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Abstract

Motivated by interest in making delay announcements in service systems, we study real-time

delay estimators in many-server service systems, both with and without customer abandon-

ment. Our main contribution here is to consider the realistic feature of time-varying arrival

rates. We focus especially on delay estimators exploiting recent customer delay history.

We show that time-varying arrival rates can introduce significant estimation bias in delay-

history-based delay estimators when the system experiences alternating periods of overload

and underload. We then introduce refined delay-history estimators that effectively cope with

time-varying arrival rates together with non-exponential service-time and abandonment-time

distributions, which are often observed in practice. We use computer simulation to verify

that our proposed estimators outperform several natural alternatives.
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1. Introduction

We investigate alternative ways to estimate, in real time, the delay (before entering service)

of an arriving customer in a service system with time-varying arrival rates. We consider

time-varying arrival rates because arrival processes to service systems, in real life, typically

vary significantly over time.

Our delay estimators may be used to make delay announcements. Delay announcements

may be especially helpful when delays are sometimes long, as in a hospital emergency de-

partment (ED). In many cases waiting customers are unable to accurately estimate their

own delay, and would therefore gain from delay announcements. That is typically true with

invisible queues, as occur in call centers; see Aksin et al. (2007) for background on call

centers.

1.1. Delay-History-Based Estimators

In this paper, we examine alternative estimators based on recent customer delay history

in the system. As in Armony et al. (2008), a candidate delay estimator based on recent

customer delay history is the delay of the last customer to have entered service, prior to

our customer’s arrival at time t, denoted by LES. That is, letting w be the delay of the last

customer to have entered service, the corresponding LES delay estimate is: θLES(t, w) ≡ w.

Armony et al. (2008) studied delay announcements in many-server queues with customer

abandonment, focusing on customer response to the announcements, leading to balking and

new abandonment behavior. They developed ways to approximately describe the equilibrium

system performance using LES delay announcements.

Closely related to LES is the elapsed waiting time of the customer at the head of the line

(HOL), assuming that there is at least one customer waiting at the new arrival epoch. The

HOL delay estimator was mentioned as a candidate delay announcement by Nakibly (2002).

For a detailed discussion of the HOL and LES estimators, see Ibrahim and Whitt (2009a, b).

1



Experience indicates that the LES and HOL estimators have very similar performance. In

complex systems, the LES delay is more likely to be observable than the HOL delay, because

arrival and service completion times are more likely to be known than the experience of

customers who have not yet completed their service; e.g., customers may have abandoned

and that might not be known. Nevertheless, here we focus on HOL, because it is easier to

analyze. However, we do so with the understanding that similar results will hold for LES.

1.2. Motivation For Delay-History-Based Estimators

We now briefly explain why it is important to study the performance of delay-history-based

estimators; for more discussion, see §1 of Ibrahim and Whitt (2009a). First, delay-history-

based estimators are currently used in service systems. For one example, the U.S. Citizenship

and Immigration Service (USCIS) publishes the arrival time of the most recently completed

application to give an idea about upcoming delays. For another example, the HOL estimator

was used as an announcement in an Israeli bank studied by Mandelbaum et al. (2000).

Second, delay-history-based estimators are appealing for complicated service systems.

For one example, there may be multiple customer classes with multiple service pools. For

another example, with Web chat, servers typically serve several customers simultaneously,

different servers may participate in a single service, and there may be interruptions in the

service times, as the customers explore material on the Web in between conversations with

agents. For yet another example, in ticket queues studied by Xu et al. (2007). Upon arrival

at a ticket queue, each customer is issued a numbered ticket. The number currently being

served is displayed. The queue length is not known to ticket-holding customers or even to

system managers, because they do not observe customer abandonments. Even in systems

with no customer abandonment, we may not know the queue length in the system at a new

arrival epoch. In a ticket queue (as at a supermarket), a ticketed customer may elect to

go and do other shopping and plan to come back later to get in line. (Customers may also

abandon, but that does not have to be the case.) Customers with tickets could return to

the queue at some point in time and “preempt” customers who are already in line (e.g., if

they have a lower numbered ticket). Now, suppose that there is a new arrival at the station.
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It is unclear whether ticketed customers (currently doing some other shopping) will return

quickly enough to be inserted before that new arrival. Therefore, the queue length cannot

be determined at the new arrival epoch. Nevertheless, it is possible to determine who the

LES (or HOL) customer is, and to know his/her delay.

Delay-history-based estimators are appealing, from a practical perspective, whenever the

queue length is not known, but also because they do not depend on the model and use very

little information about the system. They are robust because they respond automatically to

changes in system parameters (e.g., number of servers, mean service time, and arrival rate).

To fully understand a complex service system, we need to study it in detail. However,

to help develop a service science, we are systematically studying various delay estimators

in controlled environments, i.e., in structured models, starting with GI/M/s and extend-

ing to GI/GI/s (non-exponential service times), GI/GI/s + GI (abandonment with non-

exponential patience distributions) in Ibrahim and Whitt (2009a, b) and now Mt/GI/s and

Mt/GI/s+GI (time-varying arrival rates).

1.3. The Case of a Stationary Arrival Process

In Ibrahim and Whitt (2009a, b), we studied the performance of the LES and HOL delay

estimators in many-server systems, both with and without customer abandonment, by study-

ing conventional stationary queueing models. In Ibrahim and Whitt (2009a), we studied the

performance of HOL in the GI/M/s queueing model, which has a renewal arrival process,

s homogeneous servers, an unlimited waiting room and the first-come-first-served (FCFS)

service discipline. The service times are independent of the arrival process, and independent

and identically distributed (i.i.d.) exponential random variables.

We showed that HOL is an effective estimator in the GI/M/s model. As a frame of

reference, we considered the classical delay estimator based on the queue length, denoted by

QL, which multiplies the queue length plus one times the mean interval between successive

service completions, ignoring customer abandonment. For this special idealized model with

i.i.d. exponential service times and no customer abandonment, the QL estimator is provably

the most effective estimator, under the mean squared error (MSE) criterion; see §4 below.
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The HOL estimator performs worse than QL, because it does not exploit queue-length in-

formation. Nevertheless, we showed that the difference in performance need not be too

great, particularly when the arrival process has low variability. Because the model is highly

structured, we were able to obtain analytical results.

In Ibrahim and Whitt (2009b), we considered the GI/GI/s+GI model, which includes

independent sequences of i.i.d. service times and abandonment times with general distribu-

tions. As one would expect, QL can overestimate customer delay when there is significant

customer abandonment in the system. We showed that QL performs poorly in a heavily

loaded GI/GI/s+GI model, while HOL remains an effective estimator.

When customer abandonment is a serious issue, it is possible to refine the queue-length-

based delay estimator by using the exact expected conditional delay, given the queue length,

in the G/M/s+M model; we denote this by QLm. However, for non-exponential service-time

and abandonment distributions, the delay-history-based estimators can also outperform this

refined queue-length-based estimator QLm, even when the queue length and the model are

known; e.g., see Figures 1-4 of Ibrahim and Whitt (2009b).

However, we do not mean to suggest that the queue length does not provide useful

information when it is known. Indeed, our best estimator for the GI/GI/s + GI model is

an approximation-based estimator, referred to as QLap, which exploits the queue length as

well as model parameters; we also will make use of QLap here for the Mt/GI/s+GI model

in §8.

1.4. Time-Varying Arrival Rates

In this paper, we study the performance of the HOL estimator with time-varying arrival

rates. We do so primarily because arrival rates typically vary significantly over time in

real-life service systems.

The HOL estimator can perform poorly when the delays vary systematically over time,

as can occur when there are alternating periods of significant overload and underload. Then

the delay of a new arrival may not be like the HOL delay. To demonstrate potential problems

with the HOL estimator, we plot simulation sample paths of HOL delay estimates given, and
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actual delays observed, as a function of time, in simulation runs from two different heavily-

loaded many-server systems. In Figure 1, we consider the stationary M/M/100 model with

traffic intensity ρ = 0.95 and mean service time 5 minutes; in Figure 2, we consider the

Mt/M/100 model with sinusoidal arrival rates, again with traffic intensity ρ = 0.95, but now

defined as the long-run average, and mean service time 5 minutes. We consider a daily cycle,

so that there is one peak during the day. We let the relative amplitude be α = 0.5. (The

ratio of the peak arrival rate to the average arrival rate is 1 + α.) We measure time and,

thus, the delays in units of mean service times. The overall plotted time interval of length

500 mean service times is slightly less than two days, so we see two peaks.

For Figure 2, we deliberately chose an extreme case in which the system alternates

between extreme overload and underload, while the number of servers remains fixed. In that

setting, the maximum delays themselves are about 40 mean service times or 200 minutes,

about 60 times greater than in the stationary environment. Delay estimation tends to be

especially important with such large delays. Figure 2 shows that, with time-varying arrival

rates, the HOL curve is clearly shifted to the right of the actual-delay curve; i.e., there is a

time lag between the HOL estimates and the actual delays observed, leading to big errors.

Figure 2 also shows a third plot, the plot of a refined HOL estimator, denoted by HOLr,

which we develop in §4. Clearly, it eliminates the time lag; visually the HOLr plot falls on

top of the actual delays. The ratio of the average squared errors ASE(HOL)/ASE(HOLr),

defined in §3 below, is about 95 in Figure 2. (If we would reduce the relative amplitude

from 0.5 to 0.1, then the ratio would be only 1.3; it then requires careful analysis to see the

improvement provided by HOLr over HOL; see Ibrahim and Whitt (2009c) for the plot.)

In this paper, we not only show that HOL may not be an effective estimator with time-

varying arrivals, particularly when the system alternates between phases of underload and

overload, but we also develop refinements of the HOL estimator that remain effective for time-

varying arrival rates. Through analysis and simulation, we show that these new estimators

perform remarkably well with time-varying arrival rates, far better than HOL.

However, the improved performance of the refined HOL estimators comes at the expense
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of exploiting more information about the system, such as the arrival rate, the number of

servers and the mean service time. That requirement greatly reduces the advantage over

queue-length-based delay estimators. Indeed, our strategy for obtaining the refined HOL

estimators involves two steps: (i) representing or approximating the expected conditional

delay given the queue length, and (ii) estimating the queue length, given the observed HOL

delay and the model parameters. Hence, the refined HOL estimators are valuable only when

the queue length is not known. However, such cases are not uncommon, as in Web chat and

ticket queues, when we directly observe arrivals and service completions, but not the queue,

because we do not observe customer abandonments.

Because our refined estimators exploit more information about the system, we also inves-

tigate (i) how our refined estimators perform if the extra information is known imperfectly,

because it too must be estimated, and (ii) how this additional information can be estimated

in real time. We propose estimation procedures for alternative system parameters, and quan-

tify the estimation error resulting from those procedures. These additional experiments show

that the refined estimators can be useful in practice.
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1.5. Literature Review, Contributions, and Organization

The literature on delay announcements is large and growing. In broad terms, there are two

main areas of research. The first area studies the effect of delay announcements on system

dynamics; e.g., see Whitt (1999b), Armony and Maglaras (2004), Guo and Zipkin (2007),

Armony et al. (2008), Allon et al. (2009), and references therein. The second area studies

alternative ways of estimating customer delay in service systems; e.g., see Nakibly (2002),

Whitt (1999a), Jouini et al. (2007), and Ibrahim and Whitt (2009a, b). For a more detailed

review, see Section 2 of Jouini et al. (2007).

This paper falls in the second main area of research. Our main contributions are: (i) to

show that time-varying arrival rates can cause estimation bias for delay-history-based delay

estimators, (ii) to propose new and easily implementable delay estimators, based on the

history of delays in the system, that effectively cope with time-varying arrivals and general

service-time and abandon-time distributions, (iii) to provide analytical results quantifying

the performance of some delay estimators, and (iv) to describe results of a wide range of

simulation experiments evaluating alternative delay estimators, with time-varying arrivals.

The rest of this paper is organized as follows: In §2, we describe the modeling framework.

In §3, we describe measures quantifying the performance of our candidate delay estimators.

In §4, we introduce a new delay estimator for the Mt/GI/s model. In §5, we provide

analytical results for the performance of this estimator in the Mt/M/s model. In §6, we

present simulation results showing that it is effective in the Mt/GI/s model. In §7, we

propose ways of obtaining the additional system information required for implementing the

new delay estimator of §4. In §8, we develop a new delay estimator for the Mt/GI/s + GI

model. In §9, we present simulation results showing that it is effective. We make concluding

remarks in §10. Additional material appears in an online supplement, Ibrahim and Whitt

(2009c).
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2. The Framework

We consider many-server queueing models with time-varying arrival rates, both with and

without customer abandonment. We model the arrival process as a nonhomogeneous Poisson

process, which is the accepted model for capturing time-varying arrivals. It is completely

characterized by its deterministic arrival-rate function λ ≡ {λ(u) : −∞ < u <∞}. There is

statistical evidence suggesting that a nonhomogeneous Poisson process is a good fit for the

arrival process to a call center; see Brown et al. (2005). We adopt this model for arrivals,

although we recognize its shortcomings. For example, this model does not reproduce an

essential feature of call center arrivals, which is the over-dispersion of the number of arrivals

relative to the Poisson distribution (i.e., the variance is larger than the mean); see Avramidis

et al. (2004). Moreover, the arrival rate in a real-life system is often not known with certainty.

Therefore, it could be assumed to be a random variable; see Jongbloed and Koole (2001).

It is natural, however, to begin an investigation in a relatively tractable setting, for which

we are able to obtain analytical results. Our results provide useful background for similar

studies in even more complicated settings.

In §4-6, we consider the Mt/GI/s model, which has a nonhomogeneous Poisson arrival

process, i.i.d. service times distributed as a random variable S with a general distribution,

having mean E[S] = µ−1 and no customer abandonment. Motivated by large service systems,

we are primarily interested in the case of large s, which we take to be fixed. It is possible

to choose appropriate time-varying staffing (making s a function of time) so that delays are

stabilized at low levels; e.g., see Green et al. (2007). However, in practice there often is

not adequate flexibility in setting staffing levels. Our fixed staffing assumption captures the

spirit of such situations. We leave to future research the important extension to time-varying

staffing levels.

Our delay estimators apply to arbitrary arrival rate functions, but to analyze the per-

formance of these estimators we restrict attention to periodic arrival rate functions, under

which the queueing system has a dynamic steady state, provided that the average arrival

rate, denoted by λ̄, is strictly less than the maximum possible service rate, sµ; e.g., see Hey-
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man and Whitt (1984). For our analysis, both analytically and by simulation, we further

restrict attention to the special case of sinusoidal arrival rates. That is commonly done in

studies of queues with time-varying arrivals; e.g., see Green et al. (2007) and references

therein. Sinusoidal arrival rates capture the spirit of daily cycles.

In §8 and §9 we consider the Mt/GI/s+GI model, which adds customer abandonment.

The abandonment times are i.i.d. with mean ν−1 and a general cumulative distribution func-

tion (cdf) F . As in Ibrahim and Whitt (2009b), we see that the abandonment distribution

has a significant impact.

3. Performance Measures for the Delay Estimators

In this section, we indicate how we evaluate the performance of our candidate delay estima-

tors. We use computer simulation to do the actual estimation. In our simulation experiments,

we quantify the performance of a delay estimator by computing the average squared error

(ASE), defined by:

ASE ≡ 1

k

k∑
i=1

(pi − ei)
2 , (3.1)

where pi > 0 is the potential waiting time of delayed customer i, ei is the delay estimate

given to customer i, and k is the number of customers in our sample. In our simulation

experiments, we measure pi for both served and abandoning customers. For abandoning

customers, we compute the delay experienced, had the customer not abandoned, by keeping

him “virtually” in queue until he would have begun service. Such a customer does not affect

the waiting time of any other customer in queue. Since we measure time in units of mean

service times, the ASE is given in units of mean service time squared per customer.

As discussed in Ibrahim and Whitt (2009a, b), the ASE approximates the expected mean

squared error (MSE) for a system in steady state with a constant arrival rate, but the situa-

tion is more complicated with time-varying arrivals. We regard ASE as directly meaningful,

but now we indicate how it relates to the MSE. Let WHOL(t, w) represent a random variable

with the conditional distribution of the potential delay of an arriving customer, given that

this customer must wait before starting service, and given that the elapsed delay of the
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customer at the head of the line at the time of his arrival, t, is equal to w. Let θHOL(t, w)

be some given single-number delay estimate which is based on the HOL delay, w, and the

time of arrival, t. Then, the MSE of the corresponding delay estimator is given by:

MSE(θHOL(t, w)) ≡ E[(WHOL(t, w)− θHOL(t, w))2] , (3.2)

which is a function of w and t. In order to get the overall MSE of HOL at time t, we average

with respect to the unconditional distribution of the HOL waiting time at time t, WHOL(t),

i.e.,

MSE(t) ≡ E[MSE(θHOL(t,WHOL(t)))]. (3.3)

Finally, in order to relate the ASE in (3.1) to the MSE, we need to average MSE(t)

defined in (3.3) appropriately over time, but since the ASE represents a customer average

instead of a time average, we need to use a weighted time average of the time-dependent

MSE in (3.2) in order to relate it to the ASE. In particular, if T is the cycle length, then

ASE ≈
∫ T

0
λ(u)MSE(u)du∫ T

0
λ(u)du

, (3.4)

where MSE(t) is defined in (3.3); for supporting theory see the appendix of Massey and

Whitt (1994).

In addition to the ASE, we quantify the performance of a delay estimator by computing

the root relative average squared error (RRASE), defined by

RRASE ≡
√
ASE

(1/k)
∑k

i=1 pi

, (3.5)

using the same notation as in (3.1). The denominator in (3.5) is the average potential waiting

time of customers who must wait. The RRASE is useful because it measures the effectiveness

of an estimator relative to the average potential waiting time, given that the customer must

wait.

4. Delay Estimators for the Mt/GI/s Model

In this section, we propose a new refined HOL-based delay estimator, HOLr, for theMt/GI/s

model. Our idea is to use the refined estimator θr
HOL(t, w) ≡ E[WHOL(t, w)] instead of the

10



HOL estimator θHOL(t, w) ≡ w, because the mean necessarily minimizes the MSE based

on this information. However, this mean is difficult to compute, so we propose an approx-

imation. We approximate the mean in the given Mt/GI/s model by its exact value in the

corresponding Mt/M/s model, with exponential service time having the given mean E[S].

For the Mt/M/s model, we have the representation:

WHOL(t, w) ≡
A(t)−A(t−w)+2∑

i=1

Si/s , (4.1)

where {A(t) : t ≥ 0} denotes the arrival (counting) process. We have division by s in (4.1)

because the times between successive service completions, when all servers are busy, are

i.i.d. random variables distributed as the minimum of s exponential random variables, each

with rate µ, which makes the minimum exponential with rate sµ. The random variable

A(t)−A(t−w) has a Poisson distribution with mean
∫ t

t−w
λ(u)du. Since WHOL(t, w) in (4.1)

is a random sum of i.i.d. random variables, where A(t) − A(t − w) is independent of the

summands Si/s, we can easily compute this mean. Hence our refined HOL estimator for the

Mt/GI/s model is this mean

θHOLr(t, w) ≡ E[WHOL,Mt/M/s(t, w)] =
1

sµ

(
2 +

∫ t

t−w

λ(u)du

)
. (4.2)

In general, with a non-exponential service-time distribution, θHOLr(t, w) in (4.2) need

not equal E[WHOL(t, w)], because many remaining service times at time t are residual ser-

vice times for service times begun prior to time t. Consequently, these service times have a

different distribution than the original service time. However, we can make stochastic com-

parisons. A cumulative distribution function (cdf) G of a nonnegative random variable is said

to be new better (worse) than used - NBU (NWU) - if Gc
t(x) ≡ Gc(t+ x)/Gc(t) ≤ (≥)Gc(x)

for all t ≥ 0 and x ≥ 0, where Gc(x) ≡ 1−G(x); see p. 159 of Barlow and Proschan (1975).

In the parlance of survival analysis, a cdf is NBU (NWU) if the probability of surviving for

an additional x time units, given survival up to time t, decreases (increases) with t.

Proposition 1. If the service-time cdf is NBU (NWU), then θHOLr(t, w) ≥ (≤)E[WHOL(t, w)].
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Proof. The NBU and NWU condition means that the residual service times are stochas-

tically ordered compared to the original service times. Intuitively, approximating an NBU

(NWU) distribution by an exponential leads to overestimating (underestimating) the resid-

ual service times, and thus the overall delay. Given the elapsed times, the remaining service

times are mutually independent. The minimum (the time until the next departure) is thus

stochastically ordered compared to the minimum of mutually independent original service-

time distributions. The random variable WHOL(t, w) is the sum of several of those intervals

between successive departures. Even though those intervals may be dependent, the mean of

the sum is the sum of the means. Hence the means are ordered, as claimed.

More importantly, simulation shows that HOLr provides a good approximation even when

the service-time distribution is not nearly exponential; see §6.

We conclude this section by reviewing the QL estimator, previously considered in Ibrahim

and Whitt (2009a, b). Let WQ(t, n) represent a random variable with the conditional dis-

tribution of the delay of an arriving customer, given that this customer must wait before

starting service, and given that the queue-length seen upon arrival, at time t, is equal to n.

Again, the QL estimator is obtained by using the exact expected value E[WQ(t, n)] for the

corresponding Mt/M/s model with the same mean service time.

In the Mt/M/s model, WQ(t, n) is the sum of n+ 1 i.i.d. exponential random variables,

each with rate sµ. The QL estimate given to a customer who finds n other customers in

queue upon arrival is: θQL(t, n) ≡ E[WQ(t, n)] = (n+1)/sµ, which depends on t only through

n, which is directly observable. The optimal delay estimator, conditional on the number of

customers, n, seen in line at time t, using the MSE criterion, is the one announcing the

mean, E[WQ(t, n)]. That is why the QL estimator is the optimal delay estimator, under the

MSE criterion, in the Mt/M/s model.

By essentially the same reasoning as for Proposition 1, we can obtain bounds for the

mean delay compared to θQL(t, n) when the service-time cdf is NBU or NWU.

Proposition 2. If the service-time cdf is NBU (NWU), then θQL(t, n) ≥ (≤)E[WQ(t, n)].

Fortunately, again simulation shows that QL remains effective in the Mt/GI/s model,
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even when the service-time distribution is not nearly exponential; see §6. For the Mt/M/s

model, we obtain analytical results quantifying the difference in performance between QL

and HOLr in the next section.

5. Analytical Expressions for the Mt/M/s Model

The QL estimator has the desirable property that the estimation gets relatively more accurate

as the observed queue length n increases. For the conditional waiting time at time t based

on an observed queue length of n, we have the representation

WQ(t, n) ≡
n+1∑
i=1

Si/s . (5.1)

The expectation, variance, and squared coefficient of variation (SCV, equal to the variance

divided by the square of the mean) of WQ(t, n) are given by:

E[WQ(t, n)] =
n+ 1

sµ
, V ar[WQ(t, n)] =

n+ 1

s2µ2
, c2WQ(t,n) ≡

V ar[WQ(t, n)]

(E[WQ(t, n)])2
=

1

n+ 1
, (5.2)

so that c2WQ(t,n) → 0 as n→∞.

To treat HOLr, we use the representation in (4.1), which allows us to characterize the

probability distribution of the random variable WHOL(t, w), in the Mt/M/s model.

Proposition 3. For the Mt/M/s model,

V ar[WHOL(t, w)] =
2

s2µ2
(1 +

∫ t

t−w

λ(u)du) , (5.3)

which, combined with (4.2), yields

c2WHOL(t,w) =
V ar[WHOL(t, w)]

(E[WHOL(t, w)])2
= 2×

1 +
∫ t

t−w
λ(u)du

(2 +
∫ t

t−w
λ(u)du)2

. (5.4)

Proof. Formula (5.3) follows from the conditional variance formula, e.g., p.51 of Ross

(1996). Formula (5.4) immediately follows from (4.2) and (5.3). .

Since θHOLr(t, w) ≡ E[WHOL(t, w)] and θQL(t, n) ≡ E[WQ(t, n)], we can compare the

performance of HOLr and QL by comparing the respective SCV’s in (5.2) and (5.4). (When

the delay estimate equals the conditional mean, the MSE coincides with the variance.)
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To obtain further results, we consider a sinusoidal arrival-rate function

λ(u) = λ̄+ β sin(γu) ≡ λ̄+ λ̄α sin(2πu/Γ), for −∞ < u <∞ , (5.5)

where λ̄ is the average arrival rate, α is the relative amplitude and Γ is the cycle length. (We

define β ≡ λ̄α and γ ≡ 2π/Γ.) Given the cycle length, Γ, we can deduce the place where

any time u falls within the cycle, in dynamic steady state. Henceforth, we focus solely on

the interval 0 ≤ u ≤ Γ, which describes a full cycle.

With sinusoidal arrival rates, we obtain analytical results comparing the performance of

the QL and HOLr estimators. We determine the limit of the ratio of the SCV’s as n→∞.

Formula (5.6) below coincides with formula (4.25) of Ibrahim and Whitt (2009a) for the

stationary GI/M/s model. As before, the condition n→∞ arises naturally in heavy traffic,

either with fixed s or as s → ∞; e.g., see Garnett et al. (2002). (When s → ∞ along with

the arrival rate, the queue length is of order s and
√
s in the ED and QED regimes.) Recall

that ρ ≡ λ̄/sµ.

Proposition 4. For the Mt/M/s model with sinusoidal arrival rates,

c2WHOL(t,w)

c2WQ(n)

→ 2

ρ
as n→∞ , (5.6)

for all t, provided that w/n→ 1/sµ.

Proof. Using Equations (4.2), (5.3), (5.4) and (5.5), we get the following expressions for

the mean, variance, and SCV of WHOL(t, w), in the Mt/M/s model with sinusoidal arrivals:

E[WHOL(t, w)] =
2 + λ̄w + (β/γ)(cos(γt− γw)− cos(γt))

sµ
, (5.7)

and,

V ar[WHOL(t, w)] = 2× 1 + λ̄w + (β/γ)(cos(γt− γw)− cos(γt)))

s2µ2
, (5.8)

which yields

c2WHOL(t,w) =
V ar[WHOL(t, w)]

(E[WHOL(t, w)])2
= 2× 1 + λ̄w + (β/γ)(cos(γt− γw)− cos(γt))

[2 + λ̄w + (β/γ)(cos(γt− γw)− cos(γt))]2
, (5.9)
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for 0 ≤ t ≤ Γ. Using (5.9), and recalling that −1 ≤ cos(u) ≤ 1 for all u, we obtain the

following bounds for the SCV of WHOL(t, w):

2 + 2λ̄w − 4β/γ

(2 + λ̄w + 2β/γ)2
≤ c2WHOL(t,w) ≤

2 + 2λ̄w + 4β/γ

(2 + λ̄w − 2β/γ)2
. (5.10)

Let W (t) be the potential waiting time at time t, the time that an arrival at t would

have to wait before beginning service. Since

W (t) =

Q(t)+1∑
i=1

Si/s , (5.11)

where Q(t) is the number of customers waiting in queue upon arrival at t, the law of large

numbers implies that W (t)/Q(t) → 1/sµ as Q(t) → ∞. Thus, when Q(t) is large, we have

W (t) ≈ Q(t)/sµ. Assuming that n in (5.2) is large with w = n/sµ+ o(n) as n→∞, where

o(n) denotes a quantity that is asymptotically negligible when divided by n, and combining

that with (5.10), for large n we get

(2 + 2ρ(n+ o(n))− 4β/γ)(n+ 1)

(2 + ρ(n+ o(n)) + 2β/γ)2
≤
c2WHOL(t,w)

c2WQ(n)

≤ (2 + 2ρ(n+ o(n)) + 4βγ)(n+ 1)

(2 + ρ(n+ o(n))− 2β/γ)2
,

(5.12)

for all t. By a sandwiching argument, (5.12) yields (5.6) as n→∞.

6. Simulations Experiments for the Mt/GI/s Model

In this section, we present simulation results for the Mt/GI/s model, quantifying the perfor-

mance of QL, HOL, and HOLr with sinusoidal arrival rates. For the service-time distribution,

we consider M (exponential), D (deterministic), and LN(1, 4) (lognormal with mean equal

to 1 and variance equal to 4). The LN(1, 4) (D) distribution exhibits high (low) variability,

relative to M . We consider a lognormal distribution because there is statistical evidence

suggesting a good fit of the service-time distribution to the lognormal distribution in call

centers; see Brown et. al (2005).
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Description of the Experiments. We fix the number of servers, s = 100, because we are

interested in large service systems. We consider nonhomogeneous Poisson arrival processes

with the sinusoidal arrival rate functions in (5.5). We vary λ̄ to get alternative values of ρ,

for fixed s. We consider values of ρ ranging from 0.90 to 0.98. These values of ρ are chosen

to let our systems alternate between periods of overload and underload. We consider two

values of the relative amplitude: α = 0.1, and α = 0.5. Simulation point and 95% confidence

interval estimates are based on 10 independent replications of 5 million events each, where

an event is either an arrival or a service completion. That is, each simulation run terminates

when the sum of the number of arrivals and the number of service completions is equal to

5 million. Here, we show a sample of our simulation results; see Ibrahim and Whitt (2009c)

for more.

The parameters of the arrival-rate intensity function, λ(u) in (5.5), should be interpreted

relative to the mean service time, E[S]. As in §1.4, we measure time in units of mean

service times; hence µ = 1. Then, we refer to γ in (5.5) as the relative frequency. Table 1

displays values of the relative frequency as a function of E[S], assuming a daily cycle. For

interpretation, we also will specify the associated mean service time in minutes, given a daily

cycle.

Here, we consider two different values of γ. First, we consider γ = 0.131, which corre-

sponds to E[S] = 30 minutes, assuming a daily cycle. This choice of E[S] could be used

to describe the experience of waiting customers in a call center, for example. Second, we

consider γ = 1.57, which corresponds to E[S] = 6 hours. This choice of E[S] could be used

to describe the experience of waiting patients in a crowded hospital emergency department

(ED). With E[S] = 30 minutes and α = 0.1 (E[S] = 6 hours and α = 0.5), and daily cycles,

the arrival rate varies relatively slowly (rapidly) with respect to the service times.

In Table 2, we present simulation (point and 95% confidence interval estimates) quan-

tifying the performance of QL, HOLr, and HOL in the Mt/GI/s model with M , LN(1, 4),

and D service-time distributions. We discuss these results next.
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Relative Frequency Mean Service Time
γ E[S]

0.0220 5 minutes
0.0436 10 minutes
0.131 30 minutes
0.262 1 hour
1.571 6 hours
3.14 12 hours
6.28 24 hours
12.6 48 hours

Table 1: The relative frequency, γ, as a function of the mean service time E[S] for a daily
cycle. The relative frequency is the frequency computed with measuring units so that E[S] =
1.

Comparing HOLr and HOL. Table 2 shows that, for α = 0.1 and E[S] = 30 minutes,

HOLr performs better than HOL, particularly for high values of ρ. We get consistent results

with M , LN(1, 4), and D service times: ASE(HOL)/ASE(HOLr) is roughly equal to 1

for ρ = 0.9, and roughly equal to 1.4 for ρ = 0.98. The case with high ρ corresponds to

extreme fluctuations between phases of underload and overload, in which case HOL performs

relatively poorly.

With α = 0.5, and E[S] = 6 hours, the difference in performance between HOL and HOLr

is significant, for all ρ considered. For example, withD service times, ASE(HOL)/ASE(HOLr)

ranges from about 1.8 for ρ = 0.9 to about 2.4 for ρ = 0.98. With M service times,

ASE(HOL)/ASE(HOLr) ranges from about 2.1 for ρ = 0.9 to about 4.8 for ρ = 0.98. The

HOLr estimator is also relatively more accurate than HOL. For example, with LN(1, 4) ser-

vice times, RRASE(HOLr) ranges from about 27% for ρ = 0.9 to about 15% for ρ = 0.98.

In this case, RRASE(HOL) ranges from about 38% for ρ = 0.9 to about 20% for ρ = 0.98.

Comparing HOLr and QL. In the Mt/M/s model, QL is provably the optimal estimator

given the observed queue length upon arrival, under the MSE criterion; see §4. With α = 0.1,

E[S] = 30 minutes, and M service times, Table 2 shows that RRASE(QL) ranges from
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about 21% for ρ = 0.9 to about 10% for ρ = 0.98. With non-exponential service times, QL

remains the most effective estimator, under the MSE criterion. It is relatively accurate, in

all models considered. For example, with α = 0.5, E[S] = 6 hours, and LN(1, 4) service

times, RRASE(QL) ranges from about 20% for ρ = 0.9 to about 12% for ρ = 0.98.

Consistent with §5, the approximation for the ratio of the SCV’s in (5.6) provides a

remarkably accurate approximation for the ratio of the ASE’s with M service times, par-

ticularly for high values of ρ, as we would expect. (The distortion caused by the customer

average in (3.4) is evidently minor,) For example, with E[S] = 30 minutes and α = 0.1. Table

2 shows that the relative error between simulation point estimates for ASE(HOLr)/ASE(QL)

and numerical values given by (5.6), is less than 3% for ρ = 0.98.

With LN(1, 4) service times, E[S] = 30 minutes, and α = 0.1, Table 2 shows that

ASE(HOLr)/ASE(QL) ranges from about 1.7 for ρ = 0.9 to about 1.5 for ρ = 0.98, which is

less than predicted by (5.6). Similarly, with D service times, E[S] = 6 hours, and α = 0.5,

Table 2 shows that ASE(HOLr)/ASE(QL) is approximately equal to 1.5 for all ρ.

7. Estimating the Required Additional Information for HOLr

We have shown, both analytically and using simulation, that the HOL estimator can perform

poorly when the arrival rate varies considerably over time while the staffing is fixed. We

showed that the new refined HOL estimator, HOLr, performs remarkably better than HOL

in the Mt/GI/s queueing model, with time-varying arrival rates; see §6.

However, the statistical accuracy of HOLr is obtained at the expense of ease of imple-

mentation. In addition to the HOL delay, w, HOLr depends on the arrival-rate function,

λ(t), and the mean time between successive service completions (which equals 1/sµ with

s simultaneously busy servers and i.i.d. exponential service times with rate µ); see (4.2).

In practice, the implementation of HOLr requires knowledge of those system parameters,

which may require estimation from data. Any estimation procedure inevitably produces

some estimation error, which would affect the performance of HOLr.

In this section, we propose estimation procedures for the arrival rate and the mean time
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Mt/M/100, α = 0.1, E[S] = 30 min Mt/M/100, α = 0.5, E[S] = 6 hrs
ρ QL HOLr HOL QL HOLr HOL

0.9 2.26 4.29 4.61 2.24 4.27 9.01
±0.051 ±0.088 ±0.098 ±0.023 ±0.033 ±0.15

0.93 3.77 7.29 8.04 2.83 5.45 14.1
±0.10 ±0.21 ±0.26 ±0.029 ±0.063 ±0.25

0.95 5.08 10.1 11.7 3.49 6.82 21.4
±0.072 ±0.15 ±0.20 ±0.033 ±0.073 ±0.28

0.97 7.16 14.1 17.5 4.82 9.46 39.0
±0.098 ±0.20 ±0.24 ±0.12 ±0.22 ±1.5

0.98 9.14 18.0 23.9 6.77 13.3 63.3
±0.30 ±0.59 ±1.0 ±0.32 ±0.62 ±3.9

Mt/LN(1, 4)/100, α = 0.1, E[S] = 30 min Mt/LN(1, 4)/100, α = 0.5, E[S] = 6 hrs
ρ QL HOLr HOL QL HOLr HOL

0.9 4.36 7.30 7.78 2.08 3.60 7.79
±0.25 ±0.34 ±0.36 ±0.13 ±0.19 ±0.33

0.93 6.89 11.3 12.8 3.48 5.90 14.0
±0.15 ±0.34 ±0.34 ±0.18 ±0.27 ±0.49

0.95 9.82 15.9 19.0 5.70 9.52 22.5
±0.28 ±0.42 ±0.56 ±0.14 ±0.22 ±0.38

0.97 17.2 27.0 35.1 9.92 15.9 34.2
±0.81 ±1.3 ±2.1 ±0.60 ±0.89 ±1.1

0.98 23.2 35.8 48.9 20.1 31.0 52.1
±0.94 ±1.4 ±2.4 ±2.2 ±3.3 ±3.2

Mt/D/100, α = 0.1, E[S] = 30 min Mt/D/100, α = 0.5, E[S] = 6 hrs
ρ QL HOLr HOL QL HOLr HOL

0.9 0.972 2.31 2.47 3.02 4.14 7.35
±0.025 ±0.034 ±0.036 ±0.023 ±0.039 ±0.054

0.93 1.23 3.84 4.18 3.71 5.01 8.91
±0.024 ±0.063 ±0.078 ±0.027 ±0.026 ±0.045

0.95 1.31 5.19 6.01 4.33 5.84 10.5
±0.027 ±0.041 ±0.041 ±0.038 ±0.051 ±0.068

0.97 1.35 7.26 9.29 5.41 7.54 15.5
±0.026 ±0.065 ±0.038 ±0.086 ±0.075 ±0.14

0.98 1.34 8.29 11.3 6.01 8.84 21.1
±0.042 ±0.057 ±0.069 ±0.075 ±0.076 ±0.49

Table 2: A comparison of the efficiency of QL, HOLr, and HOL in the Mt/GI/100 model,
as a function of the traffic intensity, ρ. Point and 95% confidence interval estimates of the
average squared error (ASE) are shown (in units of mean service time squared per customer).
Estimated ASE’s are in units of 10−3.
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between successive service completions in real-life service systems. Further, we quantify

the estimation error resulting from those procedures, and its impact on the performance of

HOLr; see Table 3. We show that the HOLr estimator remains effective even with imperfect

information about system parameters.

To estimate the arrival-rate function, λ(t), we propose relying on forecasts relying on

data from previous days, and observations over the current day, up to date. For θHOLr(t, w)

in (4.2), we need estimates of the arrival-rate function over the interval [t − w, t]. Here,

we assume that the arrival process is a nonhomogeneous Poisson process with an integrable

arrival-rate function. Since we observe customer arrival times, but not the arrival rates,

we need to forecast future rates based on historical call volumes. For ways of forecasting

future arrival rates, we refer the reader to recent work on forecasting arrival rates to service

systems such as call centers. For one example, Shen and Huang (2008b) propose an approach

to forecast the time series of an inhomogeneous Poisson process by first building a factor

model for the arrival rates, and then forecasting the time series of factor scores. As another

example, Aldor-Noiman et al. (2009) propose an arrival count model which is based on a

mixed Poisson process approach incorporating day-of-week, periodic, and exogenous effects.

For other related work, see Avramidis et al. (2004), Brown et al. (2005), and references

therein.

We might also rely on historical data from previous days to estimate the mean time

between successive service completions, combined with real-time data over the recent past.

However, we consider a procedure based on real-time estimation alone, and investigate its

feasibility. As a real-time estimator, we propose computing the sample average, m̂, of (recent)

time intervals between successive service completions in the system. In doing so, as an

approximation, we assume (i) that all servers are simultaneously busy, and (ii) that the

times between successive service completions are i.i.d. (Since we are interested in systems

which are heavily loaded, the assumption of busy servers is not too restrictive. The second

assumption is exact for exponential service times, but not more generally.) Given that

assumption, we can apply elementary statistics to compute the sample size, n(x), needed to
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obtain a desired margin of relative error, x, at a given confidence level. (Specifically, the half

width of a confidence interval is a function of the number of observations used. Therefore,

we can obtain a desired margin of relative error by changing the number of observations,

thus leading to a different half width.) The error, x, measures the relative error between the

actual mean and the sample mean.

To illustrate, consider the Mt/M/100 model with exponential service times. Then,

n(0.05) ≈ 1540 at the 95% confidence level. That is, the sample size required to get a

relative error margin of x = 0.05 is roughly equal to 1540, at the 95% confidence level. It is

important to get a sense of how long it would take to get a total of 1540 service completions

in the system. For example, suppose that the mean service time is equal to 5 minutes. The

length of the estimation interval is roughly equal to 77 minutes. Indeed, each service request

requires, on average, 5 minutes to process, and there are 100 servers working in parallel.

This numerical example illustrates that the computational burden of obtaining estimates of

system parameters that are within a relative error margin of x = 0.05 of their actual values

is not unreasonable.

There remains to study the effect of the estimation error, x, on the performance of the

HOLr estimator. To that end, we consider modified HOLr delay estimators, denoted by

HOLr(x), depending on the relative error, x, in estimating 1/sµ. That is, the HOLr(x)

estimators use the following delay estimate:

θHOLr(t, x, w) =
1 + x

sµ
(2 +

∫ t

t−w

λ(u)du) ,

where −1 < x < 1, and (1 + x)/sµ is our estimate of the mean time between successive

service completions, including a relative error x. We study the performance of HOLr(x) for

alternative small values of x. Clearly, the performance of HOLr(x) should degrade as |x|

increases, but we would like to know by how much.

In Table 3, we study the performance of HOLr(x) as a function of the traffic intensity, ρ,

in the Mt/M/100 queueing model, with α = 0.5 and E[S] = 5 minutes. We also include the

sample sizes needed to obtain system parameter estimates within that error margin and, in

parentheses, the corresponding required length of the estimation interval (under our model
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Mt/M/100, α = 0.5, E[S] = 5 min
HOLr(x)

ρ x = 0.1 x = 0.05 x = 0.02 HOLr x = -0.02 x = -0.05 x = -0.1 QL HOL
0.9 4.40 1.24 0.449 0.302 0.417 1.02 2.96 0.148 16.92

±5.3×10−2 ±2.53×10−2 ±1.21×10−2 ±6.4×10−3 ±9.3×10−3 ±2.1×10−2 ±4.1×10−2 ±6.8×10−3 ±1.4×10−1

0.93 6.01 1.63 0.548 0.351 0.520 1.37 4.09 0.177 28.0
±5.0×10−2 ±2.9×10−2 ±1.5×10−2 ±8.8×10−3 ±1.5×10−2 ±3.4×10−2 ±7.2×10−2 ±6.0×10−3 ±0.27

0.95 7.29 1.96 0.645 0.410 0.620 1.66 4.98 0.202 38.06
±9.3×10−2 ±3.7×10−2 ±1.7×10−2 ±1.8×10−2 ±2.8×10−2 ±4.5×10−2 ±7.1×10−2 ±7.4×10−3 ±0.32

0.97 8.48 2.21 0.688 0.431 0.702 1.97 5.96 0.216 49.8
±0.12 ±5.5×10−2 ±2.4×10−2 ±1.4×10−2 ±2.7×10−2 ±5.7×10−2 ±0.11 ±6.6×10−3 ±0.43

0.98 9.21 2.40 0.741 0.454 0.737 2.09 6.39 0.226 56.3
±8.2×10−2 ±3.5×10−2 ±2.3×10−2 ±2.3×10−2 ±3.0×10−2 ±4.4×10−2 ±7.4×10−2 ±6.9×10−3 ±0.40

Sample size 385 1537 9604 9604 1537 385
Est. interval (20 min.) (77 min.) (480 min.) (480 min.) (77 min.) (20 min.)

Table 3: Performance of HOLr(x) delay estimators, as a function of the traffic intensity, ρ,
and alternative x, in the Mt/M/100 queueing model with α = 0.5 and E[S] = 5 minutes.
Sample sizes needed and length of estimation intervals required are also included. Estimates
of the ASE’s are given in units of mean service time squared per customer.

assumptions). We consider values of x between -0.1 and 0.1. For these values, we find that

HOLr still performs considerably better than HOL. For example, for x = 0.05, the ratio

ASE(HOL)/ASE(HOLr(x)) ranges from about 14 to about 23 for values of ρ between 0.9

and 0.98. For x = −0.05, ASE(HOL)/ASE(HOLr(x)) ranges from about 16 to about 27

for ρ between 0.9 and 0.98. That is, simulation shows that HOLr remains remarkably more

effective than HOL, even with imperfect information about system parameters, as would

commonly occur in practice.

Additional simulation results are presented in the online supplement to the main paper.

There, we consider lognormal and deterministic service times, and alternative arrival-rate

parameters. We find that HOLr(x) usually performs better than HOL when the relative

error, x, is at most 5%. For example, in the Mt/H2/100 model with α = 0.5, E[S] = 6

hours, and x = −0.05, the ratio ASE(HOL)/ASE(HOLr(x)) ranges from 2.4 to 2.8.
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8. Delay Estimators for the Mt/GI/s+GI Model

In this section, we propose a new delay estimator for the Mt/GI/s + GI model, based on

the HOL delay observed upon arrival to the system. In §9 we show that this new estimator,

QLh, performs remarkably well. In particular, QLh effectively copes with both time-varying

arrivals and non-exponential abandonment-time distributions. As a frame of reference, we

also consider a delay estimator based on the queue-length seen upon arrival to the system.

This estimator, QLm, was previously considered in Whitt (1999a) and Ibrahim and Whitt

(2009b).

Actual and Potential Waiting Times. As in Garnett et al. (2002), we need to dis-

tinguish between the actual and potential waiting times of a given delayed customer in

a queueing model with customer abandonment. A customer’s actual waiting time is the

amount of time that this customer spends in queue, until he either abandons or joins service,

whichever comes first. A customer’s potential waiting time is the delay he would experience,

if he had infinite patience (his patience is quantified by his abandon time). For example, the

potential waiting time of a delayed customer who finds n other customers waiting ahead in

queue upon arrival, is the amount of time needed to have n+ 1 consecutive departures from

the system. (Departures from the system are either service completions or abandonments

from the queue.) Our delay estimators, described next, estimate the potential waiting times

of delayed customers.

The Approximation-Based QL-Based Delay Estimator (QLap). In Ibrahim and

Whitt (2009b), we introduced an approximation-based queue-length-based delay estimator,

QLap, which exploits established approximations for performance measures in the M/GI/s+

GI model, developed by Whitt (2005). We showed that QLap consistently outperforms all

other estimators considered in the GI/GI/s+GI model, with a stationary arrival process.

Here, we propose an analog of QLap that uses the observed HOL delay, and effectively copes

with time-varying arrival rates. We begin by briefly reviewing the QLap estimator for the
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GI/GI/s + GI model; a more complete description can be found in §3.5 of Ibrahim and

Whitt (2009b) and Whitt (2005).

The QLap estimator approximates theGI/GI/s+GI model by the correspondingGI/M/s+

M(n) model, with state-dependent Markovian abandonment rates. In particular, we assume

that a customer who is jth from the end of the queue has an exponential abandonment time

with rate ψj, where ψj is given by

ψj ≡ h(j/λ), 1 ≤ j ≤ k ; (8.1)

k is the current queue length, λ is the arrival rate (assumed constant), and h is the abandonment-

time hazard-rate function, defined as h(t) ≡ f(t)/(1 − F (t)), t ≥ 0, where f is the corre-

sponding density function (assumed to exist). Here is how (8.1) is derived: If we knew that a

given customer had been waiting for time t, then the rate of abandonment for that customer,

at that time, would be h(t). We therefore need to estimate the elapsed waiting time of that

customer, given the available state information. Assuming that abandonments are relatively

rare compared to service completions, it is reasonable to act as if there have been j arrival

events since our customer arrived. Since a simple rough estimate for the time between suc-

cessive arrival events is the reciprocal of the arrival rate, 1/λ, the elapsed waiting time of is

approximated by j/λ and the corresponding abandonment rate by (8.1).

For the GI/M/s + M(n) model, we need to make further approximations in order to

describe the potential waiting time of a customer who finds n other customers waiting in

line, upon arrival. Let WQ(n) represent a random variable with the conditional distribution

of the potential delay of an arriving customer, given that this customer must wait before

starting service, and given that the queue-length seen upon arrival, is equal to n. We have

the approximate representation:

WQ(n) ≈
n∑

i=0

Xi , (8.2)

where Xn−i is the time between the ith and (i+1)st departure events. Since the distribution

of the Xi’s is complicated, we assume that successive departure events are either service

completions, or abandonments from the head of the line. We also assume that an estimate

24



of the time between successive departures is 1/λ. Under our first assumption, after each

departure, all customers remain in line except the customer at the head of the line. The

elapsed waiting time of customers remaining in line increases, under our second assumption,

by 1/λ. Let Xn−l, which is the time between the lth and (l + 1)st departure events, have

an exponential distribution with rate sµ + δn − δl, where δk =
∑k

j=1 ψj =
∑k

j=1 h(j/λ),

k ≥ 1, and δ0 ≡ 0. That is the case because Xn−l is the minimum of s exponential random

variables with rate µ (corresponding to the remaining service times of customers in service),

and n− l exponential random variables with rates ψi , l + 1 ≤ i ≤ n (corresponding to the

abandonment times of the customers waiting in line).

The QLap delay estimate given to a customer who finds n customers in queue upon arrival

is

θQLap(n) =
n∑

i=0

1

sµ+ δn − δn−i

; (8.3)

that is, θQLap(n) approximates the mean of the potential waiting time, E[WQ(n)].

The QLh Estimator. We are now ready to propose a new delay estimator for theMt/GI/s+

GI model, which we refer to as QLh. This estimator requires knowledge of the abandonment-

time hazard-rate function, h. That is convenient from a practical point of view, because it

is relatively easy to estimate hazard rates from system data; see Brown et al. (2005).

We proceed in two steps: (i) we use the observed HOL delay, w, to estimate the queue

length seen upon arrival, and (ii) we use this queue-length estimate to implement a new

delay estimator, paralleling (8.3). Unlike QLap, QLh exploits the HOL delay, and does not

assume knowledge of the queue length seen upon arrival.

For step (i), let Nw(t) be the number of arrivals in the interval [t − w, t] who do not

abandon. That is, Nw(t) + 1 is the number of customers seen in the queue upon arrival

at time t, given that the observed HOL delay at t is equal to w. It is significant that Nw

has the structure of the number in system in a Mt/GI/∞ infinite-server system, starting

out empty in the infinite past, with arrival rate λ(u) identical to the original arrival rate

in [t− w, t] (and equal to 0 otherwise). The individual service-time distribution is identical
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to the abandonment-time distribution in our original system. Thus, Nw(t) has a Poisson

distribution with mean

m(t, w) ≡ E[Nw(t)] =

∫ t

t−w

λ(s)(1− F (t− s))ds , (8.4)

where F is the abandonment-time cdf.

For step (ii), we use m(t, w) + 1 as an estimate of the queue length seen upon arrival, at

time t. In (8.1), we replace λ by λ̂, where λ̂ is defined as the average arrival rate over the

interval [t−w, t], i.e., λ̂ ≡ (1/w)
∫ t

t−w
λ(s)ds. We do so because we now have a nonstationary

arrival process instead of a stationary arrival process. Paralleling (8.3), the QLh delay

estimate given to a customer such that the observed HOL delay, at his time of arrival, t, is

equal to w, is given by:

θQLh
(t, w) ≡

m(t,w)+1∑
i=0

1

sµ+ δ̂n − δ̂n−i

, (8.5)

for m(t, w) in (8.4), δ̂k =
∑k

j=1 h(j/λ̂), and δ̂0 = 0. If we actually know the queue length,

then we can replace m(t, w) by Q(t), i.e., we can use QLap. There remains to investigate

ways of estimating the abandonment-time distribution needed to implement QLh. We envi-

sion that such estimates will be based on long-term estimates of customer time-to-abandon

distribution, instead of real-time information about customer abandonment times. Providing

additional details relating to this estimation is outside the scope of this paper, and is left for

future research.

9. Simulation Results for the Mt/M/s+GI Model

In this section, we present simulation results for the Mt/M/s + GI model with sinusoidal

arrival rates. For the abandonment-time distribution, we considered M (exponential), E10

(Erlang, sum of 10 exponentials) andH2 (hyperexponential with SCV equal to 4 and balanced

means), but here we only discuss the first two cases; see Ibrahim and Whitt (2009c) for a

discussion of the H2 case. We consider the QLm, QLh, and HOL delay estimators. In this

section, we show plots of the simulation results. Corresponding tables with estimates of 95%
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confidence intervals, in addition to more simulation results, appear in Ibrahim and Whitt

(2009c).

Description of the Experiments. We vary the number of servers, s, but consider only

relatively large values (s ≥ 100), because we are interested in large service systems. We let

the service rate, µ, be equal to 1. For the arrival rate function, λ(u) in (5.5), we fix the

relative frequency, γ = 1.571. This value of γ corresponds to a mean service time E[S] = 6

hours, for daily arrival-rate cycles; see Table 1.

We consider a relative amplitude α = 0.5, and an average arrival rate λ̄ = 140. The

instantaneous offered load in the system, at time t, is given by λ(t)/sµ. With α = 0.5, the

offered load varies between 0.7 and 2.1. Because of customer abandonment, the congestion is

not extraordinarily high when the system is significantly overloaded. We let the abandonment

rate, ν = 1, because that seems to be a representative value. Simulation results for all models

are based on 10 independent replications of length 1 month each, assuming a daily cycle.

Results for the Mt/M/s+M model. Consistent with theory in §8, Figure 3 shows that

QLm is the best possible estimator, under the MSE criterion. The RRASE of QLm ranges

from about 14% for s = 100 to about 4% when s = 1000. Figure 3 shows that s×ASE(QLm),

the ASE of QLm multiplied by the number of servers s, is nearly constant for all values of

s considered. This shows that QLm is asymptotically correct as s increases, i.e., ASE(QLm)

approaches 0 as s increases.

The QLh estimator is the second best estimator for this model. The RRASE of QLh

ranges from about 20% for s = 100 to about 6% for s = 1000. That is, QLh is relatively

accurate for this model. The difference in performance between QLh and QLm is not too

great: ASE(QLh)/ASE(QLm) is close to 1.6, for all s. Moreover, Figure 3 shows that QLh

is asymptotically correct: s×ASE(QLh) is also roughly equal to a constant, for all s.

The HOL estimator performs much worse than QLm and QLh. For example, the ratio

ASE(HOL)/ASE(QLh) ranges from about 3 for s = 100 to about 20 for s = 1000. The

RRASE of HOL ranges from about 33% for s = 100 to about 27% for s = 1000. That is, we
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Figure 3: E[S] = 6 hours, α = 0.5
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Figure 4: E[S] = 6 hours, α = 0.5

do not see a considerable improvement in the performance of HOL, as s increases. That is

confirmed by Figure 3, where we see that s× ASE(HOL) increases linearly, as s increases.

Results for the Mt/M/s+E10 model. The QLh estimator is the most effective estimator,

under the MSE criterion, for this model. The RRASE of QLh ranges from about 11% for

s = 100 to about 4% for s = 1000. That is, QLh is relatively accurate for this model. Figure

4 shows that QLh is asymptotically correct: s× ASE(QLh) is roughly equal to a constant

for all values of s considered.

The QLm estimator performs significantly worse than QLh, with E10 abandonment. The

ratio ASE(QLm)/ASE(QLh) ranges from about 1.5 for s = 100 to about 6.5 for s = 1000.

The RRASE of QLm ranges from about 13% for s = 100 to about 10% for s = 1000. Figure

4 shows that QLm is not asymptotically correct as s increases.

The least effective estimator is, yet again, the HOL estimator. The RRASE of HOL ranges

from about 27% for s = 100 to about 25% for s = 1000. The difference in performance

between HOL and QLh is remarkable: ASE(HOL)/ASE(QLh) ranges from roughly 7 for

s = 100 to roughly 33 for s = 1000. Figure 4 shows that s× ASE(HOL) increases linearly

(and steeply) as s increases.
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Results for Other Models. We consider general service-time and abandonment-time

distributions in Ibrahim and Whitt (2009c). For the service-time distribution, we consider

M , D, and H2. For the abandonment-time distribution, we consider M , H2, and E10. We

consider different combinations of service-time and abandonment-time distributions. These

additional simulation results are consistent with those reported above: The QLm estimator

remains effective with M abandonment, even when the service-time distribution is not nearly

exponential. With H2 and E10 abandonment, QLh outperforms QLm, especially when the

number of servers is large. The HOL estimator remains the least effective estimator, under

the MSE criterion, in all models considered.

10. Conclusions

In this paper, we studied the performance of alternative delay estimators in the Mt/GI/s

and Mt/GI/s + GI queueing models, which have a nonhomogeneous Poisson process. We

concentrated on the HOL estimator, which is equal to the elapsed delay of the customer

at the head of the line, at the time of arrival. We did so with the understanding, based

on our previous work, that results for HOL should apply equally well to the delay of the

last customer to enter service (LES). A main conclusion is that the performance of these

delay-history-based delay estimators can degrade in face of time-varying arrivals, which often

occurs in practice; that is dramatically shown in Figure 2.

As a consequence, we developed refinements of HOL, in particular, HOLr in (4.2) for

Mt/GI/s and QLh in (8.5) for Mt/GI/s+GI. Simulation experiments in §6 and §9 showed

that these estimators effectively cope with both time-varying arrivals and non-exponential

service-time and abandon-time distributions. We also established analytical results support-

ing HOLr in §5. We quantified the difference in performance between QL and HOLr and

found that the ratio of their respective MSE’s is roughly equal to 2, especially for high values

of the traffic intensity, ρ; see (5.6).

However, the new refined estimators lose some of their appeal compared to the simple

HOL and LES estimators, because they require information about the model, in particular,
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the arrival-rate function and the mean time between successive departures. Hence, in §7 we

proposed ways to estimate the required information. Even if we rely on real-time estimation

of the mean time between successive departures, we showed that we can obtain suitably

accurate estimates without requiring that the observation interval be too long. Table 3 shows

that the HOLr estimator remains effective even if the information is known imperfectly.

Our general strategy for creating the refined HOL estimators has been to approximate

the mean conditional delay, given the observed HOL delay by (i) approximating the queue

length, given the observed HOL delay, and (ii) approximating the expected delay given

the queue length. As a consequence, direct queue-length-based delay estimators should be

preferred if the queue length is known. However, in §1.2 we observed that there are complex

service systems such as Web chat and ticket queues for which the queue length is not known.
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