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In previous work we characterized Gaussian Markov processes with stationary increments and showed 
that they arise as asymptotic approximations for stochastic point processes with a random rate such as 
Polya processes, which can be useful to model over-dispersion and path-dependent behavior in service 
system arrival processes. Here we provide additional insight into these stochastic processes.
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1. Introduction

The net input processes of queueing systems - queueing net-
works as well as individual queues - are often approximated by 
Brownian motion (BM), leading to approximations of the content 
(workload or queue length) by reflected Brownian motion; e.g., 
see [9,16]. The BM model tends to be relatively tractable because 
it is a Gaussian Markov process with stationary and indepen-
dent increments. However, the property of independent increments 
fails to capture positive correlations among increments of the ar-
rival process over nonoverlapping intervals, often referred to as 
over-dispersion, which are often found in measurements; e.g., see 
[10,11,13].

The interest in modelling net input processes without indepen-
dent increments led us to investigate Gaussian Markov processes 
without independent increments and their applications to queues 
in [4–7]. Significant contributions for applications are: (i) a char-
acterization of multidimensional Gaussian Markov processes with 
stationary (but not independent) increments, called ψ-GMPs (with 
ψ pronounced “SI” being a mnemonic “for stationary increments”), 
(ii) expressions for the transient distribution of the workload in a 
queue with a ψ-GMP input; see Theorems 5 and 6 of [4] and §5 
of [5] and (ii) heavy-traffic limits for queueing models with input 
modelled as generalized Polya processes (GPPs) from [2]; see §3-§5 
of [5]. The paper [5] considers one-dimensional GPPs with station-

* Corresponding author.
E-mail address: ww2040@columbia.edu (W. Whitt).
https://doi.org/10.1016/j.orl.2023.107062
0167-6377/© 2023 Elsevier B.V. All rights reserved.
ary increments; the paper [6] considers GPPs without stationary 
increments; the paper [7] considers multidimensional GPPs with 
stationary increments and their applications to queueing networks.

The purpose of this paper is to provide new insight into GMPs 
and GPPs. In section §2 we obtain a new representation for a mul-
tivariate ψ-GMP with parameter matrices (A, B); we show that it 
can be represented as a sum of two independent processes, one a 
BM with covariance matrix A and the other a constant t times a 
normal random vector with covariance matrix B . In §3 we show 
that the set of all univariate ψ-GPPs coincides with the set of 
all Polya processes, which in turn can be characterized as Pois-
son processes with a gamma distributed random rate; see Chapter 
4 of [8]. In §4 we obtain a new version of the one-dimensional 
FCLTs in §3-§4 of [5], where the limit is expressed directly in the 
(one-dimensional version of the) ψ-GMP in §2 here. In §5 we also 
obtain a new supporting multivariate FCLT, yielding all possible 
multivariate ψ-GMPs as limits.

2. Stationary-increment Gaussian Markov processes

In this section we give a new simple representation for a 
stationary-increment Gaussian Markov process (ψ-GMP), which 
was studied in [4]. We first review the definition and some of its 
properties.

We work with column vectors, so that if U and V are two 
k-dimensional random vectors in Rk , then the k × k covariance 
matrix is Cov[U , V ] ≡ E[V U T ] − E[V ]E[U T ], where T denotes the 
transpose. Let Dk be the k-fold product of the space D ≡ D[0, ∞)
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with the usual Skorohod topology and the product topology, as in 
[16]. (The limits will have continuous sample paths, so the topol-
ogy will correspond to the topology of uniform convergence over 
bounded intervals, but with the usual sigma-field; see §11.5.3 of 
[16].)

Definition 1. A process X in Dk for k ≥ 1 is a ψ-GMP with param-
eter matrices (A, B) and drift vector ω in Rk if X is a Gaussian 
process with E[X(t)] = ωt and

Cov [X(s), X(t)] = s (A + Bt) , 0 ≤ s ≤ t < ∞,

where A and B are (strictly) positive definite, symmetric matrices 
of k × k real scalars.

In Definition 1 we have changed the sign of the matrix B from 
[4], but kept the meaning unchanged. We also do not consider all 
cases studied in [4]. The definition of a ψ-GMP in [4] relaxes the 
positive definite property for the matrix B , but to do so may re-
quire X be defined on a bounded interval [0, c] for 0 < c < ∞. The 
cases we consider always have positively correlated increments by 
Proposition 2 of [4].

The ψ-GMP is interesting because it is path-dependent, by 
which we mean that it satisfies a non-ergodic law of large num-
bers (LLN); i.e., by Theorem 4 of [7], if X is a ψ-GMP in Dk with 
parameter matrices (A, B) and drift vector ω, then

n−1 X(n) ⇒ N(ω, B) in Rk as n → ∞,

where N(m, �) denotes a normal or Gaussian random vector with 
mean vector m and covariance matrix �.

By Theorem 3 of [4], X has a representation as a solution to the 
linear stochastic differential equation (SDE), which is a well known 
way to generate GMPs; see §5.6 of [12]. In particular, the ψ-GMP 
can be expressed as

X(t) = ωt + Y (t), t ≥ 0, (1)

where Y (t) is characterized as the solution of the stochastic differ-
ential equation

dY (t) = B(A + Bt)−1Y (t)dt + √
A dW (t), t ≥ 0, (2)

with Y (0) ≡ 0, W is standard k-dimensional Brownian motion 
(BM) or Wiener process (with mean 0 and covariance matrix the 
identity matrix I).

It follows that a ψ-GMP has almost surely continuous sample 
paths. When A and B have the assumed properties, A1/2 exists, 
and (A + Bt)−1 always exists because A + Bt is positive definite 
for all t ≥ 0. If we relax the positive definite assumption for B and 
assume that B = 0, then X is a multivariate Brownian motion with 
drift ω and Cov [X(s), X(t)] = sA for 0 ≤ s ≤ t < ∞.

We now show that there is a simple alternative representation 
for a ψ-GMP, i.e., with the same finite-dimensional distributions, 
and thus the same distribution on the space Dk , but not necessar-
ily the same sample paths (just as W (t), −W (t) and W (−t) are 
three alternative representations of Brownian motion).

Theorem 2.1. (alternative representation for a ψ-GMP). An alternative 
representative for the ψ-GMP in (1) and (2) above with parameter ma-
trices (A, B) and drift vector ω is

X(t) = N(ω, B)t + √
AW (t), t ≥ 0, (3)

where W is again standard multivariate BM that is independent of a nor-
mal random vector N(ω, B) with mean vector ω and covariance matrix 
B.
2

Proof. Clearly the two representations are both for Gaussian pro-
cesses with drift. To show equivalence of all finite-dimensional 
distributions, it suffices to show that the mean vectors and covari-
ance matrices coincide. Clearly the processes have the same mean 
vectors. When (3) holds,

E[X(t)X(t)T ] = E[E[X(t)X(t)T ]|N(ω, B)]
= At + E[N(ω, B)N(ω, B)T ]t2 = At + Bt2+ωωT t2,

so that

V ar[X(t)] = Cov[X(t), X(t)] = At + Bt2, t ≥ 0.

It follows from (3) that X(t − s) d= X(t) − X(s) and Cov[X(s), X(t)]
= Cov[X(t), X(s)]. Therefore,

V ar[X(t − s)] = V ar[X(t) − X(s)]
= V ar[X(t)] + V ar[X(s)]

− 2Cov[X(s), X(t)], 0 ≤ s ≤ t,

so that we conclude that

Cov[X(s), X(t)] = s(A + Bt), 0 ≤ s ≤ t. �
3. Polya point processes

In our previous work [5,6], we viewed Polya processes (PPs) as 
special cases of stationary generalized Polya processes (ψ-GPPs), 
drawing on the paper [2] that introduced GPPs. In this approach, a 
GPP with parameter triple (κ(t), γ , β) is defined as a Markov point 
process with intensity function (defined in terms of the internal 
histories Ht ; e.g., see §1.8 of [1]) by

λ∗(t) ≡ λ∗(t|Ht) ≡ lim
h↓0

E[N(t + h) − N(t)|Ht]
h

≡ (γ N(t−) + β)κ(t), (4)

where N(0) = 0, γ and β are positive constants, κ(t) is a positive 
integrable real-valued function and ≡ denotes equality by defini-
tion. As observed by [2], the special case of (4) with

κ(t) = 1

γ t + 1
, t ≥ 0, (5)

is a Polya point process. Theorem 1 of [5] shows that the GPP with 
κ in (5) is stationary. We refer to one such ψ-GPP as an γ , β ψ-
GPP. We now show that the set of all ψ-GPPs coincides with the 
set of PPs.

Theorem 3.1. (ψ-GPP representation theorem) A GPP has stationary in-
crements if and only if it is a Polya process as defined by (4) and (5).

Proof. We apply our results for G P P s, in particular, Theorem 1 
and Corollary 3 of [6], which constructs a ψ-GPP in terms of its 
instantaneous mean function. Corollary 3 to Theorem 1 of [6] and 
the following Remark 2 there show that any ψ-GPP has a constant 
instantaneous mean function, defined as

λ(t) ≡ lim
h↓0

E[N(t + h) − N(t)]
h

where N(0) = 0. Note that the instantaneous mean function λ(t)
differs from the intensity λ∗(t) in (4) by not conditioning on the 
internal histories Ht . Suppose that a GPP with parameter triple 
(κ(t), γ , β) has instantaneous mean function λ(t) = c, and so is a 
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ψ-GPP. Apply (2.10) in Theorem 1 of [6] to show that the associ-
ated function κ(t) in that GPP is

κ(t) = c

β + γ ct
.

Thus the associated intensity function is

λ∗(t) ≡ λ∗(t|Ht) ≡ (γ N(t−) + β)κ(t) = cγ N(t−) + cβ

γ ct + β
.

Now divide the numerator and denominator by β to obtain an ex-
pression for a new GPP with parameter triple (κ̂(t), γ̂ , β̂), where

κ̂(t) ≡ 1/(γ̂ t + 1), γ̂ ≡ cγ /β and β̂ ≡ c.

However, this ψ-GPP is of the form of a PP as defined in (4) and 
(5) above, following (2) of [5], drawing on Theorem 1 there. �
Remark 3.1. (alternate proof based on the MPP representation) An al-
ternative proof of Theorem 3.1 above can be based on [8], which 
in turn is based on the seminal book [14], where a Polya process is 
defined as a mixed Poisson process (MPP) with a gamma structure 
distribution; i.e., if 	(t) is a standard Poisson process with rate 1, 
then the Polya process is defined as

N(t) ≡ 	(t
), t ≥ 0, (6)

where 
 is a random variable independent of 	 with a gamma 
distribution, i.e., with probability density function (pdf)

f (x; δ, ν) ≡ νe−νx(νx)δ−1


(δ)
, x ≥ 0, (7)

where 
 is the gamma function with 
(n) = (n − 1)! for n integer, 
while ν is called the rate and δ is called the shape. With (7), the 
mean of the gamma distribution with pdf in (7) is δ/ν and the 
variance is δ/ν2. With this notation, the intensity function given in 
Example 4.1 of [8] is

λ∗(t) = N(t−) + δ

t + ν
. (8)

In fact, three equivalent variants of this definition are given on 
pages 62-66 of [8].

Note that (8) above coincides with (4) in §3 for new parame-
ters. To see this, first divide the numerator and denominator of (8)
by ν . Then let (γ , β) ≡ (1/ν, δ/ν).

We can also obtain the stationary increments property from the 
established stationarity of the MPP representation, drawing on Mc-
Fadden’s theorem, Theorem 6.2 on p. 110 of [8] or Nawrotzki’s 
theorem, Theorem 6.3 on p. 113 of [8]. �
4. A connecting limit theorem

We obtain an alternative version of Theorem 4 of [5], the FCLT 
for a one-dimensional PP that yields a ψ-GMP limit, by combining 
Theorem 2.1 here with Theorem 4 of [5]. Now we provide a new 
proof of that same FCLT that directly yields the one-dimensional 
version of the new representation of the ψ-GMP in §2.

4.1. The two gamma parameters

Let 	(t) be a standard Poisson process with rate 1 and 
 be 
an independent random variable with a gamma distribution as in 
(7).

We match the first two moments of the Polya process (PP) in 
Theorem 1 of [5] to a gamma mixture of Poisson processes to ob-
tain the first two moments of the gamma distribution that serves 
as the mixing distribution applied to the parameter λ in the mixed 
Poisson process (MPP) representation of the Polya process in (6).
3

Proposition 4.1. The mixing random variable 
 in the MPP representa-
tion of the PP in (6) with mean βt and variance βt(1 + γ t) has first two 
moments

E[
] = β and E[
2] = β(γ + β) (9)

and thus variance V ar[
] = βγ .

Proof. For the mean, we have the equality

βt = E[N(t)] =
∞∫

0

(λt)dP
(λ) = E[
]t,

from which we deduce that the mean of the random Poisson pa-
rameter 
 must be E[
] = β as in (9).

For higher moments, we use the well known property that 
the kth moment of a mixture is the mixture of the underlying 
kth moments. To apply this property with higher moments, it is 
convenient to work with factorial moments. Recall that the rth fac-
torial moment of a nonnegative-integer-valued random variable Y
is Y(r) = E[Y (Y − 1) . . . (Y − r + 1)]. It is easy to see that the kth

factorial moment of a mixture is the mixture of the underlying kth

factorial moments.
In particular, for a Poisson process 	(t) with parameter λ, the 

second factorial moment is

E[(	(t))2] ≡ E[	(t)(	(t) − 1)] = E[	(t)2] − E[	(t)]
= λt + (λt)2 − λt = (λt)2.

To obtain the second factorial moment of the PP, we use Theo-
rem 1 of [5], which concludes for the Polya process that

V ar(N(t)) = βt(1 + γ t) = βt + βγ t2.

As a consequence, the second factorial moment of the Polya 
process is

β(β + γ )t2 = E[(N(t))2] =
∞∫

0

(λt)2dP
(λ) = E[
2]t2.

Hence, the second moment of the mixing distribution must be 
E[
2] = β(β + γ ) as in (9), so that the variance is

V ar(
) = E[
2] − E[
]2 = β(β + γ ) − β2 = βγ . �
Proposition 4.1 above is consistent with the analysis in Re-

mark 3.1 above. Given that the PP has mean βt and variance βγ t , 
the underlying gamma distribution in the MPP representation must 
be of the form (7) with (γ , β) ≡ (1/ν, δ/ν). We will let 
(β, βγ )

denote a random variable with mean β and variance βγ as arises 
in the MPP representation.

4.2. FCLT for a ψ-GPP based on the MPP representation

Let

Xn(t) ≡ n−1/2(Xn(t) − βnt), t ≥ 0, (10)

where

Xn(t) ≡ N1(t) + · · · + Nn(t), t ≥ 0,

with Ni(t), 1 ≤ i ≤ n, being n i.i.d. GPP’s, each with parameter 
triple (κ(t), γ , β) for κ(t) in (5). (The process Xn(t) in (10) is the 
scaled GPP in (9) of [5] based on the superposition of n i.i.d. GPPs. 



K. Fendick and W. Whitt Operations Research Letters 52 (2024) 107062
We have changed the notation from A in [5] to X to avoid con-
fusion with the ψ-GMP parameters in Definition (1) here.) Recall 
that Xn is an (nβ, γ ) ψ − G P P by Proposition 3 of [5]. The follow-
ing derives an alternative representation for the limiting ψ-GMP in 
Theorem 4 of [5]; i.e., it provides a new proof directly within the 
MPP framework.

Theorem 4.1. (FCLT with new representation for the GMP) For Xn in
(10),

Xn ⇒ X as n → ∞,

where

X(t) = N(0, βγ )t + √
βW (t) t ≥ 0,

with W being a standard Brownian motion or Wiener process that is 
independent of a Gaussian random variable N(0, βγ ) with mean 0 and 
variance βγ .

Proof. Because Xn is an (nβ, γ ) ψ-GPP by Proposition 3 of [5], we 
have the representation

Xn(t) = 	(t
(nβ,nβγ )), t ≥ 0,

where 
(m, v) is a gamma random variable with mean m and 
variance v that is independent of a rate-1 Poisson process 	 ≡
{	(t) : t ≥ 0}. We apply the well known FCLT for the Poisson pro-
cess, yielding

n−1/2(	(nt) − nt) ⇒ W (t) in D as n → ∞
and the well known CLT and LLN for the gamma distribution, e.g., 
see §II.2 and §VI.3 of [3], yielding


(nβ,nβγ ) − nβ√
n

⇒ N(0, βγ ) in R

and


(nβ,nβγ )

n
⇒ β in R

as n → ∞.
Because the gamma random variable is independent of the 

Poisson process and the LLN has a deterministic limit, we can 
apply Theorems 11.4.4 and 11.4.5 of [16] to obtain the joint con-
vergence(

n−1/2(	(nt) − nt),n−1/2(
(nβ,nβγ ) − nβ),n−1
(nβ,nβγ )
)

⇒ (W (t), N(0, βγ ),β) in D ×R2 as n → ∞.

Apply the continuous mapping theorem with the function φ :
D × R × R → D taking (x(t), y, z) into x(zt) + yt . (Use Theorem 
3.4.3 of [16] and the fact that W has continuous paths w.p1.) By 
direct application of this function, we get

n−1/2(	(t
(nβ,nβγ )) − t
(nβ,nβγ ))

+ n−1/2(t
(nβ,nβγ ) − ntβ)

= n−1/2(	(t
(nβ,nβγ )) − ntβ) = An(t), t ≥ 0.

⇒ W (βt) + tN(0, βγ )

as claimed. �
By a minor modification of the same argument and the argu-

ment used in Corollary 3 of [5], we obtain the alternative repre-
sentation of the limit with a deterministic drift term. As assumed 
in (14) of [5], assume that
4

μn → 1 and
√

n(μn − 1) → μ as n → ∞. (11)

Let the modified scaled process be defined as in (15) of [5], i.e.,

Xd
n(t) ≡ n−1/2(Xn(μnt) − βnt), t ≥ 0. (12)

Corollary 4.1. If (11) holds in addition to the assumptions of Theo-
rem 4.1, then

Xd
n(t) ⇒ N(βμ,βγ )t + √

BW (t) in D as n → ∞,

for Xd
n defined in (12).

Corollary 4.1 yields the one-dimensional version of the repre-
sentation for the ψ-GMP with drift in §2.

Remark 4.1. (non-Poisson mixture processes) Extensions of Theo-
rem 4.1 to non-Poisson arrival processes that satisfy a FCLT with 
Brownian limit follow by the same argument; e.g. see §4.4 of [16]
for examples.

5. A multivariate extension

We now show how to obtain the general k-dimension ψ-GMP 
from §2 as the limit in a FCLT involving a mixed multivariate 
counting process. Suppose that the stochastic process of interest 
can be given as a mixed representation Xn(t) ≡ 	̃(t
(n1, nB)), 
where 1 is the vector (1, 1, . . . , 1)T in Rk and 	̃ is a k-dimensional 
process with

	̃(tν) ≡ (	̃1(tν1), . . . , 	̃k(tνk))
T

for a k-dimensional vector ν ≡ (ν1, . . . , νk)
T with 	̃ satisfying the 

FCLT in Dk

n−1/2(	̃(nt1) − nt1) ⇒ √
AW (t) in Dk as n → ∞, (13)

where W (t) ≡ (W1(t), . . . , Wk(t))T is k-dimensional BM and A is 
a symmetric positive-definite real matrix, while {
(n1, nB) : n ≥ 1}
is a sequence of nonnegative random vectors in Rk with mean 
vectors n1 and k × k covariance matrices nB which satisfies a CLT 
and LLN in Rk , i.e.,

n−1
(n1,nB) ⇒ 1 and

n−1/2(
(n1,nB) − n1) ⇒ N(0, B) in Rk (14)

as n → ∞, where A and B are k × k positive definite symmetric 
real matrices. Then let

Xn(t) ≡ 	̃(t
(n1,nB)) (15)

= (	̃1(t
1(n1,nB)), . . . , 	̃k(t
k(n1,nB)))T , t ≥ 0,

and

Xn ≡ n−1/2(Xn(t) − nt1) (16)

= n−1/2(	̃1(t
1(n1,nB)) − nt, . . . , 	̃k(t
k(n1,nB))) − nt),

t ≥ 0.

For example, it is natural for 	̃ to be a k-dimensional strictly 
stationary stochastic point process that possesses appropriate mix-
ing properties to justify the FCLT, as in §4.4 of [16] and references 
there. (Here mixing refers to the dependence assumptions as op-
posed to a random rate.) It is also natural for 
(1, B) to have an 
infinitely divisible multivariate distribution, such as the multivari-
ate gamma distributions in [15] and references there.
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Then, by a vector version of essentially the same argument used 
to prove Theorem 4.1, we obtain the following multivariate exten-
sion and generalization of Theorem 4.1. (Recall that the product 
space Dk is endowed with the product topology, so that the one-
dimensional argument applies in each coordinate.)

Theorem 5.1. (multivariate FCLT) Under the conditions above,

Xn(t) ≡ n−1/2(Xn(t1) − 1nt) ⇒ √
AW (t) + N(0, B)t

as n → ∞
for Xn in (16) with Xn in (15), where the limit has the structure of (3) in 
Theorem 2.1.

By this argument we get a ψ-GMP limit with parameter ma-
trices (A, B), just as in Definition 1. In summary, we obtain the 
matrix A from the FCLT for 	̃ in (13) and we obtain the matrix B
from the CLT for 
(n1, nB) in (14). In contrast, if we assume that 
(13) holds with the limit process having independent marginals 
and try to obtain the full parameter pair (A, B) from a version of 
(14), we see that we can only obtain matrices A that are diago-
nal matrices. In such a random-time representation, non-diagonal 
matrices A must come from the FCLT for 	̃. In particular, the 
multivariate Polya process constructed by Zocher [17,18], which is 
based on a multivariate Poisson process with i.i.d. marginal one-
dimensional processes, cannot be used to yield all ψ-GMPs.

Remark 5.1. (connection to [7]) The restriction to diagonal matrices 
for A is consistent with Lemma 1 of [7] in our limits for queueing 
networks, but the linear maps M used in [7] to create the gen-
eralized Polya superposition processes (GPSPs) apply to the entire 
process. The construction of an GPSP leads to 	̃ with dependent 
coordinate processes in the above representation, so that 

√
A is not 

diagonal. Nevertheless, not all ψ-GMPs can be obtained as limits 
of a ψ-GPSP. That is, the limit in [7] can be regarded as a special 
case of Theorem 5.1.

To elaborate, we now prove that the framework here is more 
general than the ψ-GPSP framework in [7]. For a ψ-GPSP, A =

MU MT and B = M V MT where U and V are positive diagonal ma-
trices and M is a nonnegative integer matrix, common to A and B
and not necessarily square. Recalling that positive definite matrices 
can contain negative elements, we see that such decompositions 
for arbitrary positive definite matrices A and B as products of 
three nonnegative matrices need not exist.
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