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H=AG AND THE PALM TRANSFORMATION

WARD WHITT,* AT & T Bell Laboratories

Abstract

We show that the stationary version of the queueing relation H = AG is
equivalent to the basic Palm transformation for stationary marked point
processes.
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1. Introduction and summary

The purpose of this note is to show that the stationary version of the queueing relation
H = AG is actually equivalent to the fundamental Palm transformation for stationary marked
point processes, as discussed in Franken et al. (1981), Rolski (1981), Baccelli and Brémaud
(1987), Chapter 7 of Walrand (1988), and Brandt et al. (1990). Drawing on Franken (1976),
Stidham (1979), (1982) first showed that a stationary version of H =AG follows from
Campbell’s formula; see Theorem 6.3.1 of Brandt, et al. (1990) and Theorem 6.2 of Whitt
(1991). (A variant of this result was also established by Miyazawa (1979).) Below we show
that the stationary version of H = AG also implies Campbell’s formula and that Campbell’s
formula implies the full Palm transformation.

The history of the queueing relations L = AW and H = AG is reviewed in Whitt (1991). The
derivation of results related to H = AG from Campbell’s formula in Franken (1976), Section 3
of Miyazawa (1979) and Section 4.2 of Franken et al. (1981) are for the special case of the
G/G/s queue with the first-come first-served (FCFS) discipline. However, as noted (evidently
for the first time) on p. 238 of Whitt (1991), the general model considered by Stidham (1979),
(1982), Brandt et al. (1990) and Whitt (1991) can always be regarded as a special case of the
G /G /= model by simply interpreting the time in system of each customer as his service time.
A major contribution of Stidham (1979), (1982) was to emphasize the full generality.

Establishing the reverse implication (that H = AG implies Campbell’s formula), which we
do here, is interesting because it helps reveal a greater unity in the overall theory. Previous
contributions toward. establishing greater unity are contained in Brémaud (1991), Miyazawa
(1990) and Sigman (1991). Brémaud (1991) showed that the rate conversation law (RCL) of
Miyazawa (1983), (1985) is equivalent to the Palm inversion formula. (The RCL was
originally established by Miyazawa as an elementary consequence of the Palm inversion
formula.) Miyazawa (1990) then showed directly that L = AW and Mecke’s formula (or the
generalized Campbell formula) are consequences of the RCL. (These general relations can
also be deduced from Brémaud (1991), because Mecke’s formula can be deduced from the
Palm inversion formula; for example, see Section 3.2 of Rolski (1981).) Finally, Sigman
(1991) established an equivalence between the sample-path-average versions of H = AG and
the RCL. Given these results, our result should not be considered surprising. Indeed, an
alternative to our proof is a stationary analog of Sigman (1991), which can be done, combined
with Brémaud (1991), but the direct proof here is different. Sigman (personal communica-
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tion) has recently also shown that the Palm inversion formula can easily be deduced from
H=.G.

All these results show that there is a greater unity in the overall theory than previously
realized. This unity is further emphasized in a new paper by Brémaud (1993). Brémaud
(1993) establishes generalizations of the basic Palm formulae similar to extensions of the
sample-path version of H=AG in Glynn and Whitt (1989). Brémaud shows that the
equivalence established here can also be demonstrated by directly constructing H = AG as an
application of the generalized Campbell formula instead of the Campbell formula. Indeed, he
points but that H = AG can essentially be identified with the generalized Campbell formula.

In Section 2 we relate Campbell’s formula to the basic Palm transformation and in Section
3 we relate H = AG to Campbell’s formula.

2. The Palm transformation and Campbell’s formula

Let (A, M)= {(A,, M,): —o <k <=} be a synchronous (discrete-time) stationary marked
point process, with A, being the kth point, A, =0 and M, being the kth mark. We assume
that the point process A has finite intensity and is simple (A, < A,., for all k with probability
1). Let (A’, M’) be the associated (continuous-time) stationary marked point process with
Ap<0<A,. Let (A, M)+t={(A—t, M,):—o<k<wm}, corresponding to moving the
origin to ¢. (This notation follows Walrand (1988).)

In this framework the basic Palm transformation can be expressed as

(2.1) A(IP((A, M)e B)=E _i 1((A’, M)+ AL e B, A, e]),

where A is the intensity and /(I) is the Lebesgue measure of the (measurable) set I, which we
can take to be [0, 1]; see (3.1.1) on p. 9 of Baccelli and Brémaud (1987). As indicated on p.
11 of Baccelli and Brémaud (1987), (2.1) is equivalent to the generalized Campbell formula
(or Mecke’s formula), which in turn implies Campbell’s formula.

22) AE [ 16 Myd=E 3 (AL M),
— k=—o0
which is valid for any non-negative measurable real-valued function f.
However, as is evidently reasonably well known, we can also use (2.2) to derive (2.1). To
do so, we consider new marks. The new kth mark is the entire synchronous marked point
process centered at A;; i.e. we let

2.3) M, =(A, M)+ A, for each k.
Then we apply (2.2) to the synchronous marked point process (4, M) = {(A,, Mi): —o <k <
}. We obtain (2.1) from (2.2) by using the function

2.4 . fl@,m)y=1{meB,acl}.

3. H =AG and Campbell’s formula

For the stationary version of H =AG, we have a synchronous marked point process
(A, O)={(As, Ci): —= <k <}, where the kth mark C, is a stochastic process (which we
can take to be in the function space D(—, ») of right-continuous real-valued functions with
left limits for regularity purposes), i.e. C,={C,(t—A;):—o<t<o} Again let primes
denote the associated continuous-time stationary process. The quantities of interest are

3.1) T, = f T Ct-Ay) dt
and - .
(3-2) N@O= 2 Cd.

k=—
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Then Campbell’s formula (2.2) implies H = AG; i.e. if ¢ is a possible sample path of a
function C, and

(3.3) g(a, ¢) =c(a),
then . "
H=EN'(0)=E D>, Ci(0)=E . g(A;, C.)

k=—oo k=—o

=2 fo fg(a, c)P(Cye dc) da
(3.4) -
= Aj j c(@)P(Co(- — Ap) e dc) da

=AEf Co(a) da=AET,= AG,

as shown in p. 201 of Brandt et al. (1990) and Sections 3 and 6.1 of Whitt (1991). Of course,
the canonical example arises when C,(¢) is 1 when customer k is in the system and O
otherwise; i.e. then C,(¢) typically is the indicator function of the interval [A,, D] for some
D, = A,. Then T, in (3.1) is the time customer k spends in the system and N(¢) is the number
of customers in the system at time f. In this canonical example (3.4) produces the stationary
version of L = AW.

Now we want to derive Campbell’s formula in the form (2.2) from H = AG here. Given the
synchronous marked point process (A, M) associated with (2.2), let the marks for H = AG be
defined by

3.5) C(ty=f(A,+1t, M), —00 < t < 0o,

Then (A, C)={(Ai, C(- —Ay): —o <t <o} is a synchronous marked point process. We
obtain (2.2) from (3.4) because

(3.6) H=EN'(0)=E ), Ci(0)=E X f(Ai, M)
k=—cw ko

and

(3.7 AG=AET,= AE j Cy(a)da=AE f f(a, M,) da.
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