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Heavy-Traffic Limits for Queues with Many
Exponential Servers

SHLOMO HALFIN and WARD WHITT
Bell Laboratories, Holmdel, New Jersey

(Received November 1979; accepted November 1980)

Two different kinds of heavy-traffic limit theorems have been proved for s-
server queues. The first kind involves a sequence of queueing systems having
a fixed number of servers with an associated sequence of traffic intensities
that converges to the critical value of one from below. The second kind, which
is often not thought of as heavy traffic, involves a sequence of queueing
systems in which the associated sequences of arrival rates and numbers of
servers go to infinity while the service time distributions and the traffic
intensities remain fixed, with the traffic intensities being less than the critical
value of one. In each case the sequence of random variables depicting the
steady-state number of customers waiting or being served diverges to infinity
but converges to a nondegenerate limit after appropriate normalization. How-
ever, in an important respect neither procedure adequately represents a
typical queueing system in practice because in the (heavy-traffic) limit an
arriving customer is either almost certain to be delayed (first procedure) or
almost certain not to be delayed (second procedure). Hence, we consider a
sequence of (GI/M/s) systems in which the traffic intensities converge to one
from below, the arrival rates and the numbers of servers go to infinity, but the
steady-state probabilities that all servers are busy are held fixed. The limits in
this case are hybrids of the limits in the other two cases. Numerical compar-
isons indicate that the resulting approximation is better than the earlier ones
for many-server systems operating at typically encountered loads.

IFFUSION APPROXIMATIONS for stochastic processes in
queueing models are now quite common; see Borovkov (1976),
Chandy and Sauer (1978), Halachmi and Franta (1978), Harrison (1978),
Iglehart (1973a, b), Lemoine (1978), Newell (1973), and Whitt (1974) and
the references in these sources. These diffusion approximations can be
obtained by heuristic methods and limit theorems, with the limit theo-
rems involving a sequence of queueing systems under “heavy-traffic”
conditions. Regardless of the method used, the quality of the approxi-
mation can be judged by numerical comparisons. However, the limit
theorems add some additional insight, especially about the regions where
the approximation should work well.
The purpose of this paper is to prove a new heavy-traffic limit theorem
for the standard GI/M/s queue. Considering the extensive literature, it
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568 Halfin and Whitt

is perhaps surprising that there is anything more to say. However, it is
well known that a model with several parameters usually exhibits several
different kinds of limiting behavior depending on how the parameters
converge. This is illustrated nicely in Karlin and McGregor (1964) where
several different diffusion approximations are displayed for genetics
models. It is also illustrated here. We obtain our new limit theorem by
letting the parameters converge in a different way, a way which we
believe is particularly useful in applications.

To set the stage, we review the two existing kinds of heavy-traffic limit
theorems for the GI/G/s queue. In each case we consider a sequence of
G1/G/s systems indexed by n. The first and more familiar procedure is
the one used by Kingman (1962, 1965), Prohorov (1963), Borovkov (1965),
Iglehart and Whitt (1970), Kollerstrom (1974), and many others. With
this procedure, the number of servers is held fixed and the sequence of
traffic intensities {p.} converges to the critical value of one from below.
Under these conditions, the sequence of normalized queue-length pro-
cesses converges to Brownian motion with a negative drift and a reflecting
barrier at the origin. (By “queue length” we mean the number of cus-
tomers in the system, including the customers in service. In this case of
heavy traffic, however, the number of servers is asymptotically negligible
after normalization.) The associated sequence of normalized stationary
queue-length distributions converges to an exponential distribution (the
stationary distribution of the limiting diffusion process). As a conse-
quence, an approximation for the stationary queue length @ () is s + X
where X has an exponential distribution with mean

EX = (¢ + p%c%)/2(1 — p), (0.1)

where p is the traffic intensity and ¢, and ¢, are the coefficients of
variation (standard deviation divided by the mean) of the interarrival
time and service time, respectively. We say “an” approximation rather
than “the” approximation because the limit theorem does not completely
determine an associated approximation. For example, another approxi-
mation from the same limit theorem can be obtained by replacing the
term p? in the numerator of (0.1) by its heavy-traffic limit of 1; see Section
5 for further discussion. A significant feature of this limit theorem is that
the approximating diffusion process and stationary distribution depend
on the interarrival time and service time distributions only through their
first two moments.

The second procedure is the one used by Iglehart (1965, 1973b) and
Borovkov (1967); see Iglehart (1973a) and Whitt (1982) for further dis-
cussion. With this procedure, we hold the traffic intensity fixed and let
the number of servers go to infinity. This can be achieved by holding the
service-time distribution fixed and letting the arrival rate go to infinity
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along with the number of servers. Since the traffic intensity is fixed at a
value less than one, this situation is often not regarded as heavy traffic,
but since the arrival rate and thus the steady-state mean number of
customers in the system are going to infinity, we say the system is in
heavy traffic. With this procedure, it turns out that s-server systems are
asymptotically indistinguishable from infinite-server systems. If the ser-
vice time distributions are exponential, i.e., for GI/M/s systems, the
sequence of appropriately normalized queue-length (number in sys-
tem) processes converges to an Ornstein-Uhlenbeck diffusion process.
However, if the service-time distributions are not exponential, i.e., for
GI/G/s systems, the sequence of normalized queue-length processes
converges to a Gaussian process which is not a diffusion, i.e., it is not
Markov. This suggests that a diffusion approximation may not be appro-
priate with a large number of servers and nonexponential service times.
Upon reflection, this should not be surprising. With infinitely many
servers, the residual service times for customers in service can have a
significant impact on the future even under heavy loads. For further
discussion, see Whitt (1982).

With this second procedure, the sequence of normalized stationary
queue-length distributions converges to a simple limit for all GI/G/s
systems, namely, the normal distribution. Thus, an approximation for the
distribution of the stationary queue length @ () is a normal distribution
with mean sp = A/p and variance spz, where

z=1+ (cd = )p J [1 - G(x)]dx, (0.2)
0

A is the arrival rate, u~! is the mean and G(x) is the c.d.f. of the service-
time distribution. Note that the parameter z in (0.2) is not determined by
the first two moments of the service-time distribution, but rather by the
mean and the parameter[s [1 — G(x]*dx.

Unfortunately, in an important respect neither of the regimes just
described represents a typical queueing system in real life. The balance
between service and economy usually dictates that the probability of
delay be kept away from both zero and one, so that the number of
customers present fluctuates between the regions above and below the
number of servers. However, in the first procedure the steady-state
probability that all servers are busy approaches one, and in the second
procedure it approaches zero. This characterization is obvious for the
first procedure, but somewhat less transparent for the second procedure.
It follows because @ (c0) is approximately normally distributed with mean
ps and standard deviation of orderv's .

To capture the essence of typical queueing systems, we consider a new
limiting procedure. We let both the traffic intensity and the number of



570 Halfin and Whitt

servers increase while holding the probability of delay fixed. This turns
out to be equivalent to letting (1 — p.)v/s, converge to a constant. (This
itself is important. It means that to maintain a fixed probability of delay
the number of servers s tends to be proportional to 1/(1 — p)* when s is
large or, equivalently, when p is near 1.) Under these conditions, the
sequence of normalized queue-length processes associated with GI/M/s
systems converges to a diffusion process which is a hybrid of the limits in
the first two cases, behaving like Brownian motion with negative drift
above zero and the Ornstein-Uhlenbeck diffusion process below zero.
(The boundary between the two processes can be thought of as the
number of servers because this number is subtracted in the normaliza-
tion.) Interestingly, the limit of the associated sequence of normalized
stationary distributions is also a hybrid of the limits in the first two cases,
having a continuous density with an exponential upper tail and a normal
lower tail. As in the second case of heavy traffic, the limit of the sequence
of normalized queue-length processes is not Markov if the service time
distributions are not exponential. Partial results for this case appear in
Section 4.

It appears that the limit theorems in this paper are new, but it turns
out that the derived approximations are similar to ones that have been
suggested without limit theorems; see Halachmi and Franta, and Newell.
For example, the approximating stationary distribution with one expo-
nential tail and one normal tail is discussed in Chapter 4 of Newell. It is
significant that the approximation displayed in formula (15) of Halachmi
and Franta is consistent with all three heavy-traffic limit theorems.
Under each of the heavy-traffic conditions, the approximating distribu-
tion there converges to the appropriate heavy-traffic limiting distribution.
However, there is no indication that the service-time distribution can
affect the quality of the approximation when there are many servers.

The rest of this paper is organized as follows. We give some preliminary
descriptions of a single M/M/s queue in Section 1. Of particular interest
is a recursive scheme for calculating the moments of the stationary queue
length. As a consequence, we are able to obtain explicit expressions for
the moments of the stationary distribution of the limiting diffusion
process in the GI/M/s case; see Corollary 1 and Theorems 3 and 4.
In Section 2 we state our limit theorems for the M/M/s queue. The
M/M/s results are extended to GI/M/s queues in Section 3. The main
limit theorem for GI/M/s systems (Theorem 3) follows directly from
simple criteria in Stroock and Varadhan (1979) for the convergence of
Markov chains to diffusion processes. Properties of the limiting diffusion
process are obtained from the M/M/s case, which is even easier to treat.
Perhaps the most interesting technical step here is the proof that the
steady-state distributions of the GI/M/s systems converge to the steady-
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state distribution of the diffusion process (Theorem 4). For this we use
stochastic comparison (stochastic order) properties.

We briefly discuss the more complicated picture of GI/G/s queues in
Section 4. We are able to generate approximations for GI/G/s queues
too, but our results in the case of nonexponential service times are much
less satisfactory. First, we can only treat phase-type service-time distri-
butions (mixtures of convolutions of exponential distributions), but this
is not a serious limitation because any service-time distribution can be
approximated arbitrarily well by a phase-type distribution. Second, we
establish much weaker convergence, only for the infinitesimal means and
covariances. Finally, the resulting limit process is complicated, so even
the approximations are not very tractable with the added generality.

In Section 5 we discuss ways to obtain approximations from the limit
theorems and we compare the three heavy-traffic approximations to the
M/M/s queue.

1. PRELIMINARY FACTS ABOUT THE M/M/s QUEUE

In this section we describe a single M/M/s queue with arrival rate A,
service rate u and traffic intensity p = A/sp. < 1. We focus on the limiting
distribution of the number @ (¢) of customers in the system (either waiting
or being served) at time £ It is well known that @Q(f) converges in
distribution as £ — oo to a random variable @ () with a proper probability
distribution. From standard M/M/s theory, e.g., Cooper ([1972], p. 71)

pr=P@Q() = k) = {{fﬁ’/fj}f SOOI (RY
and
a = P(Q(x) = s) = [(sp)*/s!(1 — p)]n, (1.2)
where
n=1[(sp)*/(s!(1 — p)) + Tizb (sp)*/R1]7". (1.3)

The quantity a in (1.2) is the Erlang delay formula or Erlang-C formula
whose value we shall be fixing in our limit theorems.

We now present a recursive scheme for calculating the moments of
Q (). It is convenient both for calculations here and for the limit
theorems later to express the moments in terms of a. It is also convenient
to break the moment sums into two parts. Let

o™ =Yibk™pr and of” = i k™pr, m=0,1,.... (14)

Clearly 6 =1 — @, 6 = a and EQ(®)™ = ¢\™ + ¢{™. All higher-order
terms can be calculated from the following recursive formulas.
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LEMMA 1. o™ = ps Y1 <m l_ 1) i — s™a(1 — p)

and o =p(1—p) ' N2 (’?) o + s™a.
Proof. From (1.1) we have
kpk = PSPr-1, k= 1’ 200,81, (15)
and
Dr = PPr—1, k=ss+1,.--. (1.6)

Consequently, p(ps-1 + a) = a or ps—1 = a(l — p)p~". With o{™ defined as
in (1.4) and with the aid of (1.5), we obtain

o™ = ps Y36 k™ pspr-1 = ps(Xich (kR + 1) 'pr — 8™ 'ps-1)

- ma (M—=1) & _  m

- PS =0 l 01 PS ps—l
m-—1 .

=ps Y7! ( ; ) o — s™a(1 — p).

Similarly, using (1.6), we obtain

Uém) =p 2?———s (k + 1)mpk + Psmps—l
=p X (nz) ¥ + ps"ps1,
so that

m m i -1.m
of” =p(1—p)7" <i>“5’+0(1—p) 's™ps1

pti- %(f;z)

From Lemma 1 we obtain the following values:
o’ =ps — sa
o) =p(1 —p)'a+ sa
o = (ps)? — s%a + ps(1 — a)
D =20%(1 — p) %a + s%a + p(1 — p) 'a(1 + 25)
o = (ps)® — s’a + ps*(2p — 2a + p(1 — a))
+ps(1 —a)
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o8 =6p%(1 — p) B + s3a + 6ap*(1 — p) %(s + 1) W
+p(1—p) 'a(3s®+ 35+ 1)
o = (ps)* — s*a + ps®(6p® — p’a — 2ap — 3a)
+ ps*(7p — 4pa — 3a) + ps(1 — a)
ot = 24p*(1 — p)a + s'a + 120%(1 — p) Pa(2s + 3)
+ 0%(1 — p) 2a(125® + 24s + 14)
+p(1 = p) a(l + 4s + 65% + 45°).

From these, we can easily calculate the moments of (). Here are the
mean and variance:

EQ(®) =ps + (1 — p)"'ap (18)
and Var Q(») = ps(1 + a) + (1 — p) *(ap + a(l — a)p?).
Later we shall be interested in the moments about s. The first four are:
E(Q(») —s) =—s(1—p) +p(1—p)'a
E(Q(») — 5)” =s*(1 — p)* + 20*(1 — p) a
+p(l—p)la+ps(l —a)
E(Q(o) — 5)* ==s*(1 - p)® — s%0(1 — p)(8 — @)
+ 6p%(1 — p) Pa + ps(1 — ) 19)
+ 6ap*(1 — p) % + ap(1 — p)*
E(Q(») — s)* = s*(1 — p)* + s3(6p(1 — p)? — ap(1 — p)?)
+ s%0(7p — 4pa + a — 4) + 24p*(1 — p) "«
+ ps(1 — a) + 36p%*(1 — p)%a
+ 14p%(1 — p) 2a + p(1 — p) o

These moments are important not only for describing the M/M/s
system but also for describing the diffusion approximations of the more
general GI/M/s systems.

2. LIMIT THEOREMS FOR THE M/M/s QUEUE

Now consider a sequence of M/M/s queues indexed by n with A, — o
asn— o and g, = Y, S» = n and p, = A,/nu < 1 for all n. Let @ (¢), @ (),
DPr, a and 7 also be subscripted by n when referring to the nth system.
Our basic assumption is that a, = P(@n(®) = n) > a,0<a<1,asn—
o. It is evident that p, — 1 under this limiting constraint, but it is of
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interest to see exactly at what rate. Let ®(x) and ¢(x) be the standard
normal cumulative distribution function and density, respectively. We
obtain the following from formula (1.2).

PRrOPOSITION 1. The probability of delay has a nondegenerate limit, i.e.,

lim, .o P(Qn(®) = n) = a, 0<a<l, (2.1)
if and only if
limy (1 — pu)Vn =8, B>0, 2.2)
in which case
o =[1+ V2mBD(B)exp(B*/2)]™" (2.3)
Proof. After rearranging terms in (1.2), we see that a, = [1 +

A,/B,]"" where A, =Y%2b (np,)*/k! and B, = (np,)"/n!(1 — p,). After
multiplying both A, and B, by e, we have a, = [1 + (y./£.)]"", where
Yo = Y325 (1/R!) (np,)*e ™"

and £, = (npn)"e™/nl(1 — pn).
We recognize that y, = P(X, = n — 1) where X,, is a random variable with

the Poisson distribution with parameter np,, and thus mean and variance
both equal to np,; see Rhee (1977). Then

Yn = P(Xn =n-1)= P((npn)_l/z[Xn - npn] = Vn)y (24)
where
Vn = (1 - Pn)nl/zp;1/2 - (npn)_l/2- (25)

If (1 = p,)n'?— B, then », — B. By the central limit theorem, as discussed
by Feller (1968, pp. 190, 194, 244-245), we then have

y»— vy =P(N(0, 1) = B) = D(pB),

where N (0, 1) is a standard normal random variable with cumulative
distribution function ®. (In the standard version of the central limit
theorem », does not depend on n, but it suffices for », to converge. In
general, if C, and D, are real-valued random variables such that C, = C

and D, 5 d, then D,C, = dC; see Theorems 4.4 and 5.1 of Billingsley
[1968].)

Turning to £, we first apply Stirling’s formula to obtain n! ~
(27n)?n"e ™" (Feller, p. 52). Then

§n ~ exp(n[1 — p, + log p,])/(V27n(1 — py)), (2.6)
where

log p» = log(1 — (1 = ps)) @7
=—1-px)—(1- Pn)2/2 +o(1 — Pn)2-
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Hence,
lim,wén = exp(82/2)(B2)

if (1 — po)n'? = B, 0 < B < . Hence, if (1 — p,)n'* — B, then a, — «
=[1+ v/£]7%, 0 < a < 1, as claimed. Moreover, if (1 — p,)n'/? — 0, then
v, — 0 so that y, — ®(0) = 27", and £, — o, which implies that a, — 1.
On the other hand, if (1 — p,)n'*> — o, then », —  so that y, — 1, and
¢, — 0, which implies that a, — 0. There is one more case to consider for
the “only if” part of the proof. It is possible that the sequence
{(1 = pn)n'?} might fail to converge to any limit, finite or infinite. But
then the sequence will have two subsequences which converge to different
limits (one of which could be infinity). However, the reasoning above
applies to each of these subsequences. Since «a(8), the function in (2.3),
is strictly decreasing in 8, a(B1) # a(B:) for B1 # B.. Hence, the sequence
{an} will have two subsequences with different limits and thus not
converge.

Remarks. (1) Note that fa/(1 — «) = ¢(8)/P(B), so that
1-®(B)=a=s<[1-D(B]/I[1-B?®(B)]

for 8 = 1 by virtue of standard inequalities for the tail of the normal
distribution; see (1.8) on p. 175 of Feller. Hence, if (2.2) holds, then
a/[1 —®(B)] — 1 as B — oo. In contrast, using the limit theorem in (0.2)
for the M/M/s case (with z = 1), we would have a/[1 — <I>(,B/\/; )]— 1las
B — oo,

(2) Proposition 1 provides a simple approximation for the probability
that all servers are busy in an M/M/s queue: just substitute (1 — p)s'/?
for B in (2.3). The proof suggests the following refinement:

P(Q(®) = s) =~ [1 + v2ms(1 — p)
-exp(s Yime [(1 — p)*/RD@([(1 — p)s — 11/vps)],, m=2,

which we do not investigate further here. The term involving the normal
c.d.f. in (2.8) comes from the central limit theorem for (2.4) using (2.5).
The rest of (2.8) comes from (2.6) with m being the number of terms kept
in the expansion of log p, in (2.7). For large s and small m, (2.8) might be
preferred to (1.2).

For the rest of this section we assume (2.1) or, equivalently, (2.2). Let
[x] be the greatest integer less than or equal to x. Elementary calculations
using (1.1)-(1.3) yield

PROPOSITION 2. Let § be a positive constant.

(2.8)

(i) If {8.} is a sequence of constants such that 8, < n for all n and
(n—8,)n""* > 8 as n — x, then

limy . P(Qn(®) < 8| @n(0) = n) = ®(B — §)/P(B) (2.9)
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and
limy . VNP (Qn(0) = [8,]|Qu(0) < n) = $(B8 — 8)/®(B). (2.10)

(1) If {8.} is a sequence of constants such that 8, = n for all n and
8, — n)n"Y? = § as n — x, then

Limio P(Qn(%0) = 8| @u(0) = 1) = ™% (2.11)
and
limn o VAP(Qn() = [8,]|Qu(0) = 1) = Be™.  (2.12)

Proof. Each of the four limits can easily be proved by applying Stir-
ling’s formula as in the proof of Proposition 1. We only give the details
for (2.10):

VRP(Qn() = [8,]|Qn(x0) =< 1)
= [a/(1 = @)1Vn( = px) (npa)*"(n!/[3,])
~[aB/(1 - a)](npn)lﬂn]—n(nn+1/2e—n/[sn][.s,.lﬂ/ze—s,.)
~ [aB/(1 — a)]exp{—(n — [8.])log(p.) ([8.Dlog(n/[8:]) — n + [8.]}
~ [aB/(1 — @)]exp{BS — (6%/2)} = $(B — 8)/D(B).

We now focus on a normalization of the stationary distribution. In
particular, let

X, = (Qu(®) —n)n'?, n=1. (2.13)

Proposition 2 immediately implies a weak convergence theorem for X,.
(Weak convergence is another name for convergence in law or distribu-
tion.) Let = denote both weak convergence of probability measures and
convergence in distribution of random variables; see Billingsley.

THEOREM 1. X, = X, where P(X=0) = a, P(X > x| X = 0) = e *, and
P(X =< x|X=0) = (8 + x)/®(B), x = 0.

Proof. Apply Proposition 2 with 8, = n + xn'”2

Remarks. (1) Note that the limit X in Theorem 1 has a continuous
density which is exponential for x = 0 and normal for x < 0.

(2) It is interesting that we also have two other proofs of Theorem 1.
We can show that all the moments converge to the limiting moments
which uniquely determine a probability distribution; see p. 181 of Breiman
(1968). For this proof, we apply Lemma 1 and an extension of Corollary
1 below. The second alternative proof is via the functional limit theorem,
Theorem 2 below.

Using (1.9), we now investigate the convergence of moments.
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COROLLARY 1. Asn — o,
() EX, —» EX=-B8+aB”},
(i) EX,’ > EX*= 8>+ 2a87 + (1 — a),
(iii) EX,® > EX®= -8 - (3 — a)B + 6287, (2.14)
(iv) EX,' > EX* =8+ (6 — )8 + 3(1 — @) + 24a87*
and (v) VarX,— VarX=(1+a) + (2a — a?)B7%

Proof. Since X, = X (Theorem 1) and E|X,|’ is uniformly bounded
(Lemma 1), we have EX% — EX* k =1, 2, 3, 4; see p. 32 of Billingsley.
Finally, apply (1.9).

We now consider the entire stochastic process {@,(t), ¢ = 0}. For each
n = 1, form the normalized process

Y. = Yault) = (Qu(t) — n)/n'%,  t=0. (2.15)

We shall show that {Y,} converges in distribution to a diffusion process
on the real line, i.e.,, a Markov process with continuous paths whose
evolution is characterized by its infinitesimal generator A, which is of the
form

A = (6*(x)/2)(d?/dx?) + (m(x))(d/dx), —o<x <o, (2.16)

where o*(x) > 0 and o®(x) and m(x) are continuous for all x. For this
diffusion process, the boundary points +o are inaccessible. For further
discussion of diffusion processes, see Chapter 16 of Breiman (1968), and
Stroock and Varadhan.

As before, let = denote convergence in distribution of random ele-
ments, but now the random elements take values in the space of sample
paths (the space D[0, «) endowed with the usual Skorokhod J; topology;
see Chapter 3 of Billingsley, Lindvall [1973], and Section 2 of Whitt
[1980]). The following result is obtained just like Iglehart’s (1965) limit
theorem for M/M/s queues by applying Stone’s (1961, 1963) simple
criteria for the convergence of birth-and-death processes.

THEOREM 2. If Y,(0) = Y(0), then Y, = Y in D[0, ), where Y is a
diffusion process with

_ B x=0
) = {—u(x +B), x=0

and ol(x)= 2u.

Proof. It is easy to check that Stone’s criteria as displayed in Theorem
3.2 of Iglehart (1965) are satisfied. As in Iglehart, because of the normal-
ization, the state spaces associated with the birth-and-death processes Y,
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become dense in the real line as n — «. Finally, the infinitesimal means
mn(x) and infinitesimal variances 0,?(x) of Y, converge. To see this, note
that the convergence (1 — p,)n'? = n'/? — \,/un'’? — B implies that, for
x>0,

ma(x) = —npu(n™"?) + Aa(n %) - —uB
and
0.2(x) = np(n™Y) + A(n7h) — 2,
while, for x < 0,
ma(x) = ((n'x + nDp(n ™% + M(n™?) - —pu(x + B)
and
0.'(x) = ([n"?x + nDum™) + Ma(n ™) — 24,

where [x] is the integer part of x.

Remark. An intuitively appealing statement involving real-valued ran-
dom variables which is equivalent to Theorem 2 is: f(Y,) = f(Y) for all
measurable real-valued functions f on D[0, «) which are continuous at
each continuous x in D[0, »); see Section 5 of Billingsley.

We should expect that the limiting distribution of the diffusion process
Y in Theorem 2 would coincide with the distribution of X in Theorem 1,
but this is not automatic because an interchange of limits is involved. In
general, we need to show that

P(Y () = x) = limy,e im0 P(Y,(2) < x)
= limy e liMg . P(Yo(f) < x) = lim, o P(Yr() < x) = P(X < x).

While such an interchange of limits is often difficult, we can easily
establish the desired result in this case.

COROLLARY 2. Y () has the same distribution as X.

Proof. Let Y,(0) be distributed as X, for each n. Then {Y,(t), ¢ = 0}
is a stationary process for each n and Y,(0) = X by Theorem 1. Since
Y.(¢) has the same distribution as Y,(0), Y.(¢) = X as n — o too. But
Y.(t) = Y (t) for each ¢t as n — o by Theorem 2 and the continuous
mapping theorem (see Billingsley, Theorem 5.1), using the projection
mapping 7.:D[0, ©) — R, defined by m(x) = x(¢), which is continuous at
all continuous x. Hence, Y (¢) is distributed as X for each ¢, so Y () is
distributed as X too. Since the distribution of Y () is independent of the
initial distribution, Y (0), the proof is complete.

Theorem 2 can be applied to obtain limits for various traffic measure-
ments. For example, let 1p(x) be the indicator function of the
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set B, which is equal to 1 for x € B and 0 for x & B. Some traffic measure-
ments of considerable interest are obtained with the functional
Y(-, a, T):D[0, ) — R defined by

T

"!/(x: a, T) = T—l J- 1(x(t)2a)dto (2.17)

0

The following consequence of Theorem 2 is obtained by applying the
continuous mapping theorem (Billingsley, Theorem 5.1).

COROLLARY 3. Let Q.(0) have the distribution of @.(®), i.e., the station-
ary distribution, for each n. For y in (2.17) and each a and T,

WUQn, n+ an'? T)= WY, a, T) in [0, 1].
where Y is strictly stationary, so that EY(Y, a, T) = P(X = a).

Proof. We can apply the continuous mapping theorem (Billingsley,
Theorem 5.1). On p. 231 of Billingsley, the functional ¢ is shown to be
measurable and continuous almost surely with respect to Brownian
motion. The argument there using Fubini’s theorem can be applied for
the limit process Y too because Y (¢) has a density for each &.

Remark. Corollary 3 provides another proof of (2.1) under condition
(2.2): just set a = 0.

3. GI/M/s QUEUES

We now show how the main convergence results—Theorems 1 and 2—
extend to GI/M/s queues. As before, let s, = n, u, = p and p, = An/n, <
1 for all n. Let u, be a generic interarrival time in the nth system. We
need to make some assumptions about the way the distribution of u,
changes with n in addition to (2.2). We assume that

(i) Eun = A3},
(ii) limyoe A2 Var u, = ¢?2, (8.1
and (iii) Supn=1 A’Eu,® < co.

For example, we could have u, = u/\, for all n where u is a fixed random
variable with Eu = 1, Var u = c? and Eu?® < .

We obtain the following extension of Theorem 2 for the processes Y,
in (2.15) by first considering the embedded Markov chains obtained by
looking at the queue-length processes at arrival epochs. We apply the
simple criteria for convergence of Markov chains in Theorems 10.2.2 and
11.2.3 of Stroock and Varadhan. We then use a random time change and
the continuous mapping theorem to show that the original continuous-
time processes obey a similar functional limit theorem.

To specify the initial conditions, let an arrival occur at time 0.
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THEOREM 3. Assume (2.2) and (3.1). If Y,(0) = Y*(0), then Y,= Y* in
D[0, o), where Y* is a diffusion process with

_ B, x=0
m(x) = {—u(x+/3), x<0
and o’(x) = u(1 + c?.

Proof. Let @,*(k) be the queue length in the nth system just prior to
the kth arrival. It is well known that {Q,*(k), £ = 0} is an irreducible
aperiodic positive-recurrent Markov chain for each n. Let

Za(t) = (@ ([nt]) —n)/n'?,  t=0. (3.2)

Under the conditions in (3.1), it is not difficult to show that Z, = Z in
D0, ) for Z equal to Y* in Theorem 3 with pu = 1. By virtue of Theorems
10.2.2 and 11.2.3 of Stroock and Varadhan, it suffices to check the
infinitesimal conditions as in the proof of Theorem 2 (see (2.4)-(2.6)
on p. 268 of Stroock and Varadhan), which is a tedious but rela-
tively straightforward task. For example, the infinitesimal mean is
approximately n'%0;' (o, — 1) — —8 for x > 0 and n"%p.(pn — 1) —
pn'(n"V?[xn'*]) - —B — x for x < 0. The most delicate point is showing
that it suffices to assume that the number of busy servers does not change
throughout an interarrival interval. Of course, the number of busy servers
may change, but it is possible to show the adjustment is asymptotically
negligible.

Having shown that Z, converges, we can get the convergence of Y, by
performing a random time change; see Section 17 of Billingsley and
Section 3 of Whitt (1980). Let {A.(t), ¢t = 0} be the arrival process in the
nth system and let B,(¢) = A,(¢t)/n, t=0. Then B.> Bin D[0, ©) where
B(t) =put,t=0. Hence, Z, ° B,=>Z ° B = Y* where ° is the composition
map. The difference between Z, ° B, and Y, is dominated by the jumps
of Z,, but the maximum jump in any bounded interval converges
to O because Z, has a limit with continuous paths. Hence,
d(Z, ° Bp, Yx) = 0 in DJ[0, =), using the metric in Whitt say, and
Y. = Y* by Theorem 4.1 of Billingsley.

We now consider the associated heavy-traffic limit theorem for the
steady-state distributions, i.e., for Y,(). In order that Y,(¢) = Y.(%) as
t — o for each n, we assume that u, is nonlattice for each n. This is
known to be necessary and sufficient; see p. 173 of Borovkov (1976) or
Theorem 2.3 of Whitt (1972). It is important to note that convergence of
Y.(0) as n — oo does not follow immediately from Theorem 3. The gap
is filled here by bounding the processes Y, above and below by appro-
priate single-server systems for which heavy-traffic limit theorems for the
steady-state distributions are known. In this way, we obtain
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THEOREM 4. If (2.2) and (3.1) hold, then
(i) Ya(0) = Y*(x), where Y*(») is distributed as X in Theorem 1
with B’ = 28/(1 + ¢?) instead of B; and
(il) limyw P(Qn(0) =n) = P(Y*(x) = 0) = o, where a is in (2.3) with
B’ instead of B.

Remark. The detailed calculations for the M/M/s queue in Sections
1 and 2 play a vital role in giving us explicit formulas for the limits in
Theorem 4.

Proof. (i) First assume that the sequence {Y,()} is tight; see Section
6 of Billingsley. Then by Prohorov’s Theorem (see Billingsley, Theorem
6.1) the sequence {Y,.(x)} has a convergent subsequence { Y, (x)}. If we
let Y, (0) be distributed as Y, (), and let the time until the first arrival
in the nth system have the stationary excess distribution associated
with u, (which is converging to 0 as n — o« because A\, — ®), then
{Y.(t), t = 0} is a strictly stationary stochastic process and, by a minor
modification of Theorem 3 (to account for the new initial conditions),
Y, = Y where Y is the limiting diffusion process with Y (0) having the
distribution of the limit of {Y, (0)}. However, since Y, is stationary for
each n’, so is Y. Hence the limit of { Y, (%)} must be the unique stationary
distribution of Y. (Uniqueness follows from Theorem 2 and Corollary 2.)
Since every subsequence of {Y,()} that converges must converge to this
same limit, the sequence {Y,(x)} itself must converge to this limit.

To complete the proof, it suffices to show that the sequence {Y,(x)}
is tight. We shall do this by bounding Y,() above and below stochasti-
cally. In particular, we shall construct random variables L, (%) and U, ()
such that

P(Ln(0) = x) = P(Yn(®) = x) < P(Un(®) = x)
for all x and n, and
Ly(0) = L () and U,() = U(®) as n — .

This convergence for {L,(»)} and {U,(x)} will be easy because L, ()
and U,() will correspond to normalizations of steady-state queue lengths
in single-server queues, for which heavy-traffic limit theorems have
already been established. Since {L,()} and {U,(®)} converge weakly,
they are tight (Billingsley, Theorem 6.2). Hence, for any € > 0, there is an
m such that

P(|Ln(®)| = m) < €/2 and P(|Un()| = m) < €/2
for all n. Consequently,
P(|Yn()| = m) < P(Un(®) = m) + P(L, < —m)
=< P(|Un()| =2 m) + P(|Ln(0)| = m) <, n=1.
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We construct the stochastically bounding random variables L,(w) and
U,(x) by constructing stochastically bounding stochastic processes
{Ln(t), t = 0} and {U,(t), t = 0} which converge weakly, i.e.,

P(L,(t) = x) < P(Y.(t) = x) < P(U.(t) = x)
for all x, ¢ and n, and
Ln(t) = Ly() and U,(t) = U,(x) as t —> x

for each n. This implies the desired bounding relation for the limiting
distributions; see Proposition 3 of Kamae et al. (1977).

Hence it suffices to construct the two bounding processes {L,(¢), t = 0}
and {U,(¢), t = 0}. We shall actually use the stronger stochastic order
discussed in Kamae et al. and Whitt (1981). We shall show that

P(f(Ln) = x) = P(f(Yn) = x) = P(f(Up) = x) 3.3)

for all x, n and nondecreasing measurable real-valued functions f on the
space D[0, o) of sample paths. We construct the process U, simply by
introducing a lower impenetrable barrier at 0. (Since the barrier is for the
normalized process, the barrier is at n in the unnormalized process.) Let
U,(0) = max{0, Y,(0)}. Clearly, U,(0) = max{0, Y(0)} if Y,.(0) = Y (0).
We construct U, by letting U, and Y, have identical arrival processes.
Moreover, it is convenient to work with the embedded Markov chains,
i.e., Z, in (3.2) and the associated process U,’ obtained by introducing a
lower impenetrable barrier at 0. By the known relations between the two
stationary distributions (see Borovkov [1976], p. 182), we know both
sequences { Y,(0)} and {Z,(x)} are tight if one is. It is easy to show that
the criteria for two Markov chains to be stochastically ordered are
satisfied in this case (Kamae et al.), so that Z, is dominated by U, in the
sense of (3.3) for each n. Moreover, it is known that U, () = U’(c)
because U,’ coincides with the normalization of the queue length process
of a GI/M/1 queue having individual service rate np, i.e., before normal-
ization the sequence is of the form {{;} where &.+1 = max{£, + {, 0} with
{¢:} being i.i.d. The heavy-traffic limit theorem for the stationary distri-
butions was established for this system by Kingman (1962). Kingman
actually studied the embedded sequence of waiting times at arrival
epochs, but the embedded queue-length sequence in the GI/M/1 model
has the same structure.

The construction of the lower bound is similar, but slightly more
complicated. Again we let L, have the same arrival process as Y, and
focus on the embedded chains. We construct the lower bounding process
by replacing the asymptotic positive state-dependent drift of —(x + 8) by
the constant drift of +8 for x < —28 and by introducing an impenetrable
upper barrier at x = —28. We achieve this in the embedded Markov
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chains by introducing corresponding barriers and increasing the rates of
the exponential departures during the interarrival times. Again it is easy
to see that the conditions for the discrete-time Markov chains to be
stochastically ordered are satisfied. We let L,(0) = min{—28, Y,(0)}, so
the initial conditions are appropriate too. We obtain the desired conver-
gence by noticing that —28 — L,(t) has the same structure as the
normalized queue-length process in the M/G/1 queue, i.e., before nor-
malization the sequence has the form {—¢.}, where &1 = max{&, 1} +
$x with {{} being i.i.d. After subtracting from —28, the embedded process
of interest corresponds to the departure points in the M/G/1 queue. The
heavy-traffic limit theorem for the stationary distributions of this dis-
crete-time process is again known; see Gnedenko and Kovalenko
([1968], p. 147).

4. GI/G/s QUEUES

The most important fact about GI/G/s queues with nonexponential
service times under condition (2.2) is that the properly normalized queue-
length process is not asymptotically Markov. Because the number of
servers is very large, the residual service times are not asymptotically
negligible in heavy traffic. Moreover, it does not seem possible to obtain
heavy-traffic limit theorems for GI/G/s queues by the same elementary
proofs, and the prospective limit process is not well understood. One
approach is to represent the service time as a finite random sum or
mixture of exponential phases, as in Whitt (1982). It is known that the
class of distributions of this form is dense in the family of all service time
distributions, so this procedure covers essentially all GI/G/s systems.
This procedure makes the particular GI/G/s system equivalent to an
acyclic network of queues with a single external arrival process and a
constraint on the total number of customers that can be in the network.
If the total number of customers in the network reaches s (the number of
servers), then external arrivals must wait before entering the network.
To convert this into the usual open network, we add a node for the
waiting customers not yet in service. The vector-valued discrete-time
process indicating the number of customers waiting and in each service
phase at arrival epochs is again a Markov chain but the simple criteria in
Stroock and Varadhan to obtain convergence to a diffusion process are
not satisfied.

We illustrate this approach by stating (without displaying the calcula-
tions) a heavy-traffic limit theorem for GI/H./s systems, where the
service time distribution is hyperexponential, i.e., a mixture of two
exponential distributions, with density

g(x) = pye™ + pouse ™, x=0, (4.1)
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where p, = 1 — p1. The mean service time is thus p™' = pyui’ + popz’.
However, here our heavy-traffic limit theorem involves only the conver-
gence of infinitesimal means and variances. Thus this result falls far short
of Theorems 2 and 3, but it can serve as the basis for approximating
because this weaker result also identifies a limit process. Hence, the limit
process can be used to generate approximations. However, the limit
process is much less tractable than in the exponential case. Nevertheless,
we believe the multivariate diffusion process arising in this GI/H/s case
has great potential for approximating the behavior of GI/G/s queues.
What we would propose is first approximating a general service-time
distribution (with coefficient of variation greater than one) by an H,
distribution. Then use the GI/H:/s diffusion approximation or a related
random walk.

Let @,(%) be the number of customers waiting and @,'(k) the number
of customers in phase i (i = 1, 2) of service in the nth system at the epoch
of the kth arrival. Let

Za(t) = [Z°(2), Z,\(t), Z,(¢)]
= n[Q.([nt]), @.'([nt]) — nay, @*([nt]) — na:), (4.2)
t=0,
a; = pip/ i, i=1,2 (4.3)

ProrosiTioN 3. If (2.2), (3.1) and (4.1) hold, then the sequence of
processes {Z,} converges to a diffusion process in the sense that infini-
tesimal mean vectors and covariance matrices of Z, converge to an
infinitesimal mean vector [mo(x), mi(x), mz(x)] and an infinitesimal
covariance matrix (o;;(x)) of the form:
(1) mo(x) =0 and mi(x) = —x;ui/u, X0 =0 and x1 + x2:<0;
mo(X) = —f — (x1p1 + x2p2) /0 and
mi(x) = (prxapz — (1 — pr)xipn) /p = —ma(X), x0 >0 and
X1+ x2 = 0;
(i) od(x) =0, 0¥(x) = 2p; + (c* — 1) pd,
o5(X) =pipa(c® = 1), forxo=0 and x + x<O0;
oo(x) =1+ ¢ od(x) =0,
0%(X) = 2p1 P2, 0(X) = —2p1ps, for x>0 and x + x:=0.

5. APPROXIMATIONS AND NUMERICAL COMPARISONS

The limit theorems yield approximations for a given queueing system
if we regard the given system as the nth system in a converging sequence
and replace the limit by an approximate equality. The limit theorems for
stochastic processes yield approximations for the time-dependent behav-
ior as well as for the stationary distributions, but here we focus on the
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stationary distributions. For example, Theorem 4 yields the following
approximation for the stationary queue length in a GI/M/s system:

Q) = s + Vs X(B) (5.1)
with B=2(1-p) Vs/(1 + c?, (5.2)

where X (B) is the limit in Theorem 1 and c is the coefficient of variation
(standard deviation divided by the mean) of the interarrival time distri-
bution.

TABLE I

A COMPARISON OF THE THREE HEAVY-TRAFFIC APPROXIMATIONS:
CASE OF s = 100 SERVERS

Traffic Intensity
Method Characteristic

p = 0.949 p = 0.834
M/M/s EQ(x) 105.3 84.6
True system P(Q(x) = s) 0.50 0.05
No. 1¢ EQ(x) 118.6 105.1
Exponential P(Q(x) = s) 1.00 1.00
No. 2° EQ(x) 94.9 83.4
Normal P(Q(x) = s) 0.30 0.035
No. 3°¢ EQ(x) 104.9 83.7
Hybrid P(Q(o) = s) ©0.50 0.060

“The traffic intensity p was determined by fixing s and P(Q = s) for the
M/M/s system.

®Nos. 1 and 2 come from (0.1) and (0.2), respectively.

¢ For No. 3, welet 8 = (1 — p)Vs.

However, the limit theorem does not uniquely specify the approxima-
tion. For example,

Q(®) = s+ Vs X(B) + sV*W (5.3)

is also consistent with Theorem 4 for any random variable W. Of course,
extraneous terms such as s*W in (5.3) do not usually arise, but this
phenomenon indicates that some care should be taken to select an
appropriate approximation. A real difficulty of this kind arises with the
first heavy-traffic limit theorem; see the approximation in (0.1). Since the
number of servers is fixed, the heavy-traffic limit including the customers
in service is the same as the heavy-traffic limit excluding the customers
in service. However, for a given system with a relatively large number of
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servers the resulting approximations are quite different. Experience in-
dicates that it is much better to regard the exponential approximation as
applying only to the customers waiting, excluding the customers in
service. In fact, for moderately high loads such as p = 0.9 and large
numbers of servers such as 100 the exponential approximation is fairly
reasonable if we exclude the customers in service, but ridiculous if we do
not. Another possible approximation for () suggested by D. P. Heyman
is the exponential random variable X with mean in (0.1) plus ps, the mean
number of busy servers. The approximate mean in (0.1) was obtained by
using the mean for the waiting time in the limit theorem of Kollerstrom,
and the relation L = AW. ;

We have compared the three heavy-traffic approximations with the
actual stationary distribution for the M/M/s queue. As should be ex-
pected, each approximation has regions where it tends to perform well.
When the number of servers is relatively large (such as s = 100) and the
load is fairly heavy (such as p = 0.85), the new hybrid approximation
tends to be best. In particular, the conditional distribution of the number
of customers waiting given that all servers are busy is better described by
the exponential distribution associated with the hybrid approximation
than by the normal distribution. A specific numerical comparison is given
in Table I.
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