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ABSTRACT

In this paper we study a rate-control throttle with a finite-capacity token bank
and a finite-capacity job buffer. The primary purpose is to gain additional insight
into the impact of the job buffer. We show that the overflow processes of jobs
and tokens depend on the job-buffer and token-bank capacities only through their
sum, in a very strong sense. Given two throttles with arbitrary token and job
arrival processes, which differ only in their initial conditions and buffer
capacities, having common total capacity, there exists a random time after which
the overflow processes in these two systems coincide. For given total capacity,
the job buffer smooths the stream of admitted jobs, but the reduced congestion is
less than might be expected. For example, the heavy-traffic limiting behavior of a
downstream infinite-capacity s-server queue is unaffected by the job buffer in the
throttle. We make a sample-path comparison of the throughputs at a downstream
finite-capacity queue regulated by a token-bank rate-control throttle, with and
without a job buffer. Given a fixed total capacity in the throttle (and thus a fixed
admission rate of the throttle) and given a fixed amount of buffer space for jobs to
allocate to a downstream queue and a job buffer in the throttle, the maximum
throughput of jobs occurs when all the buffer capacity is allocated to the
downstream queue, -even though the admitted stream from the throttle is not
smoothed by a job buffer. Similar results hold for systems with non-discrete
flow, such as regulated Brownian motion and Markov modulated fluid models.
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686 BERGER AND WHITT

1. Introduction and Summary

A token-bank rate-control throttle is a rate-based input-regulation technique
for congestion control. The token bank is typically a counter which increments
periodically and decrements at job arrivals. Conceptually, we can think of jobs
and tokens arriving in separate streams, as depicted in Figure 1, with the arrival
stream of tokens typically being deterministic and evenly spaced, although we do
not restrict attention to this case. An arriving job requires a token to be admitted;
it is blocked and rejected (or marked, admitted and treated as a lower priority
class) if there are no tokens in the token bank. Arriving tokens are put in the
token bank if there is room; otherwise, they are lost. Sidiet al.[15] and
Berger [1] proposed an expanded throttle in which jobs may queue in a finite
buffer when the token bank is empty. Thus, with the expanded throttle there are
two finite-capacity buffers, one for the tokens and one for the jobs, where at most
one of the two is nonempty at any time; see §2 for a complete definition. Such
modified two-buffer rate-control throttles have subsequently been considered by
several authors, including Sohraby and Sidi [16], Budka and Yao {7] and Elwalid
and Mitra [10].

The primary purpose of this paper is to gain additional insight into the impact
of the job buffer on the performance of the throttle. For this purpose, we make
several sample-path comparisons. Hence, this paper is in the same spirit as
previous papers by Budka and Yao[7] and Budka[6] on sample-path
comparisons for rate-control throttles, as well as Sonderman [17], [18], Whitt [21]

and Cruz [8], [9] on sample-path comparisons for queuveing models.

Concermning the impact of the job buffer, there are three main ideas discussed
here. First, the two overflow processes essentially depend on the token-bank and
job-buffer capacities only through their sum, which we call the total capacity of
the throttle. This idea is a main point of Berger[1]; in §3 and §4 here we
strengthen the conclusion by performing a sample-path analysis and treating

general initial conditions.
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Figure 1. Diagram of rate-control throttle and downstream node.

The second idea is that (assuming that the total capacity of the throttle is
fixed) the job buffer provides a benefit by smoothing the process of admitted jobs,
but at the cost of introducing additional delays. This smoothing property is
discussed in [15], [1], [16] and [10].

The third idea is that, while the job buffer does smooth the admitted stream to
some extent, it does not reduce congestion at downstream queues as much as we
might hope. This idea is advanced by Berger and Whitt [4], where it is supported
by simulation. In [4] a model of LAN-to-LAN (local-area-network) traffic is
regulated by a throttle with the admitted traffic being sent to a ﬁnite-cabacity
single-server deterministic queve. The simulation results in [4] show that the
admitted stream is significantly smoothed in a short time scale but much less so in
a longer time scale, as measured by the index of dispersion for intervals (ID]); see
(5.6) below and [11].

We support these observations here in §5 by proving that the asymptotic

~ behavior of the accepted job stream, e.g., the limiting value of the IDI, is
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unchanged by the addition of the job buffer. Thus, by Theorem 1 of Iglehart and
Whitt [14], the heavy-traffic limiting behavior of a downstream infinite-capacity

finite-server queue is unaffected by the addition of the job buffer.

For some operating regimes of the throttle, the token arrival rate will be
significantly greater than the job arrival rate and there will be very little blocking
of jobs. Then the introduction of a sufficiently large job buffer in the throttle,
with the total capacity of the throttle held fixed, amounts (approximately) to
inserting an infinite-capacity queue before some downstream queue. Suppose that
this downstream queue also has ample capacity, so that there is very little
blocking; then the primary issue is delay. It is significant that a simple sample-
path argument shows that the introduction of an infinite-capacity queue before
another infinite-capacity queue always causes the time each job spends in the
system to be greater than or equal to what it was before; see p. 358 of Suresh and
Whitt [19]. (This analysis is for a single class, so that it does not touch on

benefits with multiple classes.)

In §6 here we establish a related result for the rate-control throttle and a
downstream finite-capacity queue. We assume that the: successive service times
at the downstream queue are assigned to jobs when they start service, but the job
and token arrival processes can be arbitrary. We show that the blocking is always
less at the downstream queue when the downstream queue has capacity Cp + Cj,
the throttle has capacity C and there is no job buffer, than when the downstream
queue has capacity Cp, the token bank has capacity C — C; and there is a job
buffer with capacity C, (assuming that C; < C). That is, moving capacity C,
from the downstream queue to the job buffer, while holding the total capacity of
the throttle fixed, decreases the throughi)ut from the downstream queue. Thi;
means that the most efficient allocation of a fixed total buffer capacity for jobs is
to assign it all to the downstream queue. (Recall that the tokeh bank is not a
buffer for jobs, and does notrstore a real resource; it is a counter.) In making this
comparison, we inclode an extra arrival process to the downstream queue. This
allows us to deduce a similar comparison for multiple throtties feeding a

downstream queue.
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To establish this comparison, we apply a result from Berger and Whitt [2],
showing that more departures always come from a multi-server queue (with the
first-come first-served discipline, a finite waiting room and service times assigned
when service begins) when the service times are decreased and a second arrival
process is added to the original arrival process. This superposition operation
makes the original arrival epochs a subsequence of the new arrival epochs. Thus,
the arrival processes are ordered in the subsequence stochastic ordering <, in
Whitt [21], which is also used in Budka and Yao [7] and Budka [6] (with the
appealing notation c ).

As we pointed out, so far we have discussed the smoothing effect of the job
buffer only for a single admitted stream coming to a downstream queue.
Suppose, instead, that we have multiple streams of jobs feeding a downstream
queue, each regulated by its own throttle. If the number of streams is increased,
while simultaneously reducing the service time of the downstream queue, so that
the server occupancy is unchanged, then the relevant time scale is reduced and,
consistent with §5, the smoothing by a job buffer in the throttle can dramatically
reduce the congestion in the downstream gueue. The simulations in [4] show that
the smoothing effect is much greater when many (e.g., 100) sources are
multiplexed at the downstream queue (as typically occurs in communication
network applications). However, consistent with §6 here, the simulation results
in [4] also show that the total buffer capacity used in the job buffers of all the
throttles is much greater than would be required at the downstream queue in order

to achieve the same blocking rate.

We continue in §7 by discussing the impact of changing the total capacity of
the throttle. We provide some extensions to Budka and Yao’s [7] result that the
throughput is an increasing concave function of the capacity. In §8 we consider
the impact of changing arrival processes in a rate-control throttle with a job

buffer, once again using the subsequence ordering.

Finally in §9 we point out that the results in this paper also hold for models

with non-discrete flow, such as the Markov-modulated fluid model in Elwalid and
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Mitra [10] and the reflected Brownian motion (RBM) in Harrison {13] and Berger
and Whitt [3].

2. The General Throttle Model

Jobs and tokens arrive in separate streams. The arriving tokens are put in a
token bank of capacity Cr, where 0 < C < wo; if the token bank is full, then the
tokens overflow and are lost. The arriving jobs are admitted immediately if there
is a token in the token bank, with each admitted job taking away one token from
the bank, If there is no token in the token bank, then the job is put in a job buffer
of capacity C,, where 0 £ C; < oo, If the job buffer is full, then the job is not
admitted and is said to have overflowed. (Overflowed jobs are lost, or are marked
and admitted and later treated as a lower priority class. If marking is nsed and if
job sequence is to be maintained, then the arriving job enters the full buffer while
the job at the head of the buffer is marked and admitted.) Jobs in the job buffer
are admitted upon subsequent token arrivals, with each job taking one token

away. Hence, the admitted jobs are matched with admitted tokens.

The evolution of this throttle can be .defined in terms of the two arrival
processes recursively by considering successive arrival epochs (of jobs or tokens),
as we show starting in (2.5) below. As discussed in §4.1 of Berger and Whitt [3],
the evolution of this throttle can also be defined in terms of the two-sided

regulator on pp. 21-24 of Harrison [13].

Let A;(f) and A7(z) count the number of job arrivals and token arrivals,
respectively, in (0, #]. (We assume that A;(0) = A7(0) = 0.) Itis customary to
have A7(¢) be deterministic, i.e., A7(r) = |re], t=0, where {x] is the greatest
integer less than or equal to x, but we do not assume this. Let J(£) and T(r)
represent the number of jobs in the job buffer and the number of tokens in the
token bank at time ¢. As noted by Berger [1], since 7(¢) and J(z) cannot both be
strictly positive at the same time, we can represent both processes simultaneously

via U(t), where

uny=TH -J)+C;,t20. 2.1)
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We obtain T(¢) and J(z) from U(t) by

T() = [U@) — C,1* , 120, . (2.2)
and

J(y =[C,— U, 120, : _(2.3)
where [x]* = max{x, 0}.

Let 0;(r) and O7(r) count the number of job and token overflows in (0, ¢],
respectively. Let D(#) count the number of job departures (admitted jobs) in

(0, 1], which coincides with the number of admitted tokens. We obviously have
D(t) = Aj(6) — O4(0) = J(0) + J(O)
= Ap(1) — Op(1) = T(r) + T(O) . (2.4)

The triple (U(1), 0,(1), O7(1)) is the three-dimensional regulated process
associated with net input process Ar(f) — A,(¢) and reflecting barriers at 0 and
C = C; + Cr, using the two-sided regulator on pp. 21-24 of Harrison [13]. To
define the processes U(¢), O;(¢) and O7(¢) without directly applying the two-sided

regulator, let
AR = A7y + A;(8) , 120, 2.5)

be the total arrival process, and let ¢, ‘be the n™ time at which A(z) has a jump;

ie., letty = 0and let
t, = illf{f) Iy-1 LA > A(tn—l)} : (2-6)

(We have assumed that A7(0) = A;(0) = 0. We also assume all processes are
right continuous with left limits.) We must stipulate what happens with multiple
arrivals at the same instant. We assume that jobs and tokens arriving
simultaneously are immediately paired and admitted. Then the excess of jobs or
tokens enters the system and is treated as speci_ﬁed above. (Other cases can be
treated similarly.) Consequently, we can define the evolution of the throttle

recursively by setting
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Un = U(tn) and Xn = AT(tn) _AT(tn-l) - [Al(tn) _AJ(tn—l)] -(27)

Then, forn 2 1,

U, = min{C,; + Cy, max{0, U,_, + X,}}, (2.8)

Or(ty) = Op(ty-1) + X, — (U = Uy))* (2.9)

and Oy(1,) = O4(t, )+ X, — (U, ~U,_11", (2.10)
where [x]” = — min{x, 0}, O7r(0) = 0,(0) = 0 and Uy = U(0) is the initial

condition. We assume that ¢ € U(0) < C. Then
U(t) = U(I,,), OJ(I) = O.](tn): and OT(I) = OT(tn) » Iy St< T4 (2-11)

Next T'(¢) and J(¢) are obtained by combining (2.2), (2.3) and (2.11). Then D(¢) is
obtained from (2.4). For a useful alternative defining recursion, see (8.2)—(8.4)

below.

3. Insensitivity When C; + C7 is Fixed: Sample-Path Properties

In this section we begin to extend the result of Berger [1] stating that the
overflow processes tend to be independent of the job-buffer capacity C; provided

that the total capacity C; + Cr remains unchanged. Toward this end, we discuss

-properties of the rate-control throttle that can be deduced for individual sample

paths. It is significant that these results do not depend on any specific
probabilistic structure. In particular, the job arrival process need not be an MAP

arrival process as in {1].

First, we discuss an equivalence between systems with capacities Cy and Cr
where C = C; + Cy is fixed when the initial conditions are properly related. This
is a minor extension of Theorem 2 of [1]. Afterwards we will obtain results under
different initial conditions.

Theorem 3.1. The sample paths of U(t), O;(t) and O(t) remain unchanged if
C; is changed to C; profia'ed that Cy is changed to C7 = Cyr + C; — Cj and
U(0) is unchanged. ' ‘



RATE-CONTROL THROTTLE 693

Proof. The evolution of the throttle is defined by equations (2.5)—(2.11). From
(2.8), we see that this evolution depends on C; and Cy only through C; + Cr
provided that U(0) is unchanged. m

Remark 3.1. Let a prime denote the new system with capacities C; and
Cr = Cr + C; — C7 as in Theorem 3.1. Note that U’ (0) = U(0) corresponds to
a change in the initial conditions for T'(¢) and J(#), as can be seen from (2.1). In

particular,
U0y = 1(0) - J(O) + Cy; and U'(0) =T°(0) - J'(0) + CF,
S0 that
T0)-J (0 =T0)—-JO)+C;—-Cj;. = 3.1)

We now consider the effect of the initial condition U(0), with everything else
fixed. The essence of the following result is that the effect of differing initial
conditions dissipates monotonically. Let the subscript # denote the value of U(0),
i.e., the initial conditions. (As before, we assume Ar(0) = A;(0) = 0.)
Theorem 3.2. (a} U, (1) = Up(2) + m — A, ,(£), where

Am.n (I) = min{ms O.In(t) + OT.n-i—m(t)} (3-2)
forallt20,m=0andn 2 0;

(b) [04,(2) + O1p4m (D] — [0 pim(2) + O1,(£)] is a nondecreasing function
of t with

0<[0p(1) + Orpsm(D)] = [Ospam() + Opu(D)] Sm
Jorallt20,m=0andn=0;
(c) Upim(8) — U,(¥) is a nonincreasing function of t with
U,() S Upem(t) IS Uy(t) +m

forallt20,n20andm=0;
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(d) Orpem(®) — Op(t)isa nondecreﬁsing Junction of t with
Op() SO1pim(D S03 (1) +m
forallt20,nz0andm 2 0;
(e} 01, () — Oy n4+m(t) is a nondecreasing function of t with
Op(t) —mS 0y pip(1) S0 1)

foralltz0,n=20andm =0,

Proof. Apply mathematical induction on the arrival epochs, using
(2.5-(2.11). =

An intuitive explanation of Theorem 3.2 is as follows: At time zero,
Upem(0) = U,(0) + m and the number of job and token overflows is zero. For
m > 0 and for common arrival processes A;(#) and Ar(¢), U, ., (r) will hit the
upper boundary at C before U, (#), while U, (¢) will hit the lower boundary at 0
before U, (). If at a token arrival U,.m(t) is at the upper boundary, while
U, (1) is not, then U, (r) increments and moves closer to U, (f). Likewise, if at
job arrival U,(r) is at the lower boundary, while U, ,,,(#) is not, then U, (1)
decrements and moves closer to U, (¢). Once the total number of job overflows
for the n-system plus token overflows for the (n + m)-system equals m, U, {?)

and U, (¢) coincide.

Theorem 3.2 implies that there is a random time after which the overflow

processes coincide, This time is
Tpm =if{t20:0.,0)+ Or ety Z2m} . 3.3)
Corollary 1. Forallnz0andm =0,
(@} Upsn(t) > U, () fort< T, and U, (1) = U,(t) for ailtz /.
(0) 01y (1) = 01u(Tym) = Oppam() = Oppi(Tp )  Jorallt2T,,;

(C‘) OTn (t) - OTrl(Tn,m) = OT.rH-m (t) - 0T,n+m(Tn.m) fOI‘ allt = Tn.m-
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The following result extends Theorem 1 of [1].

Corollary 2. The quantities lim inf ™1 O, (D), lim sup 1050,
e Y

[

lim inf ™! 0, (£) and lim sup t~! O, (t) are independent of n. Hence, if the limits
1= o0 . e X

exist (i.e., if lim inf = lim sup), then they are independent of n.
Proof. Apply Theorem 3.2(d)and(e). m

4. Insensitivity When C; + Cy is Fixed: Stochastic Properties

We now consider {A;(¢) : 20} and {Ar(r) : t = 0} as stochastic processes
and obtain results for the stochastic processes {U(f) : 1 20}, {O;() : t= 0} and
{O¢(t) : t 2 0}, assuming that C = C; + C7 is fixed. We assume that the initial
condition U(0) is a random variable independent of {A;(f) :¢=20} and
{A7(t) : 12 0}. Let = denote the initial probability distribution, i.e.,

w(n) = P(UO) =n), 0<n< C;.+ Cr. “4.1)

We now modify the subscript convention used in §3. Let subscripts x and C;
denote initial distribution and the capacity of the job buffer. Let the subscript # in
place of = denote the special case in which n(n) = 1; e¢.g., O 7.2,¢,(?) is the job

overflow process starting at U(0) = 2 with job buffer capacity C,.

The following result provides weak conditions for the existence of a random
time after which two systems with different initial distributions and different
capacities evolve identically w.p.1.

Theorem 4.1. If there exist ®, C; and Ct for which P(T < ) = 1, where
T= iﬂf{IZOZOJ,rCJ(I) +OT1:C,(:)RCJ+CT}’ 4.2)

then for each &', C; and Ct with C; + Ct = C; + Cg there is a random time T

such that
(a) PMET < 00) = 1,

(b) Uy, (1) = Uge, (D) forallt > Tw.p.l,
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(C) Oj,r'cj(t) - OJ’E’C"‘(;E) = OJEC,(I) - O]ncj ("f)for allt > % Wpl,

{(d) Orwc, (1) — O, (R) = Orac,(t) — Opne,(B) forallt > Tw.p.1.
Proof. The idea of the proof is to choose 7 so that Corollary 1 to Theorem 3.2 can
be applied and so that T < T almost surely. Let & be a probability mass function
representing the joint distribution of the initial conditions in both the given

unprimed system and an arbitrary primed system, i.e.,

n(j) = X n(j,k) and =’ (k) = ¥, R(j.k) . (4.3)
k i

For any joint initial condition (U(0) = j, U'(0) = k) 0<j< C;+ Cy and
0 < k< Cy + Cr, choose 7 to be the random variable T, ,, defined in (3.3) where
n = min{j,k} and m = max{j,k} — min{j,k}. Then Corollary 1 of Theorem 3.2
applied to each possible initial condition yields parts (b)—(d). We complete the
proof by showing that 7, ,, < < for all m and n, so that T < 1. The idea here to that
Cr + C; is an upper bound on the number of overflows (jobs or tokens) from
either system (primed or unprimed) that is required before U(r) = U’(s). Hence,
T in (4.2) is an upper bound on the time until U(t) = U’(r) and thus is greater
than or equal to T, ,, for any initial condition (j,k). More precisely, from (3.3)

and (4.2), we see that it suffices to show
O5(1) + OT‘,H.,,,(I) -_mz2 Ojk(t) + Oqnp(f) — C;— CT for all ¢

for all n,m and k with 0<n<n+m<C;+ Cy and 0<k<C; + Cr, which
follows from Theorem 3.2(d) and (). Consider separately the cases: (i) k < n, (i)

n<k<n+mand (ii)n+m<k<C;+Cr. m

We now show that if the processes U(¢), 0,;(r) and Or(t) have steady-state
limits for some initial distribution ® and some capacitics C; and C7, then the
steady-state limits exist and are the same for all initial distributions and all
capacities C; and C7 for which C7 + C7 = C, + Cr. Let => denote convergence .
in distribution; see Billingsley [5]. |
Theorem 4.2. Suppose that P(T < «) = 1 for tin(4.2) and some &, C; and Cr.
Also suppose that
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(U ;s +11), Uy (s +13),...,Up (s + £4)]
== [U'(tl) » U*(tz)!----rU*(tk)] s (4-4)

(O, (s+11) = O (s +20),..., Oy, (s + 1) — Oy (8 + 121 )]

= [05(t;) — 03 (to), ..., 05(1y) — OF(tp-1)] » 4.5)
[OTr:'Cj(S + 1) = Orre,(s+ig),-.., OTn:'C_',(S + 1) — Oy (s + 1x-1)]
= [07(11) — OF(to),.... OF(ty) — O1(1x_1)] (4.6)

as s > oo for all k21 and all 0<1ty < t; <...< 1} for some " and C; with
Ci+Cr=C;+Cr. Then (4.4)~(4.6) hold for all &' and all C; with
C; + Ct = Cy + Cr, with the limit being independent of the initial distribution
1" and the capacity C (provided that Cy + Cr is fixed).

To prove Theorem 4.2, we apply the following elementary lemma.

Lemma 4.1. For any two random elements Xy and X, and any measurable set A,
[P(X; e A) — P(X, € A)| < P(X, #X3) .
Proof. Write P(X; € A) = P(X; e A, X, = X,) + P(X; € A, X; #X;) . Then
| P(X; e A) —P(X, e A)| = |P(X1 € A, X1 #X3) — P(Xy € A, X1 #X))]
< max{P(X; € A, X; #X>), p(x; €A X1 #X)}SPX #2X,). o

Proof of Theorem 4.2. We only treat (4.4), because the other arguments are the
same. Consider n”’ and C} with CY + Cf = C} + C¢ = C; + Cy. For any

KiyewnsXgs

IP(U,-;"C}’(S +4)<x,..., Un"‘c;‘(s + 1) < xp)
- P(U*(Il) £Xi,... ,U*(tk) _<.xk)|

SIPWUgr s+ 1) Sxq,..., Uy cr s + 1) Sx)
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— P(Uw c(s+11)Sxy,..., Upc(s+ tx) Sxi)l
+ [P(Upc s+ 1) Sxp,..., Upg (s + 1) Sxp) ’
- PUU*(t) Sxq,..., U0 (1) £x)] . 4.7)

By the definition of =, it suffices to consider only vectors (x,, ..., x;) that are
continuity points of the limit. For such vectors, the second term on the right in
(4.7) converges to 0 as s — = by assumption, so that it suffices to consider the
first term. By Lemma 4.1 and then Theorem 4.1(a) and (b),

{P(UUgrcr(s+ ) Sxp,..., Upr oo (s + 1) Sxp)
= PUgc(s+11)Sx1,....Upc (s + ;) S xp)

SPTt>s5)—>0 ass 5. =

5. The Departure Process from the Throttle

In the previous sections we have seen that the overflow processes tend to be
independent of the token-bank and job-buffer capacities Cr and C; when
Cr + C; is fixed. By Theorem 4.1, in great generality there exists a random time
¢ after which the overflow processes coincide in such systems. Consequently,
after this random time 1, the accepted jobs coincide too. However, the timing of
the job admissions is typically not the same because jobs may or may not wait in
a job buffer after arrival before leaving the throttle. However, the difference is

bounded, as we now show,

Let D(z) be defined as in (2.4) and let D, be the epoch of departure
(admission) for the n™ job.

Theorem 5.1 Consider two throttles with capacities (C;, Ct) and (Cj, CT) where
C; < Cyrand Cy + Cr = C) + Cf. Let the arrival processes be identical.

(a) If both token banks start full, then tight bounds are
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D) —(Cy = CHSD'(H D) forall t > 0 (5.1)
and |
D,sD, <D, ¢ ¢, forallnz1. (5.2)
(b) If the initial conditions are arbitrary, then tight bounds are
D) —Cr—C;<D'(0)<D() + Cy+ Cr for all ¢ (5.3)
and
Dy_¢,-c,$Dp Dy c,sc foralln2Cr+Cy+1. 5.4)
Proof. From (2.4), D(¢) satisfies
D(t) = A,(8) - 0,(2) ~ J(1) + J(0)

and similarly for D’(f). In (a), since both token banks start full,
U(0) = U'(0) = Cy+ Cr, so that U(r) = U’ (¢) for all £; see (2.1), (2.8) and
Theorem 3.1. Moreover, Aj(t) = A (1), O3(t) = 0,48, J) £J' () £ J(t)
+ C; - C; and J'(0) = J(0) = 0. The lower bound in (3.1) is realized if
U(t) = 0, while the upper bound is realized if U(#) = C; + Cr. The key to (5.2) '
is the fact that D, < ¢ if and only if D(¢) 2 n (for any sample path). To see that
D, <D,, suppose that D, = which implies that D’(f) =n. By (5.1),
D(f) 2 D’(r). Consequently, D(¢) = n, which implies that D, <t =Dj. To see
that D, <D,,c,_c,» suppose that D,,~ _c, =1t which implies that
D) zn+ C; - C;. By (5.1), D'(t) 2 D(1) ~ (C; — C,), so that D’ (¢) =2 n and,
thus, D, £t = D, ¢, - ¢, As indicated by Theorem 3.2, the extreme cases in (b)
are obtained by having one system start with the job buffer full and the other with
the token bank full. Then one system can have up to C, + Cr more departures
before U’(r) = U(t). For éxample, to get the first inequality in (5.3), subtract
C; + Cr from the first term in (5.1). m
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As an elementary consequence of Theorem 5.1, we see that the throughputs
are the same. We define the throughput as the limit of D(£)/tas t — ce.
Corollary. Consider the two throttles in Theorem 5.1. If one of the four limits

lim 20 270

. n . n
, lim — and lim —
t=00 | t—300 1 n—e Dy n -

’
n

exists, then all four do and they are equal.
Proof. Itis well known and easy to verify that 7' D(1) — € as 1 = « if and only

if n/D,, — @ as n — . The rest follows from Theorem 5.1. m

Similarly, other asymptotic properties of the departure processes are the same,
in particular, the limiting values of the indices of dispersion for counts and
intervals. The index of dispersion for counts (IDC) is the function

_ Var D(1)
I.(t) = ———ED(I) , >0, (5.5)

for ¢ such that ED(t) > 0, where Var is the variance. The index of dispersion for

intervals (ID]) is the function

nVar D,
e 2 0
(ED,)

%

Ii(n) = 1, (5.6)

for n such that ED,, > 0, where D, is the epoch of the n™ departure; see [11).

The following is an easy consequence of Theorem 5.1. It closely parallels §1
of Whitt [22].
Theorem 5.2. Consider the two throttles in Theorem 5.1.

(a) The limits
lim Var D(t) and lim £2210)
[ X t I X t
exist if and only if the limits
lim Nar D (1) and lim ED° (1)

[ X t {0 t
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exist. Moreover, if they exist, then the variance limits are equal and the mean

limits are equal. If the limits above all exist with lim " YED(t) > O, then

f =3 oo .
lim I.(f) = lim I5(f) . 5.7)
I X e X
(b) The limits
Var D, ED,
lim and lim
n— o n e N
exist if and only if the limits
lim = and lim -
e A n ' n = oo n

exist. Moreover, if they exist, then the variance limits are equal and the mean

limits are equal. If the limits all exist with lim n~'ED, > 0, then
" —>oa

lim I;(n) = lim I'(n) . (5.8)
=) eo

=) oo

Typically the limits in parts (a) and (b) of Theorem 5.2 will be related, so that
the limiting values of the IDI and IDC coincide. To obtain an explicit condition,
we exploit central limit theorems and uniform integrability; see p.32 of
Billingsley [5]. The random variable L below typicélly has a normal distribution.
Theorem 35.3. Suppose that one of

n(D,-0"'n)=Las n > o (5.9)
or
FEDW -0 = - 0"Last > 0 (5.10)

holds with 0 <0 <o, where L is an arbitrary proper random variable.
Moreover, suppose that both n™'(D, — 0 'n)* and H(D(t) - 6r)* are
uniformly integrable. Then the li'mi_;s in (5.7) and (5.8) hold and are equal. |
Proof. By Theorem 6 of Glynn and Whitt [12], the limits in (5.9) and (5.10} are
equivalent. Hence, if one holds, both do. The uniform integrability implies that
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the first two moments in (5.9) and (5.10) also converge. As a consequence, we
obtain n~'ED, - 67! and n ! VarD, > VarL as n = «» from (5.9) and
7 YED(t) - 6 and +! VarD(r) » 6 VarL as 1 — « from (5.10). Then, by
(5.5) and (5.6),

lim [;(n) =0*VarL = imI,(f) . m

n—ce I e

Unfortunately, it is not possible to relate the convergence of n~! ED,, to the
convergence of 1~ ED(r) in general (unlike without expectations, which we used

in the proof of the Corollary to Theorem 5.1).

The next result provides weak conditions for heavy-traffic limiting behavior at
a downstream queue to be the same. By heavy-traffic limiting behavior we mean
the limiting behavior of an appropriate normalization of the queue-length process
as the traffic intensity p approaches the critical value for stability; see Iglehart and
Whitt {14]. As in [14] and [5], here we use functional central limit theorems
(FCLTs). We say that D(r) satisfies a FCLT if the normalized process
n~*[D(nt) —~ Ont] for oo > 0 converges in distribution as n — o {(in the function
space D[0, )) to a proper limit (which is typically Brownian motion; also
typically o = 1/2). We assume that the departure processes from the throttles are
fixed, so that the sequence of queueing systems in the heavy-traffic limit theorem
with the associated sequence of traffic intensities converging to 1 is obtained by
modifying the service times at the downstream queue.
Theorem 5.4. Consider the two throttles in Theorem 5.1. The process D’ (1)
satisfies a FCLT if and only if D(1) does, in which case the limits are the same
and both processes produce the same heavy-traffic limiting behavior at a
downstream queue (with infinite-capacity, finitely many servers and the first-come
Jirst-served discipline) as specified by Theorem 1 of Iglehart and Whit [14].
Proof. The equivalence of the FCLTs is an easy consequence of Theorem 5.1
here and Theorem 4.1 of [5]. Then apply Theorem 1 of Iglehart and Whitt [14],
which states that the heavy-traffic behavior depends on the arrival process oﬁly
through its FCLT. = . | '
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6. Bounds on The Impact of a Job Buffer on a Downstream Queue

We now apply a general comparison result in Berger and Whitt [2] to bound
the impact of a job buffer on a downstream queue. For the reference system, to
be referred to as system 2, we assume that the downstream queue has s servers,
Cp + C; extra waiting spaces (Cp 20, C; 2= 1), and the first-come first-served
queue discipline. We assume that service times are assigned when service begins.
The arrival process to this queue is a superposition of two component arrival
processes. One component arrival process A, is exogeneous and the other is the
departure process from a rate-control throttle based on a token bank of capacit_y C
and no job buffer, with arrival process A;. The exogeneous arrival process allows
us to draw conclusions about multiple throttles feeding the downstream queue. In

particular, we can make the comparison by considering one throttle at a time.

We show that the throughput from this downstream queuve decreases if we
simultancously remove buffer space C,; from the downstream queue, add a job
buffer of capacity C; to the throttle, and reduce the token-bank capacity to
C —~ Cy, assuming that C; < C. In the modified system, referred to as system 1,
the throttle has a job buffer of capacity C, but the same total throttle capacity
(token bank capacity plus job buffer capacity) C, and hence the same admission
rate from the throttle as in system 2, by the Corollary to Theorem 5.1. The
comparison implies that the benefit of a job buffer of capacity C; in a throtile of
fixed total capacity C is less than adding capacity C; to the downstream gueue.
For m throttles without job buffers feeding a downstream queue, higher
throughput is attained with capacity Cp + C, +...+C;_ata downstream queue

than with capacity Cp at the downstream quene and a job buffer of capacity C;, in

throttle i, with the total capacity of throttle ; unchanged, for each i.

, This result is consistent with intuition, expressing the well known advantage
of statistical multiplexing. However, the generality of our result expressed via a

sample-path comparison does not seem obvious or easy to prove.

Let C} be the epoch that the £ job to start service (in the downstream queue)
is admitted to system i#; let ¥ be the epoch that the k™ job to start service starts
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service in system ¢; let Z& be the epoch that the ¥* job to start service departs from
the downstream queue in system £; and let D} be the epoch of the k™ departure
from system i. Let S} be the k™ service time in both systems, which we assume is
assigned to the k™ job to start service in each system,

Theorem 6.1. Consider the two systems defined above, with common service
times, common arbitrary job arrival processes A, and A;, and a common tokern
arrival process Ay, in which the service times are assigned at the downstream
queue in order of service initiation. Suppose that the sysiems start with the

downstream queue empty and their token banks full. Then
Yi=Y?,Zl >Z% and D} 2 D} for all k .

Proof. We apply Corollary 3 in [2]; see [2] for background. In particular, let
A/A/s/c denote an s-server queue with total capacity ¢, i.e., with a waiting room of
size ¢ — 5, 1 €5 < ¢ < o0, in Which jobs are served in order of their arrival by the
first available server without defections after entering the system. If there is a
finite waiting room and the system is full when a job arrives, then the job leaves
without receiving service or affecting future arrivals. The first A means that the
arrival process is arbitrary, not necessarily renewal and not necessarily stationary.
The second A means that the service times are also arbitrary. We consider
system 2 as an A/A/s/c queue by letting the arrival process be the superposition of
the two arrival processes, A, and A;(1) — O,(1); i.e., we consider the arrival
process to the throttle after the job overflows have been deleted. For system 2,
this is indeed the arrival process to the downstream queue. We consider system 1
with this same arrival process. By Theorem 3.1, the overflow processes from the

throttles in Systéms 1 and 2 are identical.

To make the comparison, we create a new system, called system 3, that we
can conveniently compare to systems 1 and 2. System 3 is a modification of
system 1 such that ¥} = ¥3 and such that Corollary 3 in [2] can be applied to
systems 3 and 2 to obtain, in particular, ¥; > ¥Z and hence conclude that ¥} > ¥Z.
The remaining orderings between systems 1 and 2 follow easily from additional

observations.
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We now indicate how to construct system 3 from system 1. The main idea is
to regard the job buffer as part of the downstream queue in system 3. Hence, the
downstream queues in both systems 2 and 3 have s servers and Cp + C; extra
waiting spaces. To apply Corollary 3 in [2] to compare systems 2 and 3, system 3
must behave like an A/A/s/c queue with the first-come first-served discipline. To
obtain system 3 from system 1, we first increase the service times of some jobs at
the downstream queue. In particular, we increase the service times whenever the
job buffer is not empty and the downstream queue is empty. Assigning longer
service times allows us to regard the server at the downstream queue as never
being idle when a job is in the job buffer of the throttle (which is necessary for
system 3 to be regarded as an A/A/s/c model). There are two cases. If a job
completing service from the downstream queue in system 1 makes the
downstream queue empty with jobs in the job buffer, then the service time of this
completing job is increased in system 3 by the time until the next arrival at the
downstream queue; i.e., in system 3 we regard this completing job as still being in
service until this condition terminates, i.e., until the next job arrives to the
downstream queue to request service. The second case involves a new job
entering and queueing in a previously empty job buffer when the downstream
queue is empty in System 1. (For this to occur, the token bank must be empty
also.) Then in system 3 we act as if this new job arrival is already in service at
the downstream queue by increasing its service time by the duration of this
condition. With this modification, we have ¥} = ;. However, we must also
consider the possibility of an arrival from the exogeneous arrival process A, while
this condition is in progress. Upon such an arrival, we swiich the identities of the
jobs in system 3, i.e., we put the exogeneous arrival in the job buffer and have the
job in the job buffer go to the downstream queue where it continues to receive
service. Thus the job from the job buffer has the longer service time. Of course,
it is possible that the exogenedus job may later have a longer service time too.
Note this switching of job identities also preserves the first-come first-served
discipline; i.e., system3 is constructed to have the first-come first-served

discipline whereas system 1 does not.
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Second, the identity switch above is actually required under more general
circumstances in order to ensure that system 3 has the first-come first-served
discipline. In particular, whenever a job arrives in the exogeneous stream A, and
finds space in the downstream queue while there are jobs in the job buffer, we put
the first job that is in the job buffer queue into the downstream queue and we put
this exogeneous job at the end of the job buffer queue. Note that all identity

switching occurs only because of the exogeneous arrivals.

Third, we must account for jobs leaving the job buffer in system 1 and being
lost because the original buffer of capacity Cp is full. In system 3, we represeht
these losses as balking from the queue of capacity Cp + C,; (which is also
covered by Corollary 3 to Theorem 1 in [2]). Finally, in system 3 we reject some
extra jobs from the exogenebus stream A,, because these jobs are really not
allowed to go into the job buffer. In particular, we reject jobs from A, in
system 3 whenever upon arrival the job finds the downstream queue full. At this
downstream queue, we thus have S} > $Z for all k and A® c A2 so that we can
apply Corollary 3 to Theorem 1 in [2] to deduce that C? > C%, Y3 > Y2, Z} 2 Z}
and D} > D? for all k. Thus, in particular, ¥; > ¥? for all k and the modifications
of system 1 to create system 3 yielded the ordering Y} > ¥i for all k. Thus,
Y} > ¥ for all k. Moreover, since Zi = Yi + §;, Z1 > ZZ for all k. Finally, note

that Dj is determined from {Z,...,Zi,._;} by
Di = ming{Z,. ... Zss1}
wheré min, denotes the k™ smallest number (see [2]). Hence
Di =ming{Z},...,2Zh,s1} 2 nﬂnk{zz,...,z,fﬂ_;} = D} .

Remark 6.1 From the proof of Theorem 6.1, note that when there are no
exogeneous arrivals, there aré no identity switches, so that then the admission
epochs- to the full system of the jobs that are served coincide in systems 1 and 3,
ie., C} = C} for all k. Hence, then C} > C? for all  in addition to the stated
conclusions of Theorem 6.1. |

Remark 6.2. Theorem 6.1 has rather special initial conditions, but other initial
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conditions can be introduced by having extra job arrivals in A, and/or A; at time
0.

Remark 6.3. If service times are not assigned at service initiation times, but the
service times are i.i.d. and independent of the arrival process, then we can apply
Theorem 6.1 to obtain stochastic comparisons using the stochastic subsequence

ordering; see Corollary 4 of [2].

We now state the advertised consequences for a downstream queue fed by
several separate rate control throttles.
Corollary. Consider a downstream s-server queue with waiting room
Cp + Cy, +...+C;_ fed by the superposition of departure processes from m
token-bank rate-control throttles without job buffers. Let the service times at the
downstream queue be assigned in order of service initiation and let the system
start with the downstream queue empty and all the token banks full. Then the
number of departures in (0,t] for any t and thus the throughput (the limiting
departure rate) from the downstream queue are greater than in a corresponding
system with capacities modified as follows: There is a waiting room of size Cp at
the downstream queue and a job buffer of capacity C; in throttle i, with the total
capacity of throttle i unchanged, for each i. (The remaining features of the two

systems are the same.)

7. Changing Total Capacity

In this section we consider the effect of changing the total throttle capacity
C = C; + Cy. Here we provide some extensions to the monotonocity results of
Budka and Yao [7]. Let a subscript C indicate the total capacity. Budka and
Yao [7] show in their Theorem ! that the number of accepted jobs D(r) is
iricreasing and concave in the capacity C. From (2.8) and (2.11), we immediately
obtain the following related result.
Theorem 7.1. For all 1, Uc(t) is an nondecreasing function of C, assuming
U c(0) remains unchanged.
Proof. Apply mathematical induction on the arrival epochs once again with (2.8)

providing the key structural property. m
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Theorem 7.1 has a rather restrictive assumption on the initial conditions, but it
disappears in the limit.
Corollary. Assume that (4.2) holds and Uc(t) == Ug(eo) as t — oo for some
initial condition for all C. Then Ef(Uc(e)) is nondecreasing in C for every
nondecreasing real-valued f.
Proof. Assuming special initial conditions, the conclusion follows from
Theorem 7.1, since Ef(Uc(8)) < Ef(Uc,1()) for all ¢t when fand U (¢) are both
nondecreasing. Moreover, Ef(Uc(1)) = Ef(Uc(es)) when t - « and f is a
bounded continuous nondecreasing real-valued function if Uc(#) = Uc(ee), and
stochastic order is determined by the expectations of such functions; e.g., see
Theorem 2.6 of Whitt [20]. Finally, by Theorem 4.2, Uc(t) = Uc(eo) 88 £ —> o
for all initial conditions if it holds for one initial condition. m

We now proceed to obtain some more detailed information.
Theorem 7.2. Consider two systems with total capacity C and C+ 1. Let
Uc(0) = Uc41(0). Let the arrival processes Ar(t) and A ;(t) be the same. Then

(@) Ucn1(t) =Uc(t) + [Or,c(t) = Orc1(D)]
—[Osc(t) ~ Ogca()) forall t,
(b) Uc) U1 () S U+ 1foralt,

() 0=[07c(D —O0rcs1() = [04c() = Ojcr1 (D) =1
for all g,

(d) Or.c(t2) — Orc(f1) 2 Orce1(t2) — Orc1(t1)
forallt, < ty;

(e) O1c(f2) = Osct1) 2 Osc41(f2) — Oycva(tr)

forallt; < t,. _

Proof. As before, apply mathematical induction on arrival epochs. Note that at
each transition we either maintain or switch between Uc,(2,) — Uc{t,) =0
and Uc,1(t,) = Uc(t,) = 1. We transition from Ucyp1(2,) — Uc(t,) =0 to
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Uci1(as1) — Uc(t,41) = 1if we have an extra token overflow in the process
with capacity C at time f,,,. We transition from Uc, 1{(#,) — Uc(ty) =1 to
Uci1{tn+1) — Uc(ty+1) = 0if we have an extra job overflow in the process with
capacity C at time ¢,,, ;. Part (c) just combines (a) and (b). m

Corollary 1. (Budka and Yao [7]) Suppose that

O;c(t Orc(8)
c = lim sc(t) and rg = lim e
I — oo t e X t

are well defined. Then A¢ and r¢ are nonincreasing in C.
Remark 7.1. It is significant that this corollary is not true for the standard
A/A/1/C queue in which service times are associated with arrivals; see [23].

Let <, denote ordinary stochastic order.
Corollary 2. (Budka and Yao[7]) If Ucg(t) = Ug(eo) and

Uci1(8) = Upp1(e0)ast — oo, then
Uc(eo) S Ucs1() .

Corollary 3. (a) Suppose that Cy is increased to Ct = Cr + 1, while C; and
U(0) are unchanged. Then

THO ST (ST + 1
and
J) - 187 @)<J) forall t.

(b} Suppose that Cy is increased to C; = C; + 1 while Cy and U(Q) are

unchanged. Then
ORSHORTIOED
and

T(t) — 1< T'(1) < T(1) forall ¢ .

Corollary 4. Suppose that
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Te(t) = Te(o) and Jo(t) = Je(o) as t— oo
Jor all C and all initial conditions.
(a)IfCy = Cr + Land C) = Cy, then
T(o0) S5 T'(0) S T(o0) + 1
and
J(0) = 1S5 J'(o0) g J(o0) .
(b}IfCy = C; + Yand Cr = Cy, then

(o) Sy J' (00) Sy J(0) + 1

and

T(eo) — 1 £ T"(00) <y T(eo) .

A}

8. Changing Arrival Processes

Budka and Yao {7] applied the subsequence ordering to compare two throttles
(without a job buffer) with two different token arrival processes. Here is the
deterministic variant of their result. Let D(7) be the departure process in (2.4) in
system i.

Theorem 8.1. (Budka and Yao {7]) Consider two rate-control throttles without
job buffers. If AL c A%, C} < C} and TV (0) < T?(0), then T'(r) < T2 (1) for all ¢
and D' ¢ D2, | '

We now obtain a related comparison result for throttles with a job buffer.
With our greater generality, the conclusion is necessarily weaker. (It is easy to
construct examples showing that neither D! ¢ D? nor U!(z) < U%(¢) need hold.)
Following [7], let D(z) denote the departure process from the throttle in (2.4), let
H(t) = D(t) + J(1) be the counting process recording the number of jobs that
have arrived and not overflowed by time ¢ and let I(t) = D(¢) + T(z) be the
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counting process recording the number of tokens that have arrived and not
overflowed by time ¢.

Theorem 8.2. Consider two rate-control throttles with common token banks and
job buffers that are initially empty. If A} c A} and A} ¢ A%, then DY (1) < D%(p),
HY () <H*(tyand I' (1) < 1%(2) for all t.

Proof. Let {t; : k> 1} be the sequence of arrival epochs for jobs and tokens in
system 2, where £, < f;.;. Ateach epoch ¢, a batch of jobs and a batch of tokens
arrives. (One of these batches may be empty.) By the assumed orderings A} cA?
and A} < A%, all arrivals in system 1 occur at these epochs too. Moreover, at each
arrival epoch the batch sizes are always larger or the same size in system 2. Let
{Ji:k>1} and {T}:k=>1} be the sequences of job and token batch sizes in
system i at the epochs {r; : k= 1}. (Note that, for any given k, as many as three
of J},JZ, Tt and TZ may be zero.) We apply mathematical induction on the

indices k to deduce that the orderings
D' (1) < D*(1y)
DY (1) + IV (1) £ D2(1) + J* (1) (8.1)
DL() + TH () < D2(r) + T2(1y)

are maintained for all k£, which implies the desired result. First, it is easy to see
that (8.1) holds fork = 1. In establishing (8.1), recall that only one of J*(¢;) and
T‘(t;).can be positive at any time. Our convention (see §2) has been to treat
simultaneous job and token arrivals by first pairing and admitting min{J{, 7%}
and then sending the excess to the throttle. The evolution of the throttles can thus
be defined by the following modification of the recursion in (4) and (5) in §V of
[7]. ¥ T}4q 2 Jii1, then

Dit ) + J(tayy) = H(tyhy) = Hi(t,) + 1Ly
Di(tyy1) + T(tys) = Ftyyy) = min{I(t,) + Thyy, H (141) + Cr} . (82)

Ifol+l < J;.H-l’ then
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Di(tys1) + T (tas1) = Ftps) = I(1,) + Thyy
Di(tys1) + T (tys1) = Hi(t,41) = min{H () + Jop1, Ft,41) + Cy} .(8.3)
Finally, in either case,
Di(tyy1) = min{H (1501), F(ty41)} - (8.4)

For example, the first line of (8.2) holds because the J%,, jobs are paired with

tokens and all admitted. The second line in (8.2) holds, because we can add all

T, +1 tokens until the tokens exceed the number of jobs admitted by the token-
bank capacity Cr. From (8.2)—(8.4}, it is immediate that (8.1) is maintained when
Ti .1 = Ji .y for both i and when T%,,, < J%,, for both i, because T%,, < T2, and

J} .1 £ 72.1. Hence, there are two remaining cases:

Jrza+1 > Tr21+1 2 Trln-l 2J;+1 . (85)
and

T:?;—l-l 2-’5+1 2-]rl:+1 > T.-I:+1 . (8.6)

We consider only (8.5), because the reasoning for (8.6) is essentially the same.

We exploit the fact that
I(,) = Hi,) - Cy 8.7)
and
H?'(r,,) >1i(,)~Cr. ) (8.8)

To obtain (8.7) note that subtracting the number of departures, D (z,,), from both
sides of (8.7) yields

Ti(t,) 2 J(t,) - Cy,

which is valid, because the left side is nonnegative and the right side is
nonpositive. The same observation yields (8.8). Given (8.5), from (8.3) and then
the induction assumption applied to the A’s and I's (using first (8.5), then (8.7)
and finally (8.2)), we obtain
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H*(1,41) = min{H*(1,) + 21, I*(1,) + Tapq + Cy}
> min{H'(2,) + Jo1, IV(t,) +JEe + Cy}
>H'Y(1,) + Il = H W (1,,1) . (8.9)

Given (8.5), from (8.2), the induction assumption applied to the I's (using the

subsequence ordering for the 7°s) and (8.3), we obtain
I'(tgs1) = min{I'(4,) + Tpyq, H' (1441) + Cr}
SI(t) + Th
S +TE 0 = P, e) . (8.10)

Finally, we obtain D' (z,.1) < D*(t,.1) from (8.4), (8.9) and (8.10). m

Remark 8.1. As in [7], from (8.2)-(8.4), it foliows that the triple
(H{(t,), I(t,), D(z,)) is nondecreasing and concave in (Cy, Cy). This result does
not quite follow directly from [7], because we treat simultaneous job and token
arrivals differently here. Similarly, (H(t,), I(t,), D{(t,)) is nondecreasing and
concave in (Jy,...,J,,T(,....T,) from which second-order stochastic

comparisons can be deduced. =

9. Non-Discrete Flow Models

The throttle model in §2 has discrete jobs and tokens that arrive according to
the irite'ger-valued counting processes A;(t) and Ar(¢). However, the results in
this paper extend to the case of continuous divisible quantities of “‘work’” and
““credit,”” as occur for example with the fluid model of Elwalid and Mitra {10].
Then A,(z) and AT(t) can have general nondecreasing sample paths. (As a
regularity condition, we assume that these sémple paths are right-continuous.) In
this more general setting, we assume that the triple (U(r), O;(1), O (1)) is
defined by épplying the two-sided regulator with reflecting barriers at O and
C=Cy+ Crtothe _n_et-input procesé X(1) = Ar(t) — Ay(1), as on pp. 21-24 of
Harrison [13]_ and §4 of Berger and Whitf [3]. Moreover, we assume that T(z),
J(t) and D(s) cari be déﬁned by (2.2)—(2.4). In §2 we noted that these definitions
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could also be used for the discrete job-and-token model with integer-valued
counting processes A;(¢f) and A7(f), so we are simply extending the current

model.

The key property for obtaining comparison results in this more general setting
is that the sample paths of A ;(#) and A r(¢) can be approximated uniformly in any
finite interval by piecewise-constant discrete-valued functions. In particular, to

achieve a uniform approximation to within »™!, consider l_nA J(I)J/n and

I_nA T( t)J/n for t 2 0, where |x] is the greatest integer less than or equal to x. All

the inductive proofs here apply directly to the associated piecewise-constant

discrete-valued net-input processes approximating X(¢).

We then represent the general case with input pair (A7(2), A;(f)) as the limit
of the sequence of approximating piecewise-constant discrete-valued input pairs
{(AF(2), AT ()) : n > 1}. We than have convergence of the other processes, ie.,
[X"(0), U(1), OF(0), O5(), T"(),J" (1), D" (D] = [X(®), U(®), Or(1), O;(1),
T(), J(t), D(1)] as n — oo, by continuity. In particular, with the supremum norm
on any finite interval and the maximum norm on product spaces, the maps from
(A (1), Ap(D) to X(&) = A¢(8) — A (1), from X(¢) to (U(L), 0,(1), O¢(2)), from
U(p) to [T(r), J(1)] and from [A;(t), O,;(5), J()] to D(¢) are all continuous. For
the map from X(¢) to (U(¢), 0,;(1), Or(1)), see Theorem 4.2 of [3]. Indeed, there
it is shown that the map from X(r) to U(r) is Lipschitz with modulus 2. All the
other maps are elementary. Hence, all previous theorems extend to this more

general setting of non-discrete flows.

These results apply to all regulated stochastic flow systems (defined by
applying the two-sided regulator) in which the net input process X(f).is of
bounded variation, because then we have'X(t) = Ar(8) — Ay(p) for nondecreasing
A7(r) and A;(2), but the results also apply even more generally. Since the process
Uy, 0;(1), O7(1)) depends only on X(r), to treat them it suffices to work
directly with X(¢). Then it suffices for X(z) to have left and right limits at every ¢

in order to do the piecewise-constant discrete-valued approximation; e.g., see
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p. 110 of Billingsley [51. For example, the results here apply to two-sided
regulated Brownian motion (RBM) in Harrison [13] and Berger and Whitt [3].

Finally, it should be noted that some non-discrete models do not fall directly
into this two-sided regulator framework, because the two-sided regulator treats
the work and credit as divisible. We might instead have discrete jobs and
continuous credit, where we do not admit portions of a job. Instead, we admit the
entire job when a full unit of credit has accumulated. However, this particular
model is already covered by our original model; we simply count the accumulated
integer amounts of credit; i.e., we let Ar(¢) be the integer part of the credit that
has arrived in the interval (0, f]. It appears that other modifications can be treated

similarly.

REFERENCES

[1] A.W. Berger, Performance analysis of a rate-control throttle where tokens
. and jobs queue, IEEE J. Select. Areas Commun. 9 (1991) 165-170.

[2] A. W. Berger and W. Whitt, Comparisons of multi-server queues with
finite waiting rooms, Stochastic Models, this issue.

[3] A.W. Berger and W. Whitt, The Brownian approximation for rate-control
throttles and the G/G/1/C queue, Discrete Event Dynamic Systems, 2
(1992) to appear.

[4] A. W. Berger and W. Whitt, Traffic Shaping by a job buffer in a token-
bank rate-control throttle, submitted for publication, 1992,

[51 P. Billingsley, Convergence of Probability Measures, New York: Wiley,
1968.

[6] K. C. Budka, Stochastic monotonicity and concavity properties of rate-
based flow control mechanisms, IEEE Trans. Aut. Control, to appear.

[71 K. C.Budka and D. D. Yao, Monotonicity and convexity properties of rate
control throttles, Department of Industrial Engineering and Operations



716

(81

[9]

[10]

[11]

(12]

[13]

[14]

[15]

[16}

(17]

[18]

BERGER AND WHITT

Research, Columbia University, 1990. Abbreviated version in
Proceedings of 29" IEEE conference on Decision and Control, (1990)
883-884.

R. L. Cruz, A calculus for network delay, partI: network elements in
isolation, IEEE Trans. Inf. Thy. 37 (1991) 114-121.

R. L. Cruz, A calculus for network delay, part II: network analysis, IEEE
Trans. Inf. Thy. 37 (1991) 121-141. .

A. Elwalid and D. Mitra, Analysis and design of rate-based congestion
control of high-speed networks, I. stochastic fluid models, access
regulation, Queueing Systems 9 (1991) 29-64.

K. W. Fendick and W. Whitt, Measurements and approximations to
describe the offered traffic and predict the average workload in a single-
server queue, Proceedings of the IEEE 77 (1989) 171-194.

P. W. Glynn and W. Whitt, Ordinary CLT and WLLN versions of
L = AW, Math. Opns. Res. 13 (1988) 674-692.

J. M. Harrison, Brownian Motion and Stochastic Flow Systems, New
York: Wiley, 1985.

D. L. Iglehart and W. Whitt, Multiple channel queues in heavy traffic, I:
sequences, networks and batches, Adv. Appl. Prob. 2 (1970) 355-369.

M. Sidi, Z. Liu, I. Cidon and I. Gopal, Congestion control through input
rate regulation, GLOBECOM ‘89, Dallas, Texas, pp. 1746-1768, 1989.

K. Sohraby and M. Sidi, Oﬁ the performance of bursty'and correlated
sources subject to leaky bucket rate-based access control schemes, IEEE
INFOCOM ‘90, Bal Harbor, Florida, 1990.

D. Sonderman, Comparing multi-server queues with finite waiting rooms,
I: same number of servers, Adv. Appl. Prob. 11 (1979) 439-447.

D. Sonderman, Comparing multi-server queues with finite waiting rooms,
II: different number of servers, Adv. Appl. Prob. 11 (1979) 448-455.



RATE-CONTROL THROTTLE 717

{19] S. Suresh and W. Whitt, The heavy-traffic bottleneck phenomenon in open
queueing networks, Oper. Res. Letters 9 (1990) 355-362.

[20] W. Whitt, Uniform conditional stochastic order, J. Appl. Prob. 17 (1980)
112-123.

[21] W. Whitt, Comparing counting processes and queues, Adv. Appl. Prob. 13
(1981) 207-220.

[22] W. Whitt, Approximations for departure processes and queues in series,
Naval Res. Log. Qtrly 31 (1984) 499-521.

Received: 6/14/1991
Revised: 2/2/1992
Accepted: 3/24/1992

Recommended by Brad Makrucki, Editor






