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This paper develops approximations for the blocking probability and related
congestion measures in service systems with s servers, r extra waiting spaces,
blocked customers lost, and independent and identically distributed service
times that are independent of a general stationary arrival process (the
G/GI/s/r model). The approximations are expressed in terms of the normal
distribution and the peakedness of the arrival process. They are obtained by
applying previous heavy-traffic limit theorems and a conditioning heuristic.
There are interesting connections to Hayward’s approximation, generalized
péqkedness, asymptotic expansions for the Erlang loss function, the normal-
distribution method, and bounds for the blocking probability. For the case of
no extra waiting space, a renewal arrival process and an exponential service-
time distribution (the GI/M/s/0 model), a heavy-traffic local limit theorem
by A. A. Borovkov implies that the blocking depends on the arrival process
only through the first two moments of the renewal interval as the offered load
increases. Moreover, in this situation Hayward’s approximation is asymptot-
ically correct.

I. INTRODUCTION AND SUMMARY

In this paper we introduce and investigate approximations for
congestion measures in G/Gl/s/r service systems, which have s servers,
r extra waiting spaces, the first-come first-served discipline, and
independent and identically distributed (i.i.d.) service times with a
general - distribution that are independent of a general stationary

*AT&T Bell Laboratories.

Copyright © 1984 AT&T. Photo reproduction for noncommercial use is permitted with-
out payment of royalty provided that each reproduction is done without alteration and
that the Journal reference and copyright notice are included on the first page. The title
and abstract, but no other portions, of this paper may be copied or distributed royalty
free by computer-based and other information-service systems without further permis-
sion. Permission to reproduce or republish any other portion of this paper must be
obtained from the Editor.

689



arrival process. Customers arriving when all s servers are busy and all
r waiting spaces are full are blocked; they leave without receiving
service and without affecting future arrivals (no retrials). We primarily
focus on the case r = 0 (except for Section VII). We present approxi-
mate expressions for the proportion of arriving customers that are
blocked (call congestion) and the proportion of time that the system
is full (time congestion). We also approximate the distributions of the
number of customers in the system at arrival epochs and at arbitrary
times.

We obtain our approximations by applying previous heavy-traffic
limit theorems'™ and a conditioning heuristic (Section III). As with
much of the earlier work on this problem, we are not able to present
a completely rigorous development, but we believe that we have a
novel perspective that provides additional insight. There are interest-
ing connections to earlier work, including Hayward’s approximation,®
generalized peakedness,® asymptotic expansions for the Erlang loss
function,”™® the normal distribution method,'®* and bounds for the
blocking probability.**’

Perhaps our most important contribution is to point out the signif-
icance of a heavy-traffic local limit theorem by Borovkov [Theorem
15(2) of Ref. 2], which was first published in Russian in 1972. (“Local”
means that the limit is for the probability mass function instead of
the cumulative distribution function.) For GI/M/s/0 models (no extra
waiting space, renewal arrival process, and exponential service-time
distribution), this theorem provides a rigorous basis for the approxi-
mations under heavy loads. For example, this theorem implies that
Hayward’s approximation [(22) in Section 6.2] is asymptotically cor-
rect as the offered load increases. Of course, this property is consistent
with extensive numerical evidence, but apparently no mathematical
proof has been given before.

Here is how this paper is organized. In Section II we review a heavy-
traffic limit theorem for G/GI/« models that we will apply, which is
also due to Borovkov.! In Section III we introduce a conditioning
heuristic and apply it with the limit theorem in Section II to obtain
an approximation for the distribution of the number of busy servers
at an arbitrary time in the associated G/GI/s/0 system. In Section IV
we use a conservation law plus the approximation in Section III to
generate an approximation for the blocking probability in G/GI/s/0
systems. We also discuss an approximation for the distribution of the
number of busy servers at arrival epochs. In Section V we state
Borovkov’s local heavy-traffic limit theorem for GI/M/s/0 models that
supports the approximations. We also make several conjectures about
related theorems.

In Section VI we discuss connections to other work. We indicate
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that the normal approximation for the blocking probability in
M/M/s/0 systems has a long history, going all the way back to Erlang.'®
In the Appendix we also give a simple proof of the heavy-traffic local
limit theorem for M/M/s/0 systems, using the elementary central
limit theorem and Stirling’s formula.’® In Section VI we also discuss
connections to Hayward’s approximation,®® bounds for the blocking
probability,'**7 and previous normal approximations.’®4

In Section VII we indicate how the approach can be extended to
systems with finite waiting rooms, drawing on Halfin and Whitt.* In
doing so, we obtain a modification of Hayward’s approximation for
the case of a finite waiting room {see (42}]. Finally, in Section VIII we
give the results of experiments testing the approximations for
G/M/s/0 systems. As observed by Rahko,’*'? Hertzberg,'® and Del-
brouck,’* the normal approximation tends to work quite well except
in low loads.

We close this introduction by noting that the general blocking
problem discussed here continues to generate considerable attention;
several related papers were presented at the Tenth International
Teletraffic Congress at Montreal 5222 Another recent related con-
tribution is Newell.?®

. THE INFINITE-SERVER MODEL IN HEAVY TRAFFIC

Consider the G/GI/« service system, which has infinitely many
servers and independent and identically distributed service times that
are independent of a general stationary arrival process. Let A(t) count
the number of arrivals in the interval [0, £] for ¢ = 0. We assume that
A(t) satisfies a central imit theorem; i.e.,

[A(8) — AJ/(AcZ)V2 = N(O, 1) (1)

as t — o, where = denotes convergence in distribution, N(a, b) denotes
a random variable with the normal distribution having mean ¢ and
variance b, and A is the arrival rate. When A(t) is a renewal process,
¢? in (1) is the squared coefficient of variation (variance divided by
the square of the mean) of the renewal interval. More generally, the
denominator in (1) typically is asymptotically equivalent to the stand-
ard deviation of A(t), so that

¢t = E var[A(£)]/At = lim var[A(£)]/EA(t). 2

The parameter ¢ in (1) and (2) is the basis for approximating the
arrival process by a renewal process via the asymptotic method in Ref.
26,

Let u™! be the mean and G(f) the cumulative distribution function
(cdf) of the service-time distribution. Let o = M/u be the offered load.
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Our approximations are developed by considering limits as the offered
load o increases. We fix the service-time cdf G(¢) and change « by
changing A.

Let X, be the equilibrium number of busy servers in the G/Gl/w
system at an arbitrary time, as a function of a. (We assume that a
unique equilibrium distribution exists—see Section 2.3 of Franken et
al.?) Borovkov! proved the following heavy-traffic limit theorem for
X... He showed that if (1) holds [actually a slightly stronger functional
limit theorem for A(t)], then

(X. — @)/Vaz — N(0, 1) (3)
as a — oo, where
z=1+(c*= 1)y (4)
and
=g J; [1 - G(&)fdt; (5)

also see Refs. 3 and 6. Actually, Borovkov did not directly treat the
equilibrium variable X, so that there is a further interchange of limits
to get (3). For practical purposes, we can regard (3) as a consequence
of (1).

To interpret (3) through (5), recall that EX,, = « for all a, even with
a general stationary arrival process. The parameter z in (4) is the
asymptotic peakedness of the arrival process A(¢} with respect to the
service-time cdf G{¢) because

z = lim var(X,)/EX, = lim var(X,)/a; (6)

see Ref. 6 and references there. In particular, z in (4) is z6(0+) in
Section 3.3.1 of Ref. 6. Note that » in (5) has the maximum value of 1
attained by a deterministic service-time distribution (unit mass on
u#”') and can assume any value in the interval (0, 1]. For example, 5 =
2/3, 1/2, and 1/n, respectively, when the distribution is uniform,
exponential and concentrated on two points with mass n~* on 0.

We have defined three parameters characterizing variability: ¢?, »,
and z. The parameter ¢? in (1) and (2) is a measure of the variability
of the arrival process (over large time intervals). The parameter n in
(5) is a measure of the variability of the service-time distribution and
the parameter z in (4) is a second measure of variability of the arrival
process (as measured by the G/GI/ model with service-time cdf G
having variability parameter 5 in heavy traffic). The heavy-traffic
peakedness z in (4) is increasing in ¢2, but whether it is increasing or
decreasing in  depends on the sign of ¢* — 1. For a Poisson process,
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¢ = 1. In general, increased service-time variability as expressed by
decreasing % in (5) tends to make z in (4) closer to one. Hence, if the
arrival process is more variable or bursty than a Poisson process in
the sense that ¢* > 1, then z in (4) is increasing in 5, which means
that the peakedness increases as the variability of the service-time
distribution decreases. When ¢? > 1, the deterministic service-time cdf
gives the largest heavy-traffic peakedness among all service-time edf’s
with the same mean. This phenomenon seems to have been first
discussed by Wolff? (see also Section 3.3.1 of Ref. 6). Related results
about GI/G/1 queues are contained in Whitt.”

. THE CONDITIONING HEURISTIC

We now use the heavy-traffic limit theorem (3) for the G/GI/«
system to produce approximations for the associated G/GI/s/0 loss
system, which has s servers, no extra waiting space, and the same
arrival process and service-time distribution. Qur starting point is a
basic property of the Markovian M/M/s/0 models in which the number
of customers in the system evolves as a birth-and-death process. The
equilibrium probability pk(s;) that there are % customers in an
M/M/s,/0 model is just the conditional probability that there are k&
customers in an M/M/s,/0 model given that there are no more than
s; customers, for any s; with s; < s =< o; in other words, ps(s)) is
obtained by truncating and renormalizing px(sg):

Prls1) = palsa) / ZII pj{s2) M
=0

for 0 < k < 5; < 5,. Truncation formula {7) is an immediate consequence
of the known formula for pi(s), but also is easily derived for more
general birth-and-death processes (see p. 68 of Heyman and Sobel).*

Let Y, be the equilibrium number of busy servers at an arbitrary
time in the G/GI/s/0 model. (We also assume existence and unique-
ness—see Section 2.3.2 of Ref. 27.) As an approximatior, we assume
that Y, is related to X, of Section II by the same conditioning formula
(7). In particular, we suggest the heuristic approximation-

P(Y, = k) = P(X, = R)/P(X, = s) C)

for 0 = k < s. This conditioning approxzimation is no doubt an old
idea, which would be hard to trace; it was used previously by Jagerman
to develop approximate blocking formulas in the case of nonstationary
Poisson traffic.!

Next we obtain a further approximation by invoking the heavy-
traffic limit theorem for X, in (3). For this purpose, let ®(z} be the
standard normal cdf, i.e., of N(0, 1), and ¢(¢) the associated density.
We combine (3) and (8) to obtain
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_ .\ _ Plk—05 =< N(e, az) < k + 0.5]
P(Y, = k) = P[N(a, az) < s + 0.5]

E—a+ 05 kE—a—05
“’( Tz )“I’( Vaz )
= s—a+ 05
(I’(—_J&_z )
E—a s—a-+05
~(1/~/EE)¢(@)/¢( = ) 9)

The time congestion, say By, is defined as By = P(Y, = s), so that
an approximation for it is obtained from (9) simply by setting k= s.

In further support of the conditioning heuristic, we note that it is
also valid for the diffusion process limits that arise in several cases of
heavy traffic, e.g., for the stochastic-process version of (3) in the case
of exponential service-time distributions (see Ref, 1 and 3).

We have applied the conditioning heuristic to the distributions at
an arbitrary time instead of at arrival epochs. Since Poisson arrivals
see time averages, "% these two distributions are the same for
M/M/s/0 systems. Also, the heavy-traffic limits for these distributions
are the same for G/GI/w system. (See Ref. 3 for the renewal arrival
process case.) However, these distributions are definitely not the same
for the G/GI/s/r system or even the GI/M/s/0 special case. The
conditioning heuristic seems to perform much better when applied to
the distribution at an arbitrary time, as will be clear from the next
two sections. This might not be surprising, but a good explanation is
still needed.

IV. A CONSERVATION LAW AND THE BLOCKING APPROXIMATION

Let B¢ be the probability that an arriving customer in the
G/GI/s/0 system is blocked (call congestion). A basic conservation
law enables us to express Bc in terms of EY,. In particular, since the
average rate of accepted arrivals equals the average departure rate,
not counting lost calls (see Heyman®”),

A1 — Bg) = uEY,. (10)

Hence, we can combine (9) and (10) to obtain an approximation for
Be.
It is well known and easy to show that

E[N(0, 1)|N(0, 1) = 6] = —¢(6)/2(6), (11)
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so that

EY, ~ a — Jazd (s —a:) / & (SJE“) (12)

and

Bc=1 - o EY, = Vz/a¢ (3‘/“;"‘) / & (SJ;;"‘) =~ zBy (13)

(e.g., see Appendix A of Delbrouck®).

We thus suggest (9) as an approximation for P(Y, = k), (9) with
k = s for an approximation for Br, and (13) as an approximation for
Be.

Let Z.. be the equilibrium number of busy servers in the G/GI/s/0
system at arrival epochs, again as a function of the offered load a. For
G/M/s/0 systems (exponential service-time distributions, but still
general stationary arrival process), we have the exact relationship

P(Z,=k—1) = kP(Y, = k)/a (14)

for 1 < k< s (p. 113 of Franken et al.?’), which is a refinement of (10),
because (10} is obtained from (14} by simply summing over k. We thus
propose (14) as an approximation for G/M/s/0 sysiems and also
G/GI1/s/0 systems. Improved approximations for the nonexponential
service-time distribution case can perhaps be obtained from the rela-
tionships in Section 4.3.2 of Ref. 27, but this does not appear easy.

These approximations are expressed in terms of the asymptotic
peakedness z in (4). However, if this parameter is not available, other
expressions for the peakedness can be used instead.® For example, the
general formula for the peakedness of a renewal arrival process with
respect to an exponential service-time distribution is given here in
27.

Formulas (4) and (5) can also be used to calculate a revised peaked-
ness if there is a change in the service-time distribution, as suggested
in Section 6 of Ref. 33 and as has been done in practice. Suppose that
z; has been previously determined based on the service-time edf G,
but now we are going to consider the same G/GI/s/0 system with new
service-time cdf G,. For this purpose let n; = #(G;) in (5). Using (4),
we obtain an approximation for ¢Z, namely,

(.’2 =1+ (21 - 1)/111 . (15)
We can thus approximate z; based on (4), (5) and
=1+ (= =1+ (z1 = Dme/m. (16)

More general transformations based on Mellin transforms have also
been developed by Jagerman for the entire peakedness functionals
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z[F] considered in Ref. 6 to describe the effect of changing the service-
time distribution.’*

Approximation formulas (9), {(13), and (14) can also be used to
generate approximate multiplicative correction factors to be used with
the exact M/M/s/0 formulas. For example, we can obtain our approx-
imation by multiplying the exact blocking probability for the
M/M/s/0 system by the ratio Be(z)}/Bc(1), where Be(z) is Be in (13)
as a function of z in (4). This procedure is slightly more complicated,
but it is exact for M/M/s/0 systems.

V. BOROVKOV'S HEAVY-TRAFFIC LOCAL LIMIT THEOREM

A rigorous justification of (13) is provided by Theorem 15 (2), p.
226, of Borovkov.? For the GI/M/s/0 model, Borovkov established
that

lim vaBe = v26(8/vz2)}/®(8/Vz) 17

if (s — a)/va — B as @ — o, where z = (¢ + 1)/2 as specified in (4)
in the case of an exponential service-time distribution.

Borovkov identifies z in (17) as (c? + 1)/2 rather than the heavy-
traffic peakedness in (4), but we believe (4) is appropriate for gener-
alizations to nonexponential service-time distributions and nonre-
newal arrival processes.

Borovkov’s arguments can also be applied to yield a related local
limit theorem for P(Z, = k) in GI/M/s/0 systems, namely,

lim YaP(Z, = k) = Vz¢(8'/v2)/®(8/2) (18)

if (s = a)/Va — 8 and (k — a)/Va — 8’ < as a — . We can then
apply (14) to deduce that

lim vaP(Y, = k) = (1/Vaz)p(B’ /Vz)/8(8/z) (19)

and

lim vaBr = (1/Yaz)$(8/V2)/®(8/Vz) (20)

under the same asymptotic conditions. The limit in (19) coincides
with Theorem 16, p. 232, of Borovkov,? which is stated there without
proof.

Hence, we have theoretical justification for all our approximations
in the case of GI/M/s/0 systems. We conjecture that (17) through (20)
are still valid for general stationary arrival processes and nonexponen-
tial service-time distributions, i.e., under the conditions for Borovkov's
G/Gl1/o theorem (3). Since (14) is valid for general nonrenewal arrival
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processes but not for general service-time distributions, the conjecture
seems much more likely to be true for the generalization of the arrival
process than for the generalization of the service-time distribution.

VI. CONNECTIONS TO OTHER WORK

6.1 Beginning with Erlang

For the Markovian M/M/s/0 model as well as the M/G/s/0 model,
the exact blocking probability is given by the classic Erlang loss (B)
formula

Bls, a) = (e*/s) / Eo (a*/ED). (21)

Since Poisson arrivals see time averages,?**® By = Br and (18) and
(19) coincide in this case. In this case, approximation (9) reduces to
a rather standard normal approximation which was evidently known
in 1924 by Erlang.’® The M/M/s/0 case of the limit theorem (17)
plus various asymptotic expansion improvements were given by
Brockmeyer? and Vaulot.? Asymptotic expansion improvements also
follow from Theorem 14 of Jagerman® and are discussed on p. 88 of
Delbrouck.™ A simple proof of the M/M/s/0 version of (17) using the
central limit theorem and Stirling’s formula® is given here in the
Appendix.

6.2 The Hayward approximation

A relatively simple approximation for the blocking probability Bc
in G/M/s/0 and even G/G/s/0 systems as a function of s, @ and 2
proposed by Hayward is

B¢ = Bcl(s, a, 2) = Bels/z, afz, 1) = Bls/z, afz) (22)

using (21) (see Fredericks® and Eckberg®). It is significant that the
approximation (9) and the limit theorem (17} are consistent with (22);
for those expressions, B(s, «, z) = B(s/z, afz, 1).

There are several possible interpretations and applications. We can
interpret (17) through (20) as additional evidence in support of the
Hayward approximation. The limit theorems and approzimations
provide additional evidence that the Hayward approximation should
perform well under heavy loads. The Hayward approximation is par-
ticularly appealing, given that there are convenient computer programs
to calculate B(s, «) in {21) extended to nonintegral s, as have been
developed by Jagerman.®®

On the other hand, we can use the Hayward approximation as an
additional justification for (9). We can derive () by applying the limit
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theorem for M/M/s/0 systems described in Section 6.1 together with
the Hayward approximation,

The connection also suggests that improved approximations can be
obtained for G/M/s/0 systems and possibly G/G/s/0 systems by
applying the asymptotic expansions of Brockmeyer,” Vaulot,? or
Jagerman® for B(s, @) after applying the Hayward approximation to
treat the peakedness 2. In particular, formula (5) in Jagerman,® which
is based on Theorem 14 there, seems particularly promising in com-
bination with Hayward’s approximation. However, testing remains to
be done. Of course, improved approximations would also be obtained
from asymptotic expansions related to (17). This seems to be a
promising direction of research.

6.2 Bounds for the blocking probability

Sobel'® and Heyman®? recently established a lower bound for the
blocking probability in a G/G/s/r system when p > 1, namely,

BC‘ =1- P—ls (23)

and observed that the lower bound often is a good approximation
when p > 1.

We partly explain why the lower bound is a good approxzimation
by showing that it appears in limiting lower and upper bounds as
« — @ in our heavy-traffic approximation (9) for G/G/s/0 systems.
(This paper is a revised version of Ref. 11 in Sobel,'® where our result
is mentioned.)

We use the familiar bounds for the tail of a normal distribution

(@~ 2 <1 — &(x) = B(—x) < x7l9(x), x>0 (24)

see p. 175 of Feller.'® To make the connection to (9) and (17), let x =
(a = 5)/Yaz. Since xvz/a = (1 — p7Y), and

x(x)

=2yl
1< Py < (1-279 (25)

by (24), from (9) we obtain the approximate bounds as x — «
(1l-pY<sBc= (1~-,90 =277, (26)

which are useful for p = 1. The distance between the bounds goes to
ZETO as x —> ©,

Holtzman also establishes bounds for B¢ in the GI/M/s/0 system.*®
In fact, he described the range of all possible values of B given only
the offered load « and the peakedness 2’ of a renewal process, which
is

22 =01-¢)™" - a (27)
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where

#u) = ‘L‘ e dF(t) (28)

with F(t) the cdf of an interarrival time. By (17}, we know that the
range approaches 0 as a — ® with (s — @)/va — 8. The z’ in (27)
approaches z in (4) and, by (9) and {17), B¢ depends only on a, s and
z for large o.

6.4 The normal-distribution method

The approximations here for P(Y, = k), By, and B¢ in (9), (13),
and (14) coincide with the normal-distribution methed (NDM) of
Rahko'®*2 and Hertzberg'® and the normal approximation for the
Bernoulli-Poisson-Pascal (BPP) approximation of Delbrouck,* but
the analysis here is different.

6.5 Light-traffic approximations and interpolations

The appreximations here have been developed by considering the
service systems in heavy traffic, i.e., as the offered load increases.
Improved approximations for lighter loads may be possible by consid-
ering the service systems in light traffic, i.e., as the offered load
decreases. Better approximations might be obtained by making inter-
polations between light and heavy traffic. This seems to be another
promising direction for future research. Previous work on light-traffic
approximations for queues is contained in Bloomfield and Cox,*
Newell,*” and Burman and Smith.**® Interpolations between light and
heavy traffic have been considered by Burman and Smith® and
Reiman and Simon.* The hybrid approximations for queues with
superposition arrival processes developed by Albin*' and used in Ref.
42 to approximate networks of queues are also in this spirit.

Vil. FINITE WAITING ROOMS

Corresponding approximations can be developed for G/GI/s/r sys-
tems with r extra waiting spaces. We can apply heavy-traffic limit
theorems for G/GI/s/® systems (see Ref. 4), together with the condi-
tioning heuristic of Section III. The conditioning relationship (7) is
also valid for M/M/s/r systems with different values of r. As Ref. 4
describes, there are several possible heavy-traffic limit theorems to
apply. For GI/M/s/ systems, we suggest the heavy-traffic limit
theorems in Ref. 4 with (s — a)/va — 8 as a — » or, equivalently,
(1 — p)vs — B, where « = A/u and p = a/s. This leads to a promising
analog of Hayward’s approximation (22) for the case of a finite waiting
room, namely, (42} below.
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From Section 4 of Ref. 4, it is evident that the extension to
nonexponential service times is more difficult when r > 0, but we
conjecture that the GI/M/s/e results in Ref. 4 extend to G/M/s/x
systems (nonrenewal arrival processes) and that the conditioning
heuristic is valid in heavy traffic for G/M/s/r systems. In support of
this, the conservation relationships (10) and (14) extend to G/M/s/r
systems. (The factor k& on the right side of (14) is replaced by
min{k, sj.) The corresponding heavy-traffic local limit theorem for
M/M/s/r systers is easy to prove using the methods of Ref. 4 or the
Appendix. We conjecture that heavy-traffic local limit theorems cor-
responding to (17) through (20) are also valid for GI/M/s/r systems
as well as for the more general G/M/s/r systems. Moreover, we
conjecture that the form of the limits will coincide with what we get
by applying the conditioning heuristic to the GI/M/s/c limits in Ref.
4,

In this section, let X, and Y, be the equilibrium number of customers
in G/M/s/® and G/M/s/r systems, respectively, at an arbitrary time.
For « large with (1 — p)}+/s = 8, the approximations derived from Ref.
4, where the limit theorem is proved only for renewal arrival processes
(see Propositions 1 and 2 and Theorems 1 and 4), are

P(X.zs) == [1+B8B')V(B)], (29)
PXa>s+r|X,=s) mq=ePfTh (30)
P(Y, 2 5) == y(1 — e®)/(1 — eF7/%), (31)
VsP(Y, = k| Y. = s) = ¢(8’ + 8)/2(8"), (32)
VSP(Y, = k| Y, = s) = (v'/£)e™?, (33)

and
VsBr = Ble=FHE (34)

for (k — 5)/vs = 5 and B’ = /2 with z being the peakedness in (4).
Since

E(min{X,, s) = a = sp (35)
for all G/G/s /= systems, e.g., by (4.2.3) of Ref. 27,

sPs=X,<s+r)+sp—sPX,=s)

E(min{Y,, s}) =

PX.=ss5+71)
= [s(y — yn) + s(o — ¥)I/(L — vn)
= s(p — yn)/(L — 1), (36)

for y and 5 in (29) and (30), so that by (10)
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Be=1— o 'Emin{Y,, s}) = 1 — p(p — vg)/(1 = vn)

= (1 —~ p)yu/p(1l — v} (37)
and
VsBc = Byn/p(1/ yn} = (z/p)VsBr (38)

so that B¢ = zBr as in (13), although the correction with p in (38} may
be useful.

Also note that
7= 9(p, 5, 1, 2} = nlp, 1, 2) = 5(p, r/z, 1) (39)
and
v =v(p, 5 1 2) = ¥(p, 5, 2) = ¥(p, /2% 1), (40)
so that _
Be = Belp, 8, 1, 2) = Belp, s/2%, rfz, 1) (41)

or, equivalently,
B¢ = Bela, s, 1, 2) = Belo/2?, s/2% r/2, 1) (42)

in the manner of Hayward's approximation in Section 6.2. If we
express B in terms of 1 — p, then we have the alternate expression

BC = BC(]- - PS5 Z) = BC[(]- - P)/zi S, I, 1]' (43)

We can achieve (42) by fixing s, r and x and then changing X so that
(1 — p)/z is unchanged while z is replaced by 1. As with Hayward’s
approximation, we can use M/M/s/r formulas when z = 1.

Note that the normalizations in (41) through (43) are not the same
as in Hayward’s approximation in Section 6.2. Comparing (42) with
(22), we see that now « and s are divided by 22 in (42) instead of 2, so
that evidently the peakedness has a much greater impact when there
is a finite waiting room. This might be expected because now the
boundary where losses occur is further away from the centef of mass,
with p required to be less than one. The different normalization of r
and s might be expected because this approximation is based on r
being of order vs.

Of course, the approximations developed in this section need to he
tested, which has not yet been done. From the theory, we know that
the modification of Hayward’s approximation for finite waiting rooms
in (42) should work well when p is high but less than one, s is large,
and r is of order s, but it remains to determine the actual range over
which the approximation is good.
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VIII. TESTING THE BLOCKING APPROXIMATION

In this section we present numerical comparisons to test the ap-
proximation for the approximate blocking probability Be in (13). Our
testing here is confined to G/M/s/0 systems. Since formula (13}
coincides with the normal approximations of Rahko® and Del-
brouck,!* their comparigons are relevant too.

Tables I through IV compare the heavy-traffic approximation (13)
with exact M/M/s/0 results and the equivalent random method. We
selected seven different blocking probabilities: 0.001, 0.01, 0.05, 0.10,
0.20, 0.40, and 0.60. The higher numbers were selected so that we
could test the lower bound in (23), which is only applicable when o >
" 5. We also selected four different (z, s)-pairs: (1, 5), (1, 50), (2, 50},
and (10, 400). In each case, we used the charts on pages 23-32 of
Wilkinson® to determine the corresponding load in Erlangs dictated
by the equivalent random method for the given blocking probabilities
and parameters s and z. When the peakedness was not 1 (Tables ITI
and IV), we also calculated Hayward’s approximation (22). For Hay-
ward’s approximation we often used the more detailed graphs in
Appendix A of Cooper.** (The results were also checked using Jager-
man’s computer programs.®) In parentheses next to the lower bound
is the upper bound obtained from (26). It should be noted that the
upper bound in (26} is an upper bound for our normal approximation,
not necessarily on the true blocking probability.

In interpreting the tables, remember that the equivalent random
method is only an approximation too when the arrival process is not
Poisson. Moreover, from Holtzman!® we know that the range of
possible blocking probabilities consistent with the partial information
provided by the peakedness can be quite wide. (As we indicated in
Section 6.3, this is not true in heavy traffic.) Hence, there often is
little reason to prefer the numerical accuracy of exact calculations
according to the -Erlang loss formula (21) over the normal approxi-
mation (13).

Table i—The blocking probability B¢(s, a, z} for z = 1 and

5=5
Heavy-Traffic
Load in Erlangs Blocking Approximation Bound (23}
a Probability (13) 1—piforp>1
0.77 0.001 0.000
137 0.01 0.003
222 0.05 0.05
2.86 0.10 0.11
4.0 0.20 0.23
T 6.6 0.40 0.39 0.24 (0.33)
11.5 0.60 0.49 0.57 (0.77)

Note: In parentheses to the right of the lower bound (23) is the
approximate upper bound in {26).
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Table Il—The blocking probability Bc(s, «, z} for z= 1 and

s=50
Heavy-Traffic
Load in Erlangs Blocking Approximation Bound (23}
« Probability (13) 1—plforp>1
32,5 0.001 0.001
38.0 0.01 0.01
44.5 0.05 0.05
49.7 0.10 0.10
59.0 0.20 0.21 0.15 (0.16)
82.0 0.40 0.42 0.39 (0.40)
122.0 0.60 0.59 0.59 {(0.61)

Note: In parentheses to the right of the lower bound (23) is the
approximate upper bound in (26).

As we expected, the quality of the approximation, as measured
against the exact formula when z = 1 or the equivalent random method
when z 5 1, improves as « or s increases and z decreases. The parameter
afz gives a good indication of the quality to be expected; i.e., the
quality depends approzimately on a/z and improves as a/z increases.
The heavy-traffic approximation tends to degrade as the number of
servers gets beyond two or three standard deviations (vaz) away from
the G/GI/® mean (the load «).

Table V presents some of Kuczura’s*® results (as displayed in his
Figures 1-3) for GI+M/M/s/0 systems (having an arrival process that
is a superposition of a renewal process and a Poisson process) together
with our heavy-traffic approximation. A significant feature of these
systems is that the blocking experienced by the customers in the
different streams is not the same. Since the arrival rates in the two
streams are identical in each case, the blocking experienced by an
arbitrary customer, which is what our approximations are for, is the
average of the blocking probabilities associated with the separate
streams.

Table I1l—The blocking probability Be(s, o, z) forz=2 and s = 50

Approximate
Load in Blocking Prob- Hayward's Heavy-Traffic Bound (23)
Erlangs ability (Equiv. Approximation Approximation 1—p7 forp>
1

o Rand.) B{(25, af2) (13)
26.5 0.001 0.001 0.001
326 0.01 0.01 0.01
40.2 0.06 0.05 0.06
45.8 0.10 0.10 011
55.5 0.20 0.20 0.21 0.10 (0.10)
8.9 0.40 0.40 0.38 0.37 (0.38)
120.0 0.60 0.59 0.58 0.58 (0.61)

Note: In parentheses to the right of the lower bound (23) is the approximate upper
bound in (286).
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Table IV—The blocking probability Bc(s, «, z) for z = 10 and s = 400

Approximate
Load in Blocking Prob- Hayward’s Heavy-Traffic Bound (23)
Erlangs ability (Equiv. Approximation Approximation 11—, forp>

a Rand.) B(40, «/10) (13) 1

2566 0.001 0.002 0.001

290 0.01 0.01 0.01

340 0.05 0.05 0.05

385 0.10 0.10 0.10

460 0.20 0.20 0.22 0.13 (0.14)
640 0.40 0.40 0.41 0.38 (0.39)
900 0.60 0.56 0.56 0.56 (0.57)

Note: In parentheses to the right of the lower bound (23} is the approximate upper
bound in (26).

To obtain the heavy-traffic approximation, it is necessary to specify
the peakedness of the arrival process. When the arrival process is the
superposition of independent renewal processes, at least one of which
is not Poisson, the superposition process is not a renewal process (see
Ref. 26 and its references). However, the peakedness of the superpo-
sition process is clearly the convex combination of the individual
peakedness values. Suppose there are n independent streams with A;
the arrival rate and z; the peakedness of stream i. Then clearly

Table V—The blocking probability for a GI+M/M/sf0
model with s = 25: comparison with Kuczura*

Load in Erlangs, «

System 20 25 30
M/M/s/0
Arbitrary arrival 0.050 0.144 0.245
Heavy traffic 0.054 0.148 0.229
D + M/M/s/0
Poisson arrival 0.045 0.15 0.28
Renewal arrival 0.027 0.11 0.20
Arbitrary arrival 0.036 0.13 0.24
Heavy trafﬁc (z = 0.75) 0.037 0.124 0.214
Hayward (z = 0.75) 0.035 0.126 0.232
GI+ M/M/s/O [z(G) 2]
Poisson arrival 0.058 0.14 0.21
Renewal arrival 0.094 0.20 0.31
Arbitrary arrival 0.076 0.17 0.26
Heavy traffic (z = 1.5) 0.084 0.186 0.274
Hayward (z = 1.5) 0.077 0.172 0.268
GI+ M/M/s/o [2(G) = 3]
Poisson arrival 0.06 0.14 0.20
Renewal arrival 0.15 0.26 0.38
Arbitrary arrival 0.115 0.20 0.29
Heavy traffic (z = 2) 0.12 0.21 0.30
Hayward (z = 2) 0.101 0.195 0.286
Equivalent random method (z = 2} 0.105 0.200 0.285

Note: All entries except the heavy-trafﬁc, equivalent-random method,
and Hayward values are from Kuczura.®
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A= i A and i ;\izi/)\- (44)

i=1 i=1

We use (44) to obtain the peakedness values for the heavy-traffic
approximation given in Table V. For the case in which the peakedness
of the superposition process is z = 2, we also compared the blocking
probabilities with those obtained using the equivalent random method,
Chart 2 on page 24 of Wilkinson,*® and Hayward’s approximation
using Jagerman’s program.®® The results seem to be good, about the
same as those in Tables I through IV.
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APPENDIX
A Heavy-Traffic Local Limit Theorem for the Erlang Loss Formula

For the elementary M/G/s/0 system, where the blocking probability
is given by the Erlang loss formula (21), approximations (9) and (13)
follow easily from well-known limit theorems for the Poisson distri-
bution. We present one possible argument here.

Let p(k, A) denote the probability mass function of the Poisson
distribution with mean A, i.e.,

p(k, A} = e A¥/R\ (45)
The Erlang loss formula then can be expressed as
B(s, a) = p(s, a) / Z p(k, a). (46)
k=0

As before, let ¢(x} and ®(x) be the density and cdf, respectively, of a
standard normal random variable, N(0, 1).

Theorem: In an M/G/s/0 system,
lim VaB([a + sVal, @) = ¢(s)/3(s),

where [x] is the greatest integer less than or equal to x.

Proof: Since a Poisson random variable with mean A has the same
distribution as the sum of n ii.d Poisson random variables with mean
A/n, the central limit theorem can be applied to obtain
[ertav/a]
lim ¥ p(k, ) = 3(s)
—

(see Problem 9, p. 194, and Example X(c), p. 245, of Feller'®), Hence,
it remains to show that

lim vVap[(a + svVe), a] = ¢(s) = (2r) V2% "2,

s can establish this result using Stirling’s formula (p. 52 of Feller'®).
3tirling’s formula, let the symbol ~ below mean that the ratio
I the two sides tends to 1 as a — w0, We have

\/Ee—:«(a(ﬁa@)
(a + sva)!
N Vae (o)
Ver(a + sva) Vi (q + gva)W2e—leteva)

\/Ep[(a + sva), al =

es\/a .
T VBr(l + s/Va) (1 + s/va) e
e-—s’ eaJa

T r (1 + s/Va)*
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where
log{e™*(1 + s/Va) ) = sva — a log(l + s/Va)

2
=S\G—a(‘/—s-&-—-2]:(-\—;_;) +0(a))=£2-+0(1
Hence,
eV (1 + s/Va)* ~ &
and
Yapl(a + sva), o] ~ (2x) V%"
as claimed.
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