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ON THE HEAVY-TRAFFIC LIMIT THEOREM
FOR GI/G/~> QUEUES

WARD WHITT,* Bell Laboratories

Abstract

A revealing alternate proof is provided for the Iglehart (1965), (1973)-
Borovkov (1967) heavy-traffic limit theorem for GI/G/s queues. This kind of
heavy traffic is obtained by considering a sequence of GI/G/s systems with the
numbers of servers and the arrival rates going to « while the service-time
distributions are held fixed. The theorem establishes convergence to a Gaus-
sian process, which in general is not Markov, for an appropriate normalization
of the sequence of stochastic processes representing the number of customers
in service at arbitrary times. The key idea in the new proof is to consider
service-time distributions that are randomly stopped sums of exponential
phases, and then work with the discrete-time vector-valued Markov chain
representing the number of customers in each phase of service at arrival
epochs. It is then easy to show that this sequence of Markov chains converges
to a multivariate O-U (Ornstein—-Uhlenbeck) diffusion process by applying
simple criteria in Stroock and Varadhan (1979). The Iglehart-Borovkov limit
for these special service-time distributions is the sum of the components of this
multivariate O-U process. Heavy-traffic convergence is also established for the
steady-state distributions of GI/M/s queues under the same conditions by
exploiting stochastic-order properties.

GI/G/s QUEUE; HEAVY TRAFFIC; LIMIT THEOREM; DIFFUSION PROCESS; ORNSTEIN-
UHLENBECK PROCESS; APPROXIMATIONS; CONGESTION MODELS

1. Introduction and summary

The purpose of this paper is to provide some complements to the Iglehart
(1965), (1973a)-Borovkov (1967) heavy-traffic limit theorem for GI/G/> ser-
vice systems. Heavy traffic is achieved by considering a sequence of GI/G/>
service systems with the arrival rates going to o while the service-time
distributions are held fixed. The Iglehart-Borovkov limit theorem establishes
convergence to a Gaussian process for an appropriate normalization of the
sequence of stochastic processes representing the number of customers in
service; see (2.2) and (2.3).

The Iglehart-Borovkov theorem also applies to GI/G/s queueing systems if
the number of servers also goes to infinity sufficiently fast. Then the s-server
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queueing systems are asymptotically indistinguishable from infinite-server sys-
tems; i.e., the probability that all servers are busy during any interval goes to 0.
An interesting alternative limiting procedure in which the probability that all
servers are busy does not go to 0 is introduced and investigated by Halfin and
Whitt (1981).

Perhaps the most significant feature of the Iglehart-Borovkov limit theorem
is the prominent role played by the service-time distribution. If the service-
time distribution is exponential or is exponential except for a mass at 0, then
the limiting Gaussian process is the Ornstein—Uhlenbeck diffusion process, i.c.,
the Gaussian process is Markov. However, if the service-time distribution is
not one of these special cases, then the limiting Gaussian process is not a
diffusion process, i.e., it is not Markov. Moreover, then the limit depends on
the entire service-time distribution, not just the mean and variance. This
suggests that in the search for approximations of many-server queueing models
it is not always appropriate to use only the means and variances of the
interarrival and service-time distributions. The limit theorem also indicates
when the simpler diffusion approximation should be appropriate, namely,
either when the number of servers is relatively small or the service-time
distribution is nearly exponential. Hence the limit theorem is a useful comp-
lement to direct heuristic diffusion approximations for many-server queueing
models; see Section IV of Newell (1973) and Halachmi and Franta (1978).

A Markovian limit is significant not only because it means a relatively more
tractable approximation, but also because it means that the evolution of the
system can be described approximately if we keep track only of the number of .
customers present. A non-Markovian limit suggests that we could better
describe the evolution of the system by keeping track of more information (if it
is available). The relevant extra information here is the proportion of those
customers present at any time that have been in service for a time less than or
equal to ¢, for all t=0. In the standard heavy-traffic limit theorem in which the
traffic intensities converge to one from below while the number of servers is
held fixed, this extra information has an asymptotically negligible contribution,
but in the Iglehart-Borovkov heavy-traffic limit theorem with non-exponential
service-time distributions this information remains relevant in the limit. The
main idea here is to look at this extra information. In general, the extra
information is a function of ¢, which means the state space would become
uncountably infinite if we incorporated it all. It would be nice to obtain
heavy-traffic theorems from this general Markov framework, but we do not yet
know how to do this. What we do here is represent such additional information
approximately via a discrete-time vector-valued Markov stochastic process. To
accomplish this, we consider service-time distributions that consist of an
appropriate random (finite) number of phases, with the successive phase



On the heavy-traffic limit theorem for GI/G/> queues 173

lengths being i.i.d. exponential random variables. It is significant that this class
of service-time distributions is dense in the family of all probability distribu-
tions on the positive real line. Hence, at least in principle, there is no significant
loss of generality in this assumption. (In fact, it should be possible to exploit
the denseness to verify convergence for general service-time distributions, but
we have not yet been able to do this.) The discrete-time vector-valued Markov
process is obtained by considering the number of customers in each phase at
successive arrival epochs. Our main result (Theorem 3) is that this sequence of
Markov processes, appropriately normalized, converges weakly to a multi-
variate O-U (Ornstein—Uhlenbeck) diffusion process. Since the arrival rate
goes to o, we are able to show that a similar limit also holds for the associated
sequence of continuous-time non-Markov processes representing the number
of customers in each service phase at arbitrary times.

While this O-U diffusion limit is somewhat complicated, it has promise for
approximations. With m service phases, the m-dimensional limit process is
characterized by two m X m matrices of real numbers: an m X m infinitesimal
mean matrix with 2m — 1 positive entries and an m X m infinitesimal covariance
matrix with 3m —2 positive entries, all of which depend on m +2 parameters
(the mean and variance of the interarrival time, the mean of the exponential
service phase and m —1 phase transition probabilities). Since the multivariate
O-U process has been widely studied, it is relatively easy to work with. For
example, it is the solution of a linear stochastic differential equation in the
narrow sense; see Chapter 8 of Arnold (1974). See Section 2 of Iglehart and
Lalchandani (1973) for a nice overview. Interesting properties of the one-
dimensional O-U process obtained when the service times are exponentially
distributed are discussed by Beekman (1974) and tables have been prepared by
Keilson and Ross (1975).

Our limit theorem also provides an alternative proof and explanation for the
Iglehart-Borovkov limit theorem. The number of customers in the system is
clearly the sum of the numbers in each service phase. Hence, the general
Gaussian limit can be interpreted as the sum of the components of a multi-
variate O-U process. The limit is Gaussian because the Gaussian property of
the O-U process is preserved by linear mappings, but it is not Markov because
the Markov property is not preserved.

While the proof here is less general and more cumbersome than Borovkov’s,
we believe it is conceptually elementary and revealing. It is easy to understand
why the non-Markov Gaussian limit arises and why it has the form it does.
Moreover, by expressing the convergence in terms of a sequence of Markov
chains approaching a diffusion process, we are able to invoke a well-developed
theory; see Chapter 11 of Stroock and Varadhan (1979) or p. 459 of Gikhman
and Skorohod (1969). In order to establish weak convergence in the function
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space setting, it suffices to show that the infinitesimal means and covariances
converge. The theory is sufficiently well developed in this setting that the usual
checks to fit a heuristic approximation are essentially all that is needed to
rigorously establish the general weak-convergence theorem. As soon as we
introduce the exponential phases, we convert a single-station infinite-server
non-Markovian service system into a Markovian network of infinite-server
service stations. The multivariate O-U limit could be anticipated because of
the extensive analysis of related systems; see Iglehart (1968), Schach (1971),
Iglehart and Lalchandani (1973), McNeil and Schach (1973) and Lemoine
(1978), especially Section 3.3. It should also be apparent that the multivariate
O-U limit here extends easily to generalized Jackson networks of infinite-server
stations. In order to keep within the Markov framework, we assume all but one
external arrival process is Poisson, with the non-Poisson arrival process being a
renewal process. (This assumption is not necessary for the theorem, but it is for
our method of proof. By considering interarrival times consisting of a random
number of exponential stages, we could let all the external arrival processes be
renewal processes.) We let the arrival rate in the renewal arrival process and
also possibly the Poisson arrival processes go to o while holding all the
service-time distributions fixed. We then represent each service-time distribu-
tion as appropriate random sums of exponential phases. Let the customers be
routed through the original network independently according to fixed prob-
abilities, but note that more complicated routings could be incorporated by
introducing new classes of customers and making the state space still bigger;
see Kelly (1976). The discrete-time vector-valued Markov process of interest
depicts the number of customers in each phase of service at each station. By
essentially the same reasoning, the sequence of these Markov processes con-
verges to a multivariate O-U process under the same heavy-traffic conditions.
The limits for such general networks obviously are very complicated, but even
these limits may prove useful. For example, it might be a good strategy to
simulate simple random-walk analogues of the multivariate O-U processes to
gain insight into the behavior of complex networks of queues. The heavy-traffic
limit theorem for networks of infinite-server stations just described extends the
Iglehart-Borovkov limit theorem the same way that Reiman (1977) extended
the more familiar (p1 1) heavy-traffic limit theorems; see also Harrison (1978).
The limit theorems here are more elementary because there are no boundaries
associated with the limit processes.

We now indicate how the rest of this paper is organized. We give the
background and state our results for single infinite-server queueing stations in
Section 2. We conclude with the proofs in Section 3. Additional supporting
material is contained in an appendix, which has been omitted to save space; it
is available from the author. It contains a limit theorem for different kinds of
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service-time distributions: service-time distributions that are mixtures of Er-
lang distributions; this class is also dense in the set of all possible service-time
distributions. In fact, this class contains the class in Theorem 3 as a proper
subset.

2. Background and new results

Consider a sequence of GI/G/s systems indexed by n with s, =. Let u,, and
v, be the generic interarrival times and service times in the nth system.
Assume that n}E(nu,)—A"1]— 0, 0<A <o; Var (nu,) = 02, and 0<g? <o,
(For example, we could have u, = un™" for all n, with Eu=A"" and Var (u) =
02) Let v, =v for all n with Ev=p"!, 0<p <o; Var (v) = a?, 0<a?<x; and
P(v =x)=H(x). Note that Ev,/nEu, — p=A/p.

We have yet to specify the number of servers for each n. We assume that

(2.1) (s,—mAip Hn3—wo as n—x,

with s, = for all n a possibility. This turns out to guarantee that the
probability that all servers are busy at any time in a given finite time interval is
asymptotically negligible. The two cases of principal interest are: (i) s, =« for
all n and (ii) s, =n and p<1.

Let Q,(t) be the number of customers in the nth system at time t. We are
interested in limit theorems for normalizations of the stochastic processes
Q,.={Q,(t),t=0} as n—> . Such a theorem was first proved by Iglehart
(1965) for the special case of M/M/s systems. He considered the normalized
process

(2.2) X.(=n"{Q.(0—npl, t=0.

To state the result, let > denote weak convergence (convergence in distribu-
tion), both for real-valued random variables and random elements of function
spaces (stochastic processes). Iglehart proved that if X, (0)= X(0), then X,, > X
where X is the O-U diffusion process with initial distribution that of X(0),
infinitesimal mean m(x)=—ux and infinitesimal variance o%(x)=2A. Hence,
for large n and t, X, (t)~ N(0, —0*(1)/2m(1)) = N(0, p) (see p. 134 of Arnold
(1974)) and Q,(t)~ N(np, np), where we use ~ for approximately equal in
distribution and N(a, b) for a normally distributed random variable with mean
a and variance b.

Borovkov (1967) subsequently proved a weak convergence theorem for the
general GI/G/s case and even more general systems. He considered the
normalized process

(2.3) Y.()=n7{Q.()—nh(®], =0,
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where
(2.4) h(t)=A L [1-H(s)] ds.

(Note that h(®)=p = Au ") He proved that if Q,(0)=0 for all n, then Y,> Y,
where Y is the sum of two independent centered Gaussian processes Y, and
Y,, where Y, has covariance function

(2.5) Yi(s, s+1)= )\L HW)[1-H(t+u)]du, 5, t=0,
and Y, is the stochastic integral
(2.6) Y, ()= aA%L [1-H(t—u)dB(u), t=0,

with B being Brownian motion. (Note that the stochastic integral in (2.6), when
viewed as a process, is not of standard type because the integrand is a function
of t.) As a consequence, Y, has covariance function

2.7 v2(s, s +1) =02A3Ls[1—H(t+u)][l—H(u)] du, s, t=0.

For further discussion and results, see Iglehart (1973a) and Section 5 of
Iglehart (1973b). Borovkov (Remark 1 on p. 748) observed that Y; cannot be
represented as a stochastic integral with respect to Brownian motion.
Moreover, it is significant that in general Yy, Y,, and Y;+ Y, need not be
Markov. In fact, Glynn (1982) has shown that Y =Y, + Y, is Markov if and
only if 1—H(t)=pe ™ for >0 and 0 <p =1, using the necessary and suffi-
cient condition

y(s,s+t+u)y(s+t,s+ty=vy(s, s+t)y(s+t, s+t+u), s, t,uz=0,

from Doob (1953), p. 233. With this condition, it is easy to see that Y;, Y,,
and Y,+Y, are all Markov if H is of this form. In fact, Y, is just the
Ornstein—Uhlenbeck process normalized to be at 0 at ¢t =0, with infinitesimal
mean m(x)=—pux and infinitesimal variance o*(x)=a?A>; p. 349 of Breiman
(1968). Since

yils, s+1)=re ™ (u[1-e™]-2u) [1-e7>)
- (p2)e™ as s—x,
we see that {Y;(s+1), t=0} converges as s — o to a stationary O-U process
with infinitesimal mean m(x)=—ux and infinitesimal variance o*(x) = A. (This

is rigorously demonstrated by an easy application of Theorem 11.1.4 of
Stroock and Varadhan (1979).) Thus, {Y(s +1¢), t =0} converges as s —> ® to a
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stationary O-U process with infinitesimal mean m(x)=—ux and infinitesimal
variance (A*a*+)). Hence, in GI/M/x~ systems, for large n and t, Q,(t)~
N(np, np(1+a21?)/2).

The limit process Y,+ Y, also simplifies when the interarrival time is not
necessarily exponential but its coefficient of variation is 1. Then o?A®=A and
Y,+ Y, has covariance function

(2.8) v(s, s +t)=v,(s, s +t)+v(s, s +1) = )\Ls [1-H(t+u)] du.

We shall see later that this case also leads to simplifications in the limits for
vector-valued Markov chains.

It is somewhat disconcerting, however, that in the M/M/s case Borovkov’s
limit theorem does not reduce to Iglehart’s. The reason of course is the
different assumptions about the initial conditions. Iglehart assumes that
X, (0)=n"*Q,(0)— np] converges, whereas Borovkov assumes Q,(0)=0. One
purpose of this paper is to prove the following theorem.

Theorem 1. Consider the originally specified sequence of GI/G/s systems
with s, and X, satisfying (2.1) and (2.2). If the service-time distribution is
exponential and X, (0)=> X(0), then X, = X, where X is the O-U process with
initial distribution X(0), infinitesimal mean m(x)=—pux and infinitesimal var-
iance o2(x)=A+A3c2

Theorem 1 also implies that Q,(t)~ N(np, np(1+A%a?)/2) for large n and t.
Moreover, if X(0) is distributed as N(0, p(1+A%c?)/2), then X is the stationary
O-U process. (It is known that if a process is Markov, Gaussian, stationary,
and continuous in probability, then it must be the O-U process; p. 350 of
Breiman (1968).)

In addition, we establish convergence of the steady-state distributions. The
proof here involves an interesting stochastic dominance argument which is of
independent interest.

Theorem 2. For systems satisfying the assumptions of Theorem 1 and having
Q,()=> Q,(x) as t— for each n,

X, (©)=n"Q,(2)—np]=>N(0, p(1+1%3?)/2) as n—c.

Remarks. (1) The theorems in this section are stated for the continuous-time
stochastic process representing the number of customers in the system at an
arbitrary time. Corresponding results exist for the discrete-time process repre-
senting the number of customers present at arrival epochs (not including the
arrival). These results are obtained here in the proofs.

(2) With reference to the existence of a limiting distribution as t — o for
each n, we mention that this is satisfied for GI/G/s systems with s = under
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the moment conditions made at the outset if and only if u, has a non-lattice
distribution. (In the lattice case of course limits also exist if we go along the
subsequence of multiples of the span.) For many systems, including GI/M/s
systems with s=o, this can be easily demonstrated through regenerative
process theory. In particular, if P(u,>v,)>0, then there is an embedded
renewal process with finite expected time between renewals. Moreover, it is
possible to show that the time between renewals is non-lattice if and only if u,
is non-lattice. With the condition P(u, > v,)>0, Theorem 2.2 of Whitt (1972)
and Theorem 3.1 of Miller (1972) can be applied. The argument in Whitt
(1972) easily extends to GI/G/» systems. However, the general case is much
more complicated. The general result for GI/ G/ queues has been established
by Jagers (1968), Theorem 3; see also Kaplan (1975) and Pakes and Kaplan
(1974). For s <, the general result appears on p. 173 of Borovkov (1976).
Miller and Sentilles (1975) have also established the general result for s <o
under the extra assumption that the interarrival-time and service-time distribu-
tions are atomless. A new proof also appears in Whitt (1981a). For an
extensive treatment of the general case, including extensions covering non-
renewal arrival processes, see Franken, Konig, Arndt, and Schmidt (1981).

(3) Various characterizations of these limiting distributions have also been
established. In the GI/G/~ system, the limit Q(«) has mean value p and
probability generating function ®(s) = Es?® given by

(2.9) O(s)=1- ALOQQ(S, H1-H(®)])(1-s) dt,

where ®(s, t)=Es?® with Q(0)=0 and a regular interarrival time until the
first arrival; see Jagers (1968), Kaplan (1975) and Pakes and Kaplan (1974).
These references also serve as a reminder that much can be deduced about the
GI/ G/ system from related stochastic models such as branching processes with
immigration. For s =, it is well known that Q(«) has a Poisson distribution
with parameter p if the interarrival times are exponential, see p. 18 of Ross
(1970). As obviously must be the case with exponential interarrival times,
Borovkov’s (1967) limit theorem implies that Q, () ~ N(np, np) for large n and
t. In other words, the approximating marginal distribution depends on the
service-time distribution H only through its mean. However. it is only the
one-dimensional marginal distributions which simplify. The limiting process for
M| G/ systems is not Markov and the covariance function of the limit process
depends on the entire distribution H.

For s <, characterizations of the time-dependent distribution as well as the
limiting distribution have been obtained by transform methods by de Smit
(1973a,b). Recently, Franken and his colleagues (1975), (1976), (1981) have
obtained additional characterizations of the stationary distribution by applying
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the theory of point processes. Brillinger’s (1974) study of identifiability for
s = is in this spirit too.

Our primary interest is in many-server systems with non-exponential service
times. What we do is let the service time consist of a random (finite) number of
phases, with the length of each phase being exponentially distributed with
mean B~'. After completing phase k, each customer leaves the system with
probability p, and moves on to phase k+1 with probability 1—p,. It is
significant that the class of service-time distributions of this form is dense in the
family of all probability distributions on the positive real line; i.e., given any
service-time distribution function H, there is a sequence of phase-type distribu-
tions {H,,, m=1} with H,, converging weakly to H as m — « (denoted by
H,,> H, which means H,,(x) — H(x) as m — o« for each x which is a continuity
point of H). Given H and the mean phase length 87!, the obvious way to
define the phase-transition probabilities is

_H((k+1)/8)~ H(kIB)
1-H®kIB)

(2.10) Dr

Let the number of phases be M. It is easy to see that the tail of the
approximating c.d.f. H has the form

i=Mk=i—1 (Bt)i—l

(2.11) 1—H(t)=£j1 kI;[1 (=p)e™ (= 120

We state the well-known convergence property in the following lemma (Schass-
berger (1973), p. 32).

Lemma 1. Consider a sequence of phase-type service distributions indexed
by m. If B,,=m and m~'M,, — =, then H,,> H.

We now fix the number of phases and the mean length of each phase and
consider limits as n — o« for the sequence of systems defined at the outset.
However, now we are keeping track of the number of customers in each phase
of service. In particular, let Q.(t) be the number of customers in the ith phase
of the nth system at time t. We shall prove a limit theorem for the vector-
valued process {Q,(t),t=0}, where Q,(t)=[Qx(t), -, 0QM)). For i=
1,---, M, let X, =[X}, -, X},

(2.12) X =nQ'(t)—ne], =0,

and

(2.13) o =AB"! kl'[ (1-po).
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Note that
M oo

(2.14) Y o= AL [1-H(t)]dt=Au""=p.
i=1

Our main result is the following generalization of Theorem 1.

Theorem 3. Consider the originally specified sequence of GI/G/s systems
with s, satisfying (2.1). Let the service-time distribution be phase-type as
specified above and let X, satisfy (2.12) and (2.13). If X,(0)=> X(0), then
X, > X, where X is the M-dimensional Ornstein—Uhlenbeck process having
initial distribution that of X(0), infinitesimal mean vector m(x)=
[ma(xe, X)), s s mag(x, -+, )] =AX=A(xy," -+, xp)' and infinitesi-
mal covariances %(x) =2, where A is the M XM matrix with elements

_B9 ] =i
(2.15) a; = B(1-p,), j=i-1
0, otherwise

and 3 is the symmetric M X M matrix with elements

Ag2ed,  i=j=1

2ai, i=j>1

(2.16) 0 = .. ..
—ay, i=j+1 or j=i—-1
0, otherwise.

The stationary covariance function of this limiting Gaussian process is

(2.17) K(s, s+1)=K(t) = (EX'(s)X' (s + 1)) = e*'K(0),
with i and j being superscripts rather than exponents, where
k=i—-1 i—j
,II‘ (1-pe) ggi)j), e®,  j<i
—i !
. (€ =) ¢, i=i
0, i>i
and
_ i—1 i-1 i +i— N
ROy =0o*- 0| [T a-p) IT a-po (7 PJreivpt| g
k=1 k=1 i—-1
with

i—1
gt Il a-po,  i=j
gii_ k=1

0, otherwise.
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Remark. Note that in the setting of Theorem 3 the infinitesimal covariance
matrix reduces to a simple diagonal matrix when the coefficient of variation of
the interarrival time is 1. However, while the stationary variance matrix K(0) is
diagonal, the stationary covariance matrix K(t) is not.

As an immediate consequence of Theorem 3 and the continuous mapping
theorem, we obtain a variant of Borovkov’s theorem for a dense family of
service-time  distributions. Let Q,(1)=QXtH)+ --- +QM(), X,(t)=
XX+ - - + XM(t) and X(£)=X(t)+ - - - + XM(1), t=0.

Corollary (Borovkov). Let the service-time distribution function H be as in
(2.11). If X, (0) > X(0) under the assumptions of Theorem 3, then X, > X If
X(0) is distributed as N(0, K(0)), then X is a stationary centered Gaussian
process with covariance function

EX(s)X(s+t)=)xJ: [1-H(t+u)] du +[02/\3—)\]Lm[1—H(t+ w](1-H(w)) du.

We illustrate Theorem 3 with an example.
Example. Suppose the service-time distribution satisfies
1-H(t)=e*+(1—p)te™, t=0.

In other words, with probability p the service time consists of one exponential
phase and with probability (1—p) it consists of two exponential phases, where
the exponential phases are independent with each having mean 1. The limiting
Ornstein-Uhlenbeck diffusion process is thus two-dimensional with drift

_ -1 0 xl) _ my(x,, xz))
Ax = ((1—p) —1>(x2 B (mz(xl, X2)
and covariance matrix
5= (/\30'24')\ _A(l_P))= (G%(xl, x2)  ora(xy, xz))
—A(1-p) 2A(1-p) G%I(xl, X7) U%(xla x2) /°

From p. 133 of Arnold (1974), we see that the covariance function of the

stationary process is
EX,(s)X4(1) EXl(S)Xz(t)>

K(s,t)=K(t—s =(
(50 = EX,(9X,() EX,(9)Xa(0)
=eAOK(0), s=t,
where K(0) satisfies the matrix equation AK(0)+ K(0)A’'=—2, which in this
case can be solved directly to obtain
R(0)= L 3(Aa?+A) i(Ad®=1)(1-p) ]
iAe*>-N(1-p) A= N)(A-p)*+r(1-p)J
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Alternatively, we can find K(0) from the integral
K(0)= L eA'Ser dt,

where A’ is the transpose of A. Here
e = ngoéni!ﬁ N [(1 —ep)tte_’ e(i']
and, with B(t) =e*'Ye”",
b, ()=(A3c*+A)e ™
byo(t) = by (1) =(A2a*+A)(1—p)te *—A(1—p)e™*
by(t)=(A20?+A)(1—p)*t2e > —2A(1—p)*te > +2A(1—p)e ™.

Here HA30%+N)e™ HA3e2-2)(1-p)e™
R(0=| Xo2(1-ple B+l 300>~ N)(1-pPe(t+1)
+A(1=p)e'[Bt—3] +A(1—-p)e*

The limiting stationary Gaussian (non-Markov) process for the normalization
of the number of customers in the system is Y = X, + X,, which has covariance
function

v(0, )=EY(0)Y(t) = Izu(t) + Izlz(t) + Kzl(t) + Kzz(t)
=Aa%e~'t[5(1-p)+3(1-p)*1+re " t[3(1-p)—4(1—p)*]
+A%0%e (32— p)+i(1-p)>) +Ae ' G(2—p)—3(1-p)?)

=)\Lw[1—H(t+ w)] du+(o2A3—)\)Lm[1—H(t+u)](l—H(u)) du,

which is in agreement with the corollary above. The special case in which the
service times have an Erlang distribution, i.e., 1—H(t) = e~ +te™", occurs when

=0. Th
p=0.Then (0, )= e [A%62Bt+5)+ At +3)]4,  t20.
On the other hand, when p =1, the service time is exponential and
v(0, ) =e*(A3a?+1)/2, t=0.

Theorem 3 is also of interest because of its applied value. It provides a
means of incorporating the extra information about time in service in the
approximation. For example, this can be done by dividing time into intervals of
length m~'. If the length of time a customer has been in service falls in the
interval [(k—1)m™, km™'], then we can regard the customer as being in
exponential phase k. As m gets large, the conditional distribution of the
remaining approximate service time approaches the conditional distribution of
the remaining actual service time. Moreover, if the completed service times are
not monitored completely, then the exponential phases should be appropriate.
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3. Proofs

We give no separate proof of Theorem 1 because it is a special case of
Theorem 3.

3.1. Proof of Theorem 2. We first work with the discrete-time Markov
chains {Q2(k), k Z0} representing the number of customers in the nth system
at arrival epochs. It is well known and easy to show that Q% (k)= Q2(») as
k — o for each n. Let X2 be the associated normalized continuous-time
process, defined by

(3.1) XA =nHQA([(nt)—npl, t=0.

We show that for these processes it suffices to prove that the sequence of
normalized steady-state distributions {X2()} is tight; see Section 6 of Billings-
ley (1968). If {X2()} is tight, then by Prohorov’s theorem, Theorem 6.1 of
Billingsley (1968), the sequence {XZ?(«)} has a convergent subsequence
{X2()}. If we let Q2(0) be distributed as QZ(x), then {Q%(k), k=0} is a
strictly stationary process for each n' and, by the proof of Theorem 1,
X%= X* in the function space D[0,®), where X“(0) has the distribution of
the weak convergence limit of {X2(«)}. However, since {QZ(k), k=0} is
strictly stationary for each n’ and X7= X*, the limit process X“* must be
strictly stationary too. Hence, the limit of {X2(«)} is the unique stationary
distribution of X“. Since every subsequence of the sequence {X%(«)} which
converges must converge to this same limit, the sequence {X2%()} itself must
converge to this limit.

Hence, to complete the proof for {X#(«)} it suffices to show that the
sequence {X2(»)} is tight. We shall show this by bounding X?(«) above and
below by random variables we already know converge weakly. In particular, we
shall construct random variables L,(<) and U,(~) such that L, (»)=
X2() =, U, (), where =, denotes stochastic order; i.c.,

P(L, () Zx) = P(XN() 2x) = P(U,(*) Z x)
for all x and n, and
L,(®)>L(»x) and U,(®)=>U(x) as n-—ox,

It is easy to see that this implies that {X2(«)} is tight.

We construct the stochastically bounding random variables L, («) and U, ()
by constructing stochastically bounding stochastic processes {L,(t), t =0} and
{U,(t), t=0} such that L, (t)=> L, () and U,(t)=> U,(x) as t — » for each n
and L, ()= L(») and U, ()= U(). Since stochastic order is preserved under
weak convergence, Proposition 3 of Kamae, Krengel, and O’Brien (1977), we
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obtain L, (%)=, X2 () =, U, () for all n as desired. We let
L, =n"{L2(nm])-npl, 120,
and
U.()=n"{U([nD—npl, 120,

paralleling the way X7 was defined in terms of Q' in (3.1). We now construct
discrete-time Markov chains {L2(k), k =0} and {U2(k), k =0} with the prop-
erty that L2(k) =, Qi (k) =, Uz (k) for all n and k.

We construct the upper bound chains {U%(k)} by modifying the GI/Mj~
systems. For each n, we keep the same arrival process and put an impenetrable
reflecting lower barrier at np +c/n, ¢ >0. Moreover, we let the departure rate
be (np + c/n)w for all states in the restricted state space of the nth system. For
each n, the modified process behaves like a constant np+c+/n plus a stable
GI/M/1 queue with traffic intensity (np + c/n)w(EU,)™". In particular, for each
n, the sequence {U#(k)} satisfies the same functional equation as the embed-
ded queue-length process in the GI/M/1 queue, namely, & ., =max {0, & +n,},
where m, is independent of & and {m} is i.i.d. In the GI/M/1 context, n, is 1
minus the number of departures generated by a Poisson process in an inter-
arrival interval. Any one of Theorems 5-7 in Whitt (1981) implies a sample
path ordering between the chains {Q:(k)} and {U%(k)}, which implies the
desired stochastic ordering and extends immediately to the normalized
continuous-time processes X4 and U,. Alternatively, in this Markov-chain
setting we could obtain the sample path ordering by checking the criteria for
comparing Markov chains in O’Brien (1975). Because of the GI/M/1 structure,
we know that U2(k)=> U#(«) as k — = for each n. Finally, U, ()= U(x) by
virtue of existing heavy-traffic limit theorems for the steady-state distributions
of single-server queues. (Note that the associated sequence of GI/M/1 traffic
intensities converges to 1 as n—> «,) In particular, Kingman’s (1962) early
result for waiting times applies because the embedded queue-length process in
a GI/M/1 queue has the same structure as the waiting-time sequence in a
GI/G/1 queue.

A similar construction yields appropriate lower bound chains. Again, for
each n, keep the same arrival process but now put an impenetrable reflecting
upper barrier at np—c+/n, ¢c>0. Moreover, let the departure rate be (np—
c/n)u for all states in the restricted state space. For each n, the negative of the
modified chain behaves like a constant plus the embedded chain at departure
epochs of an M/G/1 queue. In particular, for each n, the sequence {—L, (k)+
np — c/n} satisfies the functional equation &, =max{&, 1}+n,., where n, is
independent of & and {m,} is i.i.d. In the M/G/1 context, m, represents the
number of arrivals generated by a Poisson process in a service time minus 1.
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The stochastic ordering and the heavy-traffic limits for the steady-state dis-
tributions follow by essentially the same arguments. A specific heavy-traffic
limit theorem to apply in this case is the one on p. 168 of Gnedenko and
Kovalenko (1968). (Recall that the steady-state distributions at arrival epochs,
departure epochs and arbitrary time points coincide for an M/G/1 queue.)

We have finished the proof for {X?(«)}. We now show that X;() and X, ()
have the same limits by applying another stochastic dominance argument. Note
that

(3.2) Qu(AL(D)— M(r[QR(AL () +1], upa, ) =6 Qu(t) = QAL (D) +1

for each n and t, where A,(t) is the number of arrivals in [0, t] in the nth
system, U, () is the elapsed portion of the interarrival time in progress at time
t in the nth system, and M(u, t) is a Poisson process with rate w. The upper
and lower bounds express the queue length at any time ¢ in terms of the queue
length at the most recent arrival epoch. The bounds represent the extreme
cases of no departures (upper bound) and departures throughout the inter-
arrival time at the highest possible (initial) rate. Since Q7(A,(t)) converges
weakly as t — « to the same limit Q7 () as Q;'(k) when k — », we obtain the
useful relationship Q,(®)=,Q:2(®)+1 for the upper bound. For the lower
bound, note that u;An'(,) converges to the stationary excess, say e,, associated
with u, as t— o; see Section 3.6 of Ross (1970). Hence,

Q.(®) Z,, Q7(®) — M(u[QR () +1], e,).
By the Markov inequality,
P(M(p[Q7(=) +1], e,) Z K) = EM(1[Q7}() + 1], &,)/K.

However,
EM(p[Q7 () +1], e,) = p[EQ7() +1]Ee,,
where
Ee,=C,(c?+A7%)/2nA"!
and

EQi(»)=np+niC,

for all n for appropriate constants C; and C,. (Use the upper bound Ug(e)
plus the moment conditions at the outset of Section 2 to generate C,.) Hence,
there is a constant C; such that EM(u[QZ(x)+ 1], e,) = C; for all n, so that
M(u[Q2(x)+1], ¢,) is tight or stochastically bounded. Finally, we have estab-
lished that

X‘:(OO) - Ytlt ést Xn (Oo) = st X"A(OO) + Y2m



186 WARD WHITT

where X2(0)=>X%(«), Y>>0 and Y2=0. By the convergence-together
theorem, Theorem 4.1 of Billingsley (1968), X2()—Y:=>X*(») and
XA(®)+ Y2 X4(«). Because of the stochastic dominance, X, (0)=> X* ()
too.

3.2. Proof of Theorem 3. We start by working with the discrete-time Markov
chains obtained by looking at the system only at arrival epochs. Let Q7(k) be
the number of customers in the ith phase of service of the nth system at the
epoch of the kth arrival (but not including the kth arrival). Let Q2 (k)=
[QAY(k), - -, Q2M(k)] and X2 =[X21, - -, X2M] where

(3.3) X240 =n QM ([nt]) — naA ™', t=0.

It is easy to see that {Q7(k),k=0} is an irreducible aperiodic Markov
chain for each n. Hence, in order to demonstrate the weak convergence of
{X2} to an appropriate diffusion process, we can apply Theorems 10.2.2 and
11.2.3 of Stroock and Varadhan (1979), i.e., it suffices to check the infinitesi-
mal conditions given in (2.4)-(2.6) on p. 268 there. This involves relatively
straightforward (but tedious) calculations, some of which are displayed below.
The messiest technical point is showing that it suffices to assume that the total
service rate is constant throughout each interarrival interval. Of course, the
number of busy servers (and thus also the total service rate) may often change
in an interarrival interval, but it is possible to show that the adjustment is
asymptotically insignificant.

Having established the weak convergence X7 = X“, we can get the weak
convergence of X, in (2.12) by performing a random time change; see Section
17 of Billingsley (1968) or Section 3 of Whitt (1980). Let {A, (t), t =0} be the
arrival process in the nth system and let B,(t)= A, (t)/n, t =0. Then, by the
initial assumptions on u,, B,,—[;B in D[0, ©), where B(t)=At,t=0. Hence,
X20B, > X“ B =X, where ¢ is the composition map. The difference between
X20B, and X, in each coordinate is dominated by the jumps of X in that
coordinate, but the maximum jump in any coordinate in any bounded time
interval converges to 0 because X2 has a limit with continuous paths. Hence,
d(X2°B,, X,)=>0 in D([0, ®), R™), using the metric in Whitt (1980), say, so
that X, > X by Theorem 4.1 of Billingsley (1968).

We conclude by displaying some of the calculations showing that the
infinitesimal conditions in (2.4)—(2.6) on p. 268 of Stroock and Varadhan
(1979) are satisfied for Theorem 3.

Let Di(x; |u,) represent the number of completed services from the ith
phase in the nth system in some interarrival-time interval conditioned on the
number of customers in phase i at the beginning of the interval being na; + nix;
and the length of the interval being u,. Let n}; be a random variable with value
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1 if the jth customer to complete service in the ith phase of the nth system in
some interarrival interval goes to the next phase, and value O if that customer
leaves the system. Let P(n,;=1)=1-p, and let the collection {n};:
i=1,---,M-1; j=1,- -} be mutually independent.

Let m,(x), 0%(x), and o2,(x) be the infinitesimal means, variances, and
covariances, respectively, for the Markov chain X7 in (3.3). In calculating
these infinitesimal parameters, we act as if the total service rate is unchanged
during the interarrival-time interval, i.e., we assume that Di(x; | u,) has a
Poisson distribution with mean B(ne; +nix,)u, given the interval u,. It can be
shown that the error resulting from this assumption is asymptotically negligible.

First, we obtain the limits for the infinitesimal means. For the first phase,

m,1(x)= E{1— ED}(x, | u,)}n?
={1—(nA +Bx,n?)Eu,}nt - x, A7,
using the condition ni{E(nu,)—A"']— 0 as n — . For any i>1,

Di~1(x;_yu,)

ma)=E{E[ " X niy'~Ditu )|

i=1
=[(noy_, + xi—ln%)B(l —pi—1)Eu, — (na; + xin%)BEun]n%
= x(1=pi)BA T = xBA T,

uSing o; = ai_l(l _Pi—l)'
Now we turn to the infinitesimal variances. For i =1, we have

o71(x)= E{E[1-D}(x, | w,)}}
= E{1-2ED}(x, | ,)+ ED}(x, | w,)?}
=1-2(nAB™ '+ x,n})BEu, + (nAB ™'+ x,n3)BEu, + (nAB~ + x,n?)?B2Eu?
— A% +1.

For any i >1,

Dix,_,lu,) 2
o‘ﬁi(x)=E{E[ Y n:.,f‘—Di.(xilun)] ]
i=1
Di-1(x,_, lw,) 2 D, lw,)
=E{E[ Y n',,;’] —ZE( > n;,T‘)ED.',(xi | u,)
i=1 i=1

+EDi(x |}

= E{ED; "(x;_1 | w,) Var (n}7")
+Var Dy (%1 | ) (Enii")? +(ED (%21 | ) Eni')?
—2ED} (%1 | 4n) Enii ED (x; | w,) + ED} (x; | u,)%
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= (na;_, + %,_1n*)BEu,p,_,(1-p;_,)
+(nay_, +xi—ln%)BEun(1_ pi—1)’+B%(na;_, + xi—ln%)zEui(l —pic1)’
—2(ne_; +x,_1n)(1— p;_y)(ney; +x;n?) B>Eu’
+ (na; + x;n?) BEu, + (no; + x;n?)?p2Eu?
= ap AT (1= p_ ) T +ai(e? +A7?)
—2a%(0*+ A )+ A +a(o?+17?)
=2a,A 7L

Finally, we consider the infinitesimal covariances:

Dl(x,lu))
o0 = E{E[1-Dits ) 3 mly-Dieal )]}
Dix,lu,) o Di(x,lu,)
=E jzl nplq‘_E(D}.(xllun) 21 7]3-,‘)
= P
—ED3(x, | w,) + ED}(x, | u,)ED}(x; | u,)
=(na1+x1n%)BEu"(1—pl)
—[(ne, +xln%)BEun +(na, +x1n%)ZB2Eu3](l —p1)
—(noy + x,n)BEu, + (na, + x,n¥)(na, + x,n?) B2Eu?
= AT A T =g (02 AT —aph ! +a1a2(oé+A_2) =—a,A" .
=—a,A"

For i>1, similarly, we have

Di~1(x;_,|u,) Di(x|u,)
run@=EE[( I oDl lw)( L b D w) |}
Di,“(x]:}u,.) Di(x|u,) - D(x|u,)
=E{E( ,Zl ni.71>E( Zl ni.;)—E(Di(xilun) Zl ni;)
1= 1= 1=

Di1x,_,lu,)

B( X i )EDE s | )+ EDi (x| ED i [ )}

i=1

=(na;_,+ xi—ln%)(l —pi—1)(na; + xi"%)(l - pa)BzEuﬁ
~[(ne; + x,n?) BEu, + (na; + x;n?)>B*Eu)(1-p,)
—(no_; +x_4 "%)(1 —Pi—)(nQ 1+ X4y n%)BzEuﬁ
+(na; + xin%)(nai+l + xi+ln%)B2Eu3

= 00,1 (02 + A7)~ AT — a4 (0P +ATY)
— ;0,1 (2 + A" )+ a1 (02 + A7)

- -1
=—a AT
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Finally, for k>i+1,
Di~1(x,_,|u,) D= (x,_y|u,)

o =B X at-Diwlu)) X wi-Dialw))

ji=1 ji=1

=([(na;_, +xi—1"%)(1 —pi—1) — (no; + xin%)]
X[(noy_;+ xk—ln%)(l —Pr—1) — (nay + xkn%)])BzEuﬁ

=(X_1(1—pic) = x) (X1 (1 — pre—y) —xk)nBZEuﬁ

— 0.

We do not display calculations for the extra regularity condition (2.6) on p.
268 of Stroock and Varadhan (1979), but it is easy to check too.

References

ARNOLD, L. (1974) Stochastic Differential Equations: Theory and Applications. Wiley, New
York.

BEEKMAN, J. A. (1974) Two Stochastic Processes. Almqvist and Wiksell, Stockholm.

BILLINGSLEY, P. (1968) Convergence of Probability Measures. Wiley, New York.

BOROVKOV, A. A. (1967) On limit laws for service processes in multi-channel systems. Siberian
Math. J. 8, 746-763.

BoROVKOV, A. A. (1976) Stochastic Processes in Queueing Theory. Springer-Verlag, New York.

BREIMAN, L. (1968) Probability. Addison-Wesley, Reading, Ma.

BRILLINGER, D. R. (1974) Cross-spectral analysis of processes with stationary increments
including the stationary GI/G/~ queue. Ann. Prob. 2, 815-827.

Dk Swmirr, J. H. A. (1973a) Some general results for many server queues. Adv. Appl. Prob. 5,
153-169.

DE Swmrr, J. H. A. (1973b) On the many server queue with exponential service times. Adv.
Appl. Prob. 5, 170-182.

Doos, J. L. (1953) Stochastic Processes. Wiley, New York.

FINKBEINER, D. T. (1966) Introduction to Matrices and Linear Transformations, 2nd edn. W. H.
Freeman, San Francisco.

FRANKEN, P. (1975) Stationary probabilities of states of queueing systems at different times.
Engineering Cybernetics 1, 84-89.

FRANKEN, P. (1976a) Some applications of point processes in queueing theory, I (in German).
Math. Nachr. 70, 303-319.

FRANKEN, P. (1976b) On the investigation of queueing and reliability models with the help of
point processes. Department of Mathematics, Humboldt University, Berlin, DDR.

FRANKEN, P., KONIG, D., ARNDT, U. AND ScHMIDT, V. (1981) Queues and Point Processes.
Akademie-Verlag, Berlin.

GIKHMAN, I. I. AND SKOROHOD, A. V. (1969) Introduction to the Theory of Random Processes.
W. B. Saunders, Philadelphia.

GLYNN, P. W. (1982) On the Markov property of the GI/G/~ Gaussian limit. Adv. Appl. Prob.
14, 191-194.

GNEDENKO, B. V. AND KOVALENKO, I. N. (1968) Introduction to Queueing Theory. Israel
Program for Scientific Translations, Jerusalem.

HaLacumi, B. AND FranTA, W. R. (1978) A diffusion approximation to the multi-server
queue. Management Sci. 24, 522-529.

HALFIN, S. AND WHITT, W. (1981) Heavy-traffic limits for queues with many exponential
servers. Operat. Res. 29, 567-588.



190 WARD WHITT

HARRISON, J. M. (1978) The diffusion approximation for tandem queues in heavy traffic. Adv.
Appl. Prob. 10, 886-905.

IGLEHART, D. L. (1965) Limit diffusion approximations for the many server queue and the
repairman problem. J. Appl. Prob. 2, 429-441.

IGLEHART, D. L. (1968) Limit theorems for the multi-urn Ehrenfest model. Ann. Math. Statist.
39, 864-876.

IGLEHART, D. L. (1973a) Weak convergence of compound stochastic processes. Stoch. Proc.
Appl. 1, 11-31.

IGLEHART, D. L. (1973b) Weak convergence in queueing theory. Adv. Appl. Prob. 5, 570-594.

IGLEHART, D. L. AND LALCHANDANI, A. P. (1973) Diffusion approximations for complex repair
systems. Technical Report No. 266-12, Control Analysis Corporation, 800 Welch Road, Palo Alto,
California.

JAGERS, P. (1968) Age-dependent branching processes allowing immigration. Theory Prob.
Appl. 13, 225-236.

KaMAE, T., KRENGEL, U. AND O’BRIEN, G. L. (1977) Stochastic inequalities on partially
ordered spaces. Ann. Prob. 5, 899-912.

KaprLAN, N. (1975) Limit theorems for a GI/G/» queue. Ann. Prob. 3, 780-789.

KEILSON, J. AND Ross, H. F. (1975) Passage time distributions for Gaussian Markov (Ornstein—
Uhlenbeck) statistical processes. Selected Tables in Math. Statist. 3, 233-327.

KELLY, F. P. (1976) Networks of queues. Adv. Appl. Prob. 8, 416-432.

KINGMAN, J. F. C. (1962) On queues in heavy traffic. J. R. Statist. Soc. B 24, 383-392.

KONIG, D., ScHMIDT, V. AND STOYAN, D. (1976) On some relations between stationary
distributions of queue lengths and imbedded queue length in G/G/s systems. Math. Operations-
forsch. Statist. 7, 577-586.

LEMOINE, A. J. (1978) Networks of queues—a survey of weak convergence results. Manage-
ment. Sci. 24, 1175-1193.

McNEL, D. R. (1973) Diffusion limits for congestion models. J. Appl. Prob. 10, 368-376.

MCcNEL, D. R. AND ScHACH, S. (1973) Central limit analogues for Markov population
processes. J. R. Statist. Soc. B 35, 1-23.

MILLER, D. R. (1972) Existence of limits in regenerative processes. Ann. Math. Statist. 43,
1275-1282.

MILLER, D. R. AND SENTILLES, F. D. (1975) Translated renewal processes and the existence of
a limiting distribution for the queue length of the GI/G/s queue. Ann. Prob. 3, 424-439.

NEweLL, G. F. (1973) Approximate Stochastic Behavior of n-Server Service Systems with
Large n. Lecture Notes in Economics and Mathematical Systems 87, Springer-Verlag, Berlin.

O’BRIEN, G. L. (1975) The comparison method for stochastic processes. Ann. Prob. 3, 80-88.

Pakes, A. G. AND KAPLAN, N. (1974) On the subcritical Bellman—Harris process with
immigration. J. Appl. Prob. 11, 652-668.

ReEmMaN, M. 1. (1977) Queueing networks in heavy traffic. Technical Report No. 76, Depart-
ment of Operations Research, Stanford University.

Ross, S. M. (1970) Applied Probability Models with Optimization Applications. Holden-Day,
San Francisco.

SCHACH, S. (1971) Weak convergence results for a class of multivariate Markov processes. Ann.
Math. Statist. 42, 451-465.

SCHASSBERGER, R. (1973) Queueing Theory (in German). Springer-Verlag, Berlin.

STROOCK, D. W. AND VARADHAN, S. R. S. (1979) Multidimensional Diffusion Processes.
Springer-Verlag, New York.

WHITT, W. (1972) Embedded renewal processes in the GI/G/s queue. J. Appl. Prob. 9,
650-658.

WHITT, W. (1980) Some useful functions for functional limit theorems. Math. Operat. Res. 5,
67-85.

WHITT, W. (1981) Comparing counting processes and queues. Adv. Appl. Prob. 13, 207-220.

‘WHITT, W. (1981a) Existence of limiting distributions in the GI/G/s queue. Math. Operat. Res. 6.



