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1. INTRODUCTION. Heavy traffic research is part of a general program
to obtain simple descriptions and useful approximations for queueing
models. Throughout this paper, I try to put heavy traffic research
into this broader perspective. I discuss the two principal objectives
of heavy traffic research, namely, (1) to describe unstable queueing
systems and (2) to approximate stable gueueing systems. These objec-
tives are each related to more general themes. In an unstable queue-
ing system the queueing processes are growing processes, so that des-
criptions of gQueueing processes in unstable queueing systems are
similar to descriptions of other growing processes associated with
dqueues. In the same way, heavy traffic approximations for stable
queues are part of a large class of approximations for queueing sys-
tems. I relate heavy traffic research to these more general activi-
ties.

The central theme here is limit theorems,with the central limit
theorem being truly central. To give an accurate picture, I discuss
other limit theorems in addition to heavy traffic limit theorems, but
I emphasize heavy traffic. I review the basic techniques and survey
recent progress. Above all, I try to make this an informal discussion
concentrating on essential ideas. This seems to be a good forum to
wax philosophical and wane mathematical. There is a bibliography on
heavy traffic which I have tried to make as complete as possible. It
indicates where theorems and proofs can be found. A sample of the
mathematics is available in the paper by LOULOU (1973b) in these pro-
ceedings.

To a large extent, this conference can be regarded as a sequel to
the Symposium on Congestion Theory held at the University of North
Carolina in 1964. From that point of view, this paper is a sequel to
the papers of HEATHCOTE (1965) and KINGMAN (l1965a). The name "heavy
traffic" is due to Kingman who initiated the work. (The first heavy
traffic limit theorem seems to have been proved by KENDALL (1957).)
The term "heavy traffic" is now used in a somewhat broader way to
refer to unstable systems as well as highly saturated stable systems.
After KINGMAN (1961, 1962), important work was done by several
Russians, chiefly PROHOROV (1963) and BOROVKOV (1964, 1965, 1967a,b,c).
My own involvement began with my doctoral dissertation in the
Department of Operations Research at Cornell University which was
directed by Donald Iglehart, cf. WHITT (1968). IGLEHART (l965a,b,
1967) had previously investigated the asymptotic behavior of unstable
gqueues and diffusion approximations for gueueing processes. Active

interest in this problem was also shared by N. U. Prabhu at Cornell.
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In addition to his own research in this area, Prabhu directed theses
by LALCHANDANI (1967) and WORTHINGTON (1967) which preceded my work.
Previous surveys of heavy traffic research appear in KINGMAN
(1965a) and WHITT (1968). Asymptotic methods in queueing have been
reviewed by COHEN (1972) and IGLEHART (1972c¢). Surveys of diffusion
approximations and/or weak convergence in function spaces appear in
BILLINGSLEY (1968, 1971), IGLEHART (1967, 1972b), NEWELL (1971), and
WHITT (1968, 1970b). As far as queueing texts are concerned, the
Russian books appear to be most in the spirit of the investigations
reported here, cf. GNEDENKO and KOVALENKO (1968) and BOROVKOV (1972).
In addition to making a survey, I attempt to point out important
open problems. Naturally, I will be happy to hear about solutions.

2. DESCRIBING QUEUEING PROCESSES. The extensive literature on gqueues

has primarily been concerned with describing the stochastic processes
of interest in various queueing models. While several papers pre-
sented at this conference reflect serious work on other important
topics (e.g., control, computation, and statistical analysis), the
description of queueing processes remains an active area of research.
That there still remains something to say after the great outpouring
of papers and books describing queueing processes is a testimonial to
the fertility of queueing theory. I believe the motivation has been
mathematical for the most part. Queueing processes attract attention
because they constitute just the right blend of simplicity and com-
plexity. Queueing processes are enough like basic processes such as
renewal processes and random walks to suggest the possibility of suc-
cessful analysis. At the same time, they are sufficiently different
to present a serious challenge. 1In this regard, queues might be
thought of as the Sirens of probability theory. I make this remark
because queueing theory has not had as much to say about practical
problems as either the practitioners or the theoreticians would 1like.
It has been said that the principal value of queueing theory is as a
probability training ground. I think the value of such a training
ground should not be minimized, but I also think the implied criticism
of queueing theory is excessive. It is evident that queueing theory
is moving forward and that applicability is being enhanced. Neverthe-
less, periodic reevaluations from the point of view of applicability
can only help the future of queueing theory.

The limitations of queueing theory are obviously due in part to
the inability to obtain results in a usable form, To a large extent,
queueing theory remains behind the Laplacian curtain, c¢f. KENDALL
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(1964). At present, it is not easy to work with double, triple, or
quadruple transforms. While ever-increasing computational power will
probably make such results more relevant, it appears that the trans-
forms may be bypassed altogether when serious computation is to be
performed. As Marcel Neuts has emphasized during this conference, it
is appropriate to formulate and analyze queueing models from the out-
set with the intended computation in mind. The computation should not
be thought of as something you tack on after the mathematical analysis
has gone as far as it can. Early work in this direction suggests that
it will be more fruitful to work with basic structural relations than
the transforms. Thus, the transforms may never be used at all.

The most serious problem may not be inverting the transforms or
computing the complex queueing formulas. In many instances, the
specific queueing phenomenon is just not well enough understood to
warrant such a detailed description. Furthermore, the relevant deci-
sions may not depend on such detail. As Gordon Newell observed during
this conference, the successful analysis of an actual queueing problem
can often reduce to the intelligent use of a straightedge.

Thus, it appears that the utility of queueing theory could be en-
hanced by developing approximation procedures and underlying common
principles, that is, quantitative propositions which have sufficient
generality and consequence for decision making. The idea is to avoid
unnecessary complexity and strive for simple representations which
capture enough of the essential features to be useful. The book by
NEWELL (1971) is certainly in this spirit, and the research related
here is intended to be. The approximation procedures and common prin-
ciples here stem from limit theorems. While these asymptotic descrip-
tions of queueing processes already constitute an important chapter in
gueueing theory, the practical value should not be overemphasized.

The limit theorems suggest and support certain approximations, but the
approximations can be used without any limit theorems, If faced with
a practical queueing problem, I certainly would not sit down and try
to prove a functional limit theorem. But of course this is not the
way limit theorems are applied. The central limit theorem does not
have to be re-proved every time it is applied. The limit theorems
enhance our understanding and help us make useful approximations.

They form a background for successful problem solving.

Open Problem. The practical utility of the approximations suggested
by the limit theorems in this paper remains largely unknown. There is
a great need for computational experience. Some work in this direc-
tion for heavy traffic limit theorems has been reported by GAVER
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(1968), but more needs to be done.

Open Problem. Approximations need not be generated by limit theorems.
More approximating procedures for queueing processes should be exam~
ined.

3. LIMIT THEOREMS FOR GROWING PROCESSES. Early work describing
queueing processes focused on the steady-state or limiting behavior.

If the traffic intensity p 1is below its critical value, the standard
queueing processes usually have limiting distributions as time gets
large and these limiting distributions can often be determined by
appropriate balance equations. Attention next moved to the time-

dependent or transient behavior of queueing processes. It was dis-

covered that the distribution of many queueing processes at finite
time points could be described in detail, albeit a bit cumbersomely.
The principal texts on gueueing theory give a good account of avail-
able results on both steady-state and transient behavior, at least for
the GI/G/1l system. The descriptions here fall ‘into neither of these
two familiar categories. The descriptions here involve growing pro-~
cesses and system approximations. Growing processes are discussed in

this section and the system approximations are discussed in the next
section.

It is possible to look at either the time-dependent or the asymp-
totic behavior of growing processes, but only the asymptotic behavior
is considered here. Of course, growing processes do not have limits
in the usual sense, so that they must be normalized by subtracting and
dividing with appropriate functions of time before letting time get
large in order to make useful statements. For example, if
{X(t), t = 0} is a growing stochastic process arising in some queue-
ing model, the object is to find deterministic functions a(t) and
b(t) and a nondegenerate random variable L such that

X(t) - a(t)

(3.1) B(E)

2 I as t - o,

where - denotes convergence in distribution (weak convergence) or

some other mode of stochastic convergence. 0Often, corresponding to
L

the central limit theorem, a(t) = at and b(t) = bt™.

3.1 The Classical Limit Theorems. Of course, there is nothing novel

about considering such limit theorems for growing processes. These

limit theorems are just variations of the classical limit theorems in

probability theory. The classical limit theorems include the central
limit theorems and the laws of large numbers as well as somewhat less
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familiar limit theorems such as laws of the iterated logarithm and ex-
treme value theorems. The simplest setting for all these classical
theorems is a sequence of i.i.d. (independent and identically distri-
buted) random variables {xn, n » 1} with appropriate moments finite,

but the theorems also hold when the sequence {xn} is only almost

i.i.d. Since these limit theorems are distribution-free; that is,

since they do not depend on the actual distribution of Xn, these

theorems are said to be invariance principles. (This name is also

somewhat inappropriately applied to function space generalizations of
the classical limit theorems. The name is inappropriate because they
are not unique in this regard.) Since the limit theorems tend to be
relatively insensitive to both the specific distributions and the
i.i.d. assumptions, the limit theorems and the resulting approxima-
tions are called robust.

The statements of the classical limit theorems involve the
asymptotic behavior as n = =» of the associated seqguence of partial

sums {sn, n » 0}, where Sn = xl + ee. + xn and SO = 0, or the

associated sequence of extreme values {En, n > 1}, where

E_ = max X+ These classical limit theorems play a vital role in
1<ksn

probability theory because they reveal the statistical regularity

associated with a macroscopic view of uncertainty. Just as in statis-

tical mechanics or macroeconomics, there is order associated with a
macroscopic view which is not apparent from the microscopic view. For
example, in the setting above the exact distribution of Sn is an
n-fold convolution of the distribution of xl, which is usually quite
complicated to compute and express, but as n grows, the distribution
of Sn can very rapidly be described quite accurately by the limiting
normal distribution in the classical central limit theorem. What has
just been said suggests that the limit theorem is useful primarily

because it might be difficult to compute the distribution of S,+ In

fact, the limit theorem is of value whether or not the distribution of
Sn can be computed. Obviously, a computer program could be devised to
approximate the distribution of Sn arhitrarily closely in any specific
situation, but this cannot replace the understanding provided by the
limit theorem. Being able to compute the distribution of Sn or even
actually doing so in any instance does not capture the general ten-
dency to the bell-shaped normal curve. It is the general principle
provided by the limit theorem which is most important. The limit
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theorem acts like a physical law explaining common tendencies in a
wide range of phenomena. This is the reason that the classical limit
theorems form the core of probability theory.

The ideas behind classical limit theorems for queues are quite
simple. 1In order to focus on the main ideas and keep everything as
simple as possible, for the most part I only talk about the sequence
{Wn, n 21} of waiting times (until beginning service) of successive
customers in a standard GI/G/l queue. While attention is focused on
this particular process in this particular queueing system, it is sig-
nificant that similar results are usually available for other queueing
processes and much more complicated systems. This is especially true
for the heavy traffic limit theorems.

For the classical limit theorems for queues, it is important to
identify two cases: stable queues and unstable queues. Classical
limit theorems for stable gueues follow by relating the sequence
{Wn, n 2 1} to the underlying sequence {Xn, n z 1} in the classical
setting. While the sequence {Wn, n =21} is certainly not i.i.d., it
is close enough for the limit theorems. C(Classical limit theorems for
unstable queues follow by relating the seqguence {Wn, n =21} to the
sequence of partial sums {Sn, n 2 1} in the classical setting. When
o > 1, {Wn] usually has the same limit behavior as an appropriate
sequence of partial sums {Sn}, cf. Section 3.3.1. When o = 1, the
limit behavior of {Wn} is not the same as {Sn} but it is easily
obtained as a consequence, cf. Section 3.3.2. These are the essential
ideas; the rest of this section only develops them in slightly more
detail.

It is also important that the various limit theorems for gqueueing
processes described below can usually be proved by applying existing
limit theorems for basic processes instead of imitating the proofs of
these earlier theorems. This is important, not only for reducing the
length of the argument, but also for understanding the limiting phe-

nomenon.

3.2 Sstable Queues (p < 1l). Consider a standard GI/G/l queue deter-

mined by two independent sequences of i.i.d. random variables;

{un, n>1} and {vn, n = 0}. Assume a 0th customer arrives at
time t =0 to find a free server. Let v, <Yepresent the service
time of the nth customer and let u, represent the inter-arrival

time between the (n-l)St and nth customers. Make the following

definitions:
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p = EV/Eu ,
(3.2) Yn =V, -u, s B2 1
w .= +v...17", n=0
n+l n n+l ! ’-

with Wy = 0, where [x]" =max{0,x}. If p <1, then the GI/G/1

gqueue is stable. 1In particular, there is a nondegenerate random vari-

able W such that Wn =W as n = «. (I use = to denote weak con-
vergence.)

3.2.1 cunmulative Processes. The main classical limit theorems for
{Wn} in this setting involve time averages. In particular, under

appropriate moment conditions, the central limit theorem, strong law
of large numbers, and law of iterated logarithm state, respectively:
n

(a%n) [kzlwk - nEW] = §(0,1),

n
-12
(3.3) n W, - EW a.s.,
n
L oW, -
21 % nEw
and . lim sup =1 a.s.,
N~ 2

(20" n log log n)li

where 02 is a positive constant and N(0,l) represents a random
variable with the normal distribution, mean 0, and variance 1;
cf. IGLEHART (1971b). One explanation for the limits in (3.3) is that

the events {Wk = 0} are regeneration points for the process

{Wn, n = 1}. Furthermore, W, =0 for infinitely many k with

probability one. Thus there is an embedded persistent renewal process
in {Wn, n > 1}. In other words, {Wn, n » 1} is a regenerative pro-
n

cess and { 2 Wk' n » 1} is a cumulative process, cf. SMITH (1955,
k=1

1958). This means that the sequence {Wn} can be broken up into
i.i.d. blocks. Consequently, even though {Wn} is not itself i.i.d.,

the theory for a sequence of i.i.d. random variable can be applied.
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n
In particular, a partial sum E:Wk can be expressed as a random sum
k=1
of i.i.d. blocks plus one additional term which is asymptotically
negligible with the normalization.
The results in (3.3) also hold for the GI/G/s queue with s > 1
if p = EV/SEu < 1 and P{u >v ] >0, cf. WHITT (1972b). The

extra condition requiring that P{un > vn} > 0 1is needed to assure

that the embedded renewal process be persistent. When an embedded
persistent renewal process is not available, it seems that the classi-
cal limit theory for stationary processes with appropriate mixing con-

ditions could be applied, but this remains to be examined carefully.

Open Problem. I conjecture that the limit theorems in (3.3) hold for
{Wn, n 2 1} and other queueing processes such as the queue length

process in the GI/G/s queue with s > 1 if p < 1 and appropriate
moments are finite. In other words, I conjecture that the condition
P{un > vn} > 0 can be dropped.

Open Problem. Iglehart has derived expressions for the constant 02

in (3.3) which will appear. Descriptions of other norming constants

are still needed.

3.2.2 Estimation. The limits for cumulative processes obviously

have implications for statistical estimation. For example, (3.3) says

n
that n-l E. wk is a consistent and asymptotically normal estimator
k=1

of EW. The regenerative structure also suggests using the i.i.d.
blocks as the basis of the statistical analysis. In simulation this
solves the problem of finding an appropriate initial state. It is not
necessary to let the system run until steady-state is approximated;
the simulation can be begun at a regeneration point. The i.i.d.
structure also permits the application of standard statistical tech-~
niques. For further discussion, see CRANE and IGLEHART (1973) and
FISHMAN (l1972a,b, 1973).

3.2.3 Qgcupation Times. A growing process can also be obtained by
locking at the total time in the interval [0,t] that a queueing pro-

cess spends in some set A. This is called an occupation time pro-

cess. For example, the process {I(t), t > 0} where 1I(t) represents
the accumulated idle time up to time t 1is such a process. Corre-

sponding to (3.3), for a GI/G/1l queue With p < 1 under appropriate
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moment conditions,
2,)-%
(@®t) % [I(t) =~ (1-p)t] = N(0,1),

(3.4) () » (1-p) a.s.,

I(t) - (I-p)t

and lim sup =1 a.s.,

=

2 b
(20"t log log t)

where az is a positive constant, cf. IGLEHART (1971b) and WHITT
(1971a) . This particular occupation time process as well as more gen-
eral occupation time processes in the GI/G/1l and GI/G/s queues are
easy to treat, with the possible exception of the norming constants,
because these occupation time prccesses are also cumulative processes
in the sense of Section 3.2.1 above, cf. Remark (iii) on p. 280 of
IGLEHART (1971b).

Occupation time processes are also investigated by different
methods in the paper by TAKACS (1973) in these proceedings. The spe-
cific results in (3.4) were obtained by Takacs about fifteen years
ago using similar methods. However, it appears that neither of the
two kinds of independence assumptions in TAKACS (1973) covers as gen-
eral occupation time processes as the cumulative process results which
are applicable to most GI/G/s queues. It is also perhaps of interest
to note that some of the methods used by TAKACS (1973) such as
Dobrushin's composition results can be extended to more general modes
of convergence in the function space setting, cf. WHITT (1972c,
1973a).

3.2.4 Extremal Processes. If WJ =max{W,, 0 « k ¢ n}, then

{W;, n > 0} 1is a growing process. Since {Wn} is something like an

i.i.d. sequence when ¢ « 1, it is reasonable to expect that the
classical extreme value theorems for i.i.d. random variables should
apply to [Wn}. This appears to be true but it has not yet been veri-
fied completely. b
One approach is via stationary mixing structure. Let denote
a

the ¢-field generated by events of the form {(Xi ¢oeees Xi) € E}

1 m
1S ees < im < b and E 1is a measurable subset of

R". A sequence [Xn, n >0} is strong-mixing if

where 0 < a < i

sup{|p(aB) - P(A)P(B)| : A € 37, B¢ S;_Fk}‘s a(X),
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where (k) - 0 as %k = =, IOYNES (1965) showed that if there exists

a nondegenerate c.d.f. & and constants a, and bn such that

. -1 _
lim P{an [Xﬁ - bn] < x} = 3(x)
ne-x

for a stationary strong-mixing sequence {Xn' n >0}, then & must

belong to one of three classical extreme value distribution types,

just as in the i.i.d. case. These three types are

0 ’ x< 0
§ (x) =
@ exp{-x%}, x>0, >0,
exp{-(—x)a} x <0 @ >0
(3.5) b ) = { ’ ’
1 ’ x » 0
AMx) = expf{-e™*}, -= <x < =,

Earlier, LOYNES (1962) showed that the single~-server queue is stable

(Wn = W) if the sequence {Yn} in (3.2) is stationary with EY, <0

(p < 1). Furthermore, if the limiting distribution W is used as the

initial distribution for {Wn}, then the sequence {Wn} becomes sta-

tionary too, cf. Lemma 1 and Theorem 3 of LOYNES (1962). It is also
not difficult to show that the sequence {Wn} is strong-mixing when-

ever the sequence {Yn} is strong-mixing, cf. Theorem 3.1 of WHITT
(1971b). This means that the only possible nondegenerate limits for
{a;l[wg - bn]} when [Yn} is stationary strong-mixing are the three

classical types in (3.5). This obviously applies to the GI/G/1l queue
as a special case. The hitch here is that, unlike the i.i.d. case,
there are not necessary and sufficient conditions for convergence to
each of the three types. There are sufficient conditions, but these
have not yet been shown to be applicable.

A second approach is via regenerative structure. The case of a

GI/G/l queue in which Yy has an exponential tail has been treated

by IGLEHART (1972a) using the regenerative structure. Assuming that
ay ay

Ee 1. 1 and EY,e 1 < » for some constant a, Iglehart showed
that
(3.6) lim P{awg - log bn £ x} = exp{—m_le_x},

n=xo
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for constants a, b, and m. The constant a 1is the root of

aYy
Ee 1. l; it appears to be an important quantity. As a conseguence
of (3.6),
w?t
(3.7) I—__EI7E =1l as n - o,

og n
So far, other results seem to be restricted to the M/G/1 and GI/M/1
queues. See Section 8 of COHEN (1972) for a survey.

Open Problem. Extreme value theorems for all cases in the GI/G/1
gueue have not yet been proved. Markovian assumptions for existing
results should be unnecessary. Nothing at all has yet been said
about the GI/G/s queue.

33 Unstable Queues (p 2 1). 1If the input rate is greater than or

equal to the output rate in a gueueing system, then that system is
unstable and the queueing processes tend to "blow up." For example,
if p » 1 in a GI/G/l queue, then for any K < o
iiz P(W_ < K} = 0.

Heavy traffic limit theorems describe the growth in more detail.
These limit theorems are useful because the input rate does often
temporarily exceed the output rate in many queueing systems. The
limit theorems yield approximations for systems which are unstable
for a period of time.

There are two heavy traffic cases for a single gueueing system:
p >1 and p = 1. In the context of Markov chains, these cases
correspond to transience and null recurrence respectively. For

example, if p > 1, and K < =, then w, <K for only finitely
many n with probability one. If p = 1, then W < K for infi-

nitely many n with probability one. However, when , = 1, the
expected time between epochs when customers arrive to find a free
server is irfinite. These facts are easy to verify given the rela-

tionship between {Wn} and the random walk {Sn}. It follows from
(3.2) by induction that

(3.8) w, =5 - min{Sk( 0<skg¢n}, n=z2o0,

where Sp =¥ + ... + Y, and Sg = 0. If the system is a 61/G/1

queue, then

(3.9) Wp ~M, =max{S,, 0 < kg n}l,
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where ~ means equality in distribution. Consequently, the asymp-

totic behavior of W, coincides with the known asymptotic behavior
of Mo, cf. Chapter 8 of CHUNG (1968). However, note that (3.8) holds

everywhere for all n while (3.9) holds only in distribution for a
single n.
As before, I discuss only {Wn} in the GI/G/1l gqueue, but results

are available for other processes and other systems. The heavy traf-
fic theory for all standard processes in a single unstable GI/G/l
queueing system appears in WHITT (1968, 197la). Extensions to single
unstable multi-channel systems, including the GI/G/s queue, appear in
IGLEHART and WHITT (1970a) and LOULOU (1971, 1973a,b). The law of the
iterated logarithm is discussed by IGLEHART (1971a). See the biblio-
graphy for a full list of references.

33.1 p > 1. It is well known from the theory of random walks that
there is a nondegenerate random variable 1L such that

min{S,, 0 s k ¢ n} = L as n -« if and only if EYy; > 0, which is
equivalent to p > 1. This means that with normalization {Wn} and

{Sn} will have the same limit behavior if p > 1. This is so because

w,-a, S,-a, ", =~ 54| -mln{sk, 0< k< nj
(3.10) 5 - TE =75 = 5 :
n n n n

which converges to zero if bn - «», Thus, the limit behavior of {Wn}

is obtained from known results for the basic process {Sn}. The con-

nection is the convergence together theorem which says that if the

distance between random elements U, and Vn converges to 0 as
n -» «, then Vn converges to V if and only if Un converges to

Vv, cf. Theorem 4.1 of BILLINGSLEY (1968). As a consequence, if
p > 1, then

(&72n)_;i [Wn - nu] = N(0,1),

(3.11) n_an - 5 a.s.,

Wn-nu.
and lim sup =1 a.s.,

2 ]
(20°n log log n)

where p = EYl and 02 = Variance (Yl)'
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33.2 p = 1. When the traffic intensity is right at its critical
value, the situation is more delicate. From (3.8), it is apparent

that the limit behavior of {Wn} is closely related to the limit
behavior of {sn}, but the limit behavior is not the same when

p = 1. From (3.8), it is apparent that W, is a function of the ini-
tial segment {Sk, 0 £ k £ n} and not just the single variable S,-
The desired connection between {Wn} and {sn} relates W, or

{Wk, 0 <k<n} to {Sk, 0 < k < n). This can be done by inducing

for each n appropriate stochastic processes in the space D[O,l]
of all right-continuous real-valued functions on [0,1] with limits

from the left everywhere. Including normalization, let

W
wa(e) = =28l 0 gk g,

A b ’
n
(3.12)
s
and s, =, (k) = —%551, 0<tsl,

n

where [x] is the greatest integer less than or egqual to x. Note

that the stochastic processes En and En in (3.12) are continuous-

time processes with sample paths in the space D[O,l]. These pro-
cesses conveniently represent normalizations of the initial segments
{(W,, 0<k <n}l and {Sk, 0 < k sn} from the sequences {Wn} and

{sn}. From (3.8), it is apparent that W, = £(5 ), where
£ : Dpf[0,1] - D[0,1] is defined by
(3.13) f(x)(t) = x(t) - inf{x(s), 0 < s < t}, O < t ¢ 1.

The desired limit theorems follow from known functional limit theorems
for En such as Donsker's theorem (Theorem 16.1 of BILLINGSLEY

(1968)) and continuous mapping theorems (Section 5 of BILLINGSLEY
(1968)). Donsker's theorem asserts that §n converges weakly in

D[O,l] to Brownian motion, say B. Continuous mapping theorems
assert that f(Un) converges to £(U) 1if Un converges to U and

f 1is continuous. (Further discussion appears in Section 3.4.) With

an appropriate topology such as Skorohod's Jl topology (induced by
the metrics d and do in Chapter 3 of BILLINGSLEY (1968)), the

function f in (3.13) is continuous as is the projection
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ull p{0,1] » R, defined by m,(x) = x(1). Consequently,
2\ -
(o”n) W, = £(B) (1) = PN (O,1),
(3.14) n']'wn -0 a.s.,
W
lim sup =1 a.s.,
i
n=e (202n log log n)*?
where 02 = Variance (Yl), B 1is Brownian motion, and PN(0,l) de-

notes the positive normal distribution, which is the normal distribu-

tion conditioned to be nonnegative. To be slightly more specific, the
X DU 2, =% _

first limit in (3.14) holds because §n = B, (¢°n) Wn =m0 f(in),

and 7, o £ : Df0,1] » R is continuous.

It is interesting that the general theory of convergence for
probability measures on more abstract spaces actually began with the
limits in (3.14), cf. ERDOS and KAC (1946) or p. 199 of CHUNG (1968).
The original object was to determine the asymptotic behavior of

(czn)-;i M when EY, =0, but by (3.9) its distribution coincides

=%
with that of (czn) ‘w,  for each n.

3.3.3 Technigues. I have already mentioned several important tech-
niques for proving heavy traffic limit theorems. The heavy traffic
limit theorems are proved by applying known limit. theorems for related
basic processes such as the random walk {Sn}. When p-> 1, conver-

gence together theorems are used, and when = 1, continuous mapping
theorems are used. For the continuous mapping theorems, it is essen-
tial to employ convergence in the function space context because the
gqueueing processes are continuous images of more basic processes only
when both processes are regarded as random elements of an appropriate
function space. The necessary function space arguments are discussed
by BILLINGSLEY (1968), VERVAAT (1972), and WHITT (1972c).

In the GI/G/l queue with , » 1 it is natural to start proving
heavy traffic limit theorems by focusing on the sequence of waiting
times [Wn} which is so closely related to the random walk [Sn}.

This approach is described above and was used by PROHOROV (1963),
VISKOV (1964), and WHITT (1968). The results for {Wn} can then be

used to obtain corresponding results for other processes., For exam-
ple, the continuous-time virtual waiting time process {W(t), t > 0}
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can be treated by means of a random time change. The queue length

process {Q(t), t = 0} can then be treated by showing that

W(t)/Q(t) = Ev as t = 1if p » 1, cf. WHITT (1968).
Alternatively, it is possible to start with the total workload to

enter the system up to time t, . which is a random sum, and then use

it to treat the virtual waiting time process, cf. HOOKE (1970), and

WHITT (197la). 1In this approach, the sequence {Wn} can then be

treated as an embedded sequence.

An entirely'different approach based on the arrival and service
counting processes was used by BOROVKOV (1965) and IGLEHART and WHITT
(1970a) to treat multi-channel systems. The first heavy traffic limit
theorems in this approach are for the queue length process. In each
approach, limits for one queueing process are then used to obtain
limits for the other queueing processes.

In order to obtain heavy traffic limit theorems for relatively
complex queueing systems such as the GI/G/s queue or more general
multi-channel systems, it is useful to construct modified systems

‘which are easier to analyze directly than the original system but
which behave the same in heavy traffic. The first modified system for
studying multi~-channel system was introduced by BOROVKOV (1965) and
applied by IGLEHART and WHITT (1970a). It has each server remain in
operation even when idle and assigns customers to the servers that can
complete their service first, using residual service times. Another
modified system designed for studying the virtual waiting time process
in an s-server queue was introduced by LOULOU (1971, 1973a,b). If
there are s servers with only k < s busy, it has all s servers
sharing the work of the X customers. With this device, LOULOU
(1971, 1973a,b) obtained heavy traffic limit theorems for the virtual
waiting time process and the sequence of waiting times when 5 > 1 in
an s-server queue, thus filling a gap in Section 6 of IGLEHART and
WHITT (19702). However, Loulou's modified system apparently cannot be
used to treat as general multi-channel systems as Borovkov's modified
system. For example, difficulty is encountered with several arrival

channels.

open Problem. LOUIOU (1971, 1973a,b) filled a gap in Section 6 of
IGLEHART and WHITT (1970a) with his modified system. However, it
still remains to treat the queue length at the ith service channel
when p > 1 (Section 5) as well as the load and the virtual waiting

time process in general multiple channel systems (Section 6).
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3.4 Functional Limit Theorems. All the limit theorems in this sec-

tion can be extended to functional limit theorems. I have mentioned
functional limit theorems in Section 3.3.2 as a useful tool for
proofs. It is also desirable to have the final limit theorems be
functional limit theorems whenever possible because such results imply
many limit theorems for related functionals and processes as well as
the ovdinary limit theorem itself.

The idea is to replace the convergence of real-valued random
variables with convergence of associated stochastic processes. For

example, instead of (3.l1) or the convergence

(3.15) Xt;at-.L as to e,

bt

the functional limit theorem typically states

(3.16) { Zié;l—f}EEE , s=20 } + {(L(s), s 20} as t 4 =«.
bt

Obviously the modification in (3.16) is quite artificial, but it is
useful. Since st 4 « as t 4 o for all s » 0 , the convergence
in (3.16) is not so different from (3.15), and yet it captures more of
the asymptotic behavior of the entire process. The mode of conver-
gence has not been specified in (3.15) or (3.16) because there are
functional versions of all the classical limit theorems. For example,
there are functional central limit theorems, functional laws of large
numbers, and functional laws of the iterated logarithm. 1In particu-
lar, there are functional generalizations of all the results pre-
viously quoted in this section. Most of the papers I have mentioned
state their conclusions in this way.

If the mode of convergence is convergence in distribution, then
(3.16) involves convergence in distribution of a sequence of stochas-
tic processes. This could mean convergence of all sequences of ran-
dom variables obtained by evaluating the stochastic processes at sin-
gle time points. More generally,.this could mean convergence of all
finite-dimensional distributions. The appropriate mode of conver-
gence, weak convergence in the function space, turns out to be even
more stringent. Weak convergence in the function space requires con-
vergence of the stochastic processes regarded as measures on the space
of all sample paths. This typically means convergence of all finite-
dimensional distributions plus an additional condition on the fluctua-
tions of the sample paths (tightness). Thié more general mode of con-

vergence is important because it permits the continuous mapping
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.

theorem to be applied with force. For example, limit theorems (and

functional generalizations) for W; = max{W,, 0 < k £ n} in heavy
traffic are an easy consequence of functional limit theorems for [wn}

and the continuous mapping theorem. It is only necessary to apply the
supremum function, cf. VERVAAT (1972) and WHITT (1972c). If »p >1

[Wﬁ} has the same limit behavior as [Wn], which was exhibited in

’

(3.11). If p =1, then

5 -1/2
{(e"n) W; =» sup{f(B)(t), 0 s t s 1},
(3.17) n"twr + 0,a.s.,
wf
. n
lim sup =1 a.s.,
n-+ o 1/2

(2c'2n log log n)

where

P(sup{£(B) (t)] < x}= 1 ~ (4/m) Z [(~1)%/(2x+1)] exp(-[n? (2k+1) 2/8x2] ).
k=1

Functional generalizations of the extreme value theorems are also pos-
sible when p < 1. Even for the basic process, this is a fairly ac-
tive area of research at present, cf. VERVAAT (1973) and WICHURA
(1973).

Since functional central limit theorems often have Brownian mo-
tion as a limit process, it is important to be able to describe func-
tionals of Brownian motion. Several of the useful functionals of
Brownian motion are listed in Section 7 of IGLEHART (1972b).

I do not intend to dwell at great length on functional generali-
zations here. For further discussion, see BILLINGSLEY (1968), espe-
cially the Introduction; the survey papers by IGLEHART (1972b,c); and
the paper by LOULOU (1973b) in these proceedings.

4., SYSTEM APPROXIMATIONS. The limit theorems for growing processes

concerned a single stochastic process in a single queueing system.

This single stochastic process was described by letting time get large.
Sequences of stochastic processes were considered too, but only in the
functional limit theorems and only as artificial constructions to ob-

tain more general results for the single stochastic process under
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consideration.

In this section, the limit theorems are for a sequence of queue-
ing systems. Instead of describing the behavior of a single queueing
process as time gets large, the object is to describe the behavior of
a sequence of queueing processes associated with a. sequence of queue-
ing systems changing systematically. For example, the size of a fi-
nite waiting room may increase; the number of servers may increase,
the traffic intensity may approach its critical value (heavy traffic),
or the service time distributions may approach the exponential distri-
bution. The corresponding limit theorems lead to approximations for
queueing systems. Many of these approximations are approximations of
entire queueing processes. This section just covers a few of the
limit theorems of this kind which are possible. The wide range of
possibilities is well illustrated for stochastic models in genetics by
KARLIN and McGREGOR (1964).

4.1 The Poisson Tendency. The arrival process of a gueueing system

frequently can be represented quite well by a Poisson process. This
phenomenon can be explained by a limit theorem. In many queueing sy-
stems the arrival process can be thought of as the sum of a large num-
ber of independent point processes of relatively small intensity. For
example, each subscriber's use of a telephone might be described by a
stationary renewal process or a more general point process. Such pro-
cesses for different subscribers would typically be independent. Then
the total demand on the telephone exchange is the sum of a large num-
ber of these processes. The appropriate limit theorem asserts that
the superposition of independent uniformly sparse point processes con-
verges to a Poisson process as the number of processes added becomes
large with the intensity of each component process becoming asymptoti-
cally negligible. Such a theorem was proved by KHINTCHINE (1960). It
is interesting that this theorem was proved with this queueing appli-
cation in mind. Others had previously noted that such a limit theorem
should hold, but Khintchine was the first to verify convergence of the
finite-dimensional distributions. For further discussion, see
Chapter 2 of GNEDENKO and KOVALENKO (1966). The mode of convergence
can also be extended to weak convergence in the function space set-
ting, c¢f. STRAF (1971) and WHITT (1971d).

An extensive account of research on point processes appears in

LEWIS (1972). Research on superposition has been surveyed by CINLAR

(1972). I have been concerned with determining how close the limiting
Poisson process is to the superposition process. Bounds on the dis-

tance can be computed, where "distance" here means distance between
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the stochastic processes regarded as measures on the function space,
cf. WHITT (1972d). The specific distance used was the Prohorov dis-
tance for measures with the Skorohod distance on the function space
D[0,1], cf. Section 5.1, While this distance has no unique claim to
relevance, it does suggest that the rate of convergence is quite fast
(of order n_l as compared with n -1/2 in the central limit theo-
rem). It is also possible to use these bounds to obtain bounds on the
distance between various functionals of these processes. This would
involve familiar distances for measures on the real line such as the
Levy distance. Such related results can be obtained because rates of
convergence as well as ordinary convergence are preserved by a large
class of mappings, cf. WHITT (1972e).

4.2 Continuity. The standard queueing models are specified by the
arrival process and the service times. For example, the standard
milti-server system is specified by the sequence of interarrival times

[un] and the sequence of service times {Vn]. It is reasonable to

expect that if these basic processes approximately satisfy certain
assumptions, then the associated queueing processes will be close to
the corresponding processes when the assumptions actually hold. For
example, if [un] and [vn] are approximately independent sequences
of i.i.d. random variables with exponential distributions, the queue
length process and the virtual waiting time process should be close to
corresponding processes in the M/M/s queue. These hypotheses can be
verified by showing that the queueing system is continuous. This
means that the various sequences of queueing processes associated with
the sequence of queueing systems converge if the sequences of basic
processes converdge. Such results were obtained for the single-server
gueue by KENNEDY (1972a) and extended to multi-server queues by WHITT
(1971c, 1973b). The key to proving these theorems is to operate in
the function space context. Then the desired convergence can be ob-
tained by repeated application of the continuous mapping theorem.

From the point of view of providing a broad structural view of
queueing processes, the continuity results are closely related to
corresponding monotonicity results reported in JACOBS and SCHACH
(1972), STOYAN (1972), and references there.

The continuity resilts can be used, not only to justify the use
of models whose assumptions are only approximately satisfied, but also
to generate new approximations. This is illustrated by the results of
SCHASSBERGER (1970, 1972). He approximated the Laplace transform of

the virtual waiting time process in the GI/G/l1 queue and in the
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preemptive-~resume priority queue by considering a sequence of gueueing
systems in which the interarrival times and service times are mixtures

of Erlang distributions.

Open Problem. The continuity results so far concern convergence of
stochastic processes. As a next step, convergence of the limiting
distributions and convergence of moments should be established. Such

results will require extra conditions.

4.3 Heavy Traffic Approximations. Heavy traffic approximations can

be obtained by considering a sequence of stable queueing systems which
become unstable or heavily loaded in the limit. This usually means
that the sequence of traffic intensities associated with the segquence
of queueing systems is allowed to converge to the critical value from
below. Thus, each queueing system in the sequence is stable, but the
average number of customers waiting tends to grow as the systems change.
After appropriate normalization, various associated sequences of
gqueueing processes and random variables often converge to nondegener-—
ate limits. Furthermore, these limits usually take a very simple form
which is independent of the specific interarrival time and service
time distributions. This is to be expected because when there are
many customers in the system it is reasonable to disregard the
detailed effect of each individual customer. The macroscopic view
associated with statistical mechanics and the classical limit theorems

becomes justified.

4,3.1 The Exponential Approximation. The first heavy traffic ap~
proximation was the exponential approximation for the stationary wait-

ing time distribution in a single-server gueue obtained by KINGMAN
(1961, 1962, 1965). (An earlier result for dams was obtained by
KENDALL (1957).) 1In the GI/G/l setting of Section 3.2, let

-2EY . _2(Bu - Ev)
var(Y) = var(u) + var(v) *

(4.1) o =

so that o« » 0 1iff p < 1, Consider a one-parameter family of queue-
ing systems indexed by «. Kingman looked at the iterated limit,
first letting n + » to obtain the steady-state waiting time W(&)
for each o > 0 , and then letting @ 30 after normalizing to obtain
aW(?) = E in R (E denotes an exponential random variable) or

- (l - e , x 20
(4.2) lim p{ew(¥) < x} =
@0

+ zo , x <0,

under appropriate regularity conditions on the family of qgueueing
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systems. There are several possible sets of regularity conditions,

one of which requires

Var[Yn(a)] -+ 02 , 0 < P <w , as & = 0

.

(4.3)
and sup[EYi+‘(d)] < o for some ¢ >0 .
o

The exponential approximation in (4.2) is perhaps best understood in
the context of the closely-related diffusion approximation to be dis-

cussed in the next section.

Open Problem. The exponential approximations have not yet been veri-
fied in as great generality as the diffusion approximations. The same
exponential approximation also holds for the continuous-time virtual
waiting time process, cf. HOOKE (1969), KYPRIANOU (1971b), and WHITT
(1974), but the exponential approximation has not yet been verified
for the queue length process in a GI/G/1 queue. Such a result for an
M/G/l queue appears on p. 168 of GNEDENKO and KOVALENKO (1968).

4.3.2 Diffusion Approximations. Diffusion approximations can be ob-

tained by considering a sequence of appropriately normalized queueing
processes instead of a sequence of appropriately normalized steady-~
state distributions. 1In particular, if in addition to (4.1) and (4.3)
there is a sequence of GI/G/1 queueing systems indexed by n with

2'lcannl/2 4 ¢, 0<c<w, as n-+ o, then

-1/2
(4.4) W () = (no?) Wn[nt] = £(B - ce) (t) in R

for each t > 0, where B is Brownian motion, e 1is the identity

map: e(t) =+t, £ is the function in (3.13) corresponding to the
barrier at 0, and _
' +ct -2¢cx, [=xtct
(4.5) P{f(B - ce) (t) = x} =3 ( £E=) - g (=XEct )
( =28) (mtst

where $ is the standard normal c.d.f. (Note that the normalization
in (4.4) involves a time contraction as well as a division by nl/z.)

Moreover, Wn converges weakly to £(B - ce) in the function space

D[0,1] or D[0,od . 1In fact, (4.4) is most easily proved via this

more general weak convergence. The argument differs only slightly

from the p = 1 case discussed in Section 3.3.2. 1If
6 2,"172 4
(4.6) S5, = En(t) = (no”) S[nt] . t =20,
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n th

with S; =Yy F ... F Yi being the kth partial sum in the n

queueing system, then En converges weakly to B - ce by virtue of

PROHORQV's (1956) double-sequence extension of Donsker's theorem,
cf. p. 220 of PARTHASARATHY (1967). (The translation in the limit

1 1/2

comes from the condition 27 cann + ¢.) The weak convergence for

En in D and (4.4) are then obtained by applications of the continu-
ous mapping theorem, first with £ in (3.13) and then with the pro-
jection at time t. The limit in (4.4) was first obtained by
PROHOROV (1963). Such diffusion approximations have now been obtained
for all the standard processes in quite general queueing systems,
cf. BOROVKOV (1965), IGLEHART and WHITT (1970b), and WHITT (1968,
1974).

From the discussion above, it should be clear that the general
weak convergence method of proof applies equally well to a sequence of
queueing systems with Py P 2 1 or a single queueing system with

p 2 1. The limits for a single queueing system are obviously a spe-
cial case obtained by letting each queueing system in the sequence of
gueueing systems be the same. However, it usually works the other way
too. When results can be obtained for a single unstable system with

p = 1, corresponding results can usually be obtained for a sequence
of queueing systems with oy ™ P = 1. Hence, even though the objec-

tives may be different, it is appropriate to consider both the des-
criptions of unstable queues and the diffusion approximations for
stable queues under a common name.

The exponential approximation is related to the diffusion ap-
proximation in an obvious way. As t =+ o, the left side of (4.4) ap-
proaches a normalization of the steady-state waiting time while the
right side approaches the exponential distribution. This informal
explanation of the exponential approximation was given by KINGMAN
(1962, 1965).

Open Problem. While the exponential approximations are easily related
to the diffusion approximations, it still remains to use the diffusion
approximations to prove exponential approximations. For practical
purposes, the exponential approximations have been justified in great
denerality because (4.5) approaches the exponential distribution as

t gets large, but a proof justifying the intefchange of limits

(n » » and t » ») 1is still needed. For the special case of [Wn)
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in a GI/G/1 queue, this interchange has been justified by PRCHOROV
(1963) using Kolmogorov's inequality and by WHITT (1974) using a new
topology on a subset of D{0,x) for the purpose of obtaining conver-
gence of limiting distributions from weak convergence. More work

needs to be done.

43.3 Many Servers. When there are infinitely many servers, heavy
traffic approximations can be obtained by considering a sequence of
queueing systems in which the arrival rates increase. Again, the
average number of customers tends to get large and limit theorems are
possible after appropriate normalization. For example, consider a se-
quence of GI/G/» queues. ‘Suppose {A(t), t = 0] is a renewal process
and the arrival counting process for the nth system is defined by

A_(t) =A(nt) , t=>0. If Q_(t) is the queue length in the nth

G1/G/= system and gn is the associated normalized random function:

Qn(t) - nh{t)
(4.7) Q =Q (t) = 172 , t =0,

11

then gn converges weakly to a centered stationary Gaussian process,

cf. BOROVKOV (1967a) and IGLEHART (1972c, 1973a). Of course, this
means that Qn(t) is approximately normally distributed.

This infinite-server result also encompasses a limit theorem for
s-server queues as s dets large if the arrival rate is allowed to
grow with s so that the traffic intensity ¢ = Ev/sBu remains
fixed. Such a theorem was first proved by IGLEHART (1965a) for M/M/s
queues. It follows from the more general infinite server results be-
cause as s grows with p fixed the probability that all s servers

will be busy becomes negligible.

5. ZFURTHER HFEAVY TRAFFIC RESEARCH.

5.1 Rates of Convergence. After proving limit theorems, it is of

interest to obtain refinements such as asymptotic expansions and
bounds on the rate of convergence. Such extensions of heavy traffic
limit theorems were discussed to some extent by PROHOROV (1963),
BOROVKOV (1964), and WHITT (1968, 1972a), but recently an extensive
treatment has been given by KENNEDY (1972b). Kennedy has shown how
bounds for rates of convergence can be obtained for virtually all the
functional central limit theorems for queues in heavy traffic. These
rates of convergence go beyond the usual resiilts because, like the
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rates discussed in Section 4.1, they are for a sequence of stochastic
processes instead of a sequence of random variables. The rates can be
expressed in terms of the Prohorov metric on the space ¥£(S) of all

probability measures on a separable metric space (S,m). For any mea-

surable subset A in S, let

(5.1) A® = {x ¢ S : m(x,y) < ¢ for some y ¢ A} .

The Prohorov metric d can then be defined for any P, Q ¢ F(S) by

(5.2) d(P,Q) = inf{e >0 : P(F) s ¢ + Q(F®), F closed] .
For example, consider a single GI/G/l queue with ¢ =1 as in
Section 3.3.2. Suppose

~1/2

(5.3) W= W_(t) = (no?) Winepe O0Stsl.

Let x(En) denote the probability measure in #®(D[0,1l]) induced by

En' Then, under the assumption that EYi < » , there exists a con-

stant C such that

C log n
(5.4) a(e(W, ), £(£(B))) s—;ﬁ— .

where the uniform metric is used on D[O,1]. (The processes Wn and

B have paths in a separable subset.) The particular result in (5.4)
follows directly from a rate of convergence theorem for Donsker's
theorem, Theorem 5.2 of DUDLEY (1972), and the Lipschitz mapping theo-
rem, Corollary 3.3 of WHITT (1972e). The result in (5.4) may seem a
bit artificial because it is hard to attach intuitive meaning to the

Prohorov metric. However, as a consequence of (5.4),

CF log n
(5.5) ]P[F(En) < x) - P(F(£(B)) = x) S—W—
for every functional F : D{0,1] - R with
(5.6) [F(x) = F(y)] s K sup |x(t) = y(t)]
-Ogtgl
for some constant K, and
(5.7) [P(F(£(B)) s x+h) - P(F(£(B)) s x}| s L|h]

for some constant L and all x and h ; see Corollary 3.3 and
Theorem 3.5 of WHITT (1972e). Kennedy's limit theorems have all been

stated in the form (5.5), but they can also be expressed in the form



332

(5.4). Of course, bounds for the other processes treated by Kennedy
involve much more work. For a survey of rates of convergence and
metric representations of stochastic convergence, see DUDLEY (1972).

The bounds on the rate of convergence in KENNEDY's (1972b) theo-
rems are typically of order

-1
: _ (2p+1)
(5.8) g(n,p) = {(log n)P/m™in(P-1. P/2)y .
) Py Py
where p = min{pl, pz}, based on assuming Eu < @ and Ev < @.
The bound - in (5.8) is always worse than the n-l/4(log n)l/2 in

(5.4). The slight improvement in (5.4) is due to the application of
Theorem 5.2 of DUDLEY (1972) instead of the previous bound on the rate
of convergence for Donsker's theorem established by ROSENKRANTZ (1967)
and extended by HEYDE (1969). These bounds are not as good as

o(n—l/2

the ordinary central limit theorem. This seems to be due in part to
the method of proof which is based on the Skorohod embedding method.
SAWYER (1972) has shown that the Skorohod embedding method cannot in
general yield rates of convergence faster than O(n_l/4). By an
entirely different method, NAGAEV (1970) has proved a theorem which
implies that if p =1 and EY> < «» in a GI/G/1 queue, then there
exists a constant C such that

) which is the classical Berry-Esseen bound associated with

(5.9) ‘P{ —H%7§ < x} - (2/‘1-r)l/2 Tx e-yz/ydy < 3/2 .
% on 0¥ n

Open Problem. The best bounds for rates of convergence in the heavy
traffic limit theorems should be O(n_l/z), but this remains to be
determined. Weaker bounds may be necessary for functional central
limit theorems, but this also remains to be determined. It certainly
should be possible to establish bounds of order O(n—l/z) in many
ordinary heavy traffic limit theorems.

Open Problem. No bounds at all have been established for rates of
convergence in many of the other limit theorems discussed in this
paper. For example, bounds on the rates of convergence for the expo-
nential approximation are still needed.

The Skorohod imbedding method, which plays a large role in the
proofs of the rate of convergence theorems above, deserves some addi-
tional discussion. The idea is to represent the processes in a con-

verging sequence of processes as random time transformations of the



333

limit process. Naturally, these random time transformations must ap-
proach the identity map in the limit. Such representations are useful
because it often makes bounds on rates of convergence easier to esti-
mate. The specific representation due to SKOROHOD (1965) is.for an
arbitrary random variable X with mean zero and finite variance.
Skorohod showed that it is always possible to find a stopping time T
for Brownian motion B such that B(T) has the same distribution as

X. Then a random walk X X, + XZ' ... could be represented by

ll
B(Tl), B(Tl + TZ)' ... . The Skorohod imbedding method is discussed
for example in FREEDMAN (1971). A recent survey has been prepared by

SAWYER (1973).

5.2 Exponential Approximations for Multi-Server Queues. Until re-

cently, exponential approximations had not been established for multi-
server gueues. KINGMAN (1965a) conjectured that the limit in (4.2)
also holds for GI/G/s queues if, instead of (4.1),

(5.10) = 2{Fu - Ev/s]

¥ = Var(u) + var(v/s) °

This conjecture has now been partially verified.
First, the modified system introduced by LOULOU (1971, 1973a,b)
provides bounds above and below the process {Ln, n 2 0}, where L,

depicts the total workload facing all s servers in a standard multi-
th

server gqueue at the epoch just prior to the n arrival. In par-
ticular, it is easy to show that
(5.11) 0<L' <L <L'+s max {v.] ,

n n n O<k<n-~1 k

where Lﬁ is the workload facing all s servers in the modified

system. In the modified system idle servers help busy servers so that
the rate of service is always S per time whenever any customers are

in the system. The segquence {LA] thus corresponds to the sequence

of waiting times in a single-server queue determined by the seguences
{sun] and {vn]. Consequently, if the service times 'are bounded,
there are bounds above and below the limiting distribution of L, as

n 4+ », Furthermore, the distance between these bounds becomes negli-
gible under the usual heavy traffic normalizations. This means that
known exponential approximations for the limiting distribution of

[Lﬁ] also apply to the limiting distribution of [Ln]. But note that

in order to have a finite upper bound as n + « in (5.11), it is

necessary to assume that the service times are bounded. For further
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discussion, see WHITT (1974) and the paper by LOULOU (1973b) in these
proceedings. (For extensions, see KOLLERSTROM (1973)-added in proof.)
Exponential approximations for multi-server queues have also re-
cently been obtained by YU (1972, 1973). Yu establishes two-sided
stochastic bounds for the waiting times and other variables in a
GI/Ek/s queue. Different servers are even allowed to have different
Erlang service distributions, but the shape parameter k must be the
same for all servers. The bounds involve corresponding variables from

a GI/Ek/l system with the same traffic intensity. For example, Yu

shows that
(5.12) Wn(l) -A ¢ Wn(s) < Wn(l) + B,
where Wn(r) is the waiting time of the nth customer in the

GI/Ek/r system, A and B are specific finite random variables inde-

pendent of n, and ¢ denotes stochastic order, i.e., X ¢ Y means
Py 2 t}) » P(X 2 t] for all t. It is easy to show that A and B
do not grow in heavy traffic, so Wn(s) behaves the same in heavy

traffic as Wn(l). Hence, the known exponential approximations for
W (1) can be applied to W, (s) 1in the GI/Ek/s queue. The proofs of

YU's (1972, 1973) stochastic order relations follow STIDHAM (1970).
Naturally, the bounds are of interest in their own right without
reference to heavy traffic. Recent references in addition to LOULOU
(1971, 1973a,b) and YU (1972, 1973) from which a relatively complete
picture of the literature on bounds and inequalities for gqueues can be
obtained are BRUMELLE (1971, 1972), JACOBS and SCHACH (1972), KINGMAN
(1970), ROSS (1973), STOYAN (1972), and SUZUKI and YOSHIDA (1970).

Open Problem. It still remains to verify that the exponential ap-

proximation is valid for all GI/G/s queues. Nothing at all has been
said about exponential approximations for the more general multiple-
channel systems of BOROVKOV (1965) and IGLEHART and WHITT (1970a,b).

5.3 Conditioning. It is frequently of interest to consider limit
theorems in the presence of conditioning. For example, heavy traffic

limit theorems have been proved for {Wn] (and other processes) under

the condition that the first busy period has not yet ended. Since
visits to the origin are excluded, it is natural to expect larger
limits with such conditioning than without, and this turns out to be

the case.
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When p < 1, convergence without normalization as t 4+ » has
been verified for various queueing processes in the M/G/1 and GI/M/1
queues by KYPRIANOU (1971la, 1972a) and the limits are called quasi-
stationary distributions. KYPRIANOU (1972b) also proved heavy traffic
limit theorems for these quasi~stationary distributions.

Just as in Section 4.3.1, consider a one-parameter family of
queueing systems indexed by g, where e« 1is defined in (4.1). Let
Z(®¥) be a random variable with the quasi-stationary distribution
associated with the sequence of waiting times in the a=-system. 1In
particular, let

(5.13) P{Z2(a) = x} = lim P{Wn(d) < xlwk(a) >0, 0<k sn}.
N>

Then, for M/G/1l queues under appropriate regularity conditions,
(5.14) aZ(a) =G as at+ 0,

where G has a Gamma distribution with density xzxe-xx and

A= 2"l . The mean of the limit in (5.14) is exactly four times the

mean of the limit without conditioning in (4.2).

Of course, no quasi-stationary limit exists when p =2 1, so the
object, just as in Section 3.3, must be to obtain limits for
{Wnlwk >0, 0 sk sn} as n -+ o after appropriate normalization.

Such theorems have recently been proved by IGLEHART (1973). If
p > 1, the conditioning does not alter the limit. If p =1, then
x2/2

1-e" ,x20

\i
(5.15) lim P { —J75 < x|W >0, Osksn } =
N4 { cnl 2 k } { 0 ,0.

The limit in (5.15) is the Rayleigh distribution which has mean

(n/2)l/2. Without conditioning, the limit is the positive normal dis-
tribution with mean (2/n)l/2. The conditioned result is thus n/2
times bigger, which is a smaller factor than the previous 4 as ex-
pected because p is bigger here.

IGLEHART (1973) also proved the functional generalization of
(5.15). The limit process is a natural modification of standard
Brownian motion. Look at the largest zero of the Brownian motion in
[0,1]. Then consider the process from this zero onward rescaled so
that this zero time point becomes the origin. The resulting process
is the limit process.

Open Problem. It would appear that such conditioned heavy traffic

limit theorems can be proved whenever unconditioned heavy traffic
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limit theorems have been proved, but several gaps remain., KYPRIANOU's
(1972b) results should apply to GI/G/1l queues. (Apparently Iglehart has
just done this for [Wn}.) Functional central limit theorems leading

to diffusion approximations should be proved as ont 1. Multi-server
queues should be treated.

Open Problem. Heavy traffic limit theorems could also be proved under
different kinds of conditioning.

5.4 Finite Dams. Heavy traffic limit theorems have been proved for
finite dams and queues with finite waiting rooms by WHITT (1968,
Sections 6.8 and 6.9), BLOMQVIST (1973), and KENNEDY (1973). 1In the
case of a finite dam in discrete time, the content is represented as
a random walk between two reflecting barriers. Thus, the content pro-
cess corresponds to the sequence of waiting times in a queue with an
extra barrier. Under the usual normalization (Sectibn 4,3.2), the se-
quence of unrestricted random walks associated with a sequence of
finite dams converges to Brownian motion, possibly with a drift. The
two reflecting barriers can be superimposed afterwards. Convergence
is preserved because these barriers constitute a continuous mapping on
the function space. If the two barriers are put at 0 and a, then

172 in the content processes the

because of the normalization by n
upper barriers in the sequence of finite dams must be of order

0(l’?y.

tion with reflecting barriers at 0 and a and perhaps a drift.

This normalization leads to weak convergence to Brownian mo-

With the upper barrier, steady-state or limiting distributions
exist for the content process in each finite dam under all traffic
intensities. As expected, there are exponential approximations for
this limiting distribution. Detailed arguments appear in BLOMQVIST
(1973) and KENNEDY (1973), but the exponential approximation can be
understood by looking at it in relation to the diffusion approximation
just discussed. The exponential approximation is just the limiting
distribution of the diffusion process as t -+ ». For example, let L
be the limiting distribution of the Brownian motion with drift b and

reflecting barriers at 0 and a. Then

-

2bx

§ 2ab
(5.16) p(Lsx} =4 (1-e )/l -e"7), b#FO
x/a , b=0,
which coincides with the limit in Theorem 3.1 of KENNEDY (1973). The

limit in (5.16) is easy to calculate directly, for example, by using
the approach of MANDL (1968) discussed in Section 5.6.
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Open Problem. It is easy to see that the two reflecting barriers
must constitute a continuous mapping, but I know of no neat proof.
Since weak convergence follows from other processes by the same con-
tinuous mapping theorem argument and since the form of the limit has
been established by KENNEDY (1973), there is not much more to do for
the diffusion approximations. Of course, the exponential approxima-
tion still needs to be verified for other processes and other systems.
It should be apparent that a direct connection between the diffusion
approximations and exponential approximations would solve numerous
problems.

Open Problem. A general investigation of barriers as mappings on
function spaces is still needed. The paper by LOYNES (1970) is some-
what in this spirit.

5.5 Other Queueing Systems

5.5.1 Different Server-Selection Rules. By now, heavy traffic limit

theorems have been proved for quite a variety of queueing systems. 1In
addition to the standard multi-channel system, there are the modified
systems mentioned in Section 3.3.3 which were introduced primarily to
facilitate proofs. Multi-channel gqueues in which arriving customers
select a service channel at random or are assigned in rotation are
treated in WHITT (1970a, 1973b). Unlike the modified systems which
are designed to behave the same in heavy traffic, these variations do
not perform as well in heavy traffic as the standard system. For
example, if Wn is the waiting time of the nth customer in a single

GI/G/s queue with p = 1 and one of these server-selection disci-
plines, then in each case, just as in (3.14),

W
n

(5.17) —I
C'nl/z

= PN(0,1) as n+ =,

but the normalizing constant ¢ increases from the standard model to
the rotation-server-selection model to the random-server-selection
model. Similar orderings are obtained for the means of the exponen-
tial approximations which can be derived for the stationary waiting
time in each of these systems. These precise comparisons should be
useful in estimating the relative efficience of different server-

selection rules.

Open Problem. Still other systems should be investigated and com-
pared. For example, the system in which each server has his own gueue
and customers join the shortest line remains to be described.
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55.2 Priority Classes. One priority system, the single~server
queue with a preemptive-~resume discipline, has been rather extensively
analyzed in heavy traffic. The first work on this system was done by
HOOKE and PROBHU (1971) and HOOKE (1969, 1972a,b). They focused on
the virtual waiting time process for lower priority customers in a
single unstable system. Later HARRISON (1973) verified a diffusion
approximation for the same process by considering a sequence of sy~
stems. Functional generalizations of these results and heavy traffic
limit theorems for other processes are contained in WHITT (1971la,e).

The virtual waiting time process of lower priority customers can

be defined in terms of a first passage time function as:

(5.18) W(t) = inf{(s 2 0 : Yh(s+t) - Yh(t) < -L(t)}, t =0,

where L(t) 1is the total workload of both priorities facing the ser-
ver at time t and Yh(t) is the net input process for higher pri-

ority customers. For the weak convergence arguments, it is thus con-
venient to use the D-space of functions with a two-dimensional para-
meter set, cf. STRAF (1971). There are different limits depending on
the traffic intensities of the two priority classes. If the traffic

intensity of the higher priority customers is greater than one,

*n
then with positive probability lower priority customers will never be

served at all., If = 1, then a normalization by t2 is needed in

*h
order to get a nondegenerate limit for W(t).

5.5.3 cComplex Systems. The possibility of proving heavy traffic

limit theorems for gqueueing systems involving general networks a ser-
vice facilities was indicated in Section 4 of IGLEHART and WHITT
(1970b) . It is usually not difficult to verify that a limit exists
but it is usually difficult to evaluate the limit in detail. Unless
surprising new developments occur, this approach does not appear to be
the way to resolve or get around most of the problems in analyzing
queueing networks described by DISNEY (1973).

Heavy traffic limit theorems have been proved for other complex
systems. Assembly-like queues and queues in series have been studied
by HARRISON (1970, 1971a,b)} and networks of assembly-like queues and
queues in mass-transportation systems have been studied by CRANE
(1971).

Open Problem. Queues in computer systems should be, and no doubt will
be, investigated in this way.
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5.6 Control. The approximations and limit theorems should be used
for designing and controlling queueing systems. The functional cen-
tral limit theorems are promising in this regard because with them it
is often possible to obtain convergence for various cost and control
features in addition to the underlying probabilistic structures with
an application of the continuous mapping theorem. This procedure is
illustrated in the quality control setting by IGLEHART and TAYLOR
(1968). The forthcoming thesis by RATH (1973) will treat queueing
systems in the same way.

It is also possible to consider optimization problems directly
for the approximations. Problems of controlling diffusion processes
naturally arise corresponding to the various control problems for
queues outlined by PRABHU and STIDHAM (1973) and SOBEL (1973) in these
proceedings. Work by BATHER (1966, 1968), GIMON (1967), and PUTERMAN
(1972, 1973) on diffusion models for dams and inventories is relevant.
For example, a diffusion model for a queue With a removable server is
easily treated by Puterman's approach. The diffusion process in this
model is Brownian motion with a positive drift when the server is
working and a negative drift when the server is not working. A re-
flecting barrier at the origin is included. A reasonable stationary
policy switches the server on when the process reaches’ some level S
and switches the server off when the level reaches 0. With fixed
costs for switching on and off plus a linear waiting cost, the long-
run average cost and the limiting distribution as functions of S and
the drift and diffusion coefficients are computed in WHITT (1973d).
The proof, following PUTERMAN (1972, 1973), is an immediate applica-
tion of the general control theory for diffusion processes in MANDL
(1968), in particular Theorem 1 on p. 149. Long-run average costs,
expected discounted costs, and limiting distributions can be calcu-
lated for such models by solving second-order linear differential
equations related to the generator of the diffusion process.

The deterministic version of the diffusion models above (corre-
sponding to zero variances) was analyzed by WHITT (1973c¢). For the
deterministic version, it is easy to show that stationary (s,S)
policies are optimal among all switching policies and that the long-
run average cost is a convex function of s and S if the waiting
or holding and shortage costs are convex and increasing away from the
origin (s 1is allowed to be negative in the inventory model).

Open Problem. Obviously, there is much to be done here. For the
diffusion models, more general controls than switching should be
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considered. But, even among switching policies, the optimality of

stationary policies with special structure still needs to be verified.
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