Similarly, we can re-write the overall arrival process in terms of the centered processes

Ai = A0i +

K
∑

j=1

Θji(Sj ◦Bj)

= (A0i − λ0ie) +
K
∑

j=1

(Θji(Sj ◦Bj)− pjiSj ◦Bj) +
K
∑

j=1

pji (Sj ◦Bj − µjBj)

−
K
∑

j=1

pjiµj (e−Bj) + λ0ie+

K
∑

j=1

pjiµje

or, in matrix notation, by

A = Ã0 + Θ̃′1+ P ′S̃ − P ′Y + (λ0 + P ′µ)e.

By (3.3), we have

−P ′Y = P ′(I − P ′)−1(X −Q)

= P ′(I − P ′)−1
(

Q(0) −Q+ Ã0 + Θ̃′1+ λ0e
)

− P ′S̃ − P ′µe.

Substituting into the matrix form of the arrival process, we have

A = Ã0 + Θ̃′1+ P ′S̃ − P ′Y + (λ0 + P ′µ)e
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= Ã0 + Θ̃′1+ P ′S̃ + (λ0 + P ′µ)e

+P ′(I − P ′)−1
(

Q(0)−Q+ Ã0 + Θ̃′1+ λ0e
)

− P ′S̃ − P ′µe

= P ′(I − P ′)−1 (Q(0)−Q) + (I − P ′)−1
(

Ã0 + Θ̃′1
)

+ λe. (3.4)

Finally, note that D = Q(0) +A−Q.

Remark 3.1 (Stationary flows) Note that the representation in Theorem 3.1 does not impose

any assumption on the initial condition of the open queueing network. As ensured by Theorem 2.3,

there exists a stationary distribution π such that the flows are stationary if S(0) ∼ π. With this

specific initial condition, Theorem 3.1 applies to the stationary flows.

3.2 Heavy-Traffic Limit with Any Subset of Bottlenecks

Throughout this section, we assume that the system is stationary in the sense of Theorem 2.3

and we suppress the subscript e to simplify the notation. We let an arbitrary pre-selected subset

H of the K stations be pushed into the HT limit while other stations stay unsaturated. Two

important special cases are: (i) |H| = K so that all stations approaches HT at the same time,

which corresponds to the original case in [38]; and (ii) |H| = 1 so that only one station is in HT.

This second case is appealing for applications because the RBM is only one-dimensional. We focus

on it in detail later.

To start, consider a family of systems indexed by ρ. Let the ρ-dependent service rates be

µi,ρ ≡ λi/(ciρ), 1 ≤ i ≤ K, (3.5)

and set ci = 1 for all i ∈ H and ci < 1 for all i /∈ H. Equivalently, we have ρi = ciρ. For the

pre-limit systems we have the same representation of the flows as described in Theorem 3.1, with

the only exception that µi in (3.2) is now replaced by the ρ-dependent version in (3.5).

We now define the HT-scaled processes. As in the usual HT scaling, we scale time by (1− ρ)−2

and scale space by (1− ρ). Thus we make the definitions

A∗
0,i,ρ(t) ≡ (1− ρ)[A0,i((1− ρ)−2t)− (1− ρ)−2λ0,it],

A∗
i,ρ(t) ≡ (1− ρ)[Ai,ρ((1− ρ)−2t)− (1− ρ)−2λit],

S∗
i,ρ(t) ≡ (1− ρ)[Si,ρ((1 − ρ)−2t)− (1− ρ)−2µi,ρt],

D∗
i,ρ(t) ≡ (1− ρ)[Di,ρ((1− ρ)−2t)− (1− ρ)−2λit],

D∗
ext,i,ρ(t) ≡ (1− ρ)[Dext,i,ρ((1 − ρ)−2t)− (1− ρ)−2λipi,0t],
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A∗
i,j,ρ(t) ≡ (1− ρ)[Ai,j,ρ((1− ρ)−2t)− (1− ρ)−2λipi,jt],

Θ∗
i,j,ρ(t) ≡ (1− ρ)





⌊(1−ρ)−2t⌋
∑

l=1

θli,j − pi,j(1− ρ)−2t



 ,

Q∗
i,ρ(t) ≡ (1− ρ)Qi,ρ((1− ρ)−2t), for 1 ≤ i, j ≤ K. (3.6)

Furthermore, let Θ∗
i,ρ ≡ (Θ∗

i,j,ρ : 1 ≤ j ≤ K); let Θ∗
ext,ρ ≡ (Θ∗

i,0,ρ : 1 ≤ i ≤ K); and let F∗
ρ collects

all the scaled and centered flows, defined as

F∗
ρ (t) ≡ (A∗

0,ρ(t), A
∗
int,ρ(t), A

∗
ρ(t), S

∗
ρ(t),D

∗
ρ(t),D

∗
ext,ρ(t)). (3.7)

Finally, let Z∗
i,ρ(t) ≡ (1 − ρ)Zi,ρ((1 − ρ)2t) denote the HT scaled workload process at station i in

the ρ-th system.

Before presenting the HT limit of the systems, we introduce useful notation by discussing a

modified system, that is asymptotically equivalent in heavy-traffic.

Remark 3.2 (Equivalent network) The system with bottleneck stations designated by H is

asymptotically equivalent to a reduced H-station network, where all non-bottleneck queues have

zero service times. Equivalently, the non-bottleneck queues can be viewed as instantaneous switches.

To obtain the rates and routing matrix in the equivalent network, we let IA denote the |A| × |A|

identity matrix for any index set A; let PH be the |H|×|H| submatrix of the original routing matrix

P corresponding to the rows and columns in H; let PHc be the submatrix of P corresponding to

Hc; and let PHc,H collect the routing probabilities from stations in Hc to the ones in H, similarly,

define PH,Hc . Now the new routing matrix for the bottleneck stations, denoted by P̂H, is

P̂H = PH + PH,Hc (IHc − PHc)−1 PHc,H. (3.8)

Note that the inverse (IHc − PHc)−1 appearing in (3.8) is the fundamental matrix associated

with the transient finite Markov chain with transition matrix PHc . If we let P̂Hc,H denote the

matrix of the probabilities that the first visit to a bottleneck queue of an external arrival at a

non-bottleneck queue i ∈ Hc is at j ∈ H, then we have

P̂Hc,H =
∞
∑

l=0

(PHc)lPHc,H = (IHc − PHc)−1 PHc,H. (3.9)

Similarly, for the new external arrival rate λ̂0,H, we write

λ̂0,H = λ0,H + P̂ ′
Hc,Hλ0,Hc = λ0,H + P ′

Hc,H

(

IHc − P ′
Hc

)−1
λ0,Hc , (3.10)
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where λ0,A denotes the column vector of the entries in λ0 that corresponds to the index set A.

Since the total arrival rate in the modified system remains the same as the original system, we have

λ̂H = (I − P̂ ′
H)

−1λ̂0,H = λH.

To simplify notation, we suppress the subscript used in the identity matrix I in the rest of the

paper whenever there is no confusion on its dimension.

The following theorem states the joint heavy-traffic limit of the queue length process, the

workload and waiting time processes, the splitting-decision process and all the flows. Combining

conclusion (i) and (iii)-(v), we obtain explicit expression of the heavy-traffic limit of scaled and

centered flows F∗
ρ .

Theorem 3.2 (Heavy-traffic FCLT) Under Assumption 2.1-2.3, consider a family of open queue-

ing networks in stationarity, indexed by ρ. Let H ⊂ {1, 2, . . . ,K} denote the index of the bottleneck

stations: Assume that µi,ρ = λi/(ciρ) for 1 ≤ i ≤ K and set ci = 1 for all i ∈ H and ci < 1 for all

i /∈ H. Then, as ρ ↑ 1,

(Q∗
ρ, Z

∗
ρ ,Θ

∗
ρ,Θ

∗
ext,ρ,F

∗
ρ ) ⇒ (Q∗, Z∗,Θ∗,Θ∗

ext,F
∗), (3.11)

where:

(i) For 0 ≤ i ≤ K, A∗
0,i = ca0,iBa0,i ◦λ0,ie and S

∗
i = csiBsi ◦λie, where Ba0,i and Bsi are standard

Brownian motions. (Θ∗,Θ∗
ext) is a zero-drift (K + 1)-dimensional Brownian motion with

covariance matrix Σi = (σ2jk : 0 ≤ j, k ≤ K), where σ2j,j = pi,j(1−pi,j)λi and σ
2
j,k = −pi,jpi,kλi

for 0 ≤ i 6= j ≤ K. Furthermore, Ba0,i , Bsi and (Θ∗,Θ∗
ext) are mutually independent,

1 ≤ i ≤ K.

(ii) The limiting queue length process Q∗ consists of two parts. Q∗
Hc ≡ 0 and Q∗

H is a stationary

|H|-dimensional RBM

Q∗
H ≡ ψH

(

X̂∗
H

)

,

where ψH is the |H|-dimensional refelction map with reflection matrix RH ≡ I − P̂H and X̂∗
H

is a |H|-dimensional Brownian motion

X̂∗
H = Q∗

H(0) +
(

e′H + P̂ ′
Hc,He

′
Hc

)

(

A∗
0 + (Θ∗)′ 1

)

− (I − P̂H)S
∗
H − λ̂0,He (3.12)

where eA collects columns in the K-dimensional identity matrix I that corresponds to index set

A; P̂H, P̂Hc,H and λ̂0,H are defined Remark 3.2; and Q∗
H(0) has unique stationary distribution

of the stationary RBM.
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(iii) The limiting total arrival process A∗ is specified by

A∗ = (I − P ′)−1
(

A∗
0 + (Θ∗)′ 1

)

+ P ′(I − P ′)−1eH (Q∗
H(0)−Q∗

H) .

(iv) The limiting stationary departure process D∗ is specified as

D∗ = (I − P ′)−1
(

Q∗(0)−Q∗ +A∗
0 + (Θ∗)′ 1

)

.

In particular, D∗
Hc = Q∗

Hc +A∗
Hc −Q∗

Hc(0) = A∗
Hc .

(v) The limiting internal arrival flow A∗
i,j and external departure flow D∗

ext,i can be expressed as

A∗
i,j = pi,jD

∗
i +Θ∗

i,j ◦ λie, and D∗
ext,i = pi,0D

∗
i +Θ∗

i,0 ◦ λie, for 1 ≤ i, j ≤ K.

(vi) The limiting workload process is Z∗
i = λ−1

i Q∗
i .

Proof. Much of the statement follows from [10, 11] and [8]. First, the HT limit for the state

process with an arbitrary subset H of critically loaded stations follows from [10, 11]. Second, the

HT limit for the steady-state queue length follows from [8]. The papers [23] and [8] do not consider

non-bottleneck stations, but their arguments extend to that more general setting. (See Remark

3.3 below for discussion.) Because our basic model data involves only single arrival and service

processes, with only the parameters being scaled, we do not need Assumption (A4) in [8]. We

subsequently establish the heavy-traffic limits for the flows. We do so by exploiting the continuous

mapping theorem with the direct representations of the stationary flows that we have established.

To carry out our proof, we work with the centered representation in Theorem 3.1, using the

HT-scaling in (3.6). Thus, the HT-scaled net-input process is

X∗
ρ = Q∗

ρ(0) +A∗
0,ρ +

(

Θ̃∗
ρ

)′
1− (I − P ′)S̃∗

ρ + (λ0 − (I − P ′)µρ)(1 − ρ)−1e, (3.13)

where S̃∗
i,ρ ≡ S∗

i,ρ ◦
¯̄Bi,ρ,

¯̄Bi,ρ = (1 − ρ)2Bi,ρ ◦ (1 − ρ)−2e, Θ̃∗
ρ is a matrix with its ij-th entry being

Θ∗
ij,ρ ◦ S ◦Bi,ρ and S ◦Bρ is a vector of length K with S ◦Bi,ρ ≡ (1 − ρ)2Si,ρ ◦ Bi,ρ ◦ (1 − ρ)−2e.

The HT-scaled queue length can be written as

Q∗
ρ = X∗

ρ + (I − P ′)Y ∗
ρ .

We now re-write Q∗
H,ρ and Q∗

Hc,ρ in block-wise matrix representation as follows

Q∗
H,ρ = X∗

H,ρ + (I − P ′
H,H)Y

∗
H,ρ − P ′

Hc,HY
∗
Hc,ρ (3.14)
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Q∗
Hc,ρ = X∗

Hc,ρ + (I − P ′
Hc,Hc)Y ∗

Hc,ρ − P ′
H,HcY ∗

H,ρ (3.15)

Solving for Y ∗
Hc,ρ in (3.15) and substituting into (3.14), we have

Q∗
H,ρ = X̂∗

H,ρ + (I − P̂ ′
H)Y

∗
H,ρ, (3.16)

where

X̂∗
H,ρ = X∗

H,ρ − P ′
Hc,H(I − P ′

Hc,Hc)−1(Q∗
Hc,ρ −X∗

Hc,ρ).

Now, we substitute into X̂∗
H,ρ the expression for X∗

ρ from (3.13), in block matrix notation,

leaving a constant η̂ρ in the final deterministic drift term initially unspecified, to obtain

X̂∗
H,ρ = Q∗

H,ρ(0) +
(

e′H + P ′
Hc,H(I − P ′

Hc,Hc)−1
)

(

A∗
0,Hc,ρ + (Θ̃∗

ρ)
′1
)

+ (I − P̂ ′
H)S̃

∗
H,ρ

+ P ′
Hc,H(I − P ′

Hc,Hc)−1(Q∗
Hc,ρ(0)−Q∗

Hc,ρ) + η̂ρ(1− ρ)−1e. (3.17)

Now we derive the drift term η̂ρ. To start, let

ηρ = λ0 − (I − P ′)µρ.

Just like how we treat the HT-scaled queue length process, we can re-write ηρ into blocks

ηH,ρ = λ0,H − (I − P ′
H,H)µH,ρ + P ′

Hc,HµHc,ρ,

ηHc,ρ = λ0,Hc − (I − P ′
Hc,Hc)µHc,ρ + P ′

H,HcµH,ρ.

Hence

η̂ρ ≡ ηH,ρ + P ′
Hc,H(I − P ′

Hc,Hc)−1ηHc,ρ

= λ0,H + P ′
Hc,H(I − P ′

Hc,Hc)−1λ0,Hc − (I − P̂ ′
H)µH,ρ. (3.18)

Note that the traffic-rate equation can be written as

λ0,H = (I − P ′
H,H)λH − P ′

Hc,HλHc ,

λ0,Hc = (I − P ′
Hc,Hc)λHc − P ′

H,HcλH.

Substitute both λ0,H and λ0,Hc into (3.18), we have

η̂ρ = (I − P̂ ′
H)(λH − µH,ρ). (3.19)

Now we are ready to deduce the claimed conclusions. First for conclusion (i), most follows

directly from Donsker’s theorem, Theorem 4.3.2 of [48], and the GJN assumptions. The exception

is the limit

(S̃∗
ρ , Θ̃

∗
ρ) ⇒ (S∗,Θ∗)
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which follows from the continuous mapping theorem by a random-time-change argument, as shown

in [11].

For conclusion (ii), we apply [8] to get

(Q∗
H,ρ(0), Q

∗
Hc,ρ(0)) ⇒ (Q∗

H(0), Q
∗
Hc(0)) as ρ ↑ 1.

Then the conclusion (ii) follows from Theorem 6.1 of [11]. In particular, there we see that Q∗
Hc is

null, so that we can treat the two components of (Q∗
H,ρ, Q

∗
Hc,ρ) separately. First, to treat Q∗

H,ρ, we

apply the continuous mapping theorem with the reflection map using the representation above. To

do so, we observe that, as ρ ↑ 1,

(I − P̂H)(λH − µH,ρ)(1 − ρ)−1e→ −(I − P̂H)λHe

and

Q∗
H,ρ = X̂∗

H,ρ + (I − P̂ ′
H)Y

∗
H,ρ = ψ

I−P̂ ′

H

(X̂∗
H,ρ). (3.20)

Conclusions (iii) and (iv) follows from the representations derived in Theorem 3.1, the contin-

uous mapping theorem and the established convergence of the queue length process, the external

arrival processes and the splitting-decision processes. To this end, we only need to apply diffusion

scaling (accelerate time by (1− ρ)−2 and scale space by (1− ρ)) to the representations in Theorem

3.1 so that

A∗
ρ = P ′(I − P ′)−1

(

Q∗
ρ(0)−Q∗

ρ

)

+ (I − P ′)−1
(

A∗
0,ρ + (Θ̃∗

ρ)
′1
)

,

D∗
ρ = (I − P ′)−1

(

Q∗
ρ(0) −Q∗

ρ +A∗
0,ρ + (Θ̃∗

ρ)
′1
)

.

The second expression follows from the fact that Q∗
Hc = 0.

Next, conclusions (v) follows from the limit of the departure process and the FCLT of the

splitting operation in §9.5 of [48]. Finally, the associated limits for the workload can be related to

the limit for the queue length as indicated in [11].

Remark 3.3 (Elaboration on the application of [8]) We apply [8], but it must be extended

to the model with non-bottleneck queues. We do not go through all details because we regard that

step as minor, but we now briefly explain.

First, the main stability condition (A6) there holds in our setting here. The only difference is

the use of ρ instead of n as in [8]. Comparing (3.6) here with (A5) there, for the bottleneck queues,
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the two scaling conventions are connected by setting n = (1 − ρ)−2, ṽni = 0 and β̃ni = −λi/ρ. The

stability condition here is then connected to that in [8] by setting θ0 = −1 in (13) there.

For the moment estimation in their Theorem 3.3, we treat QH and Q∗
Hc separately. For QH,

our representation (3.16) and (3.17) can be mapped to the representations (16) on p.51 of [8], but

with slightly more complicated constant terms associated with the matrix multiplication we have in

(3.17). Noting the expression of the drift term we have in (3.19), the rest of the proof is essentially

the same. For Q∗
Hc , by [10, 11], it is negligible in the sense of Theorem 3.3 of [8]. Theorem 3.4 of [8]

relies only on the moment estimation as in their Theorem 3.3 and the strong Markov property of

S(t) (which they denote as X(t)). Finally, Theorem 3.5 and Theorem 3.2 of [8] remain unchanged.

Remark 3.4 (Functional central limit theorem for the stationary flows) We discuss an im-

portant special case of Theorem 3.2 where we set |H| = 0. In this special case, all stations are

strictly non-bottleneck, i.e., µi,ρ = λ/(κiρ) where κi < 1 for all i. As ρ ↑ 1, the family of systems

converges to a limiting system where the traffic intensity at station i is ρi = κi. Hence, the scaling

used in (3.6) corresponds to the diffusion scaling used in the usual FCLT. The joint FCLT of the

stationary flows can be written as

A∗
0,i = ca0,iBa0,i ◦ λ0,ie,

S∗
i = csiBsi ◦ λie,

A∗ = D∗ = (I − P ′)−1
(

A∗
0 + (Θ∗)′ 1

)

,

A∗
i,j = pi,jD

∗
i +Θ∗

i,j ◦ λie,

D∗
ext,i = pi,0D

∗
i +Θ∗

i,0 ◦ λie, for 1 ≤ i, j ≤ K.

4 Heavy-Traffic Limits with One Bottleneck Queue

In this section we consider the special case in which there is only one bottleneck queue, which is

useful for the IDC approximation and the RQNA applications because it is especially tractable,

involving one-dimensional RBM instead of multi-dimensional RBM.

We start with the easiest special case: when |H| = K = 1, which corresponds to the GI/GI/1

queue with i.i.d. customer feedback. But then we observe that the case of a single-bottleneck

is asymptotically equivalent to that except that the arrival process is generalized to include the

immediate feedback associated with flows to all the other non-bottleneck queues.

As a consequence, we show that it is asymptotically correct in HT for a GJN with a single
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bottleneck queue to eliminate all feedback prior to analysis. Moreover, we show how to quantify

feedback elmination.

4.1 A Single-Server Queue with Customer Feedback

Consider a single-server queue with customer feedback as depicted in Figure 1. Let A0 denote the

renewal external arrival process with rate λ0 and scv c2a0 . Let the feedback probability be p, so that

the effective arrival rate is λ = λ0/(1 − p). Let service times be i.i.d. with rate µρ = λ/ρ and scv

c2s, hence a traffic intensity of ρ. Let A denote the total arrival process; let Aint be the feedback

flow; let S denote the service process; let D be the total departure process; and let Dext denote the

flow that exits the system.

Aext(t)
Queue 1

D(t)

Feedback prob. p

Figure 1: A single-server queue with customer feedback.

Corollary 4.1 (One GI/GI/1 queue with feedback) Under Assumptions in Theorem 3.2, con-

sider a family of single-server queues in stationarity, indexed by ρ. Assume that µρ = λ/ρ. Then,

as ρ ↑ 1,

(Q⋆
ρ,W

⋆
ρ , Z

⋆
ρ ,Θ

⋆
ρ,Θ

⋆
ext,ρ,F

⋆
ρ ) ⇒ (Q⋆,W ⋆, Z⋆,Θ⋆,Θ⋆

ext,F
⋆) in D11,

where F⋆
ρ = (A⋆

0,ρ, A
⋆
ρ, A

⋆
int,ρ, S

⋆
ρ ,D

⋆
ρ,D

⋆
ext,ρ), F

⋆ = (A⋆
0, A

⋆, A⋆
int, S

⋆,D⋆,D⋆
ext) and:

(i) A⋆
0 = ca0Ba0 ◦ λ0e and S⋆ = csBs ◦ λe, where Ba0 and Bs are standard Brownian motions.

(Θ⋆,Θ⋆
ext) is a zero-drift two-dimensional Brownian motion with covariance matrix Σ = (σ2i,j :

1 ≤ i, j ≤ 2), where σ21,1 = σ22,2 = p(1− p)λ and σ21,2 = σ22,1 = −p(1− p)λ, so that

Θ⋆ +Θ⋆
ext = 0.

Furthermore, Ba0 , Bs and (Θ⋆,Θ⋆
ext) are mutually independent.

(ii) The queue length process Q⋆ is a stationary one-dimensional RBM

Q⋆ ≡ Ψ(X⋆) ,

where Ψ is the one-dimensional reflection map and X⋆ is a one-dimensional Brownian motion

X⋆ = Q⋆(0) +A⋆
0 + (Θ⋆ − (1− p)S⋆)− λ0e,

22



where λ0 = (1− p)λ. Furthermore, Q⋆(0) has unique stationary distribution of the stationary

one-dimensional RBM with drift −λ0 and variance

λ0c
2
x ≡ λ0

(

c2a + p+ (1− p)c2s
)

,

so an exponential distribution with mean c2x/2.

(iii) The total arrival process A⋆ can be regarded as a stationary process, having stationary incre-

ments, specified by

A⋆ =
1

1− p
(A⋆

0 +Θ⋆) +
p

1− p
(Q⋆(0)−Q⋆) .

(iv) The stationary total departure process D⋆ is specified as

D⋆ = Q⋆(0) +A⋆ −Q⋆

=
1

1− p

(

Q⋆(0) −Q⋆ +A⋆
0 + (Θ⋆)′ 1

)

(4.1)

(v) The internal arrival flow A⋆
int can be expressed as

A⋆
int = pD⋆ +Θ⋆

and the external departure flow can be expressed as

D⋆
ext = (1− p)D⋆ +Θ⋆

ext = A⋆
0 +Q⋆(0)−Q⋆.

(vi) Z⋆ = λ−1Q⋆ and W ⋆ = Z⋆ ◦ λe.

As observed in Section III of [46], to develop effective parametric-decomposition approximations

for OQNs it is often helpful to preprocess the model data by eliminating immediate feedback for

queues with feedback. The immediate feedback returns the customer to the end of the line. The

approximation step is to put the customer instead back at the head of the line, so as to receive all

its (geometrically random number of) service times at once. Clearly this does not alter the queue

length process and the workload process.

The modified system does not have a feedback flow and the new service time will be the

geometric random sum of the i.i.d. copies of the original service times, let S̃ denote the new service

counting process.

This modification results in a change in the service rate and service scv. The new service rate is

(1−p)µ = (1−p)λ/ρ = λ0/ρ and, by conditional variance formula, the new scv is c̃2s = p+(1−p)c2s .
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Hence, the heavy-traffic limit of the new service process is S̃⋆ ≡ c̃2sB̃s ◦ λ0e. We now claim that

S̃⋆ dist.
= Θ⋆ − (1− p)S⋆. To this end, note that Θ⋆ =

√

p(1− p)BΘ ◦ λe and S⋆ = csBs ◦ λe, where

BΘ, Bs are independent standard Brownian motions (zero drift and unit variance) and λ0 = (1−p)λ.

Hence, from part (ii) of Corollary 4.1, we have

X⋆ dist.
= Q⋆(0) +A⋆

0 + S̃⋆ − λ0e. (4.2)

Let Q̃⋆, Z̃⋆, W̃ ⋆ denote the HT limit of the queue length process, the workload process and the

waiting time process in the modified single-server queue without feedback, having arrival process

A0 and service process S̃. Standard heavy-traffic theory implies that (4.2) is exactly the HT limit

of the net-input process of a single-server queue so that Q̃⋆ dist.
= Q⋆. Hence, we have

Z̃⋆ ≡ λ−1
0 Q̃⋆ dist.

= (1− p)−1λ−1Q⋆ ≡ (1− p)−1Z⋆, and

W̃ ⋆ ≡ Z̃⋆ ◦ λ0e
dist.
= (1− p)−1Z⋆ ◦ λ0e ≡ (1− p)−1W ⋆ ◦ (1− p)e.

Note that the expected number of visit for the same customer is (1 − p)−1. This implies that for

approximating the waiting time and workload in the original system, we need to adjust for per-visit

version by multiplying the values in the modified system by (1− p).

Theorem 4.1 (Eliminating immediate feedback) For the single-server queue with feedback

model in Corollary 4.1, consider the modified single-server queue, where immediate feedback are

eliminated by placing the feedback customers at the head of the line. The joint heavy-traffic limit

for the queue length process, the waiting time process, the workload process and the external de-

parture process in the original model can be expressed in terms of those in the modified system

as

(Q⋆, Z⋆,W ⋆,D⋆
ext)

dist.
= (Q̃⋆, (1− p)Z̃⋆, (1− p)W̃ ⋆ ◦ (1− p)−1e, D̃⋆

ext).

4.2 Networks with One Bottleneck Queue

We now consider the more general special case in which K ≥ 1 but |H| = 1. Without loss of

generality, let H = {h}, so that station h is the only bottleneck station. Then Theorem 3.2 can be

restated as

Corollary 4.2 (Network with one bottleneck queue) Under Assumption 2.1-2.2, consider a

series of GJNs in stationarity, indexed by ρ. Assume that µi,ρ = λi/(κiρ) for 1 ≤ i ≤ K and set

ch = 1 and κi < 1 for all i 6= h. Then, we have

(Q⋆
ρ,W

⋆
ρ , Z

⋆
ρ ,Θ

⋆
ρ,Θ

⋆
ext,ρ,F

⋆
ρ ) ⇒ (Q⋆,W ⋆, Z⋆,Θ⋆,Θ⋆

ext,F
⋆)
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as ρ ↑ 1 in D9K+2K2

, where:

(i) For 0 ≤ i ≤ K, A⋆
0,i = ca0,iBa0,i ◦ λ0,ie and S⋆

i = csiBsi ◦ λie, where Ba0,i and Bsi are

standard Brownian motions. (Θ⋆
i,j : 0 ≤ j ≤ K) is a zero-drift (K+1)-dimensional Brownian

motion with covariance matrix Σi = (σ2j,k : 0 ≤ j, k ≤ K), where σ2j,j = pi,j(1 − pi,j)λi and

σ2j,k = −pi,jpi,kλi for 0 ≤ i 6= j ≤ K. Furthermore, Ba0,i , Bsi and (Θ⋆
i,j : 0 ≤ j ≤ K) are

mutually independent, 1 ≤ i ≤ K.

(ii) The queue length process Q⋆ consists of two parts. Q⋆
i ≡ 0 for i 6= h and Q⋆

h is a stationary

one-dimensional RBM

Q⋆
h ≡ Ψ

(

X̂⋆
h

)

,

where Ψ is the one-dimensional refelction map and X̂⋆
h is the net-input process defined as

X̂⋆
h = Q⋆

h(0) +
(

e′h + P̂ ′
Hc,he

′
Hc

)

(

A⋆
0 + (Θ⋆)′ 1

)

− (1− P̂h)S
⋆
h − λ̂0,he, (4.3)

where eA collects columns in the K-dimensional identity matrix I that corresponds to index

set A; P̂h, P̂Hc,h and λ̂0,h are defined in (3.8), (3.9) and (3.10) with H = {h}, respectively.

Furthermore, Q⋆
h(0) has unique stationary distribution of the stationary RBM.

(iii) The total arrival process A⋆ can be regarded as a stationary process, having stationary incre-

ments, specified by

A⋆ = (I − P ′)−1
(

A⋆
0 + (Θ⋆)′ 1

)

+ P ′(I − P ′)−1eh (Q
⋆
h(0)−Q⋆

h) .

(iv) The stationary departure process D⋆ is specified as

D⋆ = Q⋆(0) +A⋆ −Q⋆ = (I − P ′)−1
(

Q⋆(0)−Q⋆ +A⋆
0 + (Θ⋆)′ 1

)

.

In particular,

D⋆
Hc = Q⋆

Hc +A⋆
Hc −Q⋆

Hc(0) = A⋆
Hc .

(v) The internal arrival flow A⋆
i,j can be expressed as

A⋆
i,j = pi,jD

⋆
i +Θ⋆

i,j ◦ λie, for 1 ≤ i, j ≤ K

and the external departure flow can be expressed as

D⋆
ext,i = pi,0D

⋆
i +Θ⋆

i,0 ◦ λie, for 1 ≤ i ≤ K.
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(vi) Z⋆
i = λ−1

i Q⋆
i and W ⋆

i = Z⋆
i ◦ λie.

We conclude this section by observing that in a GJN with one bottleneck queue that the

bottleneck queue is asymptotically equivalent to a G/GI/1 single-server queue with feedback in

the HT limit, where the arrival process is a complex superposition of renewal arrival processes.

We derive the explicit expression for the external arrival process and feedback probability in the

equivalent network. We also show that feedback elimination is asymptotically correct for networks

with one bottleneck.

We start with a convenient representation of the HT limit of the bottleneck queue. Let p̂i,h be

the (i, h)-th component of P̂Hc,H in (3.9) and recall that p̂ ≡ P̂h is the feedback probability defined

in Remark 3.2.

Theorem 4.2 The HT limit X̂⋆
h in (4.3) can be expressed as the following one-dimensional Brow-

nian motion

X̂⋆
h = Q⋆

h(0) + Â⋆ +
(

Θ̂⋆
S − (1− p̂)S⋆

h

)

+ λ̂0,he, (4.4)

where

Â⋆ = A⋆
0,h +

∑

i∈Hc

(

p̂i,hA
⋆
0,i + Θ̂⋆

i,h

)

, (4.5)

and

Θ̂⋆
i,h =

√

p̂i,h(1− p̂i,h)BΘ̂i,h
◦ λ0,ie,

Θ̂⋆
S =

√

p̂(1− p̂)BΘ̂S
◦ λie, (4.6)

while BΘ̂i,h
and BΘ̂S

are independent standard Brownian motions.

Proof Since the drift term, the terms associated with A⋆
0 and S⋆

h remain unchanged, it suffices to

show that the terms related with the splitting decision processes share the same variance. In fact,

by algebraic manipulation, one can check that

Var

(

∑

i∈Hc

Θ̂⋆
i,h + Θ̂⋆

S

)

=
∑

i∈Hc

p̂i,h(1− p̂i,h)λ0,ie+ p̂(1− p̂)λie

=

K
∑

i=1

(

e′h + P̂ ′
Hc,he

′
Hc

)

Σi

(

eh + eHc P̂Hc,h

)

e

= Var
(

e′h (Θ
⋆)′ 1+ P̂ ′

Hc,he
′
Hc (Θ⋆)′ 1

)
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where Σi are the variance matrix defined in Theorem 3.2.

Now, consider a reduced one-station network consist of the only bottleneck queue, while all non-

bottleneck queues have service times set to 0 so that they serve as instantaneous switches. In the

reduced network, we define an external arrival Â0 to the bottleneck queue to be any external arrival

that arrive at the bottleneck queue for the first time. Hence, an external arrival may have visited

one or multiple non-bottleneck queues before its first visit to the bottleneck queue. In particular,

the external arrival process can be expressed as the superposition of (i) the original external arrival

process A0,h at station h; and (ii) the Markov splitting of the external arrival process A0,i at station

i with probability p̂i,h, for i ∈ Hc.

Theorem 4.2 implies that the reduced network is asymptotically equivalent to the original

bottleneck queue in the sense of the stationary queue length process in the HT limit. Furthermore,

comparing Theorem 4.2 with Corollary 4.1, we conclude that both the reduced network and the

original bottleneck queue is asymptotically equivalent to a single-server queue with feedback, where

the external arrival process is Â, the service times remain unchanged and the feedback probability

is p̂.

We then eliminate immediate feedback customers just as in Theorem 4.1, but with the extended

interpretation of immediate feedback. Recalling that the non-bottleneck queues act as instantaneous

switches, we recognize all customers that feed back to the bottleneck queue as immediate feedback,

even after visiting non-bottleneck queues. The probability of feedback is then exactly p̂ ≡ P̂h

as in Remark 3.2. After feedback elimination, the new service process Ŝ is the renewal process

associated with the new service times, i.e., a geometric sum of the original service times at the

bottleneck queue. Note that the modified service process after feedback elimination have a HT

limit Ŝ⋆ ≡ Θ̂⋆
S − (1 − p̂)S⋆

h, where Θ⋆
S is defined in (4.6), just as discussed in Section 4. This

matches exactly with the “service” part in (4.4) of Theorem 4.2. Hence, we have the following

theorem, extending Theorem 4.1.

Theorem 4.3 (Feedback elimination with one bottleneck queue) For the bottleneck queue

in the generalized Jackson network, consider the modified single-server queue with arrival process

Â and service process Ŝ. The joint heavy-traffic limit for the queue length process, the waiting

time process, the workload process and the external departure process in the original model can be

expressed in terms of those in the modified system as

(Q⋆, Z⋆,W ⋆,D⋆
ext)

dist.
= (Q̂⋆, (1− p)Ẑ⋆, (1− p)Ŵ ⋆ ◦ (1− p)−1e, D̂⋆

ext).
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5 Approximation of the IDC

In this section, we demonstrate how the HT limits in the present paper can be applied to approxi-

mate the IDCs of the stationary flows in a GJN, where the IDC is defined in (1.1). In particular,

we focus on two simple examples, one for the superposition operation and one for the splitting

operation.

5.1 Dependent Superposition: Splitting and Re-Combining

Dependence among flows are ubiquitous in GJNs. Even in a feed-forward network, there can be

dependence among the arrival processes being superposed at one of the queues in the network.

That is illustrated by an example in Figure 2 where an arrival process is first split into two streams

according to Markovian routing and sent to separate queues, and then the two departure processes

are recombined to enter a third queue. We aim to approximate the IDC of the superposition of the

two stationary departure processes A3(t) ≡ D1(t) +D2(t). To do so, we establish the HT limit for

the superposition arrival process at the third queue.

A(t) p1
Queue 1

D2(t)

Queue 3

Queue 2

p2 D2(t)

Figure 2: A re-combining after splitting example.

Without loss of generality, assume that the traffic intensity ρ1 at the first queue is larger than ρ2

at the second queue. We then consider a family of systems indexed by ρ, where the traffic intensity

at queue 1 is ρ1 = ρ, which we will bring to heavy traffic, and the traffic intensity at queue 2 is

fixed at ρ2 ∈ [0, 1). Let Ai,ρ, Si,ρ and Qi,ρ denote the arrival process, the (uninterrupted) service

renewal processes and the queue length process at Queue i in the ρ-th system, respectively.

Corollary 5.1 (Heavy-traffic limit for Splitting and Recombining) Consider the system de-

picted in Figure 2. Assume that the external arrival process is renewal with rate λ and scv c2a, the

service times at queue 1 are i.i.d. with rate p1λ/ρ and scv c2s1; the service times at queue 2 are

i.i.d. with rate p2λ/ρ2 for 0 ≤ ρ2 < 1 and scv c2s2 . Then

(A∗
ρ, A

∗
1,ρ, A

∗
2,ρ, S

∗
1,ρ, S

∗
2,ρ, Q

∗
1,ρ, Q

∗
2,ρ,D

∗
1,ρ,D

∗
2,ρ,Θ

∗
1,ρ,Θ

∗
2,ρ)

⇒ (A∗, A∗
1, A

∗
2, S

∗
1 , S

∗
2 , Q

∗
1, Q

∗
2,D

∗
1,D

∗
2 ,Θ

∗
1,Θ

∗
2) in D11 as ρ→ 1,

28



where

A∗ ≡ caBa ◦ λe,

A∗
i ≡ picaBa ◦ λe+Θ∗

i , for i = 1, 2,

S∗
1 ≡ cs1Bs1 ◦ p1λe,

S∗
2 ≡ cs2Bs2 ◦ p2λe/ρ2,

Q∗
1 ≡ ψ(Q∗

1(0) + p1caBa ◦ λe+Θ∗
1 − cs1Bs1 ◦ p1λe− p1λe)

Q∗
2 ≡ 0,

D∗
1 ≡ p1caBa ◦ λe+Θ∗

1 +Q∗
1(0) −Q∗

1,

D∗
2 ≡ p2caBa ◦ λe+Θ∗

2, (5.1)

with ψ being the one-dimensional reflection mapping and (Θ∗
1,Θ

∗
2) being a zero-drift two-dimensional

Brownian motion with covariance matrix Σ = (σij) ∈ R
J×J , where σ2ii = pi(1 − pi)λ and σ2ij =

−pipjλ for i 6= j.

To approximate the IDC of the total arrival process at queue 3, we write

Ia,3,ρ(t) ≡
Var(A3,ρ(t))

E[A3,ρ(t)]
=

Var (D1,ρ(t) +D2,ρ(t))

E[A3,ρ(t)]

=
Var (D1,ρ(t))

E[A3,ρ(t)]
+

Var (D2,ρ(t))

E[A3,ρ(t)]
+ cov (D1,ρ(t),D2,ρ(t)) /E[A3,ρ(t)]

= p1Id,1,ρ(t) + p2Id,2,ρ(t) + βρ(t),

where

βρ(t) ≡ cov (D1,ρ(t),D2,ρ(t)) /E[A3,ρ(t)]. (5.2)

In general, exact characterization of βρ is not readily available. We propose the following

approximation

βρ(t) ≈ 2cov
(

D∗
1((1− ρ)2t),D∗

2((1− ρ)2t)
)

/(λ(1 − ρ)2t)

= 2p1(1− p1)(c
2
a0

− 1)w∗((1− ρ)2p1λt/c
2
x1
)) (5.3)

with D∗
1 and D∗

2 being the diffusion limit in (5.1).

To justify the approximation (5.3), let β∗ρ(t) = βρ
(

(1− ρ)−2t
)

be the HT-scaled correction

term. Corollary 5.1 implies the following limit.

Corollary 5.2 Under the assumption in Theorem 5.1 and the exchange of limit assumptions, we

have

β∗ρ ⇒ 2p1(1− p1)(c
2
a0

− 1)w∗
(

p1λt/c
2
x1

)

. (5.4)
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Proof Note that Corollary 5.1 implies that

cov(D1,ρ(t),D1,ρ(t)) = cov
(

(1− ρ1)
−1D∗

1,ρ((1 − ρ1)
2t), (1 − ρ1)

−1D∗
2,ρ((1− ρ1)

2t)
)

⇒ (1− ρ1)
−2cov(D∗

1((1− ρ1)
2t),D∗

2((1 − ρ1)
2t)),

as ρ ↑ 1.

On the other hand, by applying Corollary 5.1 of [49], we have

cov (D∗
1(t),D

∗
2(t)) = cov(A∗

1(t), A
∗
2(t))− cov(Q∗

1(t), A
∗
2(t))

= p1(1− p1)(c
2
a0

− 1)λt− cov(Q∗
1(t)), A

∗
2(t))

= p1(1− p1)(c
2
a0

− 1)λtw∗
(

p1λt/c
2
x1

)

,

where c2x1
= c2a1 + c2s, c

2
a1

= p1c
2
a + (1 − p1) and w∗ is the weight function defined in (28) of [49].

The limit then follows.

We demonstrate the performance of the approximation by making simulation comparisons in

Example 5.1.

Example 5.1 (splitting and recombining) Consider the queueing system in Figure 2 with rate-

1 hyperexponential (H2(4)) external arrival process and c
2
a = 4, p1 = 0.25, p2 = 0.75 and i.i.d. Er-

lang (E2) service times with c2si = 0.5. Figure 3 shows the results for two cases involving different

traffic intensities: (i) ρ1 = ρ2 = 0.7 (left); and (ii) ρ1 = 0.8 and ρ2 = 0.9 (right). In each plot, we

display, in solid lines, the IDC Ia,3 of the total arrival process at queue 3, the modified IDC’s piId,i

of the departure processes from queue i, the simulated correction term βρ defined in (5.2). For

approximations, we display, in broken lines, the approximated correction terms as in (5.3) and the

approximated IDC using (5.3). Figure 3 shows remarkable agreement of the approximation and

the simulation estimate.

5.2 Dependent Splitting: One Queue with Immediate Feedback

Consider the single-server queue with immediate customer feedback as in §4.1. This introduce

dependence between the splitting decision process and the arrival process.

For the splitting operation, suppose that the splitting decision is independent of the departure

process, then by the conditional variance formula, we have

Var(Aint(t)) = p2Var(D(t)) + p(1− p)λt,
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Figure 3: Two examples in Example 5.1.

or equivalently, since E[D(t)] = λt and E[Aint(t)] = pλt = pE[D(t)],

Ia,int(t) = pId(t) + (1− p).

To address the impact of dependence on the IDC after the splitting operation, we propose to

consider the correction term α(t) is defined as

α(t) ≡ Ia,int(t)− pId(t)− (1− p),

so that

Ia,int(t) = pId(t) + (1− p) + α(t), (5.5)

We propose to approximate the correction term α(t) by

α(t) ≈ α∗((1− ρ)2t) (5.6)

with

α∗(t) ≡ 2cov(pD∗(t),Θ∗(λt))/pλt = 2pw∗(t/c2x),

where c2x1
= c2a + c2s, c

2
a = 1

1−p
c2a0 +

p
1−p

, w∗ is the weight function defined in (28) of [49] and the

explicit expression is derived using Corollary 5.1 of [49].

The approximation (5.6) is supported by the following corollary. Define the HT-scaled correction

term α∗
ρ(t) ≡ α((1− ρ)−2t).

Corollary 5.3 Under the assumptions in Theorem 4.1 plus the uniform integrability conditions,

we have α∗
ρ(t) ⇒ α∗(t) as ρ ↑ 1.
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Proof By the definitions of the correction term and HT-scaled processes, we write

α∗
ρ(t) = α((1 − ρ)−2t)

= Ia,int((1− ρ)−2t)− pId((1− ρ)−2t)− (1− p)

=
Var((1− ρ)Aint((1− ρ)−2t))

pλit
− p

Var((1− ρ)D((1 − ρ)−2t))

λt
− (1− p)

=
Var(A∗

int,ρ(t))

pλt
− p

Var(D∗
ρ(t))

λt
− (1− p)

⇒
Var(A∗

int(t))

pλit
− p

Var(D∗(t))

λt
− (1− p) = α∗(t).

Finally, we also have dependent superposition in this example. Similar to §5.1, we have

Ia,ρ(t) ≈
1

1− p
Ia,0,ρ(t) +

p

1− p
Ia,int,ρ(t) + βρ(t) (5.7)

with

βρ(t) ≡ 2cov(A∗
0((1 − ρ)2t), A∗

int((1− ρ)2t))/(λ(1 − ρ)2t)

= 2pc2a0w
∗((1 − ρ)2/c2x), (5.8)

where again c2x = c2a + c2s and c2a = 1
1−p

c2a0 +
p

1−p
.

We demonstrate the performance of the approximation by making simulation comparisons in

Example 5.2.

Example 5.2 (immediate feedback) Figure 4 compares the performance of the IDC approxi-

mation to simulations for the E2/H2(4)/1 single-server queue with feedback model, having service

scv c2s = 4. The plot on the left focuses on the feedback flow Aint(t), while the plot on the right

focuses on the superposition arrival process A(t). Again, the approximation matches simulation

remarkably well.

6 Conclusions

After establishing existence and convergence (as time increases) for the stationary flows under

Assumptions 2.1, 2.2 and 2.3 in Theorem 2.3, we established in Theorem 3.2 a general heavy-traffic

limit for the system state process in (2.4) together with the flow process in (2.7), allowing an

arbitrary subset of the stations to be critically loaded, while the rest are sub-critically loaded. For

the heavy-traffic limit in Theorem 3.2, the processes of interest are centered and scaled as in (3.6)
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Figure 4: Left plot shows the dependent splitting in a single-server queue with feedback example.
Model parameters are described in the title. The simulation estimation of the IDC of the feedback
flow is contrasted to the IDC approximation (5.5) with correction term (5.6) in dotted-and-dashed
lines. Right plot displays the dependent superposition. The simulation estimation of the IDC of
the total arrival process is contrasted to the IDC approximation (5.7) with correction term (5.8)
in dotted-and-dashed lines.

and (3.7). We then obtained explicit results for the special case in which zero or one station is

critically loaded in §4. Finally, we experimentally confirmed the theorems and illustrated how they

can be applied to RQNA by considering two examples involving (i) dependent superposition and

(ii) dependent splitting in §5.

There are many important topics for future research. First, it remains to establish an extension

of Theorem 3.2 to the model generalized by allowing non-renewal external arrival processes, which

requires generalizing the key supporting theorems in [8, 23]. It also remains to develop useful

explicit formulas based on Theorem 3.2 when more than one station is critically loaded. Of course,

it would also be good to obtain corresponding results for models with multiple classes and queues

with multiple servers.
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A Appendix: Additional Literature Review

A.1 Heavy Traffic

A major source of approximations for GJNs has been heavy-traffic (HT) limits, first for feed-forward

networks in [31, 32] and [26, 27]. As indicated in §IV.3 of [46], the approximation for superposition

processes there draws on the HT limit in [47].

New approximations for GJNs have been based on Reiman [38]. In [38] the HT limit of the

vector queue length process is shown to be a reflected Brownian motion (RBM) on the nonnegative

orthant. The concept of RBM is first introduced in the queueing settings in [27] and studied in

detail in [29]. In [10, 11] HT limits were extended to models with strict bottlenecks (ρi > 1) and

non-bottleneck stations (ρi < 1) as well as the usual critically loaded stations (ρi = 1). (We do not

consider strict bottlnecks here.)

These heavy-traffic limits served as a theoretical basis for the QNET and SBD approximations in

[28], [39], and [16]. Theoretical justification for the approximation of the steady-state performance

in the GJN by the steady-state performance of the limiting RBM was established by [23] and [8]

when they justified interchanging the limits t→ ∞ and ρ→ 1. Recently direct heavy-traffic limits

have been established for the stationary distributions by [6].

So far, the heavy-traffic literature has focused on the queue length, busy time, waiting time,

workload and the sojourn time processes. However, little is known beyond the initial results in

[31, 32] regarding the HT limits of the arrival flows and departure flows.

A.2 Stability of GJNs

There is a substantial literature on the existence of a proper steady state and the convergence to

it; This is referred to as the stability of an open queueing network.

The standard approach has been to focus on the Markov process consisting of the queue length

process and the residual interarrival times and service times in the GJN. Early study of such

Markov processes includes [5], which considered a slightly different open queueing network (a sta-

tion is picked to act as both the source and the sink) and proved the convergence of the distribution

of the queue length process to a stationary distribution. The stability of a network without feed-

back is considered in [35]. Sigman [40, 41] showed that the general open queueing network is Harris

recurrent and the distribution of the Markov process converges if and only if the interarrival dis-

tribution is spread-out; see also [9] for a different approach to stability via stochastic dominance.

However, [41] and [9] assumed that there is a single external arrival process that is split to create
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arrivals to the individual queues. Harris recurrence for the general case was established by Dai [14],

but under the extra condition that each interarrival-time distribution is unbounded above. [14] was

primarily concerned with the harder (and interesting) multi-class model, which was also studied

in [15, 43]. (We do not consider the multi-class model here.) In [37] the stronger convergence

in mean for queue length process and total workload process was established under slightly more

restrictive conditions. In [30], a Brownian model for the OQN is considered and the stability result

is established.

The existing literature is quite extensive, but it has focused on the stability of the queue length,

instead of the flows in the open queueing network. As far as we know, we are the first to consider

the stability of the flows.
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