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Heavy-traffic extreme-value limits for queues
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Abstract

We consider the maximum waiting time among the first n customers in the GI/G/1 queue. We use strong approxima-
tions to prove, under regularity conditions, convergence of the normalized maximum wait to the Gumbel extreme-value
distribution when the traffic intensity p approaches 1 from below and n approaches infinity at a suitable rate. The
normalization depends on the interarrival-time and service-time distributions only through their first two moments,
corresponding to the iterated limit in which first p approaches 1 and then n approaches infinity. We need n to approach
infinity sufficiently fast so that n(1 — p)* — cc. We also need n to approach infinity sufficiently slowly: If the service time
has a pth moment for p > 2, then it suffices for (1 — p)n'’? to remain bounded; if the service time has a finite moment
generating function, then it suffices to have (1 — p)logn — 0. This limit can hold even when the normalized maximum
waiting time fails to converge to the Gumbel distribution as n — oc for each fixed p. Similar limits hold for the
queue-length process.
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1. Introduction

When doing performance analysis of a service
system, we usually try to describe the congestion
experienced by a typical arrival, actual or virtual (at
an arbitrary time), and thus do the standard steady-
state analysis. An alternative approach, known as
extreme-value engineering (see [8]), is to describe
the maximum congestion experienced over some
typical interval. This may still entail steady-state
analysis, in that we consider stationary stochastic
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processes, but now we focus on large values, e.g.,
the largest customer waiting time over an hour.
In order to be able to effectively use extreme-
value engineering in performance analysis, we need
to be able to determine the distribution, or at least
the mean, of the maximum congestion. This re-
quirement is a major difficulty, because distribu-
tions of maximum congestion measures in queue-
ing models are unavailable except in very special
cases. However, extreme-value theory comes to our
aid. Fundamental limit theorems in extreme-value
theory imply that the extreme-value distributions
over suitably long intervals can be approximated
by a few special distributions [8]. Thus, there is
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statistical regularity associated with looking at ex-
tremes, paralleling the more familiar statistical
regularity associated with looking at sums and
averages, stemming from the central limit theorem.

However, even with the approximating extreme-
value distributions, there remains a difficulty, be-
cause the parameters of the extreme-value distribu-
tions depend upon the queueing processes, and
thus the model data, in a complicated way. Berger
and Whitt [6] proposed ways to circumvent this
difficulty through appropriate approximations for
the key parameters. In particular, Berger and Whitt
[6] developed and evaluated several heuristic ap-
proximations for extreme values of queueing pro-
cesses over large time intervals. One of these ap-
proximations combined the extreme-value limit for
reflected Brownian motion (RBM), established in
[6], with an approximation of the queueing pro-
cesses by RBM, which separately can be justified by
familiar heavy-traffic limit theorems.

Our purpose here is to establish double limits
that determine regions in which the overall approx-
imation in [6] is asymptotically correct. For this
purpose, we construct a sequence of queueing sys-
tem indexed by n in which the traffic intensities p,
approach 1 from below as n — oo. The length of the
interval over which the maximum is taken, t,, must
also approach infinity, but neither too quickly nor
too slowly. We need (1 — p,)*t, = o0 as n— oo to
have the relevant time in RBM go to infinity, but
we also need to impose conditions on how fast ¢,
grows. These conditions allow the limit to hold
even when the normalized maximum wait fails to
have the customary extreme-value limit as t — oo
for fixed p.

Our principal tools are strong approximation
theorems, as in Csorgé and Révész [10]. Strong
approximations were used in a similar way to study
extreme values associated with sliding window flow
control schemes, or scan statistics, in Berger and
Whitt [5]. A concrete application of these extreme-
value approximations is to compare alternative
traffic descriptors in emerging high-speed commun-
ication networks; see Berger and Whitt [7].

The specific process we consider is the sequence
of waiting times in the GI/G/1 queue (so that i,
above should be an integer), but the argument
extends easily to other processes and models, given

that corresponding strong approximations hold;
e.g.,, see [11, 17]. The corresponding limit for the
discrete queue-length process is interesting because
no extreme-value limit holds for each fixed p. See
(12, 14, 16] for background on the basic extreme-
value theory. Theorem 2.1 of Horvath [11] pro-
vides a strong approximation for the queue length
process.

Different heavy-traffic limits for extreme values
of queueing processes follow easily from the con-
tinuous mapping theorem and related arguments in
the cases (1 — p,)\/ta,—>cor p,—p>1asn— ;
see [20, Section 6]. We will review the first case
below. The case of p = 1 is treated in Theorem 9.1
of Iglehart and Whitt [13]. Previous related work
on heavy-traffic extreme-value limits for queues has
been done by Serfozo [ 18, 19] and McCormick and
Park [15]. See [6] for a numerical evaluation of the
approximation through comparisons with simula-
tions.

2. Results

For each n>1, let W,={W,(k); k> 0} be
a waiting time sequence, defined by W,(0) = 0 and

Wk + 1) = [W,(k) + pVi — U1™, (1)
where [x]* = max{x,0}, U={U: k>1} and
V = {V,: k > 0} are independent sequences of i.i.d.
nonnegative random variables satisfying

EVk=EUk: ]., (2)

62=VarV,<ow and e2=VarUc<ow, (3)

with at least one of 62 > 0 and ¢ > 0. Let

n n—1
An = Z Uk and C,, = Z Vk'
k=1 k

=0

Then

W, (k) = S,(k) — min S§,(j), &)
0<j<k

where

Sa(k) = puCi — Ax. (6)
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Let B = {B(1): t = 0} be canonical (drift 0, vari-
ance 1) Brownian motion (BM) and let R = {R(1):
t = 0} be canonical RBM (with drift —1 and vari-
ance 1), i.e.,

R@t)=B()—t— min {B(s)~s}, t=0. (7

0<s<1t
Let
M,(k)= max W,(j), k=0 (®)
0<j<k
and
M(t)= max R(s), t=0. 9)
0<s<t

Extreme-value limits for M, (k) as k — oo for any
fixed n are givenin [12, 16]. These limits require the
extra condition

Eexp(eVy) < oo forsomee>0 (10)

and more, and involve relatively complicated nor-
malization constants. However, it is natural to ex-
pect that the situation should simplify in heavy
traffic. To start, we give the standard heavy-traffic
result in this setting, paralleling Theorem 9.1 of
Iglehart and Whitt [13]. Let = denote conver-
gence in distribution.

Theorem 1. If p, 11 with(1 — p,,)\/; —casn— o,
where 0 < ¢ < o0, then

2, 2 2
u + v > t
n”zM,,(nt)=><a i )M( < 2) as n — oo.
v

2
o; + 0,

Theorem 1 is an elementary consequence of the
continuous mapping theorem and the basic heavy-
traffic limit theorem:

2 2 2
+ 0 c’t
41/2W t Ou v R
" Ln J)=>< ¢ ) 6t + o

asn—oo. (11)

and Section 6 of Whitt [20]. (See Section 2 of Abate
and Whitt [2] for a discussion of scaling time and
space.)

Theorem 1 contains the waiting-time part of
Theorem 9.1 of [13] as a special case. The distribu-
tion of the limit in Theorem 1 can be obtained from
the Laplace transform of the associated first-pas-

sage-time distribution; see Corollary 3.4.1 of Abate
and Whitt [3]. This transform can easily be in-
verted numerically; see Abate and Whitt [4].

We can combine Theorem 1 above with
Theorem 1 of Berger and Whitt [6] to describe the
iterated limit, as first p — oc and then t — oo, For
this purpose, let Z be a random variable with the
classical Gumbel extreme-value c.d.f, ie.,

P(Z<x)=exp(—e™7), —ow0<x<o0. (12)

The following result justifies (4.4) of Berger and
Whitt [6] in the case of the waiting times. (Related
results hold for queue-length and workload pro-
cesses.)

Corollary. Under the conditions of Theorem 1,

2(1 — p, 2¢%t
(0’5 n U?)Mn(nt) - log(m =7

as first n — ¢ and then t — oc, where Z is given in
(12).

We now want to generalize the Corollary to
Theorem 1 to obtain an appropriate double limit.
For this, we impose extra moment conditions.
There are two cases:

Theorem 2. Suppose that p,11 with (1 —p,,)\/t-,,
— 0w as n—> . (a) If EVi < oo for p>2 and
limsup, . » (1 — p,)t}? < ¢ as n — oo, then

2(1 - pn)Mn(tn) 2(1 - pn)ztn -
a,f + 0,2, ~log o’f + 0',2. =z
as n— oo. (13)

(b) If (10) holds and (1 — p,)logt, » 0 as n — oo,
then (13) holds.

The appeal of Theorem 2 is that is justifies using
the Gumbel approximation even when M, (k) is not
in its domain of attraction as k — oo for each fixed
n. Dividing by log((1 — p,)*t,) in Theorem 2, we
obtain the following corollary.

Corollary. Under the conditions of Theorem 2,

2(1 — pa) My(t,) 2
Tog(r,) = log g as n-— oo.
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It remains to determine what happens if t, = o
faster than allowed by the conditions of Theorem 2.
Iterated limits as first ¢ = co and then p11 for the
decay rate (the Corollary to Theorem 2) are estab-
lished in Abate et al. [1] and Choudhary and Whitt

91

3. Proof of Theorem 2

We apply the classical KMT (Komlos—Ma-
jor-Tusnady) strong approximation theorems, as
given in Csorgo and Revész [10]. We use Theorem
2.6.3 of [10, p. 107] for part (a) and Theorem 2.6.2
of [10, p. 107] for part (b).

We only display the proof of part (a), because the
proof of (b) is almost identical. Under the assump-
tions of (a), the KMT theorem yields

Sak) = — (1 — p)k + \/paos + a2 B(k)
+ o(k'?) w.p. 1 (14)

uniformly in n. (Under the conditions of (b), the
error is O(logk).) Given (14),

M,(t,) = max {—(1 —p)k + /p2a? + a2 B(k)

0<k<t,
— min {—(1 - p,)j ++/pla? + aZB(j)}}
0<j<k
+o(t}?) wp. 1 (15)

Next, by Corollary 1.2.3 of Csorgo and Revész [ 10,
p- 31], we can replace the integer arguments in (15)
by continuous ones, i.e.,

Mn(tn) = Yn(tn) + O(trll/p) w.p. 15 (16)
where
Yo (t,) = max {—(1 —p,)t + /pio; + o B(1)
0<t<t,
— min {—(1 —p,)s +/plel +0iB(s)}}
0<sgt
+o(ta'?) wp. 1. 17

Let £ denote equality in distribution. By (16), (17)

and the conditions in (a),

(1 - pn)Mn(ln) = (1 - pn) Yn(tn) + 0(1) w.p. 1’
(18)

but

Y, (t,) < max  {—u+./62 + plolB(w)

0<u<t(l—p,)

— min {—s+ /a2 + p2 + 02B(s)}}

0<s<u

u

d 2 2.2
= (06, + pnos max —_———s
( u p ) { 0_3 +p30_5

O<u<tu(1 _pn)z

u
Bl %
(03 + pfrr.?)
0<s<u o: + piat o + paot

tn(l B pn)2>

2 F)
o-ll + p"ov

= (o4 + pfaﬁ)M< (19)

for M in (9). By Theorem 1 of Berger and Whitt [6],

ta(1 — p,)? 2t,(1 — p,)?
M(‘—az Tok?) T\ G ) < 2

asn— oo (20)

for Z in (12). The proof is completed by combining
(18)—(20), and noting that p, — 1.

References

[1] J. Abate, G.L. Choudhury and W. Whitt, “Exponential
approximations for tail probabilities in queues, I: waiting
times”, Oper. Res. (1995).

[2] J. Abate and W. Whitt, “Transient behavior of regulated
Brownian motion I: starting at the origin”, Adv. in Appl.
Probab. 19, 560-598 (1987).

[3] J. Abate and W. Whitt, “Transient behavior of the M/M/1
queue via Laplace transforms”, Adv. in Appl. Probab. 20,
145-178 (1988).

[4] J. Abate and W. Whitt, “The Fourier-series method for
inverting transforms of probability distributions”, Queue-
ing Systems 10, 5-88 (1992).

[5] A.W. Berger and W. Whitt, “Asymptotics for open-loop
window flow control”, J. Appl. Math. Stochastic Anal. 7,
337-356 (1994).

[6] A.W.Berger and W. Whitt, “Maximum values in queueing
processes”, Prob. Engr. Inf. Sci. (1995).

[7] A.W. Berger and W. Whitt, “Comparison of the sliding
window and the leaky bucket”, Queueing Systems. (1995).

[8] E. Castillo, Extreme Value Theory in Engineering, Aca-
demic Press, New York, 1988.



P.W. Glynn, W. Whitt [ Operations Research Letters 18 (1995} .107*111 111

[9] C.L. Choudhury and W. Whitt, “Heavy-traffic expansions
for the asymptotic decay rates in the BMAP/G/1 queue”,
Stochastic Models 10, 453-498 (1994).

[10] M. Csorgo and P. Révész, Strong Approximations in Prob-
ability and Statistics, Academic Press, New York, 1981.

[11] L. Horvath, Strong approximations for open queueing
networks, Math. Oper. Res. 17, 487-508 (1992).

[12] D.L. Iglehart, “Extreme values in the GI/G/1 queue”, Ann.
Math. Statist. 43, 627-635 (1972).

[13] D.L. Iglehart and W. Whitt, “Multiple channel queues in
heavy traffic, I", Adv. in Appi. Probab. 2, 150177 (1970).

[14] M.R. Leadbetter, G. Lindgren and H. Rootzén, Extremes
and Related Properties of Random Sequences and Processes,
Springer, New York, 1983,

[15] W.P. McCormick and Y.S. Park, “Approximating the dis-
tribution of the maximum queue length for M/M/s

queues”, in: U.N. Bhat and 1.V. Basawa (eds.), Queueing
and Related Models, Oxford University Press, 1992,
p. 240-261.

[16] A.G. Pakes, “On the tails of waiting-time distributions”, J.
Appl. Probab. 12, 555-564 (1975).

[17] W. Phillipp and W. Stout, Almost Sure Invariance Prin-
ciples for Partial Sums of W eakly Dependent Random V ari-
ables, Mem. Amer. Math. Soc., Vol. 161, Providence, RI,
1975.

[18] R.F. Serfozo, “Extreme values of birth and death processes
and queues”, Stochastic Process Appl. 27, 291--306 (1988).

[19] R.F. Serfozo, “Extreme values of queue lengths in M/G/1
and GI/M/1 systems”, Math. Oper. Res. 13, 349-357
(1988).

[20] W. Whitt, “Some useful functions for functional limit
theorems”, Math. Oper. Res. 5, 67-85 (1980).



