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ABSTRACT

We propose a new algorithm for closed queueing networks and related product-form models
based on numerical inversion of the generating function of the normalization constant (or
partition function). It is known that the generating function of the normalization constant often
has a remarkably simple form, but numerical inversion evidently has not been considered before.
We aso show that moments of steady-state distributions can be calculated directly by only
performing two inversions. For closed queueing networks with p closed chains, the generating
function is p dimensional. For these generating functions, the algorithm recursively performs p
one-dimensional inversions. The required computation grows exponentialy in the dimension, but
we show that the dimension can often be reduced dramatically by exploiting special structure.
Other key ingredients in the algorithm are scaling and the computation of large sums efficiently
by Euler summation. Numerical examples indicate that this new agorithm can usefully
complement previous algorithms.

1. Introduction

Closed queueing networks have played a mgjor role in the performance analysis of computer
systems, communication systems and other complex systems. The success of these models is
largely due to the effective recursive algorithms that have been developed for computing the
difficult normalization constant (or partition function), such as the convolution algorithm, MVA
and RECAL, which are reviewed in Lavenberg [8] and Conway and Georganas[7]. While these
recursive algorithms have been very successful, they do encounter difficulties when the model
becomes large in one way or another. Thus, special approaches for analyzing large closed
networks also have been developed, such as the one based on asymptotic expansions of integral
representations in McKenna and Mitra[9].

In this paper we propose a radically different algorithm for calculating the performance
measures of closed queueing networks and related product-form models, which we believe
usefully complements existing algorithms, because it applies to both large and small models. In
contrast to the recursive approach of the non-asymptotic algorithms, we directly calculate the
difficult normalization constant at a desired argument (total population vector) by numerically
inverting its generating function. Moreover, we directly calculate mean queue lengths by
performing only two inversions.
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Our algorithm depends upon having a convenient expression for the generating function of the
normalization constant and an effective numerical inversion algorithm. Generating functions of
normalization constants are discussed in Bertozzi and McKenna[2], but it has long been known
that these generating functions can be useful; see Reiser and Kobayashi [10]. For numerical
inversion, we rely on the LATTICE-POISSON algorithm in Abate and Whitt [1] as extended in
Choudhury, Lucantoni and Whitt [6].

In the present paper we give a concise account of our algorithm for closed queueing networks,
an expanded discussion appearsin [3]. The algorithm also applies to other product-form models.
We treat the special cases of circuit-switched communication network models and resource-
sharing modelsin [4,5]. The basic agorithm is the same for these other models; in [4,5] we show
that the generating functions again have relatively simple expressions and we develop appropriate
scaling agorithms.

2. Multi-Chain Networkswith Only SSand | S Queues

We consider multi-chain closed queueing networks with only single-server (SS) and infinite-
server (I1S) queues. An SS queue is often referred to as a service center with load-independent
servicerate.

In describing the model, to a large extent we follow Bertozzi and McKenna[2]. Let p denote
the number of closed chainsand let M = p be the number of job classes. Let N be the number of
gueues, with the understanding that queues 1, ..., q are SS, while queuesg+1,...,N are IS
As usual, the SS queues must have one of the product-form disciplines such as processor sharing.
In the case of first-come first-served (FCFS), the service times of all job classes at that queue are
assumed to have an exponential distribution with a common mean. We call the pair (r,i) a stage
wherer isajob classand i isaqueue. Let C; be the set of stages associated with the j™ closed
chain. Let K; be the fixed number of jobsin the ™ closed chainand let K = (K4, ..., Kp) be
the total population vector. Let n,; be the number of jobs of class r at queue i and let
n= (n’u-; 1<r<M, 1<i<N) be the job vector, which is the state variable. Let
ni = > ng. Let S(K) bethe state space of allowable job vectors, i.e.,

r=1
S(K) ={n:ny0Z% and Y n; =K;,1<j<p} (2.1)
(r,i)OC;

where Z " isthe set of nonnegative integers. Let e,; bethe visit ratio of stage (r,i), obtained from
solving the traffic rate equations using the routing matrix (which we do not introduce explicitly).
let t,; be the mean service time for classr at queue i and let p,; = t,;e,; be the reative traffic
intensities.

With this notation, the steady-state probability mass function is

p(n) = g(K)™*f(n), (2.2)
where the normalization constant or partition function is
g(K) = > f(n) (2.3)
ndS(K)
and
D M p'_nri D] N M p'_nri |:|
f(n) = Eln ni!' n”_l % MmN n”.u B. (2.4)
|j:1 r=1 "'r- EIj:q+1 r=1 "'rn: 0



As shown in (2.25) of Bertozzi and McKenna[2], the generating function of g(K) has a
remarkably simple form. Allowing for multiplicitiesin the denominator factors, it is
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exp2 Pjoz0
_ [ 9] p K D:l |:|
G(z) = > > 9K 7’ = — (2.5)
Ki=0 K,=0 j=1 o O »p 0"
M o-2 pjiz0
i=1[] j=1 O
wherem, +...+my = gand p;; are aggregate relative traffic intensities, i.e.,
N
Pjo= 2 2 pi ad pji= Y pi,l<i<q, (2.6)

i=q+1 (r,i)dC; (r,i)dc;
We cdlculate the normalization constant g(K') by numerically inverting G(z) in (2.5).

We can also calculate moments by preforming only two inversions. We start with the known
expression for the mean of the number, say q,;, of chain 1 customers at queue i, namely,

Ky
Elqy] = kz pkig(K —k1;)/g9(K) 2.7)
=1

where 1; isthe vector of 0'sexcept alinthej " place; e.g., see (3.258) of Lavenberg [8].

Werewrite (2.7) as

_ Kk h(K) _ Sk
Elg1i] = p1i' —<—1,  h(K) = 3 p1ig(k K2) (2.8)
9(K) K=0
andK, = (Ky, ..., Kp). Wethen seethat the generating function of h(K) is
G(z1/P1i+Z2, - -1 2Zp)

(2.9)

00 0o p K.
H(z) = Y ... 3 h(K)[] 7’ =
j=1

K,=0 K, =0 1-zy

We thus can calculate E[q4;] via (2.8) by two inversions, one to calculate g(K) and the other to
calculate h(K). The same approach can also be used for higher moments|[3].

3. Dimension Reduction

Our approach to inverting the p-dimensional generating functions is to recursively perform p
one-dimensional inversions. In general, the computational complexity is exponential in the
dimension p, but a dramatic reduction in computation often occurs due to special structure if we
perform the one-dimensional inversions in agood order.

We look for conditional decomposition. We select d variables which we are committed to
invert. We then look at the generating function with these d variables fixed, and we write the
function of the remaining p —d variables as a product of factors, where no two factors have any
variables in common. The maximum dimension of the additional inversion required beyond the
designated d variables is equal to the maximum number of the p—d remaining variables
appearing in one of the factors, say m. The overall inversion can then be regarded as being of
dimension d + m. The idea, then, is to select an appropriate d variables, so that the resulting
dimensiond + missmall.

To carry out this dimension reduction, we exploit the representation of the generating function
G(z) asaproduct of factors, i.e.,



G(2) = M G,(2) @)

wherem = 2 and Z; is a subset of {z;,25, .. ., Zp}. (Here the same variable z; may appear in
more than one factor.) We assume that each G;(z;) cannot be further factorized into multiple
factors, unless at least one of the latter is afunction of all variablesin the set Z;.

We now represent the conditional decomposition problem as a graph problem. We construct
a graph, called an interdependence graph, to represent the interdependence of the variables z, in
the factors. We let each variable z, be represented by a node in the graph. For each factor
Gi(z;) in (3.1), form afully connected subgraph I"; by connecting all nodes in the set Z;. Then
m
letlr = D Fi.
i=1
Now for any subset D of I, we identify the maximal connected subsets S; (D) of ' -D; i.e.,
Si (D) is connected for each i, S;(D) n S;(D) = O wheni # jand [] S;(D) = -D. Let [AQ

|
be the cardinality of the set A. Then the dimension of the inversion resulting from the selected
subset D is

inversion dimension = [P+ max{[5; (D)} . (3.2

For the small-to-moderate number of variables that we typically encounter, we can choose a
subset D to minimize (3.2) by inspection or by enumeration of the subsets of I in increasing order
of cardinality. Since our overall algorithm is likely to have difficulty if the reduced dimension is
not relatively small (e.g., < 10), it is not necessary to consider large sets D in (3.2).

4. TheBasic Algorithm

Given the p-dimensional generating function G(z), we first do the dimension reduction
analysis to determine the order of the variables to be inverted. Given that the order has been
specified, we perform (up to) p one-dimensional inversions recursively.

To represent the recursive inversion, we define partial generating functions by

[ee]

. 00 J X
9(z; K1) = 3 - 3 g(K) 2, for 1<j<p, (4.1)
=1

K,;=0 K;=0 i

where z; = (21,25, ...,2)) and K; = (KJ!Kj+l! ..., Kp) for 1<j<p. Let zg and K., be
null vectors. Clearly, K = 'K,z = zp, g% (2, Kps1) = G(2) and g @ (z,K 1) = g(K).

_ Let I; represent inversion with respect to z;. Then the step-by-step nested inversion approach
is

9l D(z_1,K;) = I;[gV(z;,Kj+1)] , 1<j<p, (4.2)

starting with j = p and decreasing j by 1 each step. In the actual program implementation, we
attempt the inversion shown in (4.2) for j = 1. In order to compute the righthand side we need
another inversion with j = 2. This process goes on until at step p the function on the righthand
side becomes the p-dimensional generating function and is explicitly computable.

In each step we use the LATTICE-POISSON inversion algorithm in [1] with modifications to
improve precision and alow for complex inverse function as in [6]. We show below the
inversion formula at the j step. For simplicity, we suppress those arguments which remain
constant during this inversion, letting g; (K;) = 997V (z;_1,K;) and G;(z;) = gV (z;,K+1).
With this notation, the inversion formula (4.2) is
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wherei = V-1, l; isapositive integer and e; representsthe aliasing error, which is given by

€ = ZgJ(KJ + 2anKj)rj2n|"K'. (4.9
n=1

Notethat, forj = 1, g4(K1) = g(K) isreal, sothat G1(z,;) = G1(z;). Thisenablesusto
cut the computation in (4.3) by about one half [3].

To control the adliasing error, we chooser; = 10™% for aj = Y;/2l;K;. Then (4.4) becomes
e = 3 gj(K; + 2nl;K;)107" . (4.5)
n=1

Asis clear from (4.5), a bigger y; decreases the aliasing error. Also, as explained in [6], the
parameter |; controls roundoff error, with bigger values causing less roundoff error. An inner
loop of the inversion requires more accuracy than an outer loop since the inverted values in an
inner loop are used as transform values in an outer loop. With a goa of about eight significant
digit accuracy, the following sets of |; and y; typicaly are adequate: i), = 1,y; = 11,
i)l =13 =2,y =y3 =13, iii)l4 =15 = 1g = 3, y4 = Y5 = yg = 15, assuming that
computations are done using double-precision arithmetic. It is usually not a good idea to use the
same; for all j, because then more computation is done to achieve the same accuracy.

In[1,6] the inverse function was mainly assumed to be a probability, so that the aliasing error
g in (4.5) could be easly bounded. In contrast, here the normalization constants may be
arbitrarily large and therefore the diasing error e; may also be arbitrarily large. Thus, we scale the
generating function in each step by defining a scaled generating function as

Gj(z) = ao;Gj(a;jz) , (4.6)

where ag; and a; are positive real numbers. We invert this scaled generating function after
choosing ao; and o so that the errors are suitably controlled.

5. Scaling

The most difficult aspect of the numerical inversion is choosing the scaling parameters in
(4.6). A genera scaling strategy is described in Section 2.2 of [3] and a detailed scaling
algorithm for the class of closed queueing networks considered here is developed in Section 5 of
[3]. Here we describe the resulting scaling algorithm. From this quick description, it should be
clear that the scaling is not difficult to implement. We set

-a.p . DKJ aij O
aoj =e 7 and aj = Min — , —J, (5.1

bogPio PO

where
[INj; Kj + | d/ZIin N 14 % K (52)
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Pji —i—Zprj- pji >0, m = > mg, (5.3)
k=1 k=1

withpj; = 0if pjj = 0, = 1if p#0 and O otherwise, {pji : 1 < i < q'} being a sorted



j-1

version in decreasing order of magnitude of {p;/(1- 3 pED :1<i<qg'} and
k=1

{m; :1<i<q'}istherearranged versionof {m; : 1 < i < q} associated with { p;;}.

6. Other Algorithm Features

The inversion algorithm given by (4.2) and (4.3) with scaling (4.6) is realy a family of
agorithms, one for each vector | = (I4,...,1,). Our experience is that there exists a minimum
vector | min = (14 min, - - -+ | p,min) SUch that the algorithm will be sufficiently accurate whenever
| = I n. However, the required computation increases as | increases, so we do not want | larger
than necessary. Typicaly 1 min = 1, 12min = l3min = 2, lamin = Ismin = le,min = 3, €tc.

In addition to being a means to achieve greater accuracy, we use the vectors | to verify the
accuracy. If we run the algorithm with | 5 and I g, where I 5 Ig = | i, | A # | g and the answers
agree up to t significant places (with larget, say 6 or higher), then we claim that both answers are
amost surely accurate up to t significant places.

In [1,6] the Euler transformation (or summation) is used to calculate infinite series arising in
the inversion of Laplace transforms. We also use Euler summation here to speed up the
calculation of large finite seriesin (4.3). Consider partia sums

j
S = Y (-1)¥a . (6.1)
k=0
Euler summation approximates S,, by
m-1 m
E(mn) =S, + (-1)"1'y (-pk2 -k Daka = F EE‘%"‘SM, (6.2)
k=0 k=0

where A is the finite-difference operator. We use the Euler sum on the inner sums in (4.3)
whenever K; islarge. Wetypically usen = 11and m = 20 or 40.

7. A Numerical Example

In this section we give numerical results for our algorithm applied to one closed queueing
network example. Other examples are discussed in [3]. We calculate the normalization constant
g(K) in (2.3) for specified population vectors K from the generating function G(z) in (2.5). Thus
the parameters are the number of chains, p, the number of distinct single-server queues, q’, the
multiplicities m;, the aggregate relative traffic intensities pj;, 1< j<p, 0<i <q’, and the
desired population vector K.

Note that the normalization constant g(K) only depends on these parameters p,q’ ,m;,p;j; and
K. Hence, we do not fully specify the model. In particular, we do not give the routing
probabilities or the mean service times. Thus, there are many detailed models consistent with our
partial model specifications. One possible routing matrix consistent with the data that we provide
is a cyclic routing matrix, all of whose entries are 0's and 1's, which yields visit ratios e, = 1
for all stages (r,i). If we consider thiscase, thent,; = py; and the throughputs coincide with the
normalization constant ratios g(K —1;)/g(K). We display some of these ratios along with the
values of g(K) in our numerical results below.

The total number of single-server queuesis q = 50. However, we consider ' = 10 distinct
gueues, each with multiplicity m; = 5. This reduces the computational complexity for our
algorithm, but not for other algorithms. We aso alow for an arbitrary number of IS queues, with
amost no additional computational complexity. Our example has p = 11 chains, but the
inversion dimension can be reduced from eleven to two. The numerical results are shown to



seven significant figures, which is more than adequate for most applications. However the
realized accuracy was found to be 8-12 significant places. Thiswas determined by using two sets
of I values for each case. Each number below is expressed as aek, which means ax 10X, Even
with the scaling, some of the normalization constants assume values outside the range of
computation on the computer. This difficulty is circumvented by working with logarithms [3].
We used Euler summation whenever K; exceeds 31, which resulted in the computation of
3lterms. Our experience is that Euler summation works consistently, providing tremendous
computational savings whenever aparticular K; islarge.

For this example, the aggregate relative traffic intensities are:
Pjo = 5j - 10forj=23,...,11,
pj = 0.1(j-1) for j=2,...,11,
p1j =1+ 01(j-1) for j=2,...,11, (7.1)

with p;; = Ofor all other (j,i). The generating function for this exampleis
Op 4, p i
G(2) = expOY ponjD/I_I E]ll_piizi_plizldn (7.2
=1 0i=2 b

and the interdependence graph is given in Figure 1 below.

Figure 1. Interdependence graph I" for the generating functionin (7.2)

Thus, by inverting z, first and then z,, ..., z1; independently, we succeed in reducing the
inversion dimension from 11 to 2. The numerical results for eight cases are given in Table 1
below.

U chain populations g U U
a<j for2 < j < 11, K, Enormalization constant g(K) Eratio g(K-11)/g9(K) B
O 2 2 O 1.235628625 0 1.492001e-2 0
. 2 20 o 7.503087€13 o 12966521 o
0 2 200 5.970503e129 0 4477497e-1 0
0 2 2000 [ 1.937826€683 0 4.982502e-1 0
0 5(j-1) 2 O 3.004462e107 0  8039024e-3 O
O 5(j-1) 20 U 1.677866€133 0 6.803960e-2 O
B 5(j-1) 200 S 8.0321226260 g 2.858885¢-1 g
0 5(j-1) 2000 [ 1.617153€926 0 4.746674e-1 0

Table 1. Numerical resultsfor the Example.



In each case, theinversionsfor variables z, ,z5, . . . , 11 are done explicitly, using
0 u)
ex Z ; -k
(@) - p%)m oo S EP'OD Oy +Ki-k-10 pii
g®(21,K2) = — w2 = 0 e
M-pung 7240 . 0L - prizag

i=2

Henceno|; isinvolved for 2 < j < 11 and only a one-dimensional algorithm is required for this
example. The accuracy is checked by doing the calculation withl; = 1andl; = 2.
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To represent the recursive inversion, we define partial generating functions by

i [e4] (o] ] .
90(z;,Kjs1) = 3 - 3 g(K)[1z" for 1<js<p, (2.1)
K,=0 K;=0 i=1
where z; = (21,25, ...,2)) and K; = (KJ'K“l’ ..., Kp) for 1<j<p. Let zg and K .1 be

null vectors. Clearly, K =K,z = zp, g® (2, Kps1) = G(2) and g (z,K 1) = g(K).

_ Let I; represent inversion with respect to z;. Then the step-by-step nested inversion approach
is



g(J_l)(Zj_l,Kj) = Ij[g(j)(Zj, Ki+1)l, 1<j<p, (22)

starting with j = p and decreasing j by 1 each step. In the actual program implementation, we
attempt the inversion shown in (2.2) for j = 1. In order to compute the righthand side we need
another inversion with j = 2. This process goes on until at step p the function on the righthand
side becomes the p-dimensional generating function and is explicitly computable. By simply
relabeling the p transform variables, we see that the scheme above can be applied to the p
variablesin any order.

In each step we use the lattice-Poisson inversion algorithm in Abate and Whitt [1,2] with
modifications to improve precision and allow for complex inverse function as in Choudhury,
Lucantoni and Whitt [9]. We show below the inversion formula at the j " step. For simplicity, we
suppress those arguments which remain constant during this inversion, letting
9;(K;) = gU™9(z_1,K;) and G;(z) = gV (z;,K;.+1). With this notation, the inversion
formulais

o1 Ttk K,-1 Tt (kg +1;K)
1 = T _ TK
giKj) = —— S e z (-1*Gj(rje "V ) - g, (2.3)
2|jKj er k,=0 k=-K;

wherei = V-1, I; isapositive integer and e; representsthe aliasing error, which is given by

2nl;K;

Z g;(K; + 2nl;K;)rj™ (2.4)

Note that, forj = 1,9,(K1) = g(K) isrea, sothat G;(z;) = G;(z7). Thisenablesusto
cut the computation in (2.3) by about one half. Forj = 1, wereplace (2.3) by

-1k,
Iy
1 Il
9:(Ky) = Wﬁsml) (-1'Gi(-r1) +2 3 e
1M k,=1
O
K,-1
Z G, EL Tt (K +1,K)/14 klé_ e . (2.5)
O
To control the aliasing error, we choose
Y
rp=10 2% (2.6)
Inserting (2.6) into (2.4), we get
e = zlgj(Kj + 2nljK;)1070" (2.7)
n=

As s clear from (2.7), a bigger y; decreases the aliasing error. Also, as explained in [9,10],
the parameter |; controls roundoff error, with bigger values causing less roundoff error. Aninner
loop of the inversion requires more accuracy than an outer loop since the inverted values in an
inner loop are used as transform values in an outer loop. With a goa of about eight significant
digit accuracy, the following sets of |; and y; typicaly are adequate: i)l, = 1,y; = 11,
||)|2 = |3 = 2, Yo = VY3 = 13, |||)|4 = |5 = |6 = 3, Y4 = Y5 = Y6 = 15, aSJmlng that
computations are done using double-precision arithmetic. It is usualy not a good ideato use the
samel; for al j, because then more computation is done to achieve the same accuracy.



In [1,2,9] the inverse function was mainly assumed to be a probability, so that the aliasing
error €; in (2.7) could be easily bounded. In contrast, here the normalization constants may be
arbitrarily large and therefore the aliasing error e; in (2.7) may also be arbitrarily large. Thus, in
order to control errors, we scale the generating function in each step by defining a scaled
generating function as

Gj(Zj) = GojGj(GJ‘ZJ‘) , (28)

where ao; and o are positive real numbers. We invert this scaled generating function after
choosing o ; and a; so that the errors are suitably controlled.

Let g; (K;) represent the inverse function of Gj(z;). The desired inverse function g; (K;)
may then be recovered from g (K; ) by

9;(K;) = agitaj “gi(K;) . (2.9)
To compute steady-state performance measures, we are typically interested in ratios of

normalization constants. Let 1; be the vector with a 1 in the | ! place and 0's elsewhere. Note
that theratio g(K —1;)/g(K) can be computed in terms of the scaled inverse function g, (K1) by

K-1. “i (K Tk
a( i) _ g1’ (K1) _ O(1211( 1) ’ (2.10)
g(K) gl(Kl) gl(Kl)
wheregy! (K1) = 9@ (z0, K1 -1) = g(K—1j)andsimilarlyforg1j(K1).
__—appe _ s OKa U
agj =e ' and a; = Min O— , —[, (5.41)
bogPio P O

where

121 K;
ONjj Kj +1 /2K

ai =0y —2 0, (5.42)
& D:1K1+2|JKJ+ID

p
Nij =m-1+ Z Kkr]k, (543)
k=j+1
0 ~
0 pji =0
Bi=0, « (5.44)
O Z pjka pjl >0,
O! k=1
i
m = 3 mg, (5.45)
k=1
Nk = : (5.45)
if P =0

with {E)J-i_ :11 <i<q'} being the sorted version (in decreasing order of magnitude) of
i- ~

{pji/(1- Y pmD :1<i<q'} ad {M:1<i<q'} is the rearanged version of
k=1

{m; : 1 <i < q} associated with{ pj; }.



8. Numerical Examples

In this section we give numerical results for our algorithm applied to four closed queueing
network examples. For each example, we calculate the normalization constant g(K) in (1.2) and
(4.3) for specified population vectors K from the generating function G(z) in (4.5). Thus the
parameters are the number of chains, p, the number of distinct single-server queues, q', the
multiplicities m;, the aggregate relative traffic intensities pj;, 1< j<p, 0<i <q’, and the
desired population vector K.

Note that the normalization constant g(K) only depends on these parameters p,q’ ,m;,p;; and
K. Hence, we do not fully specify the models below. In particular, we do not give the routing
probabilities R,; 5 or the mean servicetimest,;. Thus, there are many detailed models consistent
with our partial model specifications. One possible routing matrix consistent with the data that
we provide is acyclic routing matrix, all of whose entriesare 0'sand 1's, which yields visit ratios
e = 1 for al stages (r,i) from (4.2). If we consider this case, then t,; = p;i and the
throughputs 6,; in (4.7) coincide with the normalization constant ratios g(K —1;)/g(K). We
display some of these ratios along with the values of g(K) in our numerical results below. We
note that the throughputs for any more detailed model can be found by solving (4.2) for the visit
ratios e,; and then applying (4.7).

For the first three examples, the total number of single-server queues is the same, hamely,
g = 50. However, in each example we consider ten distinct queues, each with multiplicity five.
Thus, q' = 10 in each example. This reduces the computational complexity for our algorithm,
but not for the others. We aso alow for an arbitrary number of 1S queues, with amost no
additional computational complexity. Multiplicities and the presence of IS queues evidently
complicate the theory of residues[3].

What is different in our examples is the number of closed chains. The first example has only
one chain, and is thus the easiest example. The second example has four chains, while the third
and fourth examples have eleven chains. However, the dimension can be reduced from eleven to
two in the last two examples, whereas the dimension cannot be reduced below four in the second
example, so that for our algorithm the second example is most difficult. The last case of the
second example took about an hour on a SUN SPARC-2 workstation.

The numerical results below are shown to seven significant figures, which is more than
adequate for most applications. However the realized accuracy was found to be 8-12 significant
places. This was determined by using two sets of |; values for each case. (The parameter |;
appears in (2.3); see Section 2.3.) Each number below is expressed as aek, which means ax 10,
Even with the scaling, some of the normalization constants assume values outside the range of
computation on the computer. This difficulty is circumvented by working with logarithms, as
discussed in Section 2.2.

For all the examples, we used Euler summation whenever K i exceeds 31, which resulted in
the computation of 31terms. Euler summation works in all these examples, providing
tremendous computational savings whenever aparticular K; islarge.

8.1 Choosing Scaling Parameters

Note that the inversion procedure in (2.2) is a nested procedure, so that scaling done at one
step will aso modify the functions in subsequent steps. By (2.7), the aliasing error term for
computing g; (K;) from the scaled generating function G; (z;) in (2.8) is

g = 3 gij(K; + 2n;K;)107" . (211)

n=1



Since the quantities needed in product-form models typically involve ratios of normalization
constants, we really care about the relative error and not the absolute error. The relative error is
given by

€]

gj(K;) n=1 g; (K;)
so that it can be bounded via

g = onn (2.12)

U U
= =g (K; + 2nl;K; _
e § 090 1K) Dygun (2.13)
— U (K:)
n=1 GilRy 0
Let
/n
o
=g (Ki + 2nl; K;
Cj = Max Dgg’( ‘ 1K) (2.14)
" O g; (Kj)
U
Then
0 .y C.107Y .
Eos ycCro s I Hcj107 . (2.15)
n=1 1-C;107"
Hence, to limit the aliasing error, we want C; in (2.14) to be not too large, i.e.,
C; << 10" . (2.16)

Our main purpose in scaling is to satisfy (2.16), which in turn controls the relative aliasing error.
However, note that only the scale parameter a; is useful for this purpose since C; is independent
of the other scale parameter o o;. We use the other scale parameter ag; to make it more likely
that g (K;) does not exceed the range of floating point computation that is, we want

107% < g;(K;) < 10°, (2.17)

where (1072, 10%) is the range of floating point computation. However, scaling to satisfy (2.17)
is not always possible. Therefore, we use a second measure to avoid floating point range
exception. We compute and store only the logarithms of large quantities or the ratios of large
quantities.
Here is what we do: All computations involve either products or sums. In the case of
products, we express the logarithm of the product as the sum of the logarithms. In the case of a
n
sums = > aj, wewrite
i=1
n
s=ai(1+ 3 (ai/ay)), (2.18)
i=2
where (a0 = max{[a;[}, and then
|



logs = loga; + log(1l + %(ai/al))
i=2

n
=loga; + log(l + > exp(log aj—logaj)) . (2.19)
i=2
To implement (2.19) we need to identify the largest term in the sum (2.18). For us the relevant
sumis(2.3). Thelargest term there is easy to identify, it correspondstok,; = k = 0.

An obvious problem with condition (2.16) is that we do not know g;(K;) explicitly.
However, since 10"’ is very large, it should be possible to satisfy (2.16) by roughly controlling
the growth rate of g; (K;) based on the structure of the generating function. Specifically, in many
casesit is possible to express g; (K ) as

m
gj(Kj) = 2 AiBi(Kj) , (2.20)
i=1
where the A;’s are usually unknown constants, but the B;’s are known functions of K;. Indeed,

we show that this structure holds for the closed queueing networks in Section5. Then our
strategy is to identify the fastest growing function B; (K; ), and introduce a scaled version

Bi(K;) = agja’Bi(K;) (2.21)
asin (2.8), so that
DD /n
Max [H——_ <B, (2.22)
" O Bi (K;)
OJ

where (3 is of the order of 1. Indeed, we identify the fastest growing function by requiring that
(2.22) hold for all i. For the scaling of closed queueing networks in Section 5, we find that it
suffices to consider only the case n = 1in (2.22). Given (2.22), we use the scaling in (2.21) in
(2.8).

We have just described a general scaling strategy. We present a specific scaling algorithm for
aclass of closed queueing networks that follows this strategy in Section 5. With the aid of (2.22),
we are able to treat multiplicities in the factors of the generating function. However, to treat near
multiplicities, we must go beyond (2.22), as we do in Section 5.5. Hence, (2.22) should be
regarded only as a reasonabl e starting point. Difficult cases will require refinement.

8.2 Verification of the Accuracy of Computation

9. Dimension Reduction by Decomposition

In genera, the inversion of a p-dimensional generating function G(z) represents a p-
dimensional inversion whether it is done directly or by our proposed recursive technique.
Fortunately, however, it is often possible to reduce the dimension significantly by exploiting
specia structure. To see the key idea, note that if G(z) can be written as a product of factors,
where no two factors have common variables, then the inversion of G(z) can be carried out by
inverting the factors separately and the dimension of the inversion is thus reduced. The factors
can be treated separately because factors not involving the variable of integration pass through the
sum in (2.3). We call this an ideal decomposition. It obviously provides reduction of
computational complexity, but we do not realy expect to be able to exploit it, because it
essentially amounts to having two or more completely separate models, which we would not have
with proper model construction. (We would treat them separately to begin with.)



Even though ideal decomposition will virtually never occur, key model elements (e.g., closed

chains) are often only weakly coupled, so that we can till exploit a certain degree of
decomposition to reduce the inversion dimensionality, often dramatically. Theideais to look for
conditional decomposition. This dimension reduction isillustrated in Section 5.4 and Examples 3
and 4 in Section 7.

10. Closed Queueing Networks

In this section we consider multi-chain closed queueing networks with only single-server

gueues (service centers with load-independent service rates) and infinite-server queues. This
section closely follows Sections 2.1 and 2.2 of Bertozzi and McKenna [3], which in turn closely
follow Bruel and Balbo [5]. However, we do not consider the most general modelsin [3,5]. We
use the following notation:

p = number of closed chains
M = number of job classes (M=p).

N = number of queues (service centers). Queuesl,...,q are assumed to be of the single-server
type and queues g +1,...,N are assumed to be of the infinite-sever (1S) type. Asusual, for the
single-server queues, the service discipline may be first-come first-served (FCFS), last-come
first-served preemptive-resume (LCFSPR) or processor sharing (PS). In the case of FCFS,
the service times of al job classes at a queue are assumed to be exponential with the same
mean.

Ryi,sy = routing matrix entry, probability that a class r job completing service at queue i will
next proceed to queue j as a class s job for 1<i,j<N, 1<r,s<M (i.e., class hopping is
allowed). The pair (r,i) isreferred to as a stage in the network.

class vs. chain: Two classes r and s communicate with each other if for some i and j, stage
(s,]) can be reached from stage (r,i) in afinite number of steps and vice versa. With respect
to the relation of communication, al the classes can be divided into mutualy digoint
equivalence classes called (closed) chains (ergodic setsin Markov chain theory). All classes
within a chain communicate. No two classes belonging to different chains communicate.
Since we are considering the steady-state distribution of a model with only closed chains, we
do not need to consider any transient stages, i.e., stages (r,i) that will not be reached infinitely
often.

K; = number of jobsinthej™ closed chain, 1 < j < p, which isfixed.
K = (Kq,...,Kp), the population vector, specified as part of the model data.
n,; = number of jobsof classr in queuei, 1<r<M, 1<i<N.
M
n; = number of jobsin queuei, n; = > n;. 1<i<N.
r=1
n = (n,), 1<r<M, 1<i<N, the job vector, the queue lengths, the state variable.

C; = set of stagesinthej™ closed chain. Clearly, ¥ n; = K|, 1<j<p.
(r.i) o,

gji= X N, number of jobsfrom chainj at queuei.
r:(r,i)dc;

s(K) = state space of allowable job vectors or queue lengths (including those in service), i.e.,



O 0
S(K) = m:n;0Z" and S ny = KJ,1<]<pD (4.2)
O (r,i)Og;

where Z " isthe set of nonnegative integers.
e = vigitratio, i.e., solution of the traffic rate equation

> &R = €5 fordl (s,j)0Cy and 1l<ks<p. (4.2
(r,i)0Cy

For each chain thereis one degree of freedomin (4.2). Hence, for each chain j, the visit ratios
{e& : (r,i)0OC;} are specified up to aconstant multiplier.

t,i =the mean servicetimefor classr at queuei.
Pri = tiier, 1<r<M, 1<i<N, thereative traffic intensities.
The steady-state distribution is given by (1.1) and the partition function by (1.2), where

I' Nyi r M

0
q
f(n) = E{n T pn - (43)
|j: r=1 Dj +1 r=1 ri- |:|
N
Pio = 2 X priadp; = Y pgfori=1,2,..,q, the aggregate relative traffic
i=q+1(r,i)0C; (r,i)oc
intensities.

The generating function G(z) is given by (1.4), using (1.2) and (4.3). Asshown in (2.25) of
Bertozzi and McKenna[3], G(z) can be expressed simply as

Op O
exp2 Pjoz0
= O

G=1

G(z) = . (4.4)
qg U p
o= 2 ei0

In general, there may be multiplicity in the denominator factors of (4.4) if two or more
gueues are identical with respect to visits by customers of all classes. In such a situation (4.4)
becomes

Op O

eXpDZpJOZ]D

=1 O
G(z) = , 4.5
(2) 0 > T (4.5)

MNao- 2pjiz0

i=10 j=1 O

where

Zm, = Q. (4.6)

For us, (4.5) is the relevant form, not (4.4); i.e., the key parameters are p and q'. Our
algorithm simplifies by having different queues with identical single-server parameters.
(Evidently the reverseistrue for the theory of residues[3].)



Given the normalization constant g(K) in (1.2) and (4.3), we can directly compute the
steady-state probability mass function p(n) in (1.1). Moreover, severa important
performance measures can be computed directly from ratios of normalization constants. For
example, the throughput of classr jobs at queuei is

9(K-1j)
" (K)

where 1; isthe vector withalinthe| " place and 0's elsewhere; e.g., see p. 147 of [26]. The
means E[n;] and E[q;;] and higher moments E[n] and E[qf] can aso be computed
directly from the normalization constants, but the standard formulas involve more than two

normalization constant values. We develop an improved algorithm for means and higher
moments via generating functions in Section 6 below.

B8, =e for (r,i)0OC; , 4.7

11. Scaling for Closed Queueing Networ ks with Single-Server and Infinite-Server Queues

In this section we indicate how to choose the scale parameters o o; and o in (2.8) in order to
invert the generating function G(z) in (4.5) for the class of closed queueing networks considered
here. Our final scaling algorithm is given in Section 5.5 beginning with (5.41). We develop it
by starting with more elementary cases and work our way up to the full generality of (4.5). The
general strategy has already been described in Section 2.

11.1 Scaling for a Single Chain with Only Single-Server Queues

In this case we have (4.5) with p = 1 without the term in the numerator corresponding to
infinite-server queues. Using (2.8), we see that the scaled generating function is given by

o1
q’ "
i|:|1 Ell = Pail1Z1

When there are no multiplicities (i.e.,, m; = 1for al i) and one aggregate relative traffic intensity
P is dominant (substantially larger than all others), it is easy to see that we should have
o, = l/max{p1;}. We now give amore careful analysis to account for the multiplicities. See
Section 5.5 below for a discussion of near multiplicities.

G(z1) = (5.1)

Carrying out a partial fraction expansion with (5.1), we get

_ q' m A”
G(z1) =dm > X = (5.2)
=1 =1 gl T P1il1Z1

where 0

O

. 0 . o0

_q\yMi—) m; =]
A = (1) —0_G@)ln (53)
0o (M =j)!(Pai0y) ooz oo .

zZ, = — .
P10y

In general, the constants A;; in (5.3) are difficult to compute (except when m; = 1 for all i), so
we will treat them as unknown constants. Through a term-by-term binomia expansion and by
collecting the coefficient of zfl , we get
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qg m _
g(Ky) = > 2A;B;j(Ky), (54
i=1 j=1
where
= +K,-1H «, k,
Bij (K1) = 0‘015 Kl Py art . (5.9
O 10

Note that (5.4) is of the same form as (2.20). Hence, we can get the scale parameters by focusing
on the fastest growing function Bj; (K1), and imposing condition (2.22). Note that, for any given
i, the term corresponding to j = m; is the fastest growing; therefore we concentrate only on that
term. It can be shown that the most restrictive condition in (2.22) comes from n = 1 and that
(2.22) will be satisfied with 3 = 1 by setting

Opp =1 and oa; = Min{a;/pq} , (5.6)
|

where
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]
L for m =1
P = 5.7
a; E[m‘_l Ko+ i 21iKs (5.7)
O 0 for m > 1.

Lhj=1 K1+ 21Ky +j g
From (5.6) and (5.7), we see that we do indeed have the obvious scaling with a; = 1 when

m; = 1 for al i. Moreover, we have this same scaling when K, becomes very large, because
a; » 1foraliasK; - cowhenm; > 1.

Note that in this case we do not use o o to satisfy (2.17), but as explained in Section 2 we do
not have any problem if (2.17) is not satisfied, because we work with logarithms.

11.2 Scaling for a Single Chain with Single-Server and I nfinite-Server Queues

In this case the term in the numerator of (4.5) corresponding to the infinite-server queues has
to beincluded. Instead of (5.2), from the partial-fraction expansion we get

_ qg m Aijepmalzl
G(za) =0 > X . (5.8)
t=1=1 Sl T Paila1za
Atfirst assumem; = 1forali. For easeof notation, alsolet A;; = A;. Then (5.8) becomes
. q Ai ef31o(1121
G(z1) = do 3 5 (5.9)
=11 = P1i01Z1

Collecting the coefficient of zfl on theright side of (5.9), and after some manipulation, we get

g(Ky) = 3 ABI(Ky) | (5.10)
i=1

where
Ki (p1o/pai)!

Bi(Ky) = 0(01(F>1i0‘1)K1 2

. (5.11)

Again (5.10) is of the same form as (2.20). The fastest growing term in this case is the one
corresponding to the largest p,;. Let

P1max = Miax{pli} : (5.12)

To proceed further with (5.11), we consider two cases: In Case 1, p10/P1max < Kq, While in
Case 2, p1o/P1.max > Ky . In Case 1, by noticing the connection to the Poisson distribution, it
can be shown that

| j
ie(pm/pl,max) < Z (plO/lemaX) < e(Plolerrex)
2 120 J!

Using (5.13), we see that condition (2.22) is satisfied (with B = 2) by making the following
choices of scale parameters

forl =2 Ky . (5.13)

ag = e Po/Pemd and oy = 1/pg e (5.14)

In Case 2, relation (5.13) does not hold. In this case we control the growth rate of the fastest
growingtermin (5.11). Let B; (K1) represent thisterm, which is given by
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K, K,
(a1p10) Ao1(01P10)
Ky! V2TRG Kyte

The approximate expression in (5.15) is obtained by Stirling’s approximation to the factorial.
Note that B; (K1) isindependent of i (since Case 2 ensuresthat p1o/p1; > K4 for al i). Therefore,
we can control the growth rate of Bj (K ) for al i by choosing the scale parameters to cancel out
the two dominant terms in the expression for the factorial. Thisis done with the choice

B (K,) = (5.15)

K1

Oop =€ ' and o = — . (5.16)
P10
The scaling for Cases 1 and 2 in (5.14) and (5.16) can be combined as follows:

_ UK O

U = € %P and oy = MinO—, La (5.17)
i gPw  Piip

Finally, based on (5.6) and (5.17), we extend the scaling in the case m; > 1 as follows:

—a,p DK]_ a; 0

Opp =€ "* and o; = MinO——, —[7, (5.18)
i gPw  Piip

wherea; isasin (5.7)
11.3 Scaling for Multiple Chainswith Single-Server and I nfinite-Server Queues

For the general case, the generating function isasin (4.5). In order to carry out the innermost
level of inversion (i.e., the p™ or last step of inversion) with respect to z, we may assume that z;
fori = 1,2,...,p—lisconstant. Werewrite (4.5) as

B Ebzl O B g exp(PpoZp) B
exp PjoziO ]
G(z) = : 1% 0 DDq’E E{"D (5.19)
z) = O 00 PpiZ 0. :
oo o p-1 dn‘DDnlDl—LD H
oMo - 2eiz0 gg™0 zp,,zJ 0
o0 =t O gp O O

The first factor on the right side of (5.19) is a constant, while the second factor is the same as
in the onedimensional inversion considered in Section 5.2 with pqo replaced by p,o and pg;
-1 0
replaced by pp,/[IL Z pj,zl[l The second parameter is complex, so we replace it by its
J_
modulus. Using (5.18), we get the scaling as

O O
~0pPpo ; DKp (0
Qop =€ ** and ap = MinO—, (alp/pp,)[rl Z Pjizid, (5.20)
tgPpo j=1 N
O O
where
O
[;1 for mj =1 1
Qjp = DBn' Kp+] }/21eKs (5.21)

O] ————0 for m; > 1.
Chj=1 Kp+2lpKp+i g

Note that it is possible to have p,;, = O for somei, but not all i. If p; = O, then ajp/py = =,
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so that the i " term does not yield the minimum in (5.20).

Next we consider the i |nver3|on with respect to z,_,. The generating function in this step is
the inverse function in the p™ step. Using (5.19), we can writeit as

g(P 1)(Zp—vip) = D%B(Z)D

p-1
exp[_z Pioz]

¢ K (ppo)* G4k, -k-10 P’ "
= > > Aj— 5 _ P (5.22)
m i=1 j=1 k=0 kK O K K O =t Kp—k
I_l[l zpjlzj : [1- ijlzj e
i=1 ji=1
where Aj; has an expression similar to (5.3). The dominant term in (5.22) is of the form
Cp-1 O
expdy Pjozid
0=1 O
S 5.23
g O p—l ﬁ” m (523
|'| M -
=1 j=1 D
Note that in (5.22) we have implicitly assumed thatp ¢0 If instead p;; = O for somei, then
corresponding to that i the term ppl k/ - Z PjizO would be missing. Hence, instead of
O 0
(5.23), in general the dominant term in (5.22) is
[p-1 O
expdy Pjozid
0=1 0
q' p-1 |j\Pr]p|+m| ! (524)
FI Z PjiziU
: : D

wheren, = 1if py #0andn = O otherwise.

Note that (5.24) is similar to G(z) with p replaced by p —1 and m; replaced by Kpnpi + mj.
Therefore, from (5.20), we get the scaling in the (p —1) stepasagp-1 = € %p-1Pp-ro and

] D
. DK -1 p-2
Op-1 = MinO—"" | (@ p-1/Pp- mm zp,.z,m, (5.25)
i OPp-10 j=1 N
0 O

where

[Ny Kp_1+j D‘l/2|p—1Kp—1
Qjp-1 = O >

0 , (5.26)
Oj=1 Kp-1+2lpKp-1+] g

whereN; ,-1 = Kynp + m; — 1withn,; defined as above.
Proceeding as above, we get the scaling in step j, 1<j<p, as
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O O
Cap 0K, O j-1 [
apgy =e " and o; = MinO— , (a;;/p;i) - 3 pxz[, (5.27)
I pPjo O k=1 [0
O O
where
D'% K +1 2K, -
aij = U2 v—=rw—7U :
=1 KJ+2|JK]+I 0
and
p
Nij = mi=1+ % Kynyg , (5.29)
k=j+1

withn = 1if pis Z0and n = 0 otherwise. In (5.29) if an upper sum index is smaller than
the lower sum index, then that should be interpreted as a vacuous sum.

Note that the scale parameters above are not constant. The scaling at the j step depends on
z, for 1<k<j-1. Since the z,'s change during the course of inversion, so do the scale
parameters. From (2.3), it is clear that the z, values are always on a circle and therefore the
modulus [zy[Jis constant. Furthermore, since the parameters py; are nonnegative the most
restrictive scaling (smallest values of a;) comes when z, = [z,[i.e., the point z, is on the
positive real line) for 1<k<j—1. From (2.3) it is clear that this restrictive scaling is indeed done
once during the course of the inversion algorithm. If we use the restrictive scaling for all cases,
then the scale parameter at the | step becomes constant. The advantage of this scaling is that we
then need to compute each scale parameter only once. Secondly, we need not recover the original
inverse function from the inverse of the scaled generating function in each step using (2.9).
Instead, the recovery may be done only once at the end of all inversions and all intermediate
computation may be done using only scaled functions. The use of this restrictive scaling makes
all the computations related to scaling insignificant compared to the overall computations.
Through numerical investigations we observed that the restrictive scaling produces about the
same accuracy asthe scaling in (5.27), so that we recommend using it. It isas given below:
—a,p; . UK; j-1 O
apgp =e 7 and o; = Min— , (a;;/p;i)(1- ¥ pkzDO, (5.30)

i Pjo k=1 0

where a;; isasgivenin (5.28).
11.4 Scaling with Dimension Reduction

In many situations there will be dimension reduction. As indicated in Section 3, the
possibility of dimension reduction can be checked using the interdependence graph approach.
The scaling can be done independently of the dimension reduction, just as described in
Section 5.3, except that the dimension reduction determines the order of the variables to be
inverted. The d variablesrequiring full inversion become variablesz,, . . ., z4 and the remaining
p—dvariablesbecome zy, 1, . . ., Zp; i.e, the remaining variables appear in the inner loops.

It is adso possible to directly determine scaling after the dimension reduction is done. We
illustrate that in this subsection with an example. We aso show how it is sometimes possible to
replace anumerical inversion by an explicit formula.

Consider a closed queueing network with one infinite-server queue and p—1 groups of
single-server queues where each group i has m; identical queues. There are p closed chainsin the
model. Thei®™ chain (2 < i < p) goesthrough each single-server in group i at least once and the
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infinite-server queue any number of times. As for the first chain, it goes through the infinite-
server queue and all single-server queues in the modd at least once. Note that we have not fully
specified the routing matrix here, which is not necessary for computing g(K).

For thismodel, 9" = p—1andpj; = Ounlessj = 1orj =iori =0, i.e, the generating
function becomes

To construct the interdependence graph for G(z), we form a subgraph with two nodes for
each factor in the denominator, z; and z; for 2 < i < p. Since the numerator can be viewed as a
product of p factors, each with one z variable, each factor in the numerator is represented by a
one-node subgraph. Taking the union of all these subgraphs, we obtain the interdependence
graph I for (5.31) depicted below.

If we delete the subset D = {z,}, then ' becomes disconnected into subsets S; (D) = {z;}
for 2 < i < p. According to (3.2), the dimension of the inversion resulting from the subset D is 2
inthiscase. That is, the inversion dimension can be reduced from p to 2.

To show the inversion order more precisely, equation (5.31) can be rewritten as

0
&P P10z B __&P(Pioz)
p _ ﬂni i=2 |:| pz dni
iljzgl Puzig [IL—T_”_"ZD
= 0 P1iZ1 g

G(2) = (5.32)

If we keep z; constant, then the first factor on the right side of (5.32) becomes constant and the
second factor becomes a product of p —1 terms, each of which is afunction of asingle z variable.
Each such factor may be inverted independently with respect to the corresponding z variable, and
once we take a product of each inverse function, we get a function of z; and K, ,K3,...,K,. A
final inversion with respect to z; yields the desired normalization constant g(K). So the p-
dimensional problem is reduced to a two-dimensional one. Next comes the question of scaling.

From the scaling in Section 5.2, we see that the scaling required to invert the i factor
(2<i<p) in (5.32) isgiven by

~QiPio ; DK' U
agi = e 7° and a; = MinO—, (ai/p;)(1-p1u®100, (5.33)
Pio 0
where
a
L for m =1
aj = Bm_l K +] 2k (5.34)
N =0 for mj > 1.

nj=1 Ki+2liKi+j g

It is also possible to explicitly invert the i ™" product factor (2<i<p) in (5.32) and, when we
do, we get The dominant termin (5.35) is of the form

eXpaDlozlg

p ~ ‘ d<
ilzlzgl pl|21D

Therefore, from (5.18), we get the scaling in order to invert with respect to z, as

P m
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—a,p UKy aj; U
Opp =€ "* and a; = MinO— , —[7, (5.36)
i gPw P
where
[Niv Ki+]j DUZIlKl 537
T 08 KK g &0
and
Ni; = m;—-1+K; , (5.38)

It is to be noted that all scaling done in this subsection could also be derived from the final
scaling equations in Section 5.3 ((5.28)—5.30)); in this sectionn; = 1forj = 1andj = i and
nji = Ootherwise.

11.5 Near Multiplicities

We have indicated that much of the difficulty in the scaling is due to the possibility of
multiple factors in the denominator of (4.5). It should be intuitively clear that these same
difficulties can arise with near multiplicities, and that so far our scaling algorithm does not
account for near multiplicities. Moreover, in an application we might not recognize exact
multiplicities.

In this subsection we introduce a heuristic scheme to account for near multiplicities. Consider
the single-chain setting with only single-server queues in Section 5.1, and assume, without |oss of
generality, that p;; = p1 i+, for al i. (This involves a sorting, which is of low complexity.)
Without multiplicities or near multiplicities, the scaling should be a; = 1/p41, but with
multiplicities or near multiplicities perhaps other terms should play a role in the minimum in
(5.6). To capture the effect of near multiplicities, for the scaling only, we replace p1; in (5.1) and
(5.6) by the average of thei largest relative traffic intensities, i.e.,

N 1 ]
P1i = — 2 Pk - (5.39)
I k=1
Moreover, in (5.7) we act asif the multiplicity associated with the i ™ group of queuesis

i
ﬁ]i = z Mg ; (540)
k=1

i.e, wereplace a; in (5.7) with &; based on m; in (5.40). Notethata, = a; andpy; = P11, but
that a; < a; and py; = py;, SO that the first ratio a;/p4; is unchanged, but the other ratios in
(5.6) are decreased, which may reduce a1 in (5.6). The extra reduction will tend to occur when
there are near multiplicities.

Based on this idea, we propose replacing the restrictive scaling in (5.30) by an even more
restrictive scaling. We let

Finaly, as a further turning heuristic, we have found that reducing a scaling parameter
successively from a; to about 0.95 a; can be helpful if difficulties are encountered with the
standard scaling in (5.41)—(5.45).

12. Momentsvia Generating Functions

Given the steady-state probability mass function, we can calculate moments. Without loss of
generdity, let (r,i)0C,. We start with a standard expression for the probability mass function
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of q4j, the number of chain 1 customers at queue i, namely,

k
o PLi(g(K=k1y)=-p1ig(K=(k+1)11))
P(dy = k) = ) : (6.1)
see (3.257) on p. 147 of [28]. (A similar expression holds for the mass function of n,; [28]. It
involves p,; instead of p4;.)

From the tel escoping property of (6.1), we can write the tail probabilities as
piig(K -k1y)

P(au = k) 2 G (6.2)
From (6.2) we obtain the standard formulafor the mean,
K -
© ¢ 9(K-k1y)
Elau] = 5 P(ay 2 K) = 5 phi——r " ; (63)
k=1 k=1 g(K)

e.g., see (3.258) on p. 147 of [28]. Unfortunately, formula (6.3) is not too convenient for us,
because it requires K, +1 normalization function calculations and thus K; + 1 numerica
inversions. We now show how this mean can be calculated by two inversions.

For this purpose, we rewrite (6.3) as

p1*h(K)
E[qyi] 3 1, (6.4)
where
K
hK) = & Pifa(k,K ) . (6.5)
Let H(z,) bethe generating function of h(K) with respect to K,. Then
<] oo m
H(z1) = ¥ Z'h(mKy) = 3 2I' 3 pifa(k.K>)
m=0 m=0 k=0
° © 9D (z1/p1i, K2)
= Y pifa(kKy) ¥ 2! = — , (6.6)
k=0 m=k 1

where g (z,,K ) is the partial generating function in (2.1). Now, if H(z) represents the full
generating function of h(K), then from (6.6) it is clear that

G(lepli y Loy ,Zp)

H(Z) - 1_21

(6.7)

Since H(z) is of the same form as G(z) it may be inverted by the established inversion procedure.
Hence, we can obtain the mean E[q4;] using two inversions from (6.4). We invert G(z) and
H(z), respectively, to abtain g(K) and h(K).

By the same approach, we can also cal culate higher moments. For example,

o 2p5h(K
Elqu (G ~1)] = 2 3 kP(ay = k) = 2Pu MO

2z RGO (6.8)

where
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Ky
hi(K) = ¥ kpifg(kK2) - (6.9)
k=0
Let H4(z,) bethe generating function of h, (K) with respect to K. Then

0 0 Ky
Hi(z1) = 3 zZ'hi(mKy) = 3 2P S kpifg(k,K )
k=0

m=0 m=0

~ |k © n_dz Oa
= > kpig(k,K2) > z1' = L 05— (z1/p1i » K2) . (6.10)
k=0 m=k Ot~41g94

Moreover, the full generating function of h, (K) is

H,(z) = 1flzl a"Tlc;(zl/p1i Va0 Zp) (6.11)
Finally, note from (4.5) that
0 | 0
agz(lz) . Eplo ' é%éﬁ(z) , (6.12)
0 jzlp“zl) 0

so that the new generating function is a sum of generating functions of the same form as G(z).

For higher factorial moments, we proceed in the same way using (6.2) and
Ky
E[d1i(q1i—1)...(qsi -1 +1)] =13 k(k=1)...(k=1+2)P(qy = K) . (6.13)
k=0
For more on moments, see McKenna [29] and references there.
Example 1. In the first example, there are an arbitrary number of infinite-server queues and a
total of 50 single-server queues, which consist of 10 distinct queues, each with a multiplicity of 5.
The model has one closed chain going through all infinite-server queues and each single-server
gueue at least once.

The classical closed-form expression for the normalization constant g(K) due to Koenigsberg
[17,22,23] holds in a single-chain model when there are no multiplicities and no |oad-dependent
sarvers, see (3.9) of [3]. Bertozzi and McKenna [3] derived corresponding closed-form
expressions for g(K) when there are multiplicities but no load-dependent servers ((3.12) of [3])
and when there is an 1S queue but no multiplicities ((3.22) of [3]), but evidently no closed-form
expression has yet been derived for the case considered here in which there are both multiplicities
and an IS queue. Moreover, with either multiplicities or an IS queue, our agorithm may be
competitive with computation from the closed-form formulas. However, without multiplicities or
|oad-dependent servers, the simple classical formula (3.9) of [3] seems clearly best.

Heep =1,q" =10andm; = 5,1 <i £ 10. The relative traffic intensitiesare pjg = 5
and

pyi = 0.1 for i =1,2,...,10,

so that p; ranges from 0.1 to 1.0. We consider five cases for the total population: K; = 2x10X
fork = 0, 1,..,4. Wegivethe numerical results below in Table 1.
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Hoopulation K, Enormalization constant g(K ;) Eratio g(K;-1)/g(K;) g
0 2 O 5.377500e2 0  6.043701e-2 0
O 20 O 1.906584€13 O 44617821 O
B 200 g 1.381312626 B 9.659115¢-1 E
g 2000 1.284918e31 0  9.978987e-1 0
0 20000 [ 1.541538e35 O  9.997990e-1 0

Table 1. Numerical resultsfor Example 1.

To check our accuracy (see Section 2.3), in each case we preformed each calculation of g(K ;)
twice, once with I; = 1 and once with | ; = 2. Both calculations agreed to at least the seven
digitsdisplayed in Table 1.

Being one-dimensional, this example is relatively elementary. However, this example has
both multiplicities (m; = 5for all i) and near multiplicities (p; 10 = 1andpj ¢ = 0.9). Hence,
neither the simplescalinga; = 1/max{p1;}, nor the scaling in Section 5.1 is effective. For this

|

example, we need the refined more restrictive scaling in Section 5.5.

Example 2. This example is identical to Example 1 except that now p = 4 and each of the four
chains goes through each of the 50 single-server queues at least once and the first chain does not
go through any infinite-server queue. No dimension reduction is possible in this case, because pj;
is positive for al i and j. Since we have 10 distinct queues, each with multiplicity 5, this model
does not satisfy the assumptions for the residue resultsin [3]. However, as we have noted before,
the multiplicities reduce the computational complexity here.

Example 4. This is our chalenge problem for other algorithms. It is the same as Example 3
except that we change the multiplicities m; and the chain populations K;. We increase m; from 5
t0 100, 1 < i < 10. Hence, now there are g = 1000 single-server queues, but still only q" = 10
distinct queues. We consider three cases. First, we increase the chain populations to K; = 200
for 2 < j < 11. We obtain three subcases by considering three different values for K;. Our
numerical results are given below in Table 4.

Lthain populations 0 U O
Efj for2<j<11 Ky Enormalization constant g(K) Eratio g(K-17)/g(K) E
g 200 20 B 1.232036€278 B 4,582983e-3 g
0 200 200 0 2.941740e579 0 4.281094e-2 0
0 200 2000 3.309948e2037 0 25854891 [

Table4. Numerical results for Case 1 of Example 4.

As in Example 3, the accuracy was checked by performing the calculations twice, once with
I, = 1 and once with I; = 2. Again, the inversions for variables z,,z3,...,2z4; are done
explicitly by (5.35), so that the numerical inversion was essentially one-dimensional.

Theresultsin Table 4 were obtained in less than one minute. This example would seem to be
out of the range of existing algorithms, with the exception of the ones based on asymptotics
[21,30]. (We anticipate that it should be possible to exploit the special structure with other
agorithms, but that evidently is not part of the basic algorithms. It seems to be an interesting
direction of research.)

From [30-32], we see that the PANACEA algorithm based on asymptotics requires that there
be an IS queue and that each chain visit this queue. Unlike [30-32], the asymptotic
approximation in [21] does not require any |S queue, but it seems to require that there be no IS
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gueues and that all chain populations be large. To show that our algorithm does not have such
limitations, we consider two modifications of Case1l. Case 2 has classes 1 and 2 with small
populations, while the other class populations remain large. In particular, we let K, = 2 and
K3 = 5. Numerical results for Case 2 appear below in Table 5.

[ chain populations O [ O
Kifor2<sj<11 K, Snormalization constant (K) Oratio (K=11)/g(K) O

1 ] = J = 1 1 g ] g 1 g 0
nall cases: 2 g 3.842031e407 B 5.128582e-4 E
) = 2, 20 0 1.484823e454 0 5.087018e-3 0

3 = 5and 200 6.003231e747 0 4.706391e-1 0
H( j =200,4<j<11 2000 H 5.442693e2154 H 2.705391e-1 B

Table5. Numerical resultsfor Case 2 of Example 4.

Case 3 is amodification of Case 2 in which we remove all the IS nodes, i.e., we set pjo = 0
for al j. Numerical results for Case 3 appear below in Table 6.

U chain populations O O O
0 Kifor2<j<11 K. Hnormalizationsconstantg(K) Eratio g(K-11)/g9(K) E
nall cases: 2 U 9.959619313 U 4762073e4 U
, = 2, 20 ¢ 1.4471076361 0 472850163
3 = 5and 200 1.222889e660 0 4.417444e-2 0
H( j =200,4<j<11 2000 H 2.948943e2096 H 2.645993e-1 B

Table6. Numerical results for Case 3 of Example 4.
Asfor Case 1, Cases 2 and 3 required about a minute on the SUN SPARC-2 workstation.

13. Conclusions

We have presented a general algorithm for calculating normalization constants in product-
form models by numerically inverting their generating functions (Section 2). We have shown
how the dimension can often be dramatically reduced by exploiting conditional decomposition
(Section 3). We have considered in detail the specia case of closed queueing networks with only
single-server and IS queues (Section 4) and developed an explicit scaling algorithm for this class
of models (Section 5). We have shown how to calculate mean queue lengths and higher-order
moments directly by performing only two inversions of the same form as for the normalization
constant (Section 6). Finally, we have presented a few numerical examples illustrating the
algorithms and showing that it can solve some challenging problems (Section 7).

It remainsto develop detailed scaling algorithms for other subclasses of product-form models,
extending Section 5. Some of thisisdonein [7]; other cases are in progress. A further goal isto
develop an effective automatic, dynamic scaling algorithm that requires only limited knowledge
of special generating function structure, in the spirit of Lam [26].

In conclusion, we think that the numerical inversion algorithm here usefully complements
existing algorithms for closed queueing networks and related models, and that there is significant
potential for further progress with this approach.

Acknowledgment. Wethank Y aakov Kogan for discussions that hel ped motivate this work.
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