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Analyzing the pace of play in golf

Qi Fua and Ward Whittb,∗
aCredit Suisse, Eleven Madison Avenue, New York, NY, USA
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Abstract. We develop performance approximations that can help manage the pace of play in golf. In previous work we developed
a stochastic model of successive groups of golfers playing on an 18-hole golf course and derived expressions for the capacity
(maximum possible throughput) of each hole and the golf course as a whole. That model captures the realistic feature that,
on most holes, more than one group can be playing at the same time, with precedence constraints. We now facilitate further
performance analysis with that model by developing two new approximations. First, we develop an approximation involving a
series of conventional single-server queues, without precedence constraints. The key idea is to use the times between successive
departures on a fully loaded hole as aggregate service times in the new model. Second, we apply established heavy-traffic limits
for a series of conventional queues to develop explicit approximation formulas for the mean and variance of the time required
for group n to play the entire course, as a function of n. We conduct simulation experiments showing that both approximations
are effective. We show how these formulas can help design and manage a golf course.

Keywords: Pace of play on golf courses, optimal interval between tee times, attaining the four-hour round in golf, queues with
precedence constraints, queueing networks, queues in series

1. Introduction

We apply stochastic models and computer simula-
tion to develop performance formulas to help improve
the design and management of golf courses. These for-
mulas can help specify the constant interval between
successive tee times (start times) for successive groups
of golfers and the total number of groups that should be
scheduled to play each day. They can can help balance
the desire to put more golfers on the course in order
to maximize the use of a valuable resource (and earn
more revenue) and the desire to put fewer golfers on
the course in order provide a good experience for the
golfers by keeping delays low, and not exceeding the
widely accepted standard of a four-hour round.

Our work builds on Whitt (2015), in which a stochas-
tic model of group play on each hole of the golf course
was developed, allowing multiple groups to be play-
ing on the each hole with precedence constraints, and
having random group stage playing times on each
hole as primitives. The capacity (maximum possible
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throughput) was determined for each hole and thus
the golf course as a whole. Earlier work modeling and
simulating the play of golf was done by Kimes and
Schruben (2002), Tiger and Salzer (2004) and Riccio
(2012, 2013).

We develop approximations for the model in Whitt
(2015) and apply them to develop explicit performance
formulas. Our main contributions are (i) an approx-
imating model involving conventional single-server
queues, without precedence constraints, and (ii) an
approximation formula for the expected value of the
course sojourn time (the time for group n to play on
the entire course), i.e.,

E[V18,n] ≈ An + B
√

n + C (1)

with explicit expressions for the constants A, B and C;
see (23) in §4. A main case of interest is critical loading,
in which the constant intervals between successive tee
times is chosen so that the arrival rate coincides with the
maximum possible throughput rate; then A = 0 in (1).

Approximation (1) is intended for the common case
in which (i) the course is heavily loaded, with man-
agement being challenged to meet demand, and (ii)
the course is balanced, in that the pace of play is
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Fig. 1. The heavy-traffic approximation in (1) (8.04
√

n + 181.6), developed in §4, and the two-parameter fit to the simulation estimates
(8.32

√
n + 182) compared to the simulation estimates of E[V18,n], the expected time for group n to play all 18 holes, as a function of n, for a

critically loaded golf course model with identical par-4 holes, with all stage playing times having the triangular distribution, modified to allow
lost balls, with parameter five tuple (m, a, r, p, L) = (4, 1.5, 0.5, 0.05, 8.0), specified in §3.1.

not dominated by a few bottleneck holes. Underlying
approximation (1) is previous mathematical analysis of
heavily loaded networks of conventional single-server
queues in series in Iglehart and Whitt (1970a, b), Har-
rison and Reiman (1981), Glynn and Whitt (1991) and
Greenberg et al. (1993), but further work has to be
done to bring that literature to bear on this problem,
because group play on each hole is affected strongly
by the precedence constraints, which are not part of
conventional queueing models.

Figure 1 summarizes our results. It shows three
estimates of the expected sojourn times E[V18,n] in
the critically loaded case with A = 0. (For a pre-
cise definition of V18,n, see (11).) The results of a
detailed simulation are shown by the circles; the solid
line is a least-squares fit of the function B

√
n + C

to the simulation data (yielding 8.32
√

n + 182); and
the dashed line is the heavy-traffic approximation
8.04

√
n + 181.6.

Detailed modeling can produce concrete analogs of
approximation (1), but even without such modeling,
formula (1) may be fit to data in order to help under-
stand the relation between delays on the golf course and
the primary controls: the tee intervals and the number
of groups allowed to play. Formula (1) shows the non-
obvious way that the mean sojourn time for group n

should grow with n.
Here is how this paper is organized: In §2 we describe

how groups of golfers play on a golf course. In §3 we
review the stochastic model introduced in Whitt (2015)

with random stage playing times as the basic primitives.
In §4 we elaborate upon approximation 1 and explain
Fig. 1 there. In §5 we show how approximation 1 can
be applied to gain insight into the design and manage-
ment of a golf course. In §6 we indicate how the model
primitives (the stage-playing-time distributions) can be
estimated from data, and how the stochastic model can
be constructed and tested.

The remaining sections are devoted to developing
and evaluating the two main approximations. In §7 we
derive (1). In §7.1 we propose the new approxima-
tion of group play on a single hole by a conventional
single-server queue, without precedence constraints.
In §7.2 we apply that approximation to derive (1).
In §8 we report results of simulation experiments
testing the approximations. We draw conclusions
in §9.

2. Group play on golf courses

Golf is typically played by small groups (e.g., four)
golfers playing 18 (or sometimes 9) holes, usually
maintaining the order of the group start (tee) times
on the first hole. Each successive group has a sched-
uled tee time on the first hole, and starts thereafter
at the first opportunity. Groups continue from hole to
hole, stopping only to wait for the group in front. In
practice, the first-come first-served (FCFS) order may
be occasionally broken to cope with slow groups. For
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example, “rangers” may drive around the course in
carts to speed-up or remove slow groups. However,
we will not consider such modifications here.

There are three types of holes on a golf course: par
3, par 4 and par 5. The goal in golf is to put the ball
into the hole on the green using as few strokes (shots)
as possible. A hole is rated par 4 because good play
should require four shots: one from the tee, one from
the fairway and two more to clear the green (put it in the
hole on the green). A “birdie” (“eagle”) is earned on the
hole for scoring one (two) under par, while a “bogey”
(“double bogey”) is earned for scoring one (two) over
par. Usually, the par value of a hole is higher when
the length of the hole is longer. A typical 18-hole golf
course has 12 par-4 holes, 3 par-3 holes, and 3 par-5
holes, arranged in varied ways.

We will analyze the pace of play from the perspec-
tive of queueing theory and the theory of industrial
production lines. Thus, we regard the play of succes-
sive groups on a golf course as the flow of successive
“jobs” through a series of 18 queues in series, with
unlimited waiting space at each queue and a FCFS
service discipline. However, there is a serious compli-
cation, because more than one group can be playing at
the same time on many of the holes, but with prece-
dence constraints. Typically, two groups can be playing
on a par-4 hole at the same time, while three groups
can be playing on a par-5 hole at the same time. A con-
ventional par-3 hole is more elementary because only
one group can play on it at the same time, but there
also is the modified par-3 hole “with wave-up,” which
allows two groups to play at the same time there too,
while still maintaining the group order determined by
their scheduled tee times on the first hole.

To explain in greater detail, we describe the steps of
group play on a par-4 hole. There are five steps, each of
which must be completed before the group moves on
to the next step. These five steps can be diagrammed as

T → W1 → F → W2 → G. (2)

The first step T is the tee shot (one for each member
of the group); the second step W1 is walking up to the
balls on the fairway; the third step F is the fairway
shot; the fourth step W2 is walking up to the balls on
or near the green; the fifth and final step G is clearing
the green, which may involve one or more approach
shots and one or more shots (putts) on the green for
each player in the group. Each step must be completed
before the group proceeds to the next step.

This natural characterization of group play closely
follows previous simulation models; e.g., see the
single-hole bottleneck model on p. 32 of Riccio (2013).
However, as in Whitt (2015), we go beyond that direct
representation by doing additional aggregation. In par-
ticular, we do not directly model the play of each
golfer in the group and we also do not directly model
the performance of each individual step. Instead, we
aggregate the five steps into three stages, which are
important to capture the way successive groups interact
while playing the hole. The three stages are:

(T, W1) → F → (W2, G) (3)

Stage 1 is (T, W1), stage 2 is F and stage 3 is (W2, G).
This turns out to be the maximum possible aggregation
permitted by the precedence constraints. These stage
playing times depends only on the group and not any
other groups.

The precedence constraints follow common conven-
tions in golf. Assuming an empty system initially, the
first group can do all the stages, one after another with-
out constraint. However, for n ≥ 1, group n + 1 cannot
start stage 1 until both group n + 1 arrives at the tee and
group n has completed stage 2, i.e., has cleared the fair-
way. Similarly, for n ≥ 1, group n + 1 cannot start on
stage 2 until both group n + 1 is ready to begin there
and group n has completed stage 3, i.e., cleared the
green. These rules allow two groups to be playing on
a par-4 hole simultaneously, but under those specified
constraints. We may have groups n and n + 1 on the
course simultaneously for all n. That is, group n may
first be on the course at the same time as group n − 1
(who is ahead), but then later be on the course at the
same time as group n + 1 (who is behind). The groups
remain in their original order, but successive groups
interact on the hole. The group in front can cause extra
delay for the one behind.

A par-3 hole without the extra wave-up rule is more
elementary. There are three steps for group play on a
par-3 hole, with or without wave-up:

T → W → G.

The first step T is hitting shots off the tee; the sec-
ond step W is walking to the green, possibly including
approach shots; and the third step G is putting on the
green. In this case we identify the stages with steps,
but speak of stages, to be consistent with par-4.

Even though the par-3 holes are shorter, they often
tend to be the bottlenecks because it tends to take longer
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for successive groups to clear the green. This can be
attributed to the fact that only one group is allowed to
play at the same time on a standard par-3 hole. (This
is explained mathematically by Corollary 3 of Whitt
(2015).) The wave-up rule is intended to reduce the
expected time between successive groups clearing the
green, and thus increase the capacity of par-3 holes.

The wave-up rule (only for par-3 holes) stipulates
that, after a group has hit its tee shots and walked up to
their balls near the green, they should wait before clear-
ing the green until the following group hits its tee shots,
provided that the following group has already arrived
and is ready to play. If the following group has not yet
arrived at the hole, then the current group immediately
starts stage 3. The following group then cannot start
play on the hole until after the current group completes
stage 3 and departs.

The longest holes are the par-5 holes. On a typical
par-5 hole, three groups can be playing simultaneously.
For a par-5 hole, we identify seven steps instead of the
five steps for a par-4 hole and the three steps of a par-3
hole. There now are two fairway shots instead of only
one and three walking steps instead of only two. These
seven steps can be grouped into five stages, as opposed
to three for a par-4 hole:

(T, W1) → F1 → W2 → F2 → (W3, G)

Assuming an empty system initially, the first group
can do all the stages, one after another without con-
straint. However, for n ≥ 2, group n cannot start stage 1
until both group n arrives at the tee and group n − 1 has
completed stage 2, i.e., has completed its fairway shots
(completed F1). Similarly, for n ≥ 2, group n cannot
start stage 2 until both group n arrives at stage 2 and
group n − 1 has completed stage 4, i.e., has cleared
the second fairway shot (completed F2). After com-
pleting stage 2, each group may go right on to stage
3. for n ≥ 2, group n cannot start stage 4 until both
group n arrives at stage 4 and group n − 1 has com-
pleted stage 5, i.e., has cleared the green (completed
(W3, G)). After completing stage 4, each group may
go right on to stage 5.

3. A Stochastic model of group play

3.1. Random stage playing times

In order to represent the inevitable variability in the
play of actual golfers, stochastic models of group play

on each of the four hole types (P3, P3WU, P4 and
P5) were developed in Whitt (2015) by focusing on
the stages instead of the steps. For each of the hole
types, the time required for group n to complete stage
i was modeled as a nonnegative random variables Si,n.
As a regularity condition, these random stage playing
times (for the group) were assumed to be mutually
independent, having distributions that depend only on
the hole type and the stage number.

We envision this model being carefully fit to data
on group play on golf courses, but that is not done
here. (We indicate how that fitting can be done in
§6.) Instead, we use the parametric framework intro-
duced in §4 of Whitt (2015) to develop the performance
formulas and substantiate them with simulation here.
Several parametric distributions of the stage playing
times Si were introduced. The most promising of these
is a symmetric triangular distribution, which is appeal-
ing to capture the usual relatively low variability. An
additional modification is introduced to allow for occa-
sional lost balls. This produces tractable models of
the triple (S1, S2, S3) for a P4 hole depending on a
5-tuple of parameter values (m, r, a, p, L), where each
parameter captures a separate property of the model;
see Example 3 of Whitt (2015). In particular, the three
random variables Si are assumed to be independent
and are given symmetric triangular distributions on
the intervals [mi − a, mi + a]. Further simplification is
obtained by assuming that the mean values are related
by m1 = m3 = m2/r = m. Thus S1 is distributed the
same as S3, both having mean m, while E[S2] = rm,
so that the ratio E[S2]/E[S1] = r can be controlled
separately. (This structure draws on p. 94 of Riccio
(2012) and p. 32 of Riccio (2013).) The variability of
the three random variables Si is specified by the single
parameter a. We then assume that lost balls occur only
on the first stage (including the tee shots) of each hole,
with that happening on any hole with probability p and
leading to a fixed large time L for stage 1 (correspond-
ing to a maximum allowed delay). Thus the parameter
pair (p, L) captures rare longer delays.

3.2. Recursions for each hole

To illustrate, we describe the stochastic model for
a P4 hole in detail. Let An be the arrival time of the
nth group at the tee of this hole on the golf course.
Let Si,n be the time required for group n to com-
plete stage i, 1 ≤ i ≤ 3; these are the stage playing
times. With the assumptions above, {Si,n : n ≥ 1} for
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1 ≤ i ≤ 3 are three independent sequences of inde-
pendent and identically distributed (i.i.d.) random
variables, with distributions that depend on i.

Let Bn be the time that group n starts playing on this
hole, i.e., the instant when one of the group goes into
the tee box. Let Tn be the time that group n completes
stage 1, including the tee and the following walk; let
Fn be the time that group n completes stage 2, its shots
on the fairway; and let Gn be the time that group n

completes stage 3, and clears the green.
A concise mathematical representation is given by

the recursion

Bn ≡ An ∨ Fn−1, Tn ≡ Bn + S1,n,

Fn ≡ (Tn ∨ Gn−1) + S2,n and Gn ≡ Fn + S3,n,(4)

where ≡ denotes “equality be definition” and a ∨ b ≡
max {a, b}. As initial conditions, assuming that the
system starts empty, we set A1 ≡ F0 ≡ G0 ≡ 0. The
precedence constraints can be seen in the two maxima.
Corresponding models for theP3,P3WU andP5 holes
are also given in Whitt (2015).

3.3. Performance measures

Associated performance measures for group n on
the given hole are: the waiting time (before starting
play on the hole), Wn ≡ Bn − An; the playing time (the
total time group n is actively playing this hole, possibly
including some waiting there), Xn ≡ Gn − Bn; and the
sojourn time (the total time spent by group n at the
hole, waiting plus playing), Un ≡ Gn − An = Wn +
Xn. Let Xw

n be the waiting time while playing the hole
and let X

p
n be the active playing time while playing the

hole. Since X
p
n = S1,n + S2,n + S3,n for a par-4 hole,

we can easily calculate Xw
n given the playing time Xn

as Xw
n = Xn − X

p
n .

A main contribution of Whitt (2015) was deter-
mining the maximum throughput for each hole. We
start by defining the throughput here and later in §3.4
define the maximum throughput. For the golf course,
the definition of throughput is complicated because the
course starts empty each day and gets more congested
throughout the day, until new groups no longer are
allowed to start. However, the rate groups complete
play may rapidly approach a limit, even if the system is
overloaded. That limit is taken as the defining quantity.

The random cycle time (for group n on the given
hole) is defined as

Cn ≡ Gn − Gn−1, n ≥ 1, (5)

and the cycle time for group n is its expected value,
E[Cn]. The average random cycle time for the first n

groups is

C̄n ≡ 1

n

n∑
k=1

Ck = Gn

n
, n ≥ 1. (6)

The average cycle time for the first n groups is then
just E[C̄n].

The typical case (in a mathematical model with an
unlimited number of i.i.d. groups) is to have

Cn ⇒ C∞, E[Cn] → E[C∞] and

C̄n ⇒ E[C∞] as n → ∞, (7)

where C∞ is a random variable and ⇒ denotes con-
vergence in distribution, in which case we let E[C∞]
be the cycle time; That is the standard case, referred to
on p. 17 of Riccio (2013).

We define the random throughput rate for the first n

groups as

�n ≡ 1/C̄n = n

Gn

, n ≥ 1. (8)

Given that positive finite limits hold in (7), we have

�n ⇒ θ ≡ 1

E[C∞]
as n → ∞. (9)

Thus the throughput is θ ≡ 1/E[C∞].
We define other average performance measures

just like (6) and (8). For example, the average sojourn
time, i.e., the average time spent at the hole per group
(among the first n groups) is

Ūn ≡ 1

n

n∑
j=1

Uj = 1

n

n∑
j=1

(Gj − Aj). (10)

These models for individual holes can be combined
to obtain corresponding models for the full golf course
for any combination of holes. In the model descrip-
tion, we add a subscript k for the hole number to go
with the subscript n for the group number. We link
the holes together by letting Ak+1,n = Gk,n; i.e., we
let the arrival time of group n at hole k + 1 equal the
completion time of group n at hole k. In doing so, we
ignore the travel time between holes, but that could
be added as well if it is deemed important. Thus, the
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model fully specifies group play on a golf course, e.g.,
it can be used to perform computer simulations, given
any specification of the hole types and the stage playing
time distributions on each hole.

With these conventions, we are primarily interested
in the mean sojourn time E[Vk,n], the mean sojourn
time of group n on the first k holes, where

Vk,n ≡ U1,n + · · · + Uk,n = Gk,n − A1,n

= Gk,n − (n − 1)�, k ≥ 1 and n ≥ 1. (11)

In (11), we assume that there is a constant interval �

between successive tee times on the first hole. We are
especially interested in the case k = 18 because that is
the length of a typical course.

3.4. The maximum throughput on each hole

An important contribution of Whitt (2015) is deter-
mining the capacity of each hole for the stochastic
model defined above. The capacity of a hole is defined
as the maximum possible throughput rate given a fully
loaded hole, i.e., given that new groups are always
available to start play as soon as possible. The capacity
of the golf course then is the minimum of the capacities
of the individual holes on the course.

For each hole type, when the hole is fully loaded,
the random cycle times C

f
n (with superscript f denot-

ing fully loaded) converge in distribution to a limiting
random variable C

f
∞, which we call the critical cycle

time and denote by Y . In particular, Y = C
f
∞ for C

f
∞

in (7) above, under the condition that the hole is fully
loaded. Thus the capacity of the hole is

θ∗ = 1

E[Y ]
= 1

E[Cf
∞]

. (12)

The distribution of the critical cycle time Y was char-
acterized for each of the hole types. For example, for
a P4 hole, Theorem 1 of Whitt (2015) shows that

Y (4) ≡ (S(4)
1 ∨ S

(4)
3 ) + S

(4)
2 , (13)

where a superscript is added to denote the hole type.
Formula (13) shows how changes in the random stage
playing times S

(4)
i will affect Y (4), which itself charac-

terizes the possible pace of play on the hole. Figures
1 and 2 of Whitt (2015) show the distribution of Y (4)

in 13 for the special parametric model based on a tri-
angular distribution, with and without and lost balls,
for the specific parameter five-tuple (m, r, a, p, L) =

(6, 0.5, 3, 0.05, 12) in §3.1. In this case, Y (4) has mean
E[Y (4)] = 9.97 and variance Var(Y (4)) = 3.81.

Another key random variable describing the perfor-
mance of a fully loaded hole in steady state (for group
n as n gets large) is the critical playing time X; it is
the random time it takes a group to play the hole, i.e.,
Xn ≡ G

f
n − B

f
n (assuming a fully loaded hole). For a

fully loaded P4 hole, Theorem 4 of Whitt (2015) shows
that

X(4) d= Y (4) + S
(4)
3 , (14)

where Y (4) is given in 13, S
(4)
3 is independent of Y (4)

and
d= means “has the same distribution as.”

Theorem 7 of Whitt (2015) shows that for a P3WU
hole

Y (3) ≡ (S(3)
2 ∨ S

(3)
3 ) + S

(3)
1 and

E[X(3)] = E[Y (3)] + E[S(3)
1 ]. (15)

Note that the expressions for Y (3) in (15) and Y (4) in
(13) are similar, but different. The corresponding ran-
dom variables Y (5) and X(5) for a par-5 hole are more
complicated, but they are characterized in Theorem 11
and Corollary 5 of Whitt (2015).

4. The sojourn time approximation formulas

We now exhibit approximation formulas for the
mean and standard deviation of the sojourn time on
the entire course for group n as a function of n, and
elaborate upon (1) and Fig. 1. In §4.1 we relate the
constant intervals between tee times and the maximum
throughput on each hole to the traffic intensity. In §4.2
we review the key assumptions underlying the approx-
imation formulas. In §4.3 we give the full formulas and
in §4.4 we explain Fig. 1. We derive the approximation
formulas in §7.

4.1. From tee times to the traffic intensity

To put this problem in standard queueing terminol-
ogy, let the arrival rate to the first hole and the course
be defined as the reciprocal of the constant interval
between tee times on the first hole, i.e.,

λ ≡ λ1 ≡ λ1(�) ≡ 1/�. (16)

For any given arrival rate λk on hole k, there
is an associated throughput rate or departure rate
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θk ≡ θk(λk), representing the long-run rate of groups
completing play on hole k, which becomes the arrival
rate on hole k + 1. The model we use is consistent with
the basic throughput formula

θk ≡ θk(λk) = λk ∧ θ∗
k , λk ≥ 0, (17)

where a ∧ b ≡ min {a, b} and θ∗
k is the throughput of a

fully loaded hole k, which is equal to 1/E[Y ], where Y

is the random critical cycle time on that hole, defined in
§3.4. Formula (17) expresses the simple property that
“rate in equals rate out,” provided that the rate in is less
than the maximum possible throughput. Formula (17)
also clearly shows that it is not possible to achieve a
higher throughput than θ∗

k .
When we consider a sequence of queues, we must

consider the maximum throughput through all previous
queues. Thus,

λk+1 = θk ≡ θk(λk) = λk ∧ θ̄∗
k , λk ≥ 0, (18)

where θ̄∗
k is the maximum throughput rate for the first

k holes, which satisifes

θ̄∗
k = min {θ∗

j : 1 ≤ j ≤ k}, k ≥ 2. (19)

In queueing theory it is common to focus on a dimen-
sionless measure of the arrival rate called the traffic
intensity ρ, but in the present context it requires know-
ing the maximum possible throughput rate. The traffic
intensity is obtained by dividing the arrival rate by
the maximum possible throughput rate. For hole k in
isolation, the definition is

ρk ≡ ρ(λk, θ
∗
k ) ≡ λk/θ

∗
k . (20)

For the first k holes combined, the definition is

ρ̄k ≡ ρ(λk, θ̄
∗
k ) ≡ λk/θ̄

∗
k . (21)

For the full 18-hole golf course, then, the maximum
throughput is θ∗ ≡ θ̄∗

18, while the traffic intensity is
ρ ≡ ρ̄18.

The full golf course tends to be underloaded, criti-
cally loaded or overloaded as ρ < 1, ρ = 1 and ρ > 1.
By the equations above, once the maximum possible
throughput has been determined, the choice of any
one of ρ, λ or � implies a corresponding choice for
all three. Since expressions of the maximum through-
put have been developed, we can work with the traffic
intensities ρk in (20), ρ̄k in (21) and ρ ≡ ρ̄18. Since we
we are interested in heavily loaded courses, we will
focus on the case in which ρ ≥ 1.

4.2. Key assumptions

A golf course is said to be balanced if the maximum
throughput on each hole coincides with the overall
maximum throughput, i.e., if

θ∗
k = θ∗ for all k, 1 ≤ k ≤ 18. (22)

Golf courses are usually designed to be roughly bal-
anced, but in practice they achieve this goal only
approximately, with some courses more balanced than
others. Our analysis is based on the assumption that
the golf course is balanced. Thus we assume that (22)
holds, i.e., all holes have the same maximum through-
put θ∗. When a series of queues is not balanced, the
performance tends to be determined by the bottleneck
queues, which are the queues with the least maximum
possible throughput.

Given that we do have a balanced course, which
implies that the mean critical cycle timesE[Y ] are iden-
tical for all holes, to approximate the expected waiting
times at all the queues as a function of n, we made
a further approximation: We consider a more stylized
model by assuming that all holes are identical P4 holes.
This assumption seems reasonable, provided that the
course is balanced, because usually 12 of the 18 holes
are P4 holes. Work is in progress to carefully eval-
uate the extent to which this stylized model captures
the essential performance of typical balanced courses,
having the usual variety of holes.

To many, especially experience golfers, this
approximation assumption may seem counterintuitive,
because from experience they know that the play-
ing time tends to increase significantly as the par
value increases. However, we are using the identical-
P4 approximation only to approximate the random
critical cycle time Y , and the associated expected wait-
ing times. We include separate approximations of the
expected playing times, which depend on the hole type,
as well as the common random critical cycle time Y .
Indeed, simulations of the models in Whitt (2015) con-
firm that the playing times on P3WU, P4 and P5 holes
can be very different even when E[Y ] is the same.

4.3. Approximation for the golf course model

As we will explain in §7.2, the approximation (1) is
based on a heavy-traffic limit for a critically loaded
network of single-server queues. That means that a
variant of approximation formula (1) can be justified
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for a series network of conventional single-server
queues asymptotically asn → ∞, provided thatρ ≥ 1.
Indeed, for the application of approximation (1), we
assume that ρ ≥ 1. The formula for ρ = 1 may be a
useful approximation if ρ is approximately 1, but we
do not intend for approximation (1) to be applied with
ρ < 1. The scaling in the heavy-traffic limit (given in
(37)) implies that the error is asymptotically negligible
compared to

√
n. Hence, the constants A and B in (1)

are more well justified than the constant C.
Our heavy-traffic approximation for the mean

sojourn time of group n on a balanced golf course with
ρ ≥ 1 is (1) with the constants given by

A ≡ A(ρ, E[Y ]) = E[Y ](ρ − 1)

ρ
,

B ≡ B(E[Y ], c2
Y ) = 7.2E[Y ]

√
c2
Y = 7.2σY ,

and C ≡
⎛
⎝ 18∑

j=1

E[Xj]

⎞
⎠ − A − B, (23)

where E[Y ], σY and c2
Y ≡ σ2

Y/E[Y ]2 are, respectively,
the mean, standard deviation and the squared coeffi-
cient of variation (scv) of the critical cycle time Y in
§3.4, which is assumed to be the same for all holes,
while E[Xj] is the mean playing time on hole j, which
may depend on j. We use the random critical cycle time
Y for a typical par-4 hole, which is defined in (13).

The leading constant A in (1) depends only on the
constant tee interval � and the mean critical cycle time
E[Y ], and so is robust for the fully loaded case with ρ ≥
1. On the other hand, the constant B depends on both
the mean E[Y ] and the scv c2

Y . The presence of c2
Y in

B shows how the variability of the random cycle times
can have a significant impact on the mean sojourn time.
That echoes a familiar theme in queueing theory, seen
in in the famous Pollaczek-Khintchine formula for the
mean waiting time in a conventional M/GI/1 single-
server queue, as in Cooper (1982): The mean waiting
time is increasing in both the mean and the variability
of the service-time distribution. Since approximation
(1) with (23) is based on assuming that the critical
cycle times are approximately the same on all holes, the
approximation for the scv c2

Y is somewhat problematic,
even for a balanced course (which only requires that
the mean E[Y ] is the same for all holes.)

The variability in the stage playing times Si has a
significant impact on the mean critical cycle time E[Y ]
as well as its variance. Such variability might arise if

(i) groups of widely varying skills are allowed to play
the course, or if (ii) the size of groups is allowed to be
quite variable, or if (iii) groups of golfers are allowed to
either walk the course or ride in carts. Now we see that
the mean and variability of Y both have a significant
impact on the mean time for a group to play the course,
E[V18,n].

The core of the constant C in (23) is the first term,
which is the sum of the mean playing times on each
hole, assuming that they are all fully loaded. This for-
mula allows these mean hole playing times to vary
from hole to hole. For a network of identical P4 holes,
the first term reduces to 18E[X(4)] = 18(E[Y (4)] +
E[S(4)

3 ]), using (14). The second and third terms in
C are adjustments to get formula (1) expressed simply
in terms of n and

√
n. These adjustments are based on

consistency conditions, such as the experience of the
first group, and are less well justified. In practice there
should be opportunities to make refinements to C in
special cases, as we indicate for Fig. 1 below.

We also propose an approximation for the standard
deviation of the total sojourn time based on the same
heavy-traffic limit.

SD[V18,n] ≈ 0.6E[Y ]
√

nc2
Y = 0.6σY . (24)

As noted in Glynn and Whitt (1991) and Greenberg
et al. (1993), the remarkable low variability in the
sojourn time V18,n for large n, as revealed by (24),
is a significant property of many i.i.d. single-server
queues in series. That property should be expected in
the performance of balanced golf courses.

4.4. The simulation experiment leading to Fig. 1

We now introduce the specific model used to gen-
erate Fig. 1 in §1. It is a stylized model containing
18 identical P4 holes in series with ρ = 1, which
makes A = 0 in the approximation (1). We let all stage
playing times have the tri + LB triangular distribu-
tion modified to allow for lost balls (only from the
tee, i.e., on the first stage of each hole) introduced in
§(3.1). We let the parameter vector be (m, a, r, p, L) =
(4, 1.5, 0.5, 0.05, 8). With these parameters, the crit-
ical cycle time Y (the interval between successive
groups completing play on a fully loaded hole) has
mean E[Y ] = 6.5325, but for the variance we need to
correct a minor error in Whitt (2015).
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Fig. 2. The histogram of the critical cycle time Y on a (fully loaded) par-4 hole, defined in (13), with all stage playing times having the triangular
distribution, modified to allow lost balls, with parameter five tuple (m, a, r, p, L) = (4, 1.5, 0.5, 0.05, 8.0), specified in §3.1, estimated using
simulation with a sample size of 105. The estimated mean and variance were E[Y ] = 6.535 and Var(Y ) = 1.249.

Remark 4.1. (correction) There is a minor error
in the formula for E[Ȳ2] in (50) of Whitt (2015).
The first term should be pE[(L + S2)2] = p(L2 +
2Lrm + E[S2

2]), where E[S2
2] = (rm)2 + a2/6. The

previous formula omits the final term pa2/6. In the
present example, pa2/6 = (0.05)(2.25)/6 = 0.01875
and E[Ȳ2] = 0.01875 + 43.9025 = 43.921. Since the
variability of Ȳ is relatively small, it makes a difference
in the variance. For the present example, the variance
of Ȳ is increased from 1.2285 to 1.2475.

Applying Remark 4.1 without using the Ȳ nota-
tion from Whitt (2015), we have E[Y ] = 6.5325,
and E[Y2] = 43.921, so that σ2

Y = 1.248, σY =
1.117, c2

Y ≡ Var(Y )/E[Y ]2 = 0.029,
√

c2
Y = 0.171.

The associated means are E[X] = 10.5325 and
E[S1 + S2 + S3] = 10.20. These properties were con-
firmed by simulation; e.g., the histogram of the
distribution of the critical cycle time Y based on a sam-
ple size of 105 is shown in Fig. 2. The extended right
tail is the consequence of the occasional lost ball.

Figure 1 in §1 shows the estimated expected sojourn
times E[V18,n] over the 18-hole course as a function
of the group number n, based on simulation experi-

ments. The simulations are based on 2000 independent
replications. This consistently makes the half-width of
95% confidence intervals less than 5% of the estimated
means and 10% of the estimated standard deviations.
The smooth plot of the simulation mean values for suc-
cessive groups is further evidence of the simulation
precision.

Note that these parameter values appear to be rea-
sonable. The expected time for the first group to play
the course is 18 × 10.2 = 183.6 minutes or about three
hours. We see that the expected times to play the course
(from tee time on the first hole to clearing the green on
hole 18) for each of the first 60 groups is under the tar-
get four hours, but the expected times for later groups
are longer. The expected time for group 100 is about
4.5 hours. And this is for a fairly idealized model (what
we take to be a good case). In particular, here we have
18 identical P4 holes in series.

As shown in Fig. 1, for ρ = 1.0, the heavy-traffic
approximation in (1) and (23) becomes

E[V18,n] ≈ 8.04
√

n + (189.6 − 8.04)

= 8.04
√

n + 181.6.
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That is compared to the function B
√

n + C fit to the
simulation results, where B = 8.366 and C = 182.7,
as shown in the Fig. 1.

Note that we apply the heavy-traffic approximation
in (1) to obtain the functional form B

√
n + C to fit

to the simulation data. Figure 1 shows that functional
form fits nearly perfectly. That illustrates what can be
done in applications. Figure 1 also illustrates the accu-
racy of the direct heavy-traffic approximation in (1)
and (23) that should hold for stylized critically loaded
balanced models. There is only 3.8% error in the con-
stant B.

However, the approximation for the constant C is
not so well supported, which may be explained by
the complexity of the model, including the excep-
tional experience of the first group on all holes. For
n = 100, the heavy-traffic approximation underesti-
mates the simulation estimate by about 5; indeed, the
heavy-traffic approximation falls on top of the sim-
ulation estimate if we increase C to 186. As in all
heavy-traffic approximations, there is room for refine-
ments, e.g., see Whitt (1982).

5. Application to manage the pace of play

We now show how the approximate performance
formula for the mean sojourn time E[V18,n] in (1) and
(23) can be applied in the design of a golf course. In
particular, we show how it can be used to help deter-
mine the number of groups that should be allowed to
play each day, and thus the (assumed constant) interval
between tee times �, as a function of the key model
parameters and specified performance constraints. For
this analysis, we consider the special case of a course
that contains 18 identical P4 holes.

We formulate an optimization problem, aiming to
maximize the number n of groups the play each day
for specified model parameters (E[Y ], c2

Y , E[S3]) sub-
ject to constraints. Let V (ρ, n) ≡ E[V18,n(ρ)] be the
expected sojourn time on the course for group n (time
for group n to play a full round, from tee time on
the first hole to clearing the green on the last (18th)
hole) as a function of the traffic intensity ρ ≡ E[Y ]/�,
where � is the fixed interval between tee times on
the first hole. We approximate V (ρ, n) by (1) and
(23), assuming that ρ ≥ 1. Let G(ρ, n) ≡ E[G18,n(ρ)]
be the expected time for group n to clear the green
on the last hole, which is just V (ρ, n) plus the tee
time for group n, which is (n − 1)� = (n − 1)E[Y ]/ρ.

It is natural to consider the following optimization
problem:

maximize n

such that V (ρ, n) ≤ γ

and G(ρ, n) ≤ τ for ρ ≥ 1. (25)

For example, if we were to aim for 4-hour rounds
over a 14-hour day, then we would have γ = 240 min-
utes and τ = 840 minutes. The tee times could then be
restricted to the interval [0, τ − γ] = [0, 600] minutes.

From (1) and (23), we have for ρ ≥ 1 the following
functions of the model parameters and n:

V (ρ, n) = V (1, n) + (n − 1)E[Y ]

(
ρ − 1

ρ

)
and

G(ρ, n) = V (ρ, n) + (n − 1)E[Y ]

ρ

= V (1, n) + (n − 1)E[Y ], (26)

where

V (1, n) = B
√

n + C, with B = 7.2E[Y ]
√

c2
Y

and C ≡ 18([E[Y ] + E[S3]) − B. (27)

Since feasible numbers of groups must be integer,
we round down to the nearest integer; let �x be the
floor function, the greatest integer less than or equal
to x.

Theorem 5.1. (optimal solution) The function V (ρ, n)
in (26) is increasing in n and ρ, while the function
G(ρ, n) is increasing in n and independent of ρ, pro-
vided that n ≥ 1 and ρ ≥ 1. Hence, if there is an
optimal solution, then one of the two constraints must
be satisfied as an equality. If the first constraint on
V is binding, then the optimal decision variables are
ρ∗

γ = 1 and

n∗
γ = �[(γ − C)/B]2, (28)

for B and C in (27). If the second constraint on G

is binding, then ρτ is unconstrained (but should be
ρτ = 1 to minimize V (ρ, n∗

γ ) and the optimal n is

n∗
τ = �(

√
b2 + 4ac − b]/2a)2, (29)
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where a = E[Y ], b = B = 7.2E[Y ]
√

c2
Y and c = τ −

C + E[Y ] = τ − 17E[Y ] − 18E[S3] − B.

Proof. First, suppose that the first constraint involv-
ing V is binding. Since V (ρ, n) is increasing in both
ρ and n, in order to achieve the largest value of n, it
suffices to restrict attention to the smallest value of ρ,
yielding ρ = ρ∗

γ = 1. We then find n∗
γ by solving the

equation V (1, n) = γ using (27), which yields (28).
Next, suppose that the second constraint is binding.
First observe that ρ does not appear, so that it suf-
fices to solve the equation G(1, n) = τ, which yields a
quadratic equation in x ≡ √

n, whose solution is given
in (29). �

Theorem 5.1 implies that it suffices to focus on ρ =
1 in the optimization problem. This should be consis-
tent with intuition, because it is impossible to achieve
throughput faster than the bottleneck rate achieved at
ρ = 1. Since we achieve ρ = 1 by setting � = E[Y ],
we see the importance of determining E[Y ].

We say that a golf course design is efficient if the two
constraints in (25) are both binding at the optimal solu-
tion. An efficient design has the advantage that it should
not be necessary to increase throughput at the expense
of golfer experience (excessive times to play a round).
At the same time, it should not be necessary to restrict
the throughput in order to achieve a target bound on
the time to play a round. Efficiency depends on the
constraint limits γ and τ as well as the model parame-
ters. The following elementary result characterizes an
efficient design.

Theorem 5.2. (efficient design) An efficient design
for (γ, τ) occurs if and only if there is an nef such that

V (1, nef ) = γ and V (1, nef ) + (nef − 1)E[Y ] = τ

(30)
That in turn is achieved by nef = n∗

γ in (28) if and
only if

τ = γ + (nef − 1)E[Y ]. (31)

Thus, for any specified (γ, E[Y ]), there is a unique τ

that yields efficiency.

Example 5.1. To illustrate Theorem 5.1, suppose
that τ = 840, γ = 240, E[Y ] = 6, E[S3] = 4 and c2

Y =
0.025. Then B = 7.47 and C = (18)(6 + 4) − 7.47
= 172.53, so that n∗

γ = [(240 − 172.53)/7.47]2 =
�81.6 = 81, while a = 6, b = B = 7.47 and c = 667,

so that n∗
τ = �111.1 = 111. Hence, we see that the

first constraint on V is binding. The maximum value
of n satisfying both constraints is n∗

γ = 81. Since the
design is inefficient, we see that management has a
strong incentive to increase n above n∗

γ = 81 towards
111 in order to gain more revenue, but it can only do
so by causing the expected times for playing a full
round to exceed the target. Thus, this analysis evidently
explains what is commonly occurring on golf courses
today.

To illustrate Theorem 5.2, observe that, since n∗
τ =

111 > 81 = n∗
γ , that design is not efficient. Finally,

suppose that we want to have ν groups play the course
each day of length τ with V (ρ, n) ≤ γ for all n ≤ ν,
where 0 < γ < τ. Thus, we let ν = n∗

γ in (28), so that

ν =
γ − 18(E[Y ] + E[S3]) − 7.2E[Y ]

√
c2
Y

7.2E[Y ]
√

c2
Y

(32)

We can then see what parameter triples
(E[Y ], c2

Y , E[S3]) satisfy target (32). We can
aim for an efficient design by having ν = n∗

τ as well.

6. Data collection and model fitting

We envision the stochastic model of group play dis-
cussed above being used either to design a new golf
course or to improve the pace of play on an existing
golf course. In this section we discuss the required data
collection in order to fit the model.

6.1. Measuring the stage playing times

The primitives of the model are the stage playing
times of successive groups. Given a specification of the
actual stage playing times of all groups on all holes,
the recursions in Whitt (2015), such as the par-4 recur-
sion in (4) here, produce a specification of the resulting
play of all groups on all holes. (The major exception
is that we have ignored any delays spent walking after
completing play on one hole to the tee at the next hole.
We also assumed that the groups maintain their order
of play.) The implication is that we can calculate the
resulting performance descriptions for any number of
groups on any day for any specification of the stage
playing times and scheduled tee times. Moreover, we
can apply simulation to estimate the expected perfor-
mance descriptions for any number of groups on any
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day for any stochastic specification of the stage playing
times and tee times.

The stage playing times for each hole in turn can
be determined from the times each golfer in the group
makes their shots on that hole. For example, on a par-4
hole, there are five steps and three stages, as shown
in (2) and (3). Play starts when the first golfer in the
group goes to the tee. There are then three stage playing
times, with S1 corresponding to (T, W1), S2 to F and
S3 corresponding to (W2, G). The first time S1 can be
defined as the time between the instant the first golfer
in the group hits a tee shot until the first golfer in the
group hits a fairway shot; the second time S2 can be
defined as the time between the instant the first golfer
in the group hits a fairway shot until the instant that
the last golfer in the group hits a fairway shot; and the
third time S3 can be defined as the time between the
instant the last golfer in the group hits a fairway shot
until the instant that the last golfer in the group hits a
shot on the hole (most likely a putt on the green). Thus
all the stage playing times can be extracted from the
times at which each golfer hits the ball. It suffices to
record the times of all golf shots of the group.

The stage playing times can also be measured
according to the locations of the golfers in the group.
The first time S1 can be defined as the time between
the instant that the first golfer in the group enters the
tee box until the instant that the last golfer in the group
passes an initial target crossing point in the fairway
(e.g., 100 yards from the tee); the second time S2 can
be defined as the time between the instant that the
last golfer in the group passes an initial target cross-
ing point in the fairway (e.g., 100 yards from the tee)
until the instant that the last golfer passes a second
target crossing point on the fairway (e.g., 250 yards
from the tee); the third time S3 can be defined as the
time between the instant that the last golfer passes the
second target crossing point on the fairway (e.g., 250
yards from the tee) until the instant that the last golfer
leaves the green (after all golfers have completed play
on the hole). There could be difficulties in setting con-
sistently appropriate initial and second crossing points
on the fairway. This method could lead to errors if all
golfers do not pass the initial crossing point after their
tee shot or if they all do not pass the second crossing
point after their fairway shot.

The ideal approach is to have the shot timers or
GPS player location identifiers routinely incorporated
on the golf course, so that data can be collected auto-
matically and systematically. Alternatively, observers

can conduct sampling. Golf courses could help groups
of golfers self-regulate by exploiting modern technol-
ogy to make timing information available throughout
the golf course. The need has long been recognized,
as can be seen from the many efforts over the years
to address the pace-of-play problem without the lat-
est technology, e.g., Wolfe (1980), Nixon (1996) and
Probert (2000).

6.2. Constructing the stochastic model

To construct the associated stochastic model of
group play over the course, we need to estimate the
probability distribution of each stage playing time on
each hole, which can be characterized by its cumulative
distribution function (cdf) F . For each stage playing
time on each hole, that is naturally done by constructing
the empirical cumulative distribution function (ecdf).
Given n observations Zi, 1 ≤ i ≤ n, of one stage play-
ing time with cdf F , the ecdf is

Fn(x) ≡ n−1
n∑

i=1

1{Zi≤x}, x ≥ 0, (33)

where 1A is the indicator function of the set A, i.e.,
1{Zi≤x} = 1 if Zi ≤ x and 0 otherwise. Hence, the ecdf
Fn(x) is the proportion of the n observations less than
or equal to x, as a function of x. Assuming that the
observations can be regarded as i.i.d. random variables
with cdf F , the ecdf Fn is the natural estimator of the
underlying cdf F . (For each n, the ecdf Fn is itself
a cdf, which converges to the cdf F as n → ∞.) We
might also fit a distribution to estimates of the mean
and variance of the cdf F , using the sample mean and
variance, but we would want the fitted cdf to be similar
to the ecdf.

In our examples, we have used symmetric triangu-
lar distributions and exponential distributions for the
stage-playing-time cdf’s, but these are just hypothet-
ical distributions to illustrate the key concepts, with
the triangular distribution being roughly appropriate
to characterize the anticipated relatively low variabil-
ity. As illustrated by Corollary 2 and §4 of Whitt
(2015), these distributions are convenient for mathe-
matically calculating the associated critical cycle time
Y , as in (13), and critical playing time, as in (14). More
generally, for any stage-playing-time distributions, the
associated distributions of Y and X can be estimated
by simulation, using the formulas and recursions.
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For quick rough estimates with very limited data,
the symmetric triangular distribution is convenient
because it requires specifying only the minimum and
maximum values. More generally, with limited data
or only rough intuitive judgment, it is common to use
three-point estimation, using a smooth beta or PERT
distribution based on the most likely value (mode) in
addition to the estimated minimum and maximum val-
ues. That smooth three-point estimation is likely to
provide a better fit than the symmetric triangular dis-
tribution, but we would no longer have the relatively
simple formulas in §4.2 of Whitt (2015).

6.3. Testing the stochastic model: Detecting slow
groups

The stage playing times are natural model primi-
tives because, unlike the sojourn, waiting and playing
times on the hole or on the entire course, they are per-
formance measures that do not depend on the play of
other groups. Thus the stage playing times serve to
characterize the group play, and are thus appropriate
for model input.

In the stochastic model, a key modeling assumption
we make is that the stage playing times are stochas-
tically independent over different groups and differ-
ent holes. The stage-playing-time cdf’s are allowed
(indeed, are deliberately chosen) to vary from stage to
stage and from hole to hole, but the random times are
assumed to be stochastically independent; i.e., they are
assumed to be uncorrelated.

An important (and familiar) way that this indepen-
dence condition can be violated is by having some
extremely slow groups. Without slow groups, our
model allows any group to occasionally be slow on
any hole, e.g., due to a rare lost ball. However, slow
groups are different, because they are consistently slow
on all holes. Since all their stage playing times tend
to be larger than average, this seriously violates our
independence assumption.

With data, it is thus natural to perform statistical
tests of the assumed independence, aiming to detect
correlations among the playing times. A convenient
statistical test of our independence assumption is to
estimate the mean and variance of the sum of the stage
playing times over all stages and holes, for each group.
We will thus have one sum for each group. It should
be easy to detect exceptionally slow groups, because
they will produce outliers (extremely large values) of
these sums of stage playing times.

But it is also not hard to do more careful analy-
sis. Under the independence assumption, the variance
of the sum will be the sum of the variances of the
individual stage playing times, and the total will
approximately have a Gaussian distribution (by virtue
of the central limit theorem). On the other hand, with
slow groups, there will be positive correlations, making
the variance of the sum much larger. Thus, a practical
statistical test of the independence hypothesis is easily
carried out; i.e., we perform a standard statistical test to
determine if the n sums can be regarded as i.i.d. Gaus-
sian with the hypothetical mean and variance (under the
independence hypothesis). Clearly, the independence
assumption is likely to be more reasonable when the
skill level of golfers on the course does not vary too
greatly. Otherwise, the impact of slow groups can be
so great that golf courses recognize that they have to
take measures to address the problem.

6.4. Seeing if the course is balanced

The relatively simple performance descriptions in
this paper depend on the course being roughly bal-
anced, which means that the maximum possible
throughput on each hole is about the same for all holes.
In our examples we have used identical P4 holes, so
that the course is clearly balanced, but we have con-
firmed in simulations (to be reported in a sequel paper)
that the courses can have all the usual holes, with dif-
ferent parameters for each hole type, provided that
the expected critical cycle times E[Y ] are approxi-
mately the same on all holes. This is an important
conclusion that should be applied when designing golf
courses.

In practice, we can test whether or not a course is
balanced in at least two ways. First, if we estimate
the stage-playing-time cdf’s on each hole, then we can
estimate the mean critical cycle time E[Y ] for each
hole. The course is balanced if these are approximately
the same for all holes.

Second, we can also detect unbalanced courses by
observing unusually long waiting times (before start-
ing to play on a hole) for the last groups to play at the
most heavily congested holes. For a balanced critically
loaded course, the waiting times tend to gradually build
up over successive groups and gradually decrease over
each successive hole. For an unbalanced course, the
waiting times at a few heavily congested holes tend to
dominate the waiting times at other holes.
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7. Derivation of the approximation formulas

In this section we derive the approximation formu-
las for the mean total sojourn time in (1) and (23) and
for the standard deviation in (24). We have placed this
section toward the end of the paper, because it involves
quite complicated and sophisticated queueing theory.
We emphasize that this is far from a conventional appli-
cation of queueing theory. The golf course tends not to
operate in steady state. Instead, it is a heavily loaded
system that starts out empty each day. Moreover, there
are the precedence constraints associated with more
than one group playing on each hole at the same time.

In §7.1 we show how to approximate the group
waiting times (before starting to play) on each of the
holes by the waiting times in associated conventional
G/GI/1 single-server models with unlimited waiting
space, the FCFS discipline, the given arrival process of
groups to the hole and i.i.d. (aggregate) service times;
i.e, without the precedence constraints. In §7.2 we
then apply established heavy-traffic limits for a series
of identical conventional queues to develop the final
approximation. In §7.2.2 we show how we obtain the
final formulas for the golf course.

7.1. An approximation without precedence
constraints

In order to apply conventional queueing theory to
develop approximations for the sojourn time on the
course, we now approximate the P3WU, P4 and P5
holes specified in §3 by conventional G/GI/1 single-
server models with unlimited waiting space, the FCFS
discipline, the given arrival process of groups to the
hole and i.i.d. (aggregate) service times. In this case,
there also are some exceptional initial conditions: (i)
the first customer arrives at time 0 instead of after
an interarrival times and (ii) the first customer has an
exceptional service time. These features will require
some adjustment in the approximations. The main
point is: In these approximating models, only one group
is being served at a time, ignoring all other groups. The
approximation is avoiding the precedence constraints.

7.1.1. The approximating conventional
single-server queue

We now approximate each individual hole by a
conventional G/GI/1 single-server queue, which has
no precedence constraints. By “conventional G/GI/1
single-server queue,” we mean a single-server queue

with unlimited waiting space, the FCFS service disci-
pline, the given arrival process and i.i.d. service times
with a general distribution (which are independent of
the arrival process). In a conventional single-server
queue, whenever the server remains busy, the intervals
between successive departures are the exogenously
defined service times. Thus in our approximation we
let the new aggregate service times be i.i.d. versions
of the critical random cycle times, distributed as Y in
§3.4. We should only expect this approximation to be
effective when the hole is heavily loaded, but that is
the important case that we consider.

Moreover, we only use this approximating aggregate
service time model to generate approximations for the
waiting times before beginning service, i.e, for Wn ≡
Bn − An. Since the actual time spent playing on the
hole Xn tends to be larger than Yn, to approximate the
sojourn time on the hole we use the approximation

Un ≈ Wn + Xn, (34)

where Wn and Xn are independent and the waiting time
is approximated by the waiting time in the conventional
GI/GI/1 model with i.i.d. service times distributed
as Y , while Xn is the exact playing time, for which
formulas were developed.

For a P4 hole, approximation (34), together with (13)
and (14), implies that

E[U(4)
n ] ≈ E[W (4)

n ] + E[Y (4)] + E[S(4)
3 ] and

Var(U(4)
n ) ≈ Var(W (4)

n )

+Var(Y (4)) + Var(S(4)
3 ), n ≥ 2. (35)

For n = 1, we have Wn = 0 and Xn = S1 + S2 + S3.
In (35) Y (4) and S

(4)
3 are the critical cycle time and third

stage playing time directly defined for the P4 hole,
while W (4)

n is the approximating waiting time based on
using i.i.d. service times distributed as Y (4).

7.1.2. The classical recursion
Thus, for each hole type, the approximatingG/GI/1

model is specified by the sequence of arrival times
{An : n ≥ 1} and the sequence of mutually indepen-

dent service times {Yn : n ≥ 1}, where Yn
d=Y , n ≥ 2,

and Y1 the sum of the stage playing times. For a P4

hole, Y is given in (13) and Y1
d=Y∗

1 ≡ S1 + S2 + S3.
For each hole we can apply the classical single-server
queue recursion:

Bn ≡ An ∨ Dn−1 and Dn ≡ Bn + Yn, (36)
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where D0 ≡ 0. The variables Dn are the departure
times in the conventional single-server model. How-
ever, the actual approximate departure times we use are
different. They are obtained by using Gn ≈ An + Un

for Un in (34). Thus, this approximation scheme can be
applied to any sequence of hole types. We compare the
approximations in this section to simulations in §8.1.

As indicated above, there is an exceptional first
service time at each hole. We remark that there is a lit-
erature on queues with exceptional first service, which
can be traced from citations to the early paper Welch
(1964), but that literature focuses on queues in which
the first service time of every busy period is excep-
tional. In contrast, here only the very first group has a
different service time.

7.2. The heavy-traffic approximation for the
series network

We first consider a series of i.i.d. standard G/GI/1
queues, where the first queue has a deterministic
arrival process and the service times are taken from 18
independent sequences of i.i.d. random variables dis-
tributed as Y (4), the critical P4 cycle time variable in
(13). Then we show how to modify that approximation
to obtain approximations for the mean and standard
deviation of the total sojourn time of each group in the
general (critically loaded and balanced) golf course
model.

7.2.1. Heavy-traffic limit for the standard model
Let Gstd

k,n denote the departure time of group n from
hole k in this model. By Theorem 3.2 of Glynn and
Whitt (1991),

Gstd
k,n − (n + k − 1)E[Y ]√

n
⇒ σYD̂k(1) as n → ∞,

(37)
where D̂k(1) is a complex function of k-dimensional
standard Brownian motion (BM), as arises in the case
E[Y ] = Var(Y ) = 1. The key approximation stem-
ming from (37) is

Gstd
k,n ≈ E[Y ]

(
n + k − 1 + (

√
n − 1)

√
c2
Y D̂k(1)

)
,

(38)
where c2

Y ≡ σ2
Y/E[Y ]2 is the squared coefficient of

variation. We have replaced
√

n by its asymptotically
equivalent value

√
n − 1 to make the approxima-

tion correct for n = 1. As in §4.3, we note that

the approximation in (38) is only asymptotically cor-
rect to order o(

√
n); i.e., the error is small compared

to
√

n as n → ∞. Hence constant adjustments as we
made are not directly supported (or ruled out) by (37).

It remains to evaluate the distribution of the random
variable D̂k(1) appearing in (37) and (38). To evaluate
its mean and standard deviation, we exploit simulation
results from Greenberg et al. (1993). In particular, we
apply Table 5 of Greenberg et al. (1993) to produce the
approximation

E[D̂k(1)] ≈ bk

√
k and SD[D̂k(1)] ≈ ck (39)

where bk and ck are constants that in general should
depend on k with bk ↑ 2 as k ↑ ∞, while ck decreases.
For k = 10, bk ≈ 1.62 and ck ≈ 0.65; for k = 100,
bk ≈ 1.95 and ck ≈ 0.45. Hence, we use the approxi-
mations b18 ≈ 1.7 and c18 ≈ 0.6, yielding

E[D̂18(1)] ≈ 1.7
√

k ≈ 7.2 and SD[D̂18(1)] ≈ 0.6
(40)

Since Vstd
k,n = Gstd

k,n − A1,n and A1,n = (n − 1)� =
(n − 1)E[Y ]/ρ, which is deterministic,

SD[Vstd
k,n] = SD[Gstd

k,n]. (41)

Combining (38), (40) and (41), we obtain the
approximations

E[Vstd
18,n] ≈ E[Y ](

18 + (n − 1)
ρ − 1

ρ
+ 7.2(

√
n − 1)

√
c2
Y

)
and ,

SD[Vstd
18,n] ≈ 0.6E[Y ]

√
nc2

Y = 0.6σY . (42)

7.2.2. Extending the approximation to the golf
course

To obtain the corresponding approximation for the
sojourn time in the golf model, we need to include the
sojourn time adjustment in §7.1.1. Since the expected
playing time on hole k is E[Xk] instead of E[Y ], we
need to add E[Xk] − E[Yk] to the approximation for
the mean E[Vstd

18,n], which depends on the type of hole
k. Assuming that the distribution of Y is approximately
independent of the hole type, but the distribution of X

is not, we have formula (1) with the first term of C in
(23).

We subtract the constants B = 7.2σY in C in (23)
to account for the shift from

√
n − 1 in (42) to

√
n

in (1) and we subtract the final A = E[Y ](ρ − 1)/ρ
to account for the adjustment from n − 1 to n in



58 Q. Fu and W. Whitt / Analyzing the pace of play in golf

the first term, both of which are appealing in (1)
for the simplicity. For the case of identical P4 holes,
we have the special case in which Xj is indepen-

dent of j and E[X(4)
j ] = E[Y (4)] + E[S(4)

3 ], so that

C = 18E[X(4)] − 7.2σY − E[Y ](ρ − 1)/ρ in (23).
For the standard deviation, there evidently is depen-

dence among these stage playing times used in the
adjustment. Hence, we advocate the simple approxi-
mation

√
c2
V18,n

≈
√

c2
Vstd

18,n

= SD[Vstd
18,n]

E[Vstd
18,n]

, (43)

where the terms on the right are given in (42). Since we
have nothing new to add, we exploit the thorough study
for the standard model in Greenberg et al. (1993). We
compare these approximations to simulation in §8.

8. Simulation experiments

We now report results of additional simulation
experiments conducted to evaluate the approximations.

8.1. Simulation to test the conventional queue
approximation

We first report the results of simulation exper-
iments to test the approximation by conventional
G/GI/1 single-server queues with i.i.d. service times

distributed as the critical cycle time Y , proposed in
§7.1.1. Again, the simulations are based on 2000 inde-
pendent replications, which makes the half-width of
95% confidence intervals less than 5% of the estimated
means and 10% of the estimated standard deviations.

8.1.1. A single critically loaded P4 hole
We first consider the case of a single P4 hole that

is critically loaded. The approximation yields a con-
ventional D/GI/1 queue, with two modifications: the
first customer arrives at time 0 and has an excep-
tional service time. Theorem 4.1 of Whitt (1972) gives
a heavy-traffic limit for the mean waiting time in
a GI/GI/1 queue as n → ∞ when ρ = 1. For the
D/GI/1 model with service time having variance σ2

Y ,

E[W1,n]/
√

σ2
Yn →

√
2/π as n → ∞, (44)

For a P4 hole with σ2
Y = 1.248, the limit (44) supports

the approximation

E[W1,n] ≈
√

2(1.248)n/π = 0.891
√

n, (45)

which should be good for suitably large n. However,
there is an obvious error in (45) for n = 1, because the
exact value is E[W1,1] = 0. To correct for that error,
we use the adjusted approximation

E[W1,n] ≈ 0.891(
√

n − 1), n ≥ 1. (46)

Figure 3 compares the heavy-traffic approximation
in (46) to simulation estimates for the first P4 hole of
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Fig. 3. The heavy-traffic approximation (46) and a two-parameter fit to the simulation estimates (0.903
√

n − 0.777) compared to the simulation
estimates of E[W1,n], the expected waiting time of group n on the first hole (in minutes, before starting to play), as a function of n, for a P4
hole with ρ = 1, where all stage playing times have the tri + LB distribution with parameter five tuple (m, a, r, p, L) = (4, 1.5, 0.5, 0.05, 8.0),
reviewed in §3.1 (the same as in Fig. 1).
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Table 1

Simulation comparison of the transient performance predicted by the exact and approximate models: estimates of the mean and standard deviation
of the sojourn times of group 20 on several holes, (Uk,20), and over the first 10 holes, (V10,20), for a series of i.i.d. par-4 holes with exponential

stage playing times, for three traffic intensities ρ = 0.9, 1.0 and 1.1

traffic intensity ρ = 0.9 ρ = 1.0 ρ = 1.1
perf. measure

mean std dev mean std dev mean std dev

hole 1, exact model 28.0 18.1 36.6 22.3 48.4 26.5
approx model 30.6 20.3 38.9 23.1 52.6 27.9

hole 2, exact model 32.7 20.0 37.8 24.1 42.2 25.5
approx model 33.5 21.1 40.1 23.7 43.2 25.2

hole 3, exact model 31.1 20.4 34.8 21.7 35.6 22.5
approx model 33.9 21.7 36.9 22.6 38.1 23.7

hole 6, exact model 28.5 18.2 29.0 18.0 29.7 22.8
approx model 29.4 19.5 30.7 18.3 31.4 19.5

hole 10, exact model 25.1 16.1 26.0 16.8 25.8 16.8
approx model 27.1 17.5 27.7 16.6 27.9 16.6

first 10 holes, exact model 283.8 34.2 305.9 35.1 326.6 36.6
approx model 303.8 38.5 328.2 38.0 346.7 40.2

the same tri + LB model used in Fig. 1 and a fitted
function, which turns out to be 0.903

√
n − 0.777. The

waiting time is the time from arrival until starting to
play, expressed in minutes.

8.1.2. A series of identical P4 holes
We next consider the case of identical P4 holes in

series with different distributions for the stage playing
time Si, 1 ≤ i ≤ 3. We report simulation results esti-
mating the mean and standard deviation of the sojourn
time of group n on hole k, Uk,n ≡ Gk,n − Ak,n, and of
group n on the first k holes, Vk,n ≡ U1,n + · · · + Uk,n

for the cases (k, n) = (10, 20) and (18, 100).
We find that the sojourn times over several holes

tend to be approximately normally distributed, so that
the mean and standard deviation serve to describe the
entire distribution. Figs. 4 and 5 illustrate by showing
the histogram of the sojourn times V10,20 for ρ = 0.9
(on the left) and ρ = 1.1 (on the right) estimated for
the exact model in §3. (The approximation produces
very similar plots.)

For our first experiment, we consider an all-
exponential model with independent all-exponential
stage playing times having means E[S1] = E[S3] = 6,
E[S2] = 3. The interval between tee times is used to
adjust the traffic intensity ρ. We perform the transient
simulations for three values of the traffic intensity ρ,
defined by ρ ≡ λE[Y ]: 0.9, 1.0, and 1.1.

We give simulation estimates of the mean and
standard deviation of these sojourn times Uk,20 for
the exact and approximate models in Table 1 for
holes h = 1, 2, 3, 6 and 10 and the total sojourn time

V10,20. Overall, we see that the mean sojourn time
may increase from k = 1 to k = 2 but then gradually
declines thereafter; the standard deviations evidently
decline only after k = 3. We see that the approximate
model consistently overestimates the mean and stan-
dard deviation but not by too much. It overestimates
the mean and standard deviation of V10,20 for ρ = 0.9
by 7% and 12%, respectively. Assuming approximate
normality, as supported by Figs. 4 and 5, the half-
width of 95% confidence intervals for the mean can
be estimated directly from the results in each table by
1.96σ̂/

√
n ≈ σ̂/22.8, where σ̂ is the estimated stan-

dard deviation given in the table.
We now focus on the different stage playing time

distributions. In all cases the three distributions are
given the same form and three means are m1 = m3 = 6
and m2 = 3. In addition to the exponential distribution,
we consider the triangular distribution (tri(m, a)) for
(m, r, a) = (6, 0.5, 3) and that same triangular distribu-
tion with the lost ball parameters (p, L) = (0.05, 12).
As indicated in Whitt (2015), the means and vari-
ances of Y can readily be computed for each of
these three cases. They are, respectively, (E[Y ], σ2

Y ) =
(12.00, 54.00), (9.70, 2.51) and (9.97, 3.80). Even
though the stage playing times have identical means in
all three models, they have different variability, which
affects both the mean and variance of Y . The mean and
variance of Y in turn strongly affect the mean sojourn
times E[Uk,n] and E[Vk,n].

Table 2 gives simulation estimates of the mean
and standard deviation of these sojourn times Uk,100
for the exact and approximate models for holes
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Fig. 4. Histogram of the sojourn times V10,20 in the all exponential model with for ρ = 0.9.

k = 1, 2, 3, 6, 10, 18 and the total sojourn timeV18,100.
These results are again based on 2000 independent
replications. For the less variable triangular stage play-
ing time distribution, the half-width of 95% confidence
intervals is consistently less than 1% of the mean esti-
mate and 5% of the standard deviation estimate.

Again, we see that the mean sojourn time may
increase from k = 1 to k = 2 but then gradually
declines thereafter; the standard deviations evidently
decline only after k = 3. We see that the approxi-
mate model consistently overestimates the mean and
standard deviation but not by too much. The values
decrease going from exponential to triangular with lost
balls, and then to triangular without lost balls, because
the variability decreases dramatically. Thus, Table 2
illustrates the strong impact of variability on perfor-
mance, so pervasive in queueing theory.

8.2. Simulations to evaluate the approximation
formulas

We now report the results of simulations to evaluate
the approximation formulas developed in §4.

8.2.1. The approximations for the standard series
network

To evaluate the quality of the approximation in (42),
we simulated the standard model with i.i.d. service
times distributed as Y in (13) with traffic intensities
ρ = 1.1, 1.0 and 0.9 for the stage playing time distri-
butions in Table 2. The results are shown in Table 3. For
ρ = 1.0, the approximations for the mean sojourn time
of group 100 over 18 holes with the tri, tri + LB and
exp stage service time distributions are, respectively,
3.9% high, 10.6% high and 3.7% high.

For the cases with ρ ≥ 1, Table 3 shows that (42)
and (42) provide useful approximations for the mean
E[V18,n] and standard deviation SD[Vstd

18,n], showing
the dependence upon the five key variables E[Y ], ρ, n,
k and c2

Y . For example, from (42), we see that the mean
E[V18,n] is directly proportional to E[Y ].

Our main focus is on cases with ρ ≥ 1, but Table 3
also includes results for ρ = 0.9 to show what happens.
Table 3 shows that there are no dramatic changes; we
can obtain reasonable rough estimates for the mean
values at ρ = 0.9 by subtracting the difference of the
values at ρ = 1.1 and ρ = 1.0 from the value for ρ =
1.0. However, the approximations for ρ = 0.9 have a
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Fig. 5. Histogram of the sojourn times V10,20 in the all exponential model with for ρ = 1.1.

Table 2

Simulation comparison of the transient performance predicted by the exact and approximate models: estimates of the mean and standard deviation
of the sojourn times of group 100 on several holes, (Uk,100), and over the full course of 18 holes, (V18,100), for a series of i.i.d. par-4 holes with

traffic intensity ρ = 1.1 and three stage playing time distributions

Distribution tri.(m, a) = (6, 3) tri. + LB (p, L) = (.05, 12) expon. m = 6

perf. measure mean std dev mean std dev mean std dev

hole 1, exact model 103.6 15.8 106.4 19.0 142.7 66.1
approx model 108.4 15.9 111.1 19.3 144.8 65.9

hole 2, exact model 31.6 13.6 35.3 16.2 87.3 59.7
approx model 33.1 14.2 36.9 17.2 87.3 57.0

hole 3, exact model 26.4 10.3 29.6 12.7 65.7 46.3
approx model 27.7 10.6 30.4 13.2 68.3 47.1

hole 6, exact model 21.9 6.7 24.3 8.9 47.7 35.4
approx model 23.10 7.7 25.0 9.7 50.6 34.8

hole 10, exact model 20.4 5.8 21.8 7.0 40.7 30.1
approx model 21.7 6.8 23.0 8.2 41.3 27.9

hole 18, exact model 18.7 4.3 19.9 6.8 33.3 23.8
approx model 20.7 6.0 21.4 5.7 35.3 23.4

first 18 holes, exact 468.8 10.1 503.7 14.1 908.5 58.6
approx model 498.3 12.4 526.7 15.3 938.5 61.8

very different basis. For ρ < 1, we use a variation of the
approximation for the steady-state mean from Whitt
(1983). For the standard deviation, we draw on (42),
assuming that SD(Vstd

18,n(ρ)) for ρ < 1 has the same
value as in the approximation for ρ = 1.0.

8.2.2. The approximations for the golf course
We use simulation to evaluate the approximations

for the mean in (1) and (23) and for the stan-
dard deviation in (42) and (43). The results are in
Table 4.
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Table 3

Comparison with simulation estimates of the heavy-traffic approximation in (42) for the mean and standard deviation of Vstd
18,100, the sojourn

time in the standard model, for service times distributed as Y in (13) with four different stage playing times for ρ = 0.9, 1.0 and 1.1

stage playing time dist. exact (sim) HT approx (42) (41)

mean SD mean SD
√

c2
V

ρ = 1.1
deterministic, m = 6 243 0.0 9.00(27 + 0.00) = 243 0.0 0.0000
triangular, (m, a) = (6, 3) 363 9.5 9.70(27 + 11.75) = 376 9.5 0.0253
tri+LB, (p, L) = (.05, 12) 398 14.0 9.97(27 + 16.42) = 433 11.6 0.0268
exponential, m = 6 826 56.4 12.00(27 + 44.1) = 853 44.1 0.0517

ρ = 1.0

deterministic, m = 6 162 0.0 9.00(18 + 0.00) = 162 0.0 0.0000
triangular, (m, a) = (6, 3) 278 9.5 9.70(18 + 11.75) = 289 7.3 0.0253
tri+LB, (p, L) = (.05, 12) 310 13.8 9.97(18 + 16.42) = 343 9.2 0.0268
exponential, m = 6 722 56.7 12.00(18 + 44.1) = 749 38.7 0.0517

ρ = 0.9

deterministic, m = 6 162 0.0 9.00(18 + 0.00) = 162 0.0
triangular, (m, a) = (6, 3) 201 5.6 162 + 9.7(18)(9)(0.0267) = 204 7.3
tri+LB, (p, L) = (.05, 12) 224 9.8 162 + 9.97(18(9)(0.0382) = 224 9.2
exponential, m = 6 597 52.9 162 + 12(18(9)(0.375)(0.727) = 691 38.7

Table 4

Comparison of the heavy-traffic approximation for the mean sojourn time of group 100 on the full 18-hole golf course, E[V18,100], in (1) and
(23) with simulation estimates for four different stage playing times for ρ = 0.9, 1.0 and 1.1

stage playing time dist. exact (sim) model approx (sim) HT approx (43)

mean SD mean SD mean SD

ρ = 1.1
deterministic, m = 6 351 0.0 351 0.0 351 0.0
triangular, (m, a) = (6, 3) 469 10.1 498 12.4 484 12.2
tri+LB, (p, L) = (.05, 12) 503 14.2 526 15.3 531 14.2
exponential, m = 6 908 61.7 938 61.0 961 50.0

ρ = 1.0

deterministic, m = 6 270 0.000 270 0.000 270 0.000
triangular, (m, a) = (6, 3) 382 9.9 411 12.7 396 10.0
tri+LB, (p, L) = (.05, 12) 416 14.4 437 15.3 440 11.8
exponential, m = 6 807 59.0 832 60.5 852 44.1

ρ = 0.9

deterministic, m = 6 270 0.000 270 0.000 270 0.000
triangular, (m, a) = (6, 3) 306 6.6 312 8.8 312 7.9
tri+LB, (p, L) = (.05, 12) 330 11.9 335 11.9 332 8.9
exponential, m = 6 683 56.2 707 60.6 852 44.0

Table 4 show that the HT approximation gives a use-
ful approximation for the mean E[V18,n] and standard
deviation SD[V18,n]. From Tables 3 and 4, we see that
the errors in Table 4 are primarily due to the quality of
the heavy-traffic approximation for the standard model
in this setting.

9. Conclusions

We have developed two new approximations for
the stochastic model of group play on a golf course

introduced in Whitt (2015). In §7.1 we developed
the approximation involving conventional G/GI/1
single-server queues, without precedence constraints.
In §4 we exploited that approximation plus established
heavy-traffic limits for queues in series reviewed in
§7.2 to develop approximation formulas for the mean
and standard deviation of V18,n, the random time spent
playing the course by group n, as a function of n. The
approximation for the mean is given in (1) and (23),
while the approximation for the standard deviation is
given in (24). The full distribution is approximately
Gaussian, as can be seen from Figs. 4 and 5.
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The mathematical basis was an established heavy-
traffic limit for a network of conventional single-server
queues in series. In particular, we used Theorem 3.2 of
Glynn and Whitt (1991), but also simulation experi-
ments in Greenberg et al. (1993). As noted in those
papers, the variability in the total sojourn time is
impressively low. However, we mainly emphasize the
formula for the mean in in (1) and (23). It goes beyond
widespread golfer experience that the expected time to
play a round increases the later you start by revealing
the form of that increase. In §5 we showed how that
mean formula can be used to help design and manage
a golf course.

There are many remaining research problems. First,
work is underway to see how well the approximations
perform for balanced courses with the usual variety
of holes; all the simulations reported here were for 18
identical par-4 holes. For the more general model with
different hole types, we tentatively propose approxima-
tion (1) with the general approximation for C in (23),
involving the mean stage playing times on the different
holes, but some adjustments may be needed, because
the distribution of the critical cycle time Y depends on
the hole type, even if the mean values are the same
for all holes (so that the course is indeed balanced). In
general, we expect the general form An + B

√
n + C

in (1) to remain appropriate, but we should anticipate
that some adjustment may be needed in the constants
B and C.

Much remains to be done investigating data from
group play on golf courses, going beyond the ini-
tial study in Riccio (2014), as discussed in §6. To
what extent are group tee times consistent with the
assumed deterministic schedule? To what extent are
group sojourn times and departure times consistent
with the approximation in (1)? To what extent are
golf courses underloaded, critically loaded or over-
loaded? To what extent are golf courses balanced or
unbalanced? What are the actual stage playing time
distributions? To what extent are stage playing times
mutually independent?

In §6.3 we observed that one reason that the stage
playing times may not be independent is that there may
be exceptionally slow groups. If there are occasional
slow groups, and these groups are allowed to play the
course, then they can have a major impact, as observed
in Riccio (2012, 2013). Such slow groups would make
the mean and variance of stage playing times larger.
Even more important, they would make the succes-
sive stage playing times highly dependent. How should

slow groups be analyzed? How should slow groups be
managed?

For balanced courses, to what extent are the designs
efficient as defined in §5? When the courses are
inefficient, is the throughput constraint the binding
constraint, as in Example 5.1? For unbalanced courses,
what are effective performance approximations?

Finally, it appears that the present approximations
can be fruitfully applied in other systems with prece-
dence constraints, which commonly occur in many
service systems, e.g. Armony et al. (2015), Larson et al.
(1993). That remains to be explored.
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