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THE ASYMPTOTIC BEHAVIOR OF QUEUES 
WITH TIME-VARYING ARRIVAL RATES 

DANIEL P. HEYMAN* AND 
WARD WHITT,* Bell Laboratories 

Abstract 

This paper discusses the asymptotic behavior of the M,/ G/c queue having a 
Poisson arrival process with a general deterministic intensity. Since traditional 

equilibrium does not always exist, other notions of asymptotic stability are 
introduced and investigated. For the periodic case, limit theorems are proved 
complementing Harrison and Lemoine (1977) and Lemoine (1981). 

PERIODIC QUEUE; NON-STATIONARY QUEUE; MULTISERVER QUEUE; PERIODIC POIS- 

SON PROCESS; REGENERATIVE PROCESS; WAITING TIME 

0. Introduction and summary 

The purpose of this paper is to contribute to the theory of queues with 

time-varying arrival rates. We assume that the arrival process is a Poisson 

process with a general deterministic intensity A (t). We are interested in periodic 
arrival processes, which have an 'embedded stationarity' and can be represented 
as stationary point processes with the proper initial conditions, but we are also 
interested in arrival processes that are fundamentally non-stationary, that cannot 
be put in the framework of Franken et al. (1981). 

Most of the work on queues with time-varying arrival rates has been 
concerned with describing the time-dependent behavior of the queue. Early 
papers by Luchak (1956) and Clarke (1956) focused on solving the Kolmogorov 
equations for the queue-length process. Since then, considerable progress has 
been made by developing approximations for the time-dependent behavior; see 

Rothkopf and Oren (1979), Clark (1981), and Taafe (1982) for closure approxi- 
mations; see Newell (1968), (1971), McClish (1979), Keller (1982) and Massey 
(1981) for asymptotic expansions; see these sources for earlier work. 
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144 DANIEL P. HEYMAN AND WARD WHITT 

The present paper is concerned with the asymptotic behavior as time 
increases. Related work for the M,/G/1 queue with periodic Poisson arrival 

process is contained in Harrison and Lemoine (1977), Lemoine (1981) and Wolff 

(1982), ?3. The results here were reported in Heyman and Whitt (1978). 
We use stochastic comparisons here (Theorem 2.1 and Section 4). Related 

work on stochastic comparisons for queues with time-varying arrival rates is 
contained in Ross (1978), Rolski (1981), Heyman (1982) and Whitt (1981). 

Our time-varying arrival rates are represented via a deterministic intensity 
A (t) for a Poisson process. One could also look at the Poisson process or another 
arrival process in a random environment; see Chapter 6 of Neuts (1981) and 
references there. 

This paper is organized as follows. In Section 1 we present general definitions 
of asymptotic stability for stochastic processes to cover cases in which the arrival 

process is neither stationary nor periodic. In Section 2 we give an example to 
show that the obvious generalization of the stability conditions in Harrison and 
Lemoine (1977) are not sufficient without periodicity; then we establish sufficient 
conditions for general asymptotic stability of the Markovian M,/MIc queue 
having c servers and a Poisson arrival process with a general deterministic 

intensity A(t). In Section 3 we prove limit theorems for the M,/MIc system 
having a periodic Poisson arrival process, and possibly a finite waiting room. The 
restriction to exponential service times enables us to provide relatively simple 
proofs. In Section 4 we briefly indicate how to construct stationary versions in 
the periodic case, so that Section 3 can be put in the framework of Franken et al. 
In Section 5 we briefly indicate how the results of Section 3 can be obtained for 

non-exponential service times. 

1. Asymptotic stability of stochastic processes 

Our starting point is the standard notion of asymptotic stability for a stochastic 

process X(t): convergence in distribution as t -- *. In this section we introduce 

concepts of asymptotic stability for stochastic processes that do not converge in 
distribution as t -- *. There obviously are many different kinds of asymptotic 
stability. Our concepts are based on the one-dimensional marginal distributions. 
For each t ? 0, let F, be the c.d.f. of X(t). Without stationarity or periodicity, it 

might seem that the c.d.f.'s F, could wander all over so that they are never near 

any c.d.f. infinitely often. Fortunately, this is not the case. With the right 
framework, the space of c.d.f.'s is a compact metric space so that any sequence 
has a convergent subsequence. We focus on the subset of c.d.f.'s that FV is near 

infinitely often as t - 
-o 

An appropriate framework involves the concept of vague convergence of 

probability measures or c.d.f.'s; see p. 79 of Chung (1974). We consider only 
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The asymptotic behavior of queues 145 

real-valued stochastic processes and thus only c.d.f.'s on the real line R, but the 

concepts extend to more general spaces; see Chapter 7 of Bauer (1972). 
We allow improper c.d.f.'s, which correspond to probability measures with 

total mass less than 1. A c.d.f. F is proper if and only if F(x)-> 1 as x -> oo. A 

sequence of c.d.f.'s {F, } converges vaguely to a c.d.f. F if there exists a countable 
dense subset D of R such that 

(1.1) lim [F, (b)- F. (a)] = F(b)- F(a) 

for all a, b E D. It is significant that the space of all c.d.f.'s with this mode of 

convergence can be represented as a compact metric space. Hence, every 
sequence has a convergent subsequence. (See Chung and Bauer for more 

details.) 
Let Y - (X) be the set of all c.d.f.'s that arise as vague limits of sequences 

{F,,} with tk --> as k -->*. Since the space of all c.d.f.'s is a compact metric 

space, Y is non-empty and compact. It is natural to use 2 to describe the 

asymptotic behavior of the stochastic process X(t) as t --> oo. 

Definition 1.1. The stochastic process {X(t), t 
_ 0} is said to be: 

(a) convergent if 2 contains a single element F and F is proper; 
(b) asymptotically periodic if there exists T > 0 such that {X(nT + s), n 

- 
0} is 

convergent as n - oo for each s, 0 
_ 

s < T; 
(c) strongly stable if F is proper for all FE Y; 
(d) weakly stable if F is proper for some FE Y; 
(e) divergent if 2 contains only a single element F and F(x) = 0 for all x. 

Obviously (a)-> (b)-> (c)-> (d) in Definition 1.1. We consider stochastic 

processes that are weakly stable but not strongly stable, strongly stable but not 

asymptotically periodic, and asymptotically periodic but not convergent. An 

interesting direction for future research is to identify conditions for various 

properties of Y. For example, when is 2 connected? When are all elements of 2 
absolutely continuous? 

We close this section by giving a criterion for strong stability. Since vague 
convergence of proper c.d.f.'s to a proper limit is equivalent to weak con- 

vergence, strong stability can be expressed in terms of uniform tightness (p. 80 of 

Chung (1974)) as follows. 

Proposition 1.1. A stochastic process {X(t), t> 0} is strongly stable if and 

only if for all e > 0 there exist to, a and b, - o < a < b < c, such that 

E(b)- F,(a)> - e 

for all t 
_ 

to. 
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146 DANIEL P. HEYMAN AND WARD WHITT 

As a consequence of Proposition 1.1, we can define proper bounding c.d.f.'s 
for ~ when X is strongly stable. Let FL and Fu be the c.d.f.'s defined by 

FL (x)= sup{F(x): F E C }, x E R, 

(1.2)Fu (x)= inf{F(x): F E C }, x E R. 

Since FL (x) 2 F(x) ? Fu (x) for all x, FL and Fu are lower and upper bounds on 
Y in the usual stochastic order. (See (2.5).) The pair (FL, Fu) may give a nice 

summary description of the asymptotic behavior of X(t) as t --* c 

2. Queues with general arrival rates 

Harrison and Lemoine (1977) analyzed the M,/G/1 queue with periodic 
Poisson arrival process and general service times. They established conditions 
for the workload process (virtual waiting-time process) to be asymptotically 
periodic in the sense of Definition 1.1. It is natural to conjecture that the 
workload process and the queue-length process (by which we mean the number 
of customers in the system) would be strongly stable even if the arrival process is 
not periodic provided that A (t) is bounded and 

(2.1) lim sup t' fA (s)ds < , 

where A (t) is the deterministic arrival rate at time t and 4t is the constant service 
rate (Ct = 1/Ev, where v is the service time). However, in the following examples 
we show that (2.1) is not sufficient for strong stability. In fact, under (2.1) it is still 

possible for the average queue length in [0, t] to diverge to + o as t -- 
o. 

Example 2.1. For simplicity, we first consider a deterministic fluid-flow 

queueing model, as in Oliver and Samuel (1962) and Newell (1971). Let there be 
a single server with constant service rate /. Let the arrival rate A (t) be either b 
or 0, where p. < b. In particular, let 

(2.2) A(t) b, 
7k 

- 
t : 

7'k 

+ dk, 
(2.2) 

A(t)={ d 
0, otherwise, 

where k =1+2+-- + k =k(k +1)/2, d<1 and db <t, so that 

A lim t-'f A(s)ds =db < 

and (2.1) is satisfied. Note that by choosing d sufficiently small, the traffic 

intensity p = 
A/t. can be made arbitrarily small. 

Let x (t) be the content or 'queue length' at time t; it grows at rate b - I 
when 

A (t) = b and declines at rate t when A (t) = 0 and x(t) > 0. The deterministic 
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The asymptotic behavior of queues 147 

processes A (t) and x (t) are depicted in Figure 1, from which it is clear that A (t) is 

strongly stable but not asymptotically periodic and x (t) is weakly stable but not 

strongly stable. For this deterministic flow example, x (k)= 0 for all k and 
x (k + dk) = (b - t)dk 

-- as k - oo, so indeed x(t) is weakly stable but not 

strongly stable. Moreover, since the integral of x (t) in the interval (7k-1, k], 
which is the area of the triangle, is d2k2(b2 - btt)/2tp, 

(2.3) lim inf t-I x(s)ds 
- 

lim -1 d2k2(b2 - bCl)/21L = 
o. t--- n--• Tn k = 1 

xit) 
b=6 

z 
44 

1 3 6 10 15 t 

x (t) 

4- 

3- 

2- 1AA-A 
1 3 6 10 15 t 

Figure 1. The arrival rate A (t) and the queue-length process x (t) for the deterministic fluid-flow 
model in Example 2.1. 

Example 2.2. Consider the Markovian M, /M/1 queue with deterministic 

arrival rate A (t) and service rate t as given in Example 2.1. Let X(t) be the 

queue-length process at time t (number of customers in the system). As in 

Example 2.1, the overall traffic intensity p = A/ t can be arbitrarily small, but the 

time-dependent traffic intensity p, = A (t)/lt is strictly greater than 1 and constant 

during the intervals [7k, Tk + dk], k ? 1. Focusing on these intervals alone, we 

can apply a heavy-traffic limit theorem, Theorem 3.1 of Iglehart and Whitt 

(1970), to establish that 

(dk)-1/2[X(Tk + dk) - X(k) - (b - t )dk] 

This content downloaded from 160.39.21.161 on Mon, 21 Sep 2015 15:40:52 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


148 DANIEL P. HEYMAN AND WARD WHITT 

converges in distribution as k -~ to a proper normal distribution. Hence, 
X(k + dk)---c as k---o, so that X(t) is not strongly stable. With some 
additional work, it is also possible to show that X(k)---0 as k -- oc, so that X(t) 
is weakly stable. 

We now establish a positive result. 

Theorem 2.1. The queue-length process X(t) in an M,/M/c queue with 
general deterministic arrival rate A (t) is strongly stable and all c.d.f.'s in the limit 
set Yf have finite moments of all orders if there exist positive numbers t,,, and T 
such that 

Sto+(n 
+ 1)T 

(2.4)j A (s)ds 
-(cp 

- E)T 

for all n ?0. 

In the following proof we use the standard stochastic order. We say that one 
random variable Y, is stochastically less than or equal to another random 
variable Y2, and write Y1 st, Y2, if for all x 

(2.5) P(Y, > x):! P(Y2 > x). 

Proof. We demonstrate the desired results by constructing other processes 
that are easier to analyze and that are stochastically greater than or equal to the 
given queue-length process X(t). First, we show that the c-server system is 
appropriately dominated by a 1-server system, so that it suffices to let c = 1. 
Second, we show for the 1-server system that X(t) at an arbitrary time t is 
appropriately dominated by X(to + nT) for t, + nT 

?- 
t < to + (n + 1)T, so that it 

suffices to consider the embedded sequence {X(to + nT), n = 1, 2, - - - }. Third, we 
show that the embedded sequence {X(to + nT), n = 1,2, - } is appropriately 
dominated by a stationary sequence associated with a periodic arrival process. 
Finally, we show that a minor transformation of this stationary sequence satisfies 
the recursive definition of the delay sequence in a GI/G/1 queue, so that we can 
complete the proof by applying known criteria for stability and finite moments of 
the delay in a GI/G/1 queue, as contained in Lemoine (1976). 

For any integer c, let Xc (t) be the queue-length process in an M,/IMIc queue 
with individual service rate /Ic and a given Poisson arrival process with 
deterministic intensity A (t). Since the c-server system has the same departure 
rate as the 1-server system when all c servers are busy, 

(2.6) X (t)<t, c + X,(t), t > 0, 

so that it suffices to consider c = 1. A rigorous proof of (2.6) can be given using a 
construction like the one in the proof of Theorem 1 of Sonderman (1979); i.e., 
XA (t) is constructed on the same space with Xi(t) and the two processes are 
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The asymptotic behavior of queues 149 

given the same departure points whenever Xc (t) > c. A related result is 
Theorem 4 of Yu (1974). Henceforth, we assume that c = 1. 

Next, for every t E (to + nT, to + (n + 1)T] and every sample point, 

(2.7) X(t) < X(to + nT) + A,, 

where An is the number of arrivals in the interval (to + nT, to + (n + 1)T], which 
is independent of X(to + nT). By (2.4), An, s, B where B is a Poisson random 
variable with mean (cit - E)T. Hence, without loss of generality, we focus on the 
embedded sequence {X(to + nT), n - 0}. 

We now bound X(t) by the queue length Y(t) in a modified system. We 
obtain Y(t) by not letting the A, arrivals in (to + nT, to + (n + 1)T] begin service 
until to + (n + 1)T. For each t and each sample point, X(t) 5 Y(t). Hence, it 
suffices to consider the embedded sequence { Y(to + nT), n = 1, 2, - }. 

Now let 

(2.8) Y. = Y(to + nT) - An-1, 
n > 1, 

so that the sequence { Y., n 
_ 

1} is distributed as 

(2.9) Y,+1 = (Y, + An-1- C)+, n 
- 

1, 

where {C,} is an i.i.d. sequence of Poisson variables with mean UtT and 

(x)+ =max{x,0}. Since An, -,B,, 
where B, is Poisson with mean (/I- e)T, 

Yn s, Zn for each n, where 

(2.10) Zn+l 
= (Zn + 

Bn-, 
- C)+, ni> 1, 

B,_l- 
C, is independent of Z. and {(B,1 - C,), n = 1} is i.i.d. 

Finally, Z. in (2.10) has the same structure as the waiting time of the nth 
customer in a GI/G/1 queue. Since B, and C, are Poisson and E(B, - C,)= 
- eT, Z. converges in distribution as n - oc to a random variable Z with finite 
moments of all orders; see Lemoine (1976). Let Z' be Z. with initial variable 

Z 0 = 0. From (2.10), Zn, -s, 
Z + Zo for all n. Since ZA increases stochastically to 

Z as n oo, in general Z, -s, 
Z + Zo where Z is independent of Zo. Here X(to) 

plays the role of Zo and X(to)-s,t A (to), where A (to) is the Poisson number of 
arrivals in [0, to]. Hence, Z. is stochastically dominated for all n by a random 
variable with finite moments of all orders. 

Remark. The distribution of Z, the limit of Z. in (2.10), is a stochastic upper 
bound to F, in (1.2). 

3. Periodic arrival processes 

We now consider the M, /M/c queue with periodic Poisson arrival process. 
We assume the waiting room is infinite, but all the results in this section hold for 
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150 DANIEL P. HEYMAN AND WARD WHITT 

finite waiting rooms, for which strong stability is of course trivial. Let the length 
of a period be 1. Thus, the deterministic arrival rate A (t) satisfies A (t + n) = A (t) 
for every t > 0 and positive integer n. The average arrival rate is given by 

A = A (t)dt. 

We assume that A < cat. Theorem 2.1 implies that X(t) is strongly stable, but 
now we can get more. 

Much about X(t) can be deduced from the embedded process X, defined by 

(3.1) X, = X(s + n), n = 0, 1, ... 

for any fixed s E [0, 1). 

Lemma 3.1. The embedded sequence {X,) in (3.1) is an irreducible 

aperiodic positive-recurrent Markov chain with stationary transition prob- 
abilities. 

Proof. Clearly X, is a Markov chain with stationary transition probabilities 
satisfying 

P(Xn,, =j X, = i)>0 

for j = i + 1, i and i - 1 with i, j 0. Consequently, X, is irreducible and 

aperiodic. Hence, X, converges in distribution to a possibly improper limit as 
n -~xo; p. 389 of Feller (1968). However, since X(t) is strongly stable by 
Theorem 2.1, X, is strongly stable, so that the limit must be proper. By Feller, X, 
is positive recurrent. 

As an immediate consequence of Lemma 3.1, we obtain the following results 
about X(t). 

Theorem 3.1. The queue-length process X(t) is asymptotically periodic with 

period 1. 

Define epochs ?k by 

?(o= inf{n :X(n)= O, n =0, 1, 
. 

} 
(3.2) k+1 = inf{n : X(n) = O, n > k}, k 1. 

Theorem 3.2. The process X(t) is regenerative with regeneration epochs ?k 

in (3.2) satisfying Ek < co, k ? 0. 

Proof. Set s = 0 in the definition of X, in (3.1). Visits to state 0 (or any other 
state) for the Markov chain X, are regeneration points for X(t). Since the 
Markov chain is positive recurrent, all first-passage times have finite mean. 
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The asymptotic behavior of queues 151 

Lemma 3.1 and Theorem 3.2 are of interest in themselves, e.g., to obtain 

expressions for the limiting behavior in terms of cycles and to justify the 

regenerative method of simulation (Crane and Lemoine (1977)), but they also 

can be used to establish analogs of Theorems 3.1 and 3.2 for related continuous- 

time processes such as the amount of work (unexpired service time) in the system 
at time t and the number of customers in the queue (excluding customers in 

service). 
We now apply Theorem 3.2 to obtain stronger asymptotic stability results for 

the discrete-time processes describing the system as seen by arrivals. Let T, be 

the epoch of the nth arrival; let Q, be the queue length (number in system) seen 

by the nth arrival; and let D, be the delay of the nth customer before entering 
service. The random variable Q, can be defined as 

(3.3) Q. = 
X(T. - ), n 1. 

For each n, the random variable D, is distributed as ( ) 

d 

(3.4) Dn = U+ - -+ U(o.-c+l)+, n- 1, 

where { U, is an i.i.d. sequence of exponential random variables with mean 

(C40 )-1. 
It is important to note that, in general, {X(Tn), n 

_ 1} need not be strongly 
stable when X(t) is strongly stable and T. ---oo because the Tn are random. 

However, we get this and even more. 

Theorem 3.3. The processes 0, and D. in (3.3) and (3.4) are regenerative 
with finite expected regeneration cycles and are convergent. 

Proof. Let TJk be the index of the first customer to arrive after 4k, defined in 

(3.2). Clearly, the Trk are regeneration points for Q, and D,. Moreover, the 

regeneration epochs do not occur on a periodic discrete set because clearly 

P('qk+l - 
rk 

= 1)> 0. It remains to show that Eqk < 0. Let A (t) be the number 

of arrivals in [0, t]. By the law of large numbers, n-'A 
(n)-- 

A as n --- o, so that 

A()A( k). 
k 4k k 

as k -- oc. On the other hand, by the law of large numbers again, with summands 
which may have infinite mean, Theorem 5.4.2 of Chung (1974), 

k 

(k)= kS = [Ac () - A ()]- E[A () - 
A 

(o)] 

as k - oo. Since rlk = A(5r()+ 1, 

E(r/k -- r/k-l) 
= E(A (!k)- A ({:k-l)) = hE ({1- :o) < 

OC. 
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152 DANIEL P. HEYMAN AND WARD WHITT 

Let D*, Q* and X* be random variables having the limiting distribution of 

D,, Q,, and X(s + n) as n ---> o, respectively, which exist by Theorems 3.3 and 
3.1. By ?3 of Wolff (1982), we have the following relation between the 
distributions of Q* and X*. 

Theorem 3.4. The distributions of QO* and X* are related by 

(3.5) P(Q* x)= ' fP(X* < x)A (s)ds. 

Theorem 3.5. The limiting random variables X*, Q* and D* have finite 
means of all orders. The distribution of D* and Q* are related by 

(3.6) e -x'dP(D* < 
x)t c P((O* - c + 1) k). 

Proof. By Theorem 2.1, X* has finite moments of all orders for all s E [0, 1). 
By (3.5), the distribution of Q* is a mixture of the distributions of X*, so that 

Q* also has finite moments of all orders. By (3.4), 

(3.7) D* = UI + -c+, 

where { U, } is a sequence of i.i.d. exponential random variables independent of 

Q*. Hence, D * has finite moments of all orders, which can be obtained from Q* 
via the Laplace transform (3.6). 

We now obtain various relations between customer averages and time 

averages. Let C(t) be the number of occupied servers at time t. 

Theorem 3.6. With probability 1, 

(3.8) lim t, X(s)ds = A (ED* +/ ) 

and 

(3.9) lim t f C(s)ds = A/k. 

Proof. By Stidham (1974) or Theorem 11.4 of Heyman and Sobel (1982), 

lim t-' [X(s) - C(s)]ds = lim t ' A (s)ds - lim n' Di 
Jo- J--X- f) n - -s - 

and 

lim t' X(s)ds = lim t'- A(s)ds 
. 
lim n ' (D, + V,) 
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The asymptotic behavior of queues 153 

where VY is the exponential service time of the n th arriving customer having 
mean A-', provided the two limits on the right exist in each case. By assumption, 
the average arrival rate converges to A. By Theorems 3.3 and 3.5, plus the law of 

large numbers, e.g., Theorem 6.4 of Heyman and Sobel (1982), the other limits 

on the right are as stated. 

Let W(t) be the workload (i.e., unexpired service time) in the system at time t, 
which is distributed as 

(3.10) W(t) = Vi + - -+ Vx(t) 

for each t, where { Vn } is a sequence of i.i.d. exponential service times with mean 

'-C. The following extends Brumelle's (1971) result for GI/GIc queues. 

Theorem 3.7. With probability 1, 

lim t- W(s)ds = A ( -'ED* + -2). t---*OC 
Proof. Apply the generalization of L = A W, H = A G, as contained in 

Heyman and Stidham (1980) or p. 408 of Heyman and Sobel (1982). Let the basic 

integrable real-valued function f, (t) be the remaining service time of customer n 

at time t, as shown in Figure 11.4 of Heyman and Sobel. The rest of the argument 
is as in Examples 11.11. and 11.12 of Heyman and Sobel. 

4. Stationary versions 

As given, the continuous-time processes X(t) and W(t) and the discrete-time 

processes Q, and 
Dn 

are not stationary. Also the arrival process A (t) is not a 

stationary point process. However, it is easy to construct stationary versions, so 
that the periodic case can be put in the framework of Franken et al. (1981). First, 
if 

(4.1) A(t) = A(t + O), t 20, 

where 0 is a random variable uniformly distributed on [0, 1], then the intensity is 

a stationary ergodic process; e.g., p. 616 of Rolski (1981). The associated arrival 

process 

(4.2) A'(t) = 
(l A(s)ds) , 

t 0, 

where II is a Poisson process with unit intensity independent of 0, is a stationary 
point process. The associated queue-length process X'(t) = X(t+ 0), t ?0 

where X'(0) 
_ 

X? and A'(t) in (4.2) is the arrival process, is the stationary 
version of X(t). 
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For the associated embedded sequence Q,, the stationary point process A'(t) 
in (4.2) is replaced by its synchronous or Palm version (the sequence of 
interarrival times is stationary); see Franken et al. (1981). With this arrival 

sequence and with initial distribution Q*, the process Q, becomes stationary. 
For example, Theorems 3.6 and 3.7 can be obtained from these stationary 
versions; p. 106 of Franken et al. 

5. General service times 

Extensions are not difficult for non-exponential service times, but we do not 

try for maximum generality in this direction. First, for service-time distributions 
that are stochastically less than or equal to the exponential distribution, stability 
in the setting of Theorem 2.1 and the regenerative structure in the setting of 
Theorem 3.2 follow for X(t) and the related processes by stochastic dominance; 
Theorem 8 of Whitt (1981). Second, for service-time distributions of phase type 
as in Chapter 2 of Neuts (1981), Theorem 3.2 can be extended by considering the 
Markov chain obtained by appending to the variable X, in (3.1) supplementary 
variables indicating the phase of each customer in service. For special phase-type 
distributions, we give a quick proof. Suppose the service-time distribution is a 
finite mixture of convolutions of a single exponential distribution. Let 

Vn 
be the 

number of phases in the system at epoch s + n. When the number of phases 
exceeds cm, where m is the maximum number of phases in a service time, then 
we know all c servers are busy. Hence, if A < cAl as in Section 3, then there is a 

positive E and an integer ko such that 

(5.1) 
E(Vt-n 

- I V= k)< - E 

for all k - ko. As a consequence, we can apply Pakes (1969) to establish strong 
stability for the chain Vn. Thus Lemma 3.1 and the other results in Section 3 hold 
for Vn. For Xn defined by (3.1), we have Xn, Vn for each sample point, so that 

everything carries over to Xn as well. 
Even though the result above does not cover all service-time distributions with 

finite mean, it is close because even these special phase-type distributions are 
dense in the family of all distributions on the real line in the usual topology of 
weak convergence. Moreover, for general service-time distributions that are 

stochastically less than or equal to such a phase-type distribution, the previously 
mentioned stochastic dominance can be applied again. 

More generally, one can consider the vector-valued Markov chain obtained by 
appending to X, in (3.1) supplementary variables indicating the residual service 
time of each customer in service. As in the case of the standard GI/G/c model, 
it is perhaps easiest to analyze the Kiefer-Wolfowitz workload vector, obtained 
by assigning the customers and their service times upon arrival to the server who 
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will eventually serve them; see Whitt (1982) and references there. Here we 
would look at the embedded sequence obtained by considering the times s + n, 
n 

- 
1. This embedded workload sequence can be analyzed using the generaliza- 

tion of Pakes (1969) criterion (5.1) in Tweedie (1975). 
Of course, the analysis gets much more involved with these supplementary 

variables, taking us beyond the relatively elementary methods used in this paper. 
For general results about convergence in distribution, with independence 
relaxed so that there no longer are embedded Markov chains or regenerative 
structure, the methods in Franken et al. (1981) and references there seem 

appropriate. 
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