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1. Introduction
We investigate alternative ways to predict, in real time, the
delay (before entering service) of an arriving customer in
a service system such as a hospital emergency department
(ED) or a customer contact center. We model such a service
system by a queueing model with a time-varying arrival
rate, a time-varying number of servers, and customer aban-
donment. Our main contribution is to propose new real-
time delay predictors that effectively cope with the time
variation and abandonment, which are often observed in
practice; e.g., see Brown et al. (2005).

Motivating Application. We envision our delay predic-
tions being used to make delay announcements to arriving
customers. Delay announcements can be especially helpful
with emergency services, such as in a hospital ED. A recent
study by Press Ganey (2009), an Indiana-based consulting
company specializing in health-care services, found that the
average patient waiting time in hospital EDs in the United
States is about four hours. Because of those lengthy waits,
some patients might opt to leave without being seen by
a doctor. Press Ganey (2009) presents statistical evidence
suggesting that updating patients on their status (e.g., via
delay announcements) makes their waits in the ED more
bearable and deters patients from abandoning the ED before
treatment.

Delay announcements can also be helpful with other,
less critical services. For example, they can be especially
helpful when queues are invisible to customers, such as in

call centers; see Aksin et al. (2007) for background on call
centers. A recent study by Vocalabs (2010), a Minnesota-
based consulting company specializing in customer-service
surveys, found that customer dissatisfaction with lengthy
waits in customer call centers remains a major concern
for leading companies such as Apple, Dell, and HP. There
is empirical evidence suggesting that making real-time
delay announcements is an inexpensive way of increas-
ing customer satisfaction with the service provided; e.g.,
see Taylor (1994), Hui and Tse (1996), and Munichor and
Rafaeli (2007).

Customers typically respond to delay announcements,
and their response alters system performance. As discussed
by Armony et al. (2009), studying customer responses
to delay announcements requires an equilibrium analysis.
However, it is not clear whether an equilibrium exists or
how to fully characterize it. There might even be multi-
ple equilibria. Here, we do not directly consider customer
response. We think of our delay predictions being based
on model information obtained after equilibrium has been
reached (with the announcements being used). We leave the
important extension of directly treating customer response
to future research.

Our main purpose in this research is to contribute to
the development of a service science. In doing so, we
have applications in mind (such as that of making delay
announcements), but the present paper is not intended to
be about a specific application. Instead, we are aiming for
applicable research of broad value. We mention specific
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application settings as illustrative only. Our main contribu-
tions (detailed below) are to (i) propose new and effective
predictors, and (ii) to systematically study the performance
of those predictors.

Alternative Delay Predictors. Alternative delay predic-
tors differ in the type and amount of information that
their implementation requires. (Delay predictors might also
be called delay estimators, as we have done in previous
papers, but predictors seems more appropriate, because the
predictor is trying to predict a future delay, not to esti-
mate a model parameter.) In broad terms, we consider two
families of delay predictors: (i) delay-history-based predic-
tors, and (ii) queue-length-based predictors. Delay-history-
based predictors exploit information about recent customer
delay history in the system. Queue-length-based predictors
exploit knowledge of the queue length (number of waiting
customers) seen upon arrival.

Delay-history-based predictors are appealing because
they rely solely on information about recent customer delay
history and thus need not assume knowledge of system
parameters. Delay-history-based predictors directly account
for customer response because they depend on the history
of delays in the system, which in turn is affected by cus-
tomer response. A standard delay-history-based predictor is
the elapsed waiting time of the customer at the head of the
line (HOL), assuming that there is at least one customer
waiting at the new arrival epoch. That is, �HOL4t1w5 ≡ w,
where w is the elapsed delay of the HOL customer at the
time of a new arrival, t.

Queue-length-based predictors exploit system-state infor-
mation including the queue length seen upon arrival. Addi-
tionally, they exploit information about various system
parameters, such as the arrival rate, the abandonment rate,
and the number of servers. In general, queue-length-based
predictors are more accurate than delay-history-based pre-
dictors because they exploit additional information about
the state of the system at the time of prediction.

We quantify the accuracy of a delay predictor by
the mean-squared error (MSE), which is defined as the
expected value of the square of the difference between
delay prediction and corresponding actual delay; see (2).
The mean delay, conditional on some state information,
minimizes the MSE. Thus, the most accurate predictor,
under the MSE criterion, is the unbiased predictor announc-
ing the conditional mean. Unfortunately, it is usually dif-
ficult to determine the conditional mean exactly. We,
therefore, rely on approximations. Here, we exploit deter-
ministic fluid approximations for many-server queues with
time-varying arrivals and a time-varying number of servers,
drawing upon recent work by Liu and Whitt (2010). It is
also difficult to determine the MSE of a delay predictor.
Therefore, we rely throughout on computer simulation to
quantify the accuracy of the alternative delay predictors.

Previous Research. We begin by summarizing the main
results of our previous related work. In Ibrahim and Whitt

(2009a, b; 2011), we systematically studied the accu-
racy of various delay predictors in several many-server
queueing models. The queueing models considered are
controlled environments that mimic real-life customer-
service systems. We started with the GI/M/s model
and extended to GI/GI/s (nonexponential service times)
and GI/GI/s +GI (abandonment with nonexponential
patience distributions). We showed that standard queue-
length-based predictors, which are commonly used in
practice, might perform poorly. We proposed new, more
accurate queue-length-based predictors that effectively cope
with nonexponential service and abandonment-time distri-
butions, which are often observed in practice; see Brown
et al. (2005).

Our most promising predictor, QLa, draws on the
approximations in Whitt (2005): it approximates the
GI/GI/s + GI model by the corresponding GI/M/s +

M4n5 model, with state-dependent Markovian abandon-
ment rates; see §3. Because QLa assumes a stationary
arrival process and a constant number of servers, it might
perform poorly with time-varying arrivals and a time-
varying number of servers, as we will show. Therefore,
there is a need to go beyond QLa.

We then considered the M4t5/GI/s + GI model with
time-varying arrival rates and a constant number of servers.
We focused on the HOL delay predictor. We showed that
HOL might perform poorly with time-varying arrival rates.
When arrival rates vary significantly over time, customer
delays may vary systematically as well, which leads to a
systematically biased HOL predictor. We proposed refined
delay-history-based predictors by analyzing the distribution
of customer delay in the system, and we showed that those
new predictors perform far better than HOL. Our most
promising predictor is another approximation-based predic-
tor, HOLa. The HOLa predictor is similar to QLa; see §3.
However, unlike QLa, HOLa exploits the HOL delay and
does not assume knowledge of the queue length seen upon
arrival. The HOLa predictor has superior performance with
a constant number of servers, but we will show that it, too,
might perform poorly when the number of servers varies
significantly over time. Therefore, there is a need to go
beyond HOLa.

Main Contributions. In this paper, we consider the
M4t5/M/s4t5 + GI model, which we describe in §2.
Because direct analysis of customer delay is complicated
in this model, we propose two different approaches: (i) in
§3, we propose modified versions of QLa and HOLa

to account for a time-varying number of servers, and
(ii) in §5, we exploit deterministic fluid approximations
for many-server queues with time-varying arrivals and
a time-varying number of servers, drawing upon recent
work by Liu and Whitt (2010). (The fluid model has also
been extended to general service and abandonment-time
distributions with time-dependent parameters and to net-
works of queues. We leave such substantially more com-
plicated scenarios to future work.) We propose new queue-
length-based and delay-history-based predictors. Extensive
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Figure 1. Bias of standard and refined delay predictors in the M4t5/M/s4t5 + M model with sinusoidal arrival rates
(for model in §6.1).
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Note. The differences between delay predictions and actual (potential) delays observed are based on averaging 100 independent simulation replications.

simulation results, of which we show a sample in §6
and in the electronic companion to this paper, avail-
able as part of the online version that can be found at
http://or.journal.informs.org/, show that those new predic-
tors have a superior performance in the M4t5/M/s4t5 +

GI model.
In Figure 1, we demonstrate potential problems with

HOLa and QLa. In particular, we consider the M4t5/M/
s4t5+M model with a sinusoidal arrival-rate intensity func-
tion, �4t5, and a sinusoidal number of servers, s4t5, where
there are periods of overloading that lead to significant
delays. We assume that �4t5 and s4t5 have a period equal
to 4 times the mean service time; see §6.1. (Without loss of
generality, we measure time in units of mean service time.)
With daily (24-hour) arrival-rate cycles, this assumption is
equivalent to having a mean service time E6S7 = 6 hours.
We let the relative amplitude, �a, for �4t5 be equal to 0.5.
(The ratio of the peak arrival rate to the average arrival rate
is 1 + �a.) We let the relative amplitude, �s , for s4t5 be
equal to 0.3; see Figure 1.

The HOLa and QLa predictors assume that the number of
servers seen upon arrival is constant throughout the waiting
time of the arriving customer and is equal to the average
number of servers in the system. (In practice, one might use
an estimate of, say, the daily average number of servers.) In
the second (third) subplot of Figure 1, we plot simulation
estimates of the average differences between HOLa (QLa)
delay predictions and actual delays observed in the system,

as a function of time (dashed curves). These simulation
estimates are based on averaging 100 independent simula-
tion replications. It is apparent that both HOLa and QLa

are systematically biased in the M4t5/M/s4t5+M model.
Here, we propose a refined HOL-based predictor, HOLr ,

and a refined queue-length-based predictor, QLr . Figure 1
nicely illustrates the improvement in performance result-
ing from our proposed refinements: We plot simulation
estimates of the average differences between HOLr (QLr )
delay predictions and actual delays observed in the system,
as a function of time (solid curves).

Literature Review. The literature on delay announce-
ments is large and growing. For a review of the growing
literature on delay estimation and delay announcements,
see Jouini et al. (2011, §2). In broad terms, there are three
main areas of research. The first area studies the effect of
delay announcements on system dynamics; e.g., see Whitt
(1999b), Armony and Maglaras (2004), Guo and Zipkin
(2007), Armony et al. (2009), Allon et al. (2011a, b), Jouini
et al. (2011), and references therein. The second area stud-
ies alternative ways of estimating customer delay in ser-
vice systems; e.g., see Whitt (1999a), Nakibly (2002), and
Ibrahim and Whitt (2009a, b; 2011). The third area studies
customer psychology in waiting situations; e.g., see Taylor
(1994), Hui and Tse (1996), and Munichor and Rafaeli
(2007). This paper falls in the second main area of research.

Organization of the Paper. The rest of this paper is orga-
nized as follows. In §2, we describe our general frame-
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work. In §3, we briefly describe the QLa and HOLa

predictors, considered in §1, and propose modified pre-
dictors, QLm

a and HOLm
a , that cope with a time-varying

number of servers. In §4, we review a deterministic fluid
model, developed in Liu and Whitt (2010), for multi-
server queues with time-varying arrival rates and customer
abandonment. In §5, we use these fluid approximations to
develop new, refined delay predictors. In §6, we present
simulation results showing that these new predictors are
effective in the M4t5/M/s4t5+GI model. We make con-
cluding remarks in §7. We present more simulation results
(including general service-time distributions) in the elec-
tronic companion.

2. The Framework
In this section, we describe the M4t5/M/s4t5+GI queue-
ing model and then the performance measures that we
use to quantify the performance of the alternative delay
predictors.

2.1. The Queueing Model

We consider the M4t5/M/s4t5+GI queueing model, which
has a nonhomogeneous Poisson arrival process with an
arrival-rate function � ≡ 8�4u52 − � < u < �9. Service
times, Sn, are independent and identically distributed (i.i.d.)
exponential random variables with mean E6S7 = �−1 (we
omit the subscript when the specific index is not important).
Abandonment times, Tn, are i.i.d. with a general distribution
and mean E6T 7 = �−1. The arrival, service, and abandon-
ment processes are assumed to be independent. Customers
are served according to the first-come-first-served (FCFS)
service discipline. The number of servers varies over time
according to the staffing function: s≡8s4u52 −�<u<�9.

As is customarily done in the limited literature that con-
siders the realistic feature of time-varying arrival rates, we
assume that the arrival rate and the number of servers are
deterministic functions of time, thus leaving out some form
of randomness (because the arrival rate and the number of
servers are usually not known with certainty in practice). In
doing so, we capture what we believe to be the dominant
effect of variability, which is the deterministic variation of
the arrival rate and number of servers over time.

2.2. Performance Measures

Average Squared Error 4ASE5. In our simulation exper-
iments, we quantify the accuracy of a delay predictor by
computing the average squared error (ASE), defined by:

ASE ≡
1
k

k
∑

i=1

4pi − ai5
21 (1)

where pi is the delay prediction for customer i, ai > 0 is the
potential waiting time of delayed customer i, and k is the
number of customers in our sample. A customer’s potential
waiting time is the delay he would experience if he had

infinite patience (his patience is quantified by his abandon
time). For example, the potential waiting time of a delayed
customer who finds n other customers waiting ahead in
queue upon arrival is the amount of time needed to have
n+ 1 consecutive departures from the system.

In our simulation experiments, we measure ai for both
served and abandoning customers. For abandoning cus-
tomers, we compute the delay experienced, had the cus-
tomer not abandoned, by keeping him “virtually” in queue
until he would have begun service. Such a customer does
not affect the waiting time of any other customer in queue.
As discussed in Ibrahim and Whitt (2009a, b; 2011), the
ASE should approximate the expected MSE for a stationary
system in steady state with a constant arrival rate, but the
situation is more complicated with time-varying arrivals.
We regard ASE as directly meaningful, but now we indi-
cate how it relates to the MSE. Although the MSE (or the
ASE) is not the only criterion that might be of interest, we
consider it here to gain general insight into the performance
of the predictors.

Weighted Mean-Squared Error 4WMSE5. Let WQL4t1 n5
represent a random variable with the conditional distribu-
tion of the potential delay of an arriving customer, given
that this customer must wait before starting service, and
given that the number of customers seen in line at the time
of his arrival, t, is equal to n. Let �QL4t1 n5 be some given
single-number delay estimate that is based on n and t.
Then, the MSE of the corresponding delay predictor is
given by

MSE4�QL4t1 n55≡E
[

4WQL4t1 n5− �QL4t1 n55
2
]

1 (2)

which is a function of t and n. To get the overall MSE
of the predictor at time t, we average with respect to
the unconditional distribution of the number of customers
Q4t5= n, seen in queue at time t, i.e.,

MSE4t5≡E
[

MSE
(

�QL4t1Q4t55
)]

0 (3)

Finally, to obtain an average “per-customer” perspective,
we consider a weighted MSE (WMSE), defined by

WMSE ≡

∫ T

0 �4t5MSE4t5dt
∫ T

0 �4t5dt
0 (4)

Our ASE is an estimate of the WMSE; for supporting the-
ory, see Massey and Whitt (1994).

3. Modified Delay Predictors:
QLm

a and HOLm
a

Figure 1 shows that QLa and HOLa might be systematically
biased when the number of servers, s4t5, varies significantly
over time. In this section, we propose modified predictors,
QLm

a and HOLm
a , which account for a time-varying number

of servers. For completeness, we begin by reviewing QLa

and HOLa. Simulation results, described in §6, show that
QLm

a and HOLm
a are more accurate than QLa and HOLa,

particularly when the mean service time, E6S7, is small.
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3.1. The QLa and HOLa Predictors

Let WQL4t1 n5 denote the potential waiting time of a new
arrival at time t, such that the queue length at t, excluding
the new arrival, is equal to n. We have the representation

WQL4t1 n5≡

n
∑

i=0

Yi1 (5)

where Yn−i is the time between the ith and 4i+ 15st depar-
ture epochs.

For QLa, we draw on the approximations in Whitt
(2005). That is, we approximate the M/M/s+GI model
by the M/M/s+M4n5 model, with state-dependent
Markovian abandonment rates. We begin by describing the
Markovian approximation for abandonments, as in Whitt
(2005, §3). We assume that a customer who is jth from
the end of the queue has an exponential abandonment time
with rate �j , where �j is given by

�j ≡ h4j/�51 1 ¶ j ¶ k3 (6)

k is the current queue length, � is the arrival rate, and
h is the abandonment-time hazard-rate function, defined as
h4t5 ≡ f 4t5/41 − F 4t551 for t ¾ 0 1 where f is the corre-
sponding density function (assumed to exist).

Here is how (6) is derived. If we knew that a given cus-
tomer had been waiting for time t, then the rate of aban-
donment for that customer, at that time, would be h4t5. We,
therefore, need to estimate the elapsed waiting time of that
customer, given the available state information. Assuming
that abandonments are relatively rare compared to service
completions, it is reasonable to act as if there have been j
arrival events since our customer arrived. With a station-
ary arrival process, a simple rough estimate for the time
between successive arrival events is the reciprocal of the
arrival rate, 1/�. Therefore, the elapsed waiting time of our
customer is approximated by j/�, and the corresponding
abandonment rate by (6).

With time-varying arrival rates, we replace � by �̂, where
�̂ is defined as the average arrival rate over some recent
time interval. For example, assuming that we know w, the
elapsed delay of the customer at the HOL at the time of
estimation, then we could define �̂ as the average arrival
rate over the interval 6t−w1 t7, i.e., �̂≡ 41/w5

∫ t

t−w
�4s5ds.

Alternatively, if we do not have information about the
recent history of delays in the system and know only the
queue length n, then we could, for example, replace w by
ŵ ≡ 4n+ 15/s� and compute �̂≡ 41/ŵ5

∫ t

t−ŵ
�4s5ds.

For the M4t5/M/s + M4n5 model, we need to make
further approximations in order to describe WQL4t1 n5: We
assume that successive departure events are either service
completions, or abandonments from the head of the line.
We also assume that an estimate of the time between
successive departures is 1/�̂. Under our first assumption,
after each departure, all customers remain in line except
the customer at the head of the line. The elapsed waiting
time of customers remaining in line increases, under our
second assumption, by 1/�̂. Then, Yi has an exponential

distribution with rate s�+�n −�n−i, where �k =
∑k

j=1 �j =
∑k

j=1 h4j/�̂5, k ¾ 1, and �0 ≡ 0. That is the case because
Yi is the minimum of s exponential random variables with
rate � (corresponding to the remaining service times of
customers in service), and i exponential random variables
with rates �l, n− i+1 ¶ l¶ n (corresponding to the aban-
donment times of the customers waiting in line). The QLa

delay prediction given to a customer who finds n customers
in queue upon arrival is

�QLa
4n5=

n
∑

i=0

1
s�+ �n − �n−i

3 (7)

that is, �QLa
4n5 approximates the mean of the potential

waiting time, E6WQL4t1 n57. With a time-varying number
of servers, we replace s in (7) by s̄, defined as the aver-
age number of servers in the system. In practice, we would
use the daily average number of servers in the system
instead of s̄.

Unlike QLa, HOLa does not assume knowledge of
the queue length seen upon arrival. We proceed in two
steps: (i) we use the observed HOL delay, w, to estimate
the queue length seen upon arrival; and (ii) we use this
queue-length estimate to implement a new delay predictor,
paralleling (7).

For step (i), let Nw4t5 be the number of arrivals in the
interval 6t−w1 t7 who do not abandon. That is, Nw4t5+1 is
the number of customers seen in queue upon arrival at time
t, given that the observed HOL delay at t is equal to w.
It is significant that Nw has the structure of the number
in system in a M4t5/GI/� infinite-server system, starting
out empty in the infinite past, with arrival rate �4u5 identi-
cal to the original arrival rate in 6t −w1 t7 (and equal to 0
otherwise). The individual service-time distribution is iden-
tical to the abandonment-time distribution in our original
system. Thus, Nw4t5 has a Poisson distribution with mean

m4t1w5≡E6Nw4t57=
∫ t

t−w
�4s541 − F 4t − s55ds1 (8)

where F is the abandonment-time cumulative distribution
function (cdf).

For step (ii), we use m4t1w5 + 1 as an estimate of the
queue length seen upon arrival, at time t. Paralleling (7),
the HOLa delay estimate given to a customer such that the
observed HOL delay, at his time of arrival, t, is equal to w,
is given by

�HOLa
4t1w5≡

m4t1w5+1
∑

i=0

1
s�+ �n − �n−i

1 (9)

for m4t1w5 in (8). If we actually know the queue length,
then we can replace m4t1w5 by Q4t5, i.e., we can use
QLa. With a time-varying number of servers, we replace s
in (9) by s̄.
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3.2. Modified Predictors: QLm
a and HOLm

a

Now we propose modified predictors, QLm
a and HOLm

a , that
effectively cope with a time-varying number of servers. In
particular, we propose adjusting (7) as follows: we replace
s by s4ti5 where ti denotes the estimated next departure
epoch when there are i remaining customers in line ahead
of the new arrival, and tn+1 ≡ t. Here is how we define the
QLm

a delay prediction:

�QLm
a
4t1 n5=

n
∑

i=0

1
s4ti+15�+ �n − �n−i

1 (10)

where

ti = ti+1 +
1

s4ti+15�+ �n − �n−i

for 0 ¶ i¶ n1 (11)

and tn+1 = t. For HOLm
a , we proceed similarly. In particular,

we use

�HOLm
a
4t1w5≡

m4t1w5+1
∑

i=0

1
s4ti+15�+ �n − �n−i

1 (12)

where ti is given by (11) and tn+1 = t.
It is important that QLm

a and HOLm
a reduce to QLa and

HOLa, respectively, with a constant number of servers.
Hence, the new predictors are consistent with prior ones,
which were shown to be remarkably accurate in simpler
models. In §5, we take a different approach and propose
new delay predictors based on fluid approximations, which
we now review.

4. The Fluid Model with Time-Varying
Arrivals

In this section, we review fluid approximations for the
M4t5/M/s4t5+GI queueing model, developed by Liu and
Whitt (2010). It is convenient to approximate queueing
models with fluid models, because performance measures
in fluid models are deterministic and mostly continuous in
time, which greatly simplifies the analysis.

Let Q4t1 x5 denote the quantity of fluid in queue (but not
in service) at time t that has been in queue for time less
than or equal to x time units. Similarly, let B4t1 x5 denote
the quantity of fluid in service, at time t, that has been
in service for time less than or equal to x time units. We
assume that functions Q and B are integrable with densi-
ties q and b, i.e.,

Q4t1 x5=

∫ x

0
q4t1 y5dy and B4t1 x5=

∫ x

0
b4t1 y5dy1

where we define q4t1 x5 (b4t1 x5) as the rate at which
quanta of fluid that has been in queue (service) for exactly
x time units, is created at time t. Let Qf 4t5 ≡ Q4t1�5 be
the total fluid content in queue at time t, and let Bf 4t5 ≡

B4t1�5 be the total fluid content in service at time t. We
require that 4Bf 4t5− s4t55Qf 4t5= 0 for all t, i.e., Qf 4t5 is

positive only if all servers are busy at t. Under the FCFS
service discipline, we can define a boundary waiting time
at time t, w4t5, such that q4t1 x5= 0 for all x >w4t5:

w4t5= inf8x > 02 q4t1 y5= 0 for all y > x90 (13)

In other words, w4t5 is the waiting time experienced by
quanta of fluid that enter service at time t (and have arrived
to the system at time t − w4t5). We assume that the sys-
tem alternates between intervals of overload (Qf 4t5 > 0,
Bf 4t5 = s4t5, and w4t5 > 0) and underload (Qf 4t5 = 0,
Bf 4t5 < s4t5, and w4t5= 0). For simplicity, we assume that
the system is initially empty. We also assume that there is
no fluid in queue at the beginning of every overload phase.
For the more general case, accounting for nonzero initial
queue content, see Liu and Whitt (2010, §5).

Let F̄ denote the complementary cumulative distribu-
tion function (ccdf) of the abandon-time distribution; i.e.,
F̄ 4x5= 1−F 4x5. Let Ḡ denote the ccdf of the service-time
distribution. The dynamics of the fluid model are defined
in terms of 4q1 b1 F̄ 1 Ḡ1w5 as follows:

q4t + u1x+ u5

= q4t1 x5
F̄ 4x+ u5

F̄ 4x5
1 0 ¶ x¶w4t51 and, (14)

b4t + u1x+ u5= b4t1 x5
Ḡ4x+ u5

Ḡ4x5
0 (15)

The queue length in the fluid model, at time t, is therefore
given by

Qf 4t5=

∫ w4t5

0
q4t1 y5dy =

∫ w4t5

0
�4t − x5F̄ 4x5dx1 (16)

where we use (14) to write q4t1 x5 = q4t − x105F̄ 4x5 =

�4t − x5F̄ 4x5.
Let v4t5 denote the potential waiting time in the fluid

model at time t. That is, v4t5 is the waiting time of
infinitely patient quanta of fluid arriving to the system at t.
Recalling that the waiting time of fluid entering service at t
is equal to w4t5, it follows that this fluid must have arrived
to the system w4t5 time units ago, and that

v4t −w4t55=w4t50 (17)

Therefore, for a given feasible boundary waiting time pro-
cess 8w4t52 t ¾ 09, we can determine the associated poten-
tial waiting time process 8v4t52 t ¾ 09, using (17).

Liu and Whitt (2010) show that under some regulatory
conditions, if Qf 4t5 > 0, then w4t5 must satisfy the follow-
ing ordinary differential equation (ODE):

w′4t5= 1 −
b4t105

q4t1w4t55
(18)

for some initial boundary waiting time; see Liu and
Whitt (2010, Theorem 5.3). With exponential service times,
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b4t105 = s4t5� + s′4t5 whenever Qf 4t5 > 0, where s′4t5
denotes the derivative of s4t5 with respect to t. Note that
this implies the following feasibility condition on s4t5 when
all servers are busy (i.e., during an overload phase):

s4t5�+ s′4t5¾ 0 for all t0 (19)

This feasibility condition is possible because there is no
randomness in the fluid model. For the stochastic system,
there would always be some probability of infeasibility. To
that end, Liu and Whitt (2010, §6.2) develop an algorithm
to detect the time of first violation of this condition and
construct the minimal feasible staffing function greater than
the initial infeasible staffing function.

Using (14), we can write that q4t1w4t55 = �4t −

w4t55F̄ 4w4t550 As a result, with exponential service times,

w′4t5= 1 −
s4t5�+ s′4t5

�4t −w4t55F̄ 4w4t55
0 (20)

Note that (20) is valid only for t such that Qf 4t5 > 0 (i.e.,
during an overload phase). During underload phases, quanta
of fluid is served immediately upon arrival, without having
to wait in queue, i.e., w4t5= 0. Using the dynamics of the
fluid model in (14) and (15) together with (20), we can
determine w4t5 for all t with exponential service times.

We now specify how to compute w4t5 by describing fluid
dynamics in underload and overload phases. Assume that
t0 is the beginning of an underload phase, and let Bf 4t05
be the fluid content in service at time t0. (We assume that
Qf 4t05 = 0.) Let t1 denote the first time epoch after t0 at
which Qf 4t5 > 0. That is, the system switches to an over-
load period at time t1. For all t ∈ 6t01 t17, the fluid content
in service is given by

Bf 4t5= Bf 4t05e
−�4t−t05 +

∫ t

t0

�4x5e−�x dx0 (21)

The first term in (21) is the remaining quantity of fluid
in service that had already been in service at time t0. The
second term is the remaining fluid in service at time t that
entered service in the interval 4t01 t17. We define t1 as fol-
lows: t1 = inf8t > 02 Bf 4t5¾ s4t59, for Bf 4t5 in (21). Note
that w4t5 = 0 for all t ∈ 4t01 t17. Let t2 denote the first
time epoch after t1 at which Qf 4t5 = 0. That is, 6t11 t2] is
an overload phase. For all t ∈ 4t11 t27, we compute w4t5
by solving (20). We define t2 as follows: t2 = inf8t > t12
w405 = 09. At time t2 a new underload period begins, and
we use (20) to calculate w4t5. As such, we obtain w4t5 for
all values of t. Using w4t5, we obtain v4t5 via (17) and
Qf 4t5 via (16) for all t.

Liu and Whitt (2010) also treat the case of nonex-
ponential service times. The analysis is much more com-
plicated in that case, however. The main difficulty lies
in determining the service content density, b4t1 x5, which
no longer depends solely on the number of servers, s4t5.

Indeed, b4t1 x5 is obtained, with general service times, by
solving a complicated fixed point equation; see Liu and
Whitt (2010; Theorem 5.1 and Equation (22)) in that paper.

Next, we use fluid approximations for w4t5, v4t5, and
Qf 4t5 to develop new fluid-based delay predictors for the
M4t5/M/s4t5 + GI model, which effectively cope with
time-varying arrivals, a time-varying number of servers,
and customer abandonment.

5. New Fluid-Based Delay Predictors for
the M4t5/M/s4t5+GI Model

In this section, we propose new delay predictors for the
M4t5/M/s4t5+GI model by making use of the approxi-
mating fluid model described in the previous section.

The No-Information-Fluid-Based 4NIF5 Delay Predic-
tor. We first propose a simple delay predictor that does
not require any information about the system beyond the
model. A natural candidate no-information (NI) delay pre-
dictor is the mean potential waiting time in the system at
time t. Because we do not have a convenient form for the
mean, we use the fluid model of §4 to develop a simple
approximation. Let the no-information-fluid-based (NIF)
delay prediction given to a delayed customer joining the
queue at time t0 be

�NIF4t05≡ v4t051 (22)

where v4t05 is the fluid approximation for the potential
waiting time, at t0. To compute v4t05, we use (17) and pro-
ceed as described in §4. The NIF predictor is appealing
because of its simplicity and its ease of implementation. It
serves as a useful reference point, because any predictor
exploiting additional real-time information about the sys-
tem should do at least as well as NIF.

The Refined-Queue-Length-Based 4QLr5 Delay Predic-
tor. We now propose a predictor based on the queue
length seen upon arrival to the system. Let QLr refer to
this refined-queue-length-based predictor. The derivation of
QLr is based on that of the simple queue-length-based pre-
dictor, QLs , which was considered in Ibrahim and Whitt
(2009b). For a system having s4t5 agents at time t, each
of whom on average completes one service request in �−1

time units, we may predict that a customer who finds n cus-
tomers in queue upon arrival will be able to begin service in
4n+15/s4t5� minutes. Let QLs refer to this simple queue-
length-based predictor, commonly used in practice. Let the
predictor, as a function of n, be

�QLs
4t1 n5=

n+ 1
s4t5�

0 (23)

In Ibrahim and Whitt (2009b), we show that QLs is the
most effective predictor, under the MSE criterion, in the
GI/M/s model but that it is not an effective predictor when
there is customer abandonment in the system.
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Recognizing the simple form of the QLs predictor in (23)
and its lack of predictive power with customer abandon-
ment, we propose a simple refinement of QLs , QLr , which
makes use of the fluid model in §4. Consider a customer
who arrives to the system at time t and who must wait
before starting service. In the fluid approximation, the asso-
ciated queue length, Qf 4t5, seen upon arrival at time t, is
given by (16). As a result, QLs1 f predicts the delay of a cus-
tomer arriving to the system at time t, in the fluid model,
as the deterministic quantity

�QLs1f
4Qf 4t55=

Qf 4t5+ 1

s4t5�
0

The fluid approximation for the potential waiting time, v4t5,
is given by (17). For QLr , we propose computing the ratio

�4t5= v4t5/44Qf 4t5+ 15/s4t5�5

= v4t5s4t5�/4Qf 4t5+ 151 (24)

and using it to refine the QLs predictor. That is, the new
delay prediction given to a customer arriving to the system
at time t and finding n customers in queue upon arrival is
the following function of n and t:

�QLr
4t1 n5≡ �4t5× �QLs

4t1 n5= v4t5×
n+ 1

Qf 4t5+ 1
(25)

for �4t5 in (24). It is significant that �QLr
depends only

on the number of servers, s4t5, through v4t5 and Qf 4t5.
Indeed, the queue length is directly observable in the sys-
tem, but the potential waiting time requires estimation,
which is very difficult in the M4t5/GI/s4t5 + GI model.
The advantage of using the fluid model is that it provides
a way of approximating the potential waiting time.

The Refined HOL 4HOLr5 Delay Predictor. We now pro-
pose a refinement of the HOL delay predictor. The HOL
delay estimate, �HOL4t1w5, given to a new arrival at time t,
such that the elapsed waiting time of the customer at the
head-of-the-line is equal to w, is well approximated by the
fluid boundary waiting time w4t5 in (13). The potential
waiting time of that same arrival is approximately equal
to v4t5 (which is the fluid approximation of the potential
waiting time at t). Thus, we propose computing the ratio
v4t5/w4t5 (after solving numerically for v4t5 and w4t5) and
using it to refine the HOL predictor. Let HOLr denote this
refined HOL delay predictor. The delay prediction, as a
function of w and the time of arrival t, is defined as

�HOLr
4t1w5≡

v4t5

w4t5
× �HOL4t1w5=

v4t5

w4t5
×w0 (26)

The QLr and HOLr predictors reduce to the GI/GI/
s+GI model, considered in Ibrahim and Whitt (2009b), so
that we have “version consistency,” as with QLm

a and HOLm
a .

6. Simulation Experiments for
the M4t5/M/s4t5+GI Model

In this section, we describe simulation results quantifying
the performance of all candidate delay predictors in the
M4t5/M/s4t5+GI queueing model. Our methods apply to
general time-varying functions. To illustrate, we consider
sinusoidal functions that are similar to what is observed
with daily cycles.

In this section, we consider exponential service and
abandonment times (i.e., the M4t5/M/s4t5 + M model).
We consider nonexponential service and abandonment-time
distributions in the electronic companion. We first vary the
number of servers (from tens to hundreds) while holding
all other system parameters fixed; see Figures 2 and 3. We
then vary the frequency of the arrival process (from slow
variation to fast) while holding all other system parameters
fixed; see Table 2.

6.1. Description of the Experiments

We consider a sinusoidal arrival-rate intensity function
given by

�4u5≡ �̄+ �̄�a sin4�au51−�<u<�1 (27)

where �̄ is the average arrival rate, �a is the amplitude, and
�a is the frequency. As pointed out by Eick et al. (1993),
the parameters of �4u5 in (27) should be interpreted relative
to the mean service time, E6S7. Without loss of generality,
we measure time in units of mean service time. Then we
speak of �a as the relative frequency. Small (large) val-
ues of �a correspond to slow (fast) time-variability in the
arrival process, relative to the service times. Table 1 dis-
plays values of the relative frequency as a function of E6S7,
assuming a daily (24-hour) cycle. We could also choose
shorter cycles. For example, assuming an 8-hour cycle (typ-
ical number of hours in a workday), E6S7 in Table 1 should
be divided by 3 (e.g., for �a = 00131, E6S7= 10 minutes).

We consider a sinusoidal number of servers, s4t5. Specif-
ically, we assume that

s4t5= s̄ + s̄�s sin4�st51 (28)

where s̄ is the average number of servers. As in (27), �s is
the frequency, and �s is the amplitude.

Table 1. The relative frequency, �, as a
function of the mean service time,
E6S7, for a daily (24-hour) cycle.

Relative frequency Mean service time
�a E6S7

0.0220 5 minutes
0.0436 10 minutes
0.131 30 minutes
0.262 1 hour
1.57 6 hours
3.14 12 hours
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In this section, we let �a = 005 and �s = 003. That is, we
assume that �4t5 fluctuates more extremely than s4t5. (We
do so because this case corresponds to longer waiting times
in the system, which is when making delay predictions is
especially important.) We let the abandonment rate, �, be
equal to 1. That is, the mean time to abandon is assumed to
be equal to E6S7, which seems reasonable. We define the
traffic intensity �≡ �̄/s̄� and let �= 102.

We assume that �a = �s . It is important to emphasize
that we do not seek, in this paper, to determine appropri-
ate staffing levels in response to time-varying arrival rates.
Indeed, the problem of setting appropriate staffing levels
to achieve a time-stable performance (i.e., to stabilize the
system’s performance measures) is reasonably well under-
stood; e.g., see Eick et al. (1993), Feldman et al. (2008),
and references therein. In particular, proper staffing, when it
can be done, will make s4t5 “out-of-phase” with �4t5, i.e.,
�a 6= �s . We deliberately violate this restriction because we
are interested here in a situation in which the waiting times
tend to be large, which is when delay announcements are
important. In that setting, (i) customers hmight experience
significant delays that motivate the need for making delay
announcements, and (ii) we can study the time-varying per-
formance of the system (as opposed to a time-stable per-
formance with appropriate staffing).

In addition to the ASE, we quantify the performance of
a delay predictor by computing the root relative average
squared error (RRASE), defined by

RRASE ≡

√
ASE

41/k5
∑k

i=1 pi

1 (29)

using the same notation as in (1). The denominator in (29)
is the average potential waiting time of customers who must
wait. The RRASE is useful because it measures the effec-
tiveness of an predictor relative to the average potential
waiting time, given that the customer must wait. Simulation
results, which we discuss next, are based on 10 independent
replications of length of a few months each (depending on
the model), assuming a 24-hour cycle; for a more detailed
description of our simulation experiments see §EC.2.

6.2. Simulation Results

6.2.1. From Small to Large Systems. We study the
performance of the candidate delay predictors in the M4t5/
M/s4t5+M model with �a = �s = 1057. This relative fre-
quency corresponds to E6S7= 6 hours with a 24-hour cycle
and to E6S7 = 2 hours with an 8-hour cycle; see Table 1.
We consider this relatively large value of E6S7 to describe
the experience of waiting patients in hospital EDs, where
treatment times are typically long (hours or even days in
some cases). We study the impact of changing E6S7 in
§6.2.2. We study the performance of our predictors as a
function of s̄. In particular, we let s̄ range from 10 to
11000. Hence, our results are applicable to a wide range

of real-life systems, ranging from small to very large. The
difference between the upper and lower bounds of s4t5 in
(28) is equal to 2�s s̄. Therefore, with �s = 003 (fixed), a
large value of s̄ corresponds to more extreme fluctuations
in s4t5. For example, with s̄ = 10, s4t5 fluctuates between
7 and 13, whereas with s̄ = 11000, s4t5 fluctuates between
700 and 1,300.

In this section, we present plots of s̄ × ASE (the aver-
age number of servers times the ASE) of the candidate
predictors as a function of s̄; see Figures 2 and 3. We do
not show here separate results for QLa and HOLa. Indeed,
those two delay predictors perform nearly the same as QLm

a

and HOLm
a in this case (but not in all cases; see §6.2.2).

We present corresponding tables with estimates (for all pre-
dictors) of the 95% confidence intervals in the electronic
companion; see Table EC.3.

Overview of performance as a function of s̄. From
Ibrahim and Whitt (2009a, §4) and Ibrahim and Whitt
(2009b, §5), we have theoretical results that provide useful
perspective for the more complicated models we consider
here. For example, we anticipate that the ASE should be
inversely proportional to the number of servers and that the
ratio ASE(HOL)/ASE(QLs) should be approximately equal
to (1 + c2

a), where c2
a is the squared coefficient of varia-

tion (SCV, variance divided by the square of the mean) of
the interarrival-time distribution. (This relation was shown
to hold especially in large systems.) Similar relations are
shown to hold here, too, provided that we use the refined,
fluid-based predictors.

Figures 2 and 3 show that for fluid-based predictors,
s̄ × ASE is roughly constant, particularly for large s̄. This
means that the ASE of fluid-based predictors is inversely

Figure 2. s̄ × ASE of the alternative predictors in the
M4t5/M/s4t5+M model for �4t5 in (27) and
s4t5 in (28), and a small average number of
servers, s̄.
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Figure 3. s̄ × ASE of the alternative predictors in the
M4t5/M/s4t5+M model for �4t5 in (27) and
s4t5 in (28), and a large average number of
servers, s̄.
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Note. We let �a = �s = 1057, which corresponds to E6S7 = 6 hours with
a 24-hour arrival-rate cycle.

proportional to s̄ and thus converges to 0 in large sys-
tems. For example, ASE(QLr ) ranges from about 0.1 for
s̄ = 10 to about 7 × 10−4 for s̄ = 11000. That is, fluid-
based predictors are asymptotically correct. Additionally,
the ratio ASE(HOLr )/ASE(QLr ) is roughly equal to a con-
stant (equal to 1.3), particularly for large s̄. Figures 2 and 3
also show that the ASE of other predictors (i.e., QLm

a and
HOLm

a ) are independent of s̄. In particular, s̄ × ASE for
those predictors is roughly linear as a function of s̄. (That
is especially true for large s̄.) Consequently, the ASE of
those predictors should roughly equal a (nonzero) con-
stant for large systems. For example, Table EC.3 shows
that ASE(QLm

a ) and ASE(HOLm
a ) are both roughly constant

(equal to 0.02) for large s̄.
Additionally, Figures 2 and 3 show that the ASEs of all

delay predictors decrease as s̄ increases. For example, the
ASE of QLr decreases by a factor of 150 in going from
s̄ = 10 to s̄ = 11000. (That is not surprising because the
fluid model is a remarkably accurate approximation of large
systems.) Moreover, the RRASEs of all predictors decrease
as well. That is, all predictors are relatively more accu-
rate in large systems. For example, the RRASE of QLm

a

decreases from roughly 64% for s̄ = 10 to roughly 46% for
s̄ = 11000. (Note that QLm

a is not a very accurate predictor
in this model, even when the number of servers is large.)
Although all predictors perform better in large systems,
the corresponding ASEs decrease at different rates. Indeed,
Figures 2 and 3 clearly show the superiority of fluid-based
predictors (i.e., QLr , HOLr , and NIF) for moderate to large
values of s̄, although all predictors perform nearly the same
for very small s̄ (e.g., s̄ = 10).

A closer look at the ASEs. For small values of s̄, Fig-
ure 2 shows that there is no advantage in using fluid-

based predictors over QLm
a and HOLm

a . Indeed, QLm
a is

the most accurate predictor for s̄ < 15. However, although
QLm

a is more accurate than fluid-based predictors for small
systems, the difference in performance is not great. For
one example, ASE(QLm

a )/ASE(QLr ) is roughly equal to 0.9
for s̄ = 10. For another example, ASE(QLm

a )/ASE(NIF) is
roughly equal to 0.6 for s̄ = 10. Simulation experiments
with an even smaller number of servers suggest that all pre-
dictors perform poorly when the number of servers is too
small. For example, with s̄ = 5 (and all other parameters
unchanged), the most accurate delay predictor is QLm

a , but
RRASE(QLm

a ) is roughly equal to 87%.
Figures 2 and 3 show that QLr and HOLr are more

accurate than the rest of the predictors for s̄ > 30 (with
QLr being the most accurate predictor). For example, the
RRASE of QLr decreases from roughly 67% for s̄ = 10
to roughly 8% for s̄ = 11000. The NIF predictor is com-
petitive for s̄ ¾ 50. Indeed, the RRASE of NIF ranges
from about 84% for s̄ = 10 to about 12% for s̄ = 11000.
For large s̄, QLm

a and HOLm
a perform nearly the same.

For example, ASE(HOLm
a )/ASE(QLm

a ) is roughly equal to
1 for s̄ = 11000. They are both significantly outperformed
by fluid-based predictors. Indeed, ASE(QLm

a )/ASE(QLr )
ranges from about 0.9 for s̄ = 10 to about 27 for s̄ =

11000. Also, ASE(QLm
a )/ASE(NIF) ranges from about 0.6

for s̄ = 10 to about 11 for s̄ = 11000.
Although NIF performs remarkably well in this model,

other fluid-based predictors, which exploit some informa-
tion about current system state, perform better particularly
for large s̄. For example, ASE(HOLr )/ASE(NIF) ranges
from about 1.5 for s̄ = 10 to about 2.5 for s̄ = 11000. Also,
ASE(QLr )/ASE(NIF) ranges from about 1.3 for s̄ = 10 to
about 1.8 for s̄ = 11000. These ratios are even greater for
smaller values of E6S7; see §6.2.2.

6.2.2. From Small to Large Frequencies. We now
study the performance of the candidate delay predictors in
the M4t5/M/s4t5+M model for alternative values of the
arrival-process frequency, �a. In particular, we consider val-
ues of �a = �s ranging from 0.022 (E6S7= 5 minutes with
a 24-hour cycle) to 1.57 (E6S7 = 6 hours with a 24-hour
cycle); see Table 1. In the following, we will measure E6S7
with respect to a 24-hour cycle. It is important to consider
alternative values of E6S7 to show that our delay predictors
are accurate in different practical settings. We let �4t5 and
s4t5 be as in (27) and (28), respectively, and let s̄ = 100.
We leave all other parameters unchanged.

Overview of performance as a function of E6S7. With
small E6S7, the system behaves at every time t like a sta-
tionary system with arrival rate �4t5. Intuitively, for small
E6S7, the number of both arrivals and departures during
any given interval of time becomes so large that the sys-
tem approaches steady-state behavior during that interval.
Therefore, we expect that delay predictors that use �4t5 and
s4t5 corresponding to each point in time, such as QLm

a and
HOLm

a (see (10) and (12)), will be accurate for small E6S7.
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Table 2. Performance (ASE) of the alternative predictors as a function of E6S7 in the M4t5/M/s4t5+M model with
�4t5 in (27), s4t5 in (28), and s̄ = 100.

E6S7 QLr HOLr NIF Qlma HOLm
a QLa HOLa

5 min. 2.82 ×10−3 4.49 ×10−3 8089 × 10−3 2020 × 10−3 3056 × 10−3 5005 × 10−3 6038 × 10−3

±205 × 10−4 ±404 × 10−4 ±207 × 10−4 ±109 × 10−4 ±107 × 10−4 ±201 × 10−4 ±201 × 10−4

30 min. 2.71 ×10−3 4014 × 10−3 9003 × 10−3 2006 × 10−3 3053 × 10−3 4054 × 10−3 6004 × 10−3

±801 × 10−5 ±102 × 10−4 ±303 × 10−4 ±402 × 10−5 ±704 × 10−5 ±305 × 10−5 ±606 × 10−5

1 hr. 2.82 ×10−3 4.44 ×10−3 9.49 ×10−3 2.42 ×10−3 4.00 ×10−3 4.79 ×10−3 6.33 ×10−3

±502 × 10−5 ±801 × 10−5 ±300 × 10−4 ±600 × 10−5 ±806 × 10−5 ±801 × 10−5 ±905 × 10−5

2 hrs. 3.49 ×10−3 5.38 ×10−3 1.04 ×10−2 4.06 ×10−3 5.85 ×10−3 6.32 ×10−3 8.04 ×10−3

±800 × 10−5 102 × 10−4 304 × 10−4 ±103 × 10−4 ±200 × 10−4 ±106 × 10−4 ±200 × 10−4

6 hrs. 7025 × 10−3 9040 × 10−3 1057 × 10−2 2044 × 10−2 2066 × 10−2 2099 × 10−2 3021 × 10−2

±202 × 10−4 ±201 × 10−4 ±506 × 10−4 ±404 × 10−4 ±505 × 10−4 ±406 × 10−4 ±506 × 10−4

Note. Estimates of the ASE are shown together with the half width of the 95% confidence interval.

Table 2 shows that QLa and HOLa are the least accu-
rate predictors in this model for all values of E6S7. In con-
trast, their modified versions, QLm

a and HOLm
a , are much

more accurate, especially for small E6S7 as expected. For
example, ASE(QLa)/ASE(QLm

a ) is roughly equal to 2.3
for E6S7 = 5 minutes. Also, ASE(HOLa)/ASE(HOLm

a ) is
roughly equal to 1.8 for E6S7 = 5 minutes. This shows the
need to go beyond existing delay predictors, such as QLa

and HOLa. The difference in performance decreases as E6S7
increases, however. For example, ASE(QLa)/ASE(QLm

a )
is roughly equal to 1.2, and ASE(HOLa)/ASE(HOLm

a ) is
roughly equal to 1.1, for E6S7= 6 hours.

In general, all predictors are more accurate for small
E6S7. For example, RRASE(HOLr ) ranges from about
25% for E6S7 = 5 minutes to about 29% for E6S7 =

6 hours. Also, RRASE(HOLm
a ) ranges from about 22%

for E6S7 = 5 minutes to about 49% for E6S7 = 6 hours.
Table 2 shows that although fluid-based predictors perform
nearly the same as the remaining predictors for small E6S7
(e.g., 5 minutes), they perform much better for large
E6S7 (e.g., 6 hours).

A closer look at the ASEs. The QLm
a predictor is the most

accurate predictor for small E6S7, slightly outperforming
QLr (which is the second most accurate predictor in that
case). Indeed, Table 2 shows that ASE(QLr )/ASE(QLm

a ) is
roughly equal to 1.3 for E6S7 = 5 minutes. The HOLm

a

predictor is less accurate than QLm
a , particularly for small

E6S7. Indeed, ASE(HOLm
a )/ASE(QLm

a ) ranges from about
1.6 for E6S7 = 5 minutes to about 1.1 for E6S7 = 6
hours. That is to be expected because QLm

a exploits addi-
tional information about the queue length seen upon arrival,
unlike HOLm

a .
For E6S7 ¾ 2 hours, however, QLr is more accurate

than QLm
a (and all remaining predictors); e.g., ASE(QLr )/

ASE(QLm
a ) is roughly equal to 0.85 for E6S7= 6 hours. In

larger systems, QLr is more accurate than QLm
a for even

smaller E6S7. For example, with s̄ = 11000, ASE(QLm
a ) is

slightly larger than ASE(QLr ) for E6S7= 30 minutes.
The QLm

a and HOLm
a predictors both make system-

atic errors that cause their ASEs to increase dramatically

with E6S7. They are, therefore, significantly less accurate
than fluid-based predictors for large E6S7. For example,
RRASE(QLa) ranges from about 27% for E6S7= 5 minutes
to about 52% for E6S7 = 6 hours, whereas RRASE(QLr )
ranges from about 20% for E6S7= 5 minutes to about 25%
for E6S7 = 6 hours. Also, RRASE(HOLm

a ) ranges from
about 22% for E6S7= 5 minutes to about 49% for E6S7= 6
hours, whereas RRASE(HOLr ) ranges from about 25% for
E6S7= 5 minutes to about 29% for E6S7= 6 hours. Addi-
tionally, Table 2 shows that ASE(QLm

a )/ASE(QLr ) ranges
from roughly 0.8 for E6S7 = 5 minutes to roughly 3.4 for
E6S7= 6 hours, and ASE(HOLm

a )/ASE(HOLr ) ranges from
about 0.8 for E6S7 = 5 minutes to about 2.9 for E6S7 =

6 hours. Fluid-based perform even better with a larger num-
ber of servers; e.g., see §6.2.1.

Finally, we now compare the performance of NIF to
that of other fluid-based predictors. Table 2 shows that
NIF remains less accurate than QLr and HOLr . For
example, ASE(NIF)/ASE(QLr ) ranges from about 3.1 for
E6S7 = 5 minutes to about 2.1 for E6S7 = 6 hours. Also,
ASE(HOLr )/ASE(NIF) ranges from about 2 for E6S7 = 5
minutes to about 1.7 for E6S7= 6 hours. The NIF predictor
is the least accurate predictor for E6S7¶ 2 hours, yet it per-
forms better as E6S7 increases. Indeed, it is more accurate
than QLm

a for large enough E6S7. For example, ASE(QLm
a )/

ASE(NIF) ranges from about 0.25 (E6S7 = 5 minutes) to
about 1.6 (E6S7= 6 hours).

6.2.3. Results for Nonexponential Distributions. In
the electronic companion, we consider the M4t5/M/s4t5+
GI model with H2 (hyperexponential with balanced means
and SCV equal to 4) and E10 (Erlang, sum of 10 exponen-
tials) abandonment-time distributions. Simulation results
for those models are consistent with those described in
this section. In particular, fluid-based predictors are more
accurate than other predictors for long enough E6S7 and
large enough s̄, and the difference in performance can be
remarkable. For example, in the M4t5/M/s4t5+E10 model
with E6S7 = 6 hours and s̄ = 11000, ASE(QLm

a /ASE(QLr )
is roughly equal to 18.
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We also study the performance of all delay predictors
with both nonexponential service and abandonment-time
distributions, i.e., we consider the M4t5/GI/s4t5 + GI
model (we implement the alternative predictors by approxi-
mating the service-time distribution by an exponential with
the same mean); see §EC.4. We consider H2, E10, and D
(deterministic) service-time distributions. We find that the
performance of the alternative predictors depends largely
on the service-time distribution beyond its mean. With H2

service times, fluid-based-predictors remain more accurate
than QLm

a and HOLm
a . In Ibrahim and Whitt (2009b), we

treated the case of deterministic service times and found
that QLa is not reliable in the GI/D/s +GI model; e.g.,
see §6.4 of that paper. Nevertheless, QLa remained effective
with minimal variability in the service-time distribution,
e.g., with E10 service times. Here, we find that fluid-based
predictors are ineffective with both D and E10 service
times. In contrast, we find that QLm

a and HOLm
a remain

effective with deterministic (or nearly deterministic) service
times and that they are considerably more accurate than
fluid-based predictors in that case.

7. Conclusions
In this paper, we proposed alternative real-time delay pre-
dictors for nonstationary many-server queueing systems
and showed that they are effective in the M4t5/M/s4t5+

GI queueing model with time-varying arrival rates and a
time-varying number of servers. In Table 3, we summa-
rize the information needed for the implementation of each
predictor and the characteristics of systems in which they
might be preferred.

Figure 1 showed that existing delay predictors that do
not take account of time-varying arrival rate and staffing,
such as QLa and HOLa, can be systematically biased in the
M4t5/M/s4t5+GI model. Therefore, in §3 we proposed
the modified predictors, QLm

a and HOLm
a . Then in §5 we

Table 3. Summary of the information required for the
implementation of each delay predictor.

Information about Preferred in
Predictor the model systems with

QLs Q4t51 s4t51� Low abandonment,
(nearly) exponential
service times

QLa, QLm
a Q4t51 s4t51�,

F 4x51�4t5
High abandonment, slow

time-variability, small
systems

HOLa, HOLm
a w1 s4t51�,

F 4x51�4t5
High abandonment, slow

time-variability, small
systems

HOLr w1 s4t51�,
F 4x51�4t5

High abandonment, fast
time-variability, large
systems

QLr Q4t51 s4t51�,
F 4x51�4t5

High abandonment, fast
time-variability, large
systems

exploited a fluid approximation for the M4t5/M/s4t5+GI
model developed in Liu and Whitt (2010) to obtain the
new fluid-based delay predictors, QLr , HOLr , and NIF. All
new delay predictors proposed in this paper reduce to prior
ones that were shown to be remarkably accurate in simpler
models. Throughout, we used simulation to study the per-
formance of the candidate delay predictors in several prac-
tical settings. We considered alternative values of (i) the
number of servers in the system, and (ii) the mean service
time, E6S7.

QLr is consistently more accurate than both HOLr and
NIF. In terms of efficiency (low ASE), fluid-based predic-
tors are ordered by QLr < HOLr < NIF. Consistent with
prior theoretical results in Ibrahim and Whitt (2009a, b),
simulation showed that ASE(HOLr )/ASE(QLr ) is roughly
equal to a constant between 1 and 2; e.g., see Figures 2
and 3. Although NIF is relatively accurate, particularly in
large systems, it performs worse than both QLr and HOLr
because it does not exploit any information about the cur-
rent system state at the time of prediction.

Fluid-based predictors outperform QLm
a and HOLm

a in
large systems with large E6S7. Figure 3 showed that
QLr , HOLr , and NIF are asymptotically correct in the
M4t5/M/s4t5+M model, with a large E6S7, unlike QLm

a

and HOLm
a ; i.e., the ASE of fluid-based predictors is

inversely proportional to the number of servers. Moreover,
Figure 2 showed that fluid-based predictors remain more
accurate than QLm

a and HOLm
a even when the number of

servers is not too large, provided that E6S7 is large enough
(e.g., s̄ = 30 and E6S7= 6 hours).

QLm
a and HOLm

a outperform fluid-based predictors in
small systems with small E6S7. Simulation showed that
QLm

a is the most accurate predictor for small E6S7, partic-
ularly when the number of servers is small (e.g., E6S7= 5
minutes and s̄ = 10). Table 2 showed that QLm

a remains
the most accurate predictor even when the system is rel-
atively large (e.g., E6S7 = 5 minutes and s̄ = 100). How-
ever, Table 2 also showed that the accuracy of QLm

a and
HOLm

a decreases steadily as E6S7 increases. Indeed, both
RRASE(QLm

a ) and RRASE(HOLm
a ) increase with increas-

ing E6S7. Although fluid-based predictors perform worse
for large E6S7 as well, their RRASEs increase much slower
than RRASE(QLm

a ) and RRASE(HOLm
a ).

In some cases, there is not too much difference in per-
formance between the delay predictors. Figure 2 showed
that QLm

a is only slightly more accurate than QLr in small
systems with large E6S7; e.g., s̄ = 10 and E6S7 = 6 hours.
The same conclusion also holds in large systems with small
E6S7. For example, QLm

a is also only slightly more accu-
rate than QLr for s̄ = 11000 and E6S7= 5 minutes. In those
cases, all delay predictors proposed are relatively accurate.

8. Electronic Companion
An electronic companion to this paper is available as part
of the online version that can be found at http://or.journal
.informs.org/.
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