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Abstract. We develop a high-fidelity simulation model of the patient arrival process to
an endocrinology clinic by carefully examining appointment and arrival data from that
clinic. The data include the time that the appointment was originally made as well as
the time that the patient actually arrived, as well as if the patient did not arrive at all, in
addition to the scheduled appointment time. We take a data-based approach, specifying
the schedule for each day by its value at the end of the previous day. This data-based
approach shows that the schedule for a given day evolves randomly over time. Indeed, in
addition to three recognized sources of variability—(i) no-shows, (ii) extra unscheduled
arrivals, and (iii) deviations in the actual arrival times from the scheduled times—we
find that the primary source of variability in the arrival process is variability in the daily
schedule itself. Even though service systems with arrivals by appointment can differ in
many ways, we think that our data-based approach to modeling the clinic arrival process
can be a guideline or template for constructing high-fidelity simulation models for other
arrival processes generated by appointments.
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1. Introduction
In thispaperweaim to contribute to simulation stochas-
tic input modeling. In particular, we develop a data-
based approach for creating high-fidelity stochastic
models of arrival processes generatedbyappointments.
We do that so that the arrival processmodel can be part
of a full simulation model used to improve operations
(e.g., to improve throughput, control individual work-
loads, set staffing levels, and allocate other resources),
with the goal of efficiently providing good service in a
service systemwith arrivals by appointment.
In particular, we create a data-driven stochastic ar-

rival process model for a doctor in an outpatient clin-
ic by carefully examining patient appointment and
arrival data from an outpatient clinic. The data include
the day and time of each appointment, when the
appointment was originally made, an indicator for
whether the scheduled arrival actually came, the time
of arrival (if the patient came), and an indicator for can-
cellation (if the patient cancelled). All time stamps are
measured to the nearest second.

1.1. A Long History of Modeling and Analyzing
Outpatient Clinics

There is a long history of modeling and analyzing
outpatient clinics and other healthcare systems, with

notable early work by Bailey (1952), Welch and Bailey
(1952), Fetter and Thompson (1965), and Swartzman
(1970); surveys by Jun et al. (1999), Cayirli and Veral
(2003), Jacobson et al. (2006), and Gupta and Denton
(2008); and edited reviews by Hall (2006 and 2012).
Depending on the studies’ focus, the large literature
can be divided roughly into three types of analyses.

The first type of analysis is a full analysis of an outpa-
tient clinic tomake operational improvements. As illus-
trated by the seminal paper by Fetter and Thompson
(1965), outpatient clinics can be represented as a com-
plex network of queues associated with the reception
area, nurses, labs, and doctors. Patients often follow
different paths through the clinic, depending on many
factors, such as the doctor whom they are scheduled to
see, their medical condition, and the results of medical
tests. The system complexity has made simulation the
dominant choice for detailed analysis of a clinic. Many
successful simulation studies have been conducted, as
can be seen from Swisher et al. (2001), Harper and
Gamlin (2003), Guo et al. (2004), Chand et al. (2009),
and Chakraborty et al. (2010).

The second type of analysis is designing an effec-
tive appointment system. Most outpatient clinics have
a substantial portion of their arrivals scheduled in
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advance, i.e., generated by an appointment system.
A large part of the literature is devoted to designing an
effective appointment system, as can be seen from sur-
veys by Cayirli and Veral (2003) and Gupta and Denton
(2008) and other works by Liu et al. (2010), Luo et al.
(2012), and Liu and Ziya (2014).
The third type of analysis is conducting a perfor-

mance analysis of queueing models based on assumed
properties of clinic arrival processes. It is recog-
nized that appointment-generated arrival processes
differ from arrival processeswhere customers indepen-
dently decide when to arrive. In theory, appointment-
generated arrival processes should have a nearly peri-
odic structure determined by appointment time slots.
However, studies have shown that arrival processes
can be significantly variable because of patient no-
shows, unscheduled patient arrivals, and patient ear-
liness or lateness. Studies have found that no-show
rates vary across different services and patient pop-
ulations: the reported no-show rates are as low as
4.2% at a general practice outpatient clinic in the
United Kingdom (Neal et al. 2001) and as high as
31% at a family practice clinic in South Carolina
(Moore et al. 2001). Ever since the seminal papers of
Bailey (Bailey 1952, Welch and Bailey 1952), studies
have analyzed queueing models that reflect key struc-
tural properties of appointment-generated arrival pro-
cesses, e.g., see Kaandorp and Koole (2007), Hassin
and Mendel (2008), Araman and Glynn (2012), Jouini
and Benjaafar (2012), Feldman et al. (2014), Honnappa
et al. (2015), Wang et al. (2014), and Zacharias and
Pinedo (2014).

1.2. Carefully Probing into One Clinic
Arrival Process

In this paper, we do not follow any of the three time-
tested approaches discussed above. We instead devote
this entire paper to carefully examining arrival data
from an outpatient clinic appointment system. In doing
so, we aim to construct a high-fidelity stochastic arrival
processmodel that can be part of a simulationmodel or
analytic queueing model that can be used to improve
the performance of the clinic. We want to understand
the consequence of existing appointment schedules;
we do not consider alternative scheduling algorithms.
The data were collected over a 13-week period from

July 2013 to September 2013 from the endocrinology
outpatient clinic of the Samsung Medical Center in
South Korea. Sixteen doctors work in this clinic, but
patients make an appointment to see a particular doc-
tor, so each arriving patient knows which doctor he or
she will meet. (The clinic is strict about having each
patient see the scheduled doctor.) Hence, each doctor
operates as a single-server system. Each doctor works
within a subset of available days and shifts, with three
shifts available: morning (a.m.) shifts, roughly from

8:30 a.m. to 12:30 p.m.; afternoon (p.m.) shifts, roughly
from 12:30 p.m. to 4:30 p.m.; and full-day shifts. See
Table 7 in the online supplement for the distribution
of shifts for each doctor. The data include the day and
time of each appointment and when the appointment
was made. The data also have an indicator for whether
the scheduled patient actually came and, if so, what
was the time of arrival, and, if the patient did not come,
if and when there was a cancellation. If the arrival did
not come and there was no cancellation, the appoint-
ment is regarded as a no-show. All time stamps are
measured to the nearest second.

We focus on patient arrivals during the a.m. shifts of
one doctor to develop our data-driven approach. This
doctor was selected from among the 16 candidate doc-
tors because of his relatively high volume of patients:
he worked for a total of 22 a.m. shifts (12 on Tuesdays
and 10 on Fridays) and 22 p.m. shifts (11 on Mondays,
two on Wednesdays, and nine on Thursdays) during
our study period. We analyze the data in steps, leading
up to a full stochastic process model. We do not imme-
diately present the final model because we regard the
process leading up to the model as more important
than the resulting model for the arrival process.

To confirm our approach for the clinic, in the online
supplement we also carry out the entire analysis again
for three other shifts. We consider the p.m. shifts of the
same doctor to contrast a.m. and p.m. shifts, and we
consider a.m. and p.m. shifts of other doctors.

1.3. The Clinic Viewed as an Open
Network of Queues

Although we focus only on creating an arrival pro-
cess model and do not analyze the clinic operations,
understanding that how the clinic operates is impor-
tant to appreciate the stochastic model we create. First,
this clinic, just like most other medical clinics, does not
operate as a simple conventional single-server queue,
even though the patients have appointments with a
designated doctor. A conventional single-server queue
has customers (patients) arrive, wait, and then receive
a single uninterrupted service by a server (the doctor),
who is dedicated to them and is present with them for
the entire service time. In contrast, in a medical clinic, a
patient might spend an hour or two in the system after
he starts service, while the doctor might spend only
a few minutes with the patient. That is indeed what
happens in the clinic we study.

Second, we envision the stochastic arrival process
model we create as being part of a larger model of the
entire clinic, as in previous studies mentioned in Sec-
tion 1.1. In particular, we think of the endocrinology
clinic with 16 doctors being modeled as a multiclass
open network of queues, as depicted in Figure 1. The
different colored arrows represent the flows of differ-
ent classes of patients, e.g., classified by their medical
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Figure 1. (Color online) The Clinic Viewed as a Multiclass Open Network of Queues

Reception

Nurse 1

Nurse 2

Lab 1

Lab 3

Lab 2

Dr. 1

Dr. 2
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condition and the doctor they are scheduled to see.
Figure 1 shows feedback flows, because patients might
need medical procedures both before and after seeing
the doctor. Since many of these patients use the same
resources, we have the usual issues of resource shar-
ing, which queueing network models are designed to
address.
This modeling approach is consistent with the previ-

ous use of open queueing network models for complex
manufacturing systems, as illustrated by Whitt (1983)
and Segal and Whitt (1989). Such queueing network
models can be used to design new clinics and to study
possible changes to existing clinics. There are many
questions the model can address: e.g., what would
happen if the mix of doctor specialties changes? Or
what would happen if the number of patients seen by
each doctor on each shift changes? Or what happens
if the punctuality can be improved? Just as with previ-
ous stochastic simulationmodels, this stochastic model
makes it possible to answer various what-if studies,
which is not possible—or at least not easy—just using
data, and to assess the statistical precision of simula-
tion estimates.

1.4. Organization of the Paper
In Section 2, we first examine the observed schedules to
infer an underlying master schedule. The master sched-
ule usually specifies the total number of appointment
slots for each day, the length of each appointment slot,
and the number of patients to be scheduled for each
appointment slot (Liu et al. 2016). Then we view the
(actual) schedule as a randommodification of the master
schedule. We find that the main deviation from a reg-
ular deterministic arrival pattern of a master schedule
is variability in the schedule itself.
In Section 3, we view the patient arrivals as a ran-

dommodification of the schedule and examine to what
extent the arrivals adhere to the schedule. In Section 4,

we study the pattern of arrivals over each day and
directly compare the arrivals to the schedule. In Sec-
tion 5, we provide mathematical representations of the
stochastic counting processes for the scheduled and
actual arrivals, as well as a simple parsimonious model
that may be a convenient substitute for mathematical
analysis. We provide a classification for appointment-
generated arrival processes in Section 6, which pro-
vides a basis for comparing the different doctors in
this clinic with each other and with doctors in other
clinics. We conclude in Section 7. Together, Sections 6
and 7 provide an overview of the proposed modeling
approach that we think is broadly applicable.

We also present supplementary material, including
the analysis of three other doctor shifts, in the online
supplement and in our longer study of all doctors in
the clinic Kim et al. (2015a).

1.5. Main Contributions of the Paper
First, we provide a general framework for analyzing
and modeling an appointment-generated arrival pro-
cess given appointment scheduling and arrival data.
There is an active ongoing effort to advance the under-
standing of and to improve the operations of outpatient
clinics; e.g., see Zacharias and Armony (2017) and ref-
erences therein. As more data from outpatient clinics
become available, researchers can follow our approach
to understand and improve the systems. For outpatient
clinic managers, we provide a guideline on what data
components they need to collect and how such data
can be used to better understand and improve their
systems. Our novel modeling approach can be easily
generalized, which means it can be applied to other
clinics in other countries and to other service systems
with arrivals scheduled by appointments.

Second, we provide insights on what assumptions
may be realistic when modeling the patient arrival
process for outpatient clinics and how to check them
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using data. Understanding and incorporating human
behavior into modeling outpatient clinics is becoming
increasingly important. For example, Liu et al. (2010)
and Liu and Ziya (2014) study scheduling decisions
under patient no-shows and cancellations. In the clinic
we analyze, we find that patients tend to be late more
in the morning than in the afternoon. We also find that
new patients are less likely to be no-shows but more
likely to be late than repeat patients are. We believe
our findings can motivate researchers and outpatient
clinic managers to look for similar behavior in their
systems and to develop models that incorporate such
behavior.
Finally, we find that the main deviation from a regu-

lar deterministic arrival pattern (often assumed for ap-
pointment-generated arrival processes) is variability in
the schedule itself. At first glance, viewing the sched-
ule as random might appear inappropriate because,
unlike call centers, where arrivals are generated exoge-
nously, an appointment-generated schedule is endoge-
nous, meaning that it is at least partly controlled by
management. However, filling the master schedule is
rarely straightforward (Liu et al. 2016), suggesting that
it may be natural to view the final schedule as random,
corresponding closely to random demand. An impor-
tant managerial insight is that the schedule itself may
be random and that it may be necessary to carefully
model, monitor, and manage the schedule. It is evident
that the master schedule is important, but it may not
be evident that examining the schedules resulting from
the master schedule as well as adherence to that sched-
ule can also be important. We also observe that it is
appropriate to regard the schedule as a stochastic pro-
cess, evolving over time. To the best of our knowledge,
this is the first study of an outpatient clinic to suggest
that the schedule itself should be regarded as random
and to characterize its stochastic structure.

2. Defining and Modeling the
Daily Schedule

We now examine the schedule and arrival data for
one clinic doctor over his 22 a.m. shifts. The arrivals
planned for each day are given in a daily schedule,
which has a specified number of arrivals in each of
several evenly spaced 10-minute time intervals. Our
schedule data are the 22 observed schedules for the
doctor during his a.m. shifts. Even thoughmuch can be
learned from consulting the appointment manager, we
try to see what can be learned directly from the data.
While conducting the data analysis, we confirmed our
observations with clinic doctors and administrators.

2.1. The Evolution of a Schedule
The actual schedule for a given day evolves over time,
typically starting many weeks before the specified
day.Wedonot consider the schedulingprocess; instead,

we consider the evolution of the resulting schedule.We
regard the evolution of the schedule as a stochastic pro-
cess, with additions and cancellations occurring ran-
domlyover time. For eachday,wedefine thefinal sched-
ule as its value at the end of the previous day.

In the left-hand panel in Figure 2, we illustrate the
evolution of the daily cumulative number of patients
scheduled over the previous year for the 22 days in the
data set for 2013. The panel shows the specific appoint-
ment days as well, which are spread out between July
and October.

The right-hand panel in Figure 2 presents a useful
alternative view, showing the percentage of the final
schedule reached k days before the appointment data
as a function of k. For all 22 days, 100% of the schedule
is filled at k � 0. We see much less variability in the
right-hand panel than in the left-hand panel. The per-
centage of the schedule reached 30 days before appears
at k � −30. Especially revealing is the average of the
22 sets of percentage data, which is shown by the sin-
gle thick line. From this average plot, we see jumps at
regular intervals, especially around 90 days (3 months)
before the appointment date. The right-hand plot in
Figure 2 shows that about 24% of all appointments are
made more than 93 days in advance, while about 30%
are made between 93 and 84 days in advance (about
3 months). About 30% are made in the last month,
while about 13% are made in the last week.

2.2. New and Repeat Visits
There is increasing interest in the delays from request
to appointment, including how to determine panel
sizes (the pools of potential patients) for doctors; see
Green et al. (2007), Liu et al. (2010), Liu and Ziya
(2014), and Zacharias and Armony (2017) and refer-
ences therein. Unfortunately, our data set does not
include a measure of the urgency or time sensitivity
of each appointment, so we cannot determine whether
patients are unable to get urgent appointments quickly
enough. Fortunately, the data set does specify whether
each scheduled arrival is a repeat visit or a new visit.
Since 78% of all appointments are repeat visits, we
conclude that the long intervals between the schedul-
ing date and the appointment date do not imply that
patients are failing to get urgent needs addressed
promptly.

Figure 3 separately displays the evolution of the
schedules for new and repeat visits, expanding upon
the view in Figure 2. The figure panels show that this
classification is important. Figure 3 specifically shows
that only about 65% of new patients wait for more
than a week for an appointment. The median number
of days between the appointment scheduling date and
the actual appointment date is 88 for repeat visits and
14 for new patients.
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Figure 2. The Evolution of the Daily Cumulative Number of Patients Scheduled
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2.3. Inferring the Master Schedule
Recall that the master schedule is the framework de-
signed for the schedule; it also called an appoint-
ment template. It usually specifies the total number
of appointment slots for each day, the length of each
appointment slot, and the number of patients to be
scheduled for each slot (Liu et al. 2016). From the per-
spective of the eventual arrival process over each day,
the evolution of the schedule should not matter much
if the final schedule reaches the master schedule (or a
schedule that is nearly deterministic and hence varies
little from day to day). However, for the clinic, there
is considerable variability in the realized schedules, so
the evolution may matter.

We first define the schedule as the daily total plus the
actual scheduled arrival times of all these patients. In
particular, we define the schedule as its value at the end

Figure 3. Evolution of the Daily Number of Patients Scheduled and the Percentage of Patients Scheduled k Days in Advance
for Each of the 22 Appointment Days for New Patients (Left Two Panels) and Repeat Visits (Right Two Panels)
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of the previous day, and we define arrivals on the same
day as unscheduled arrivals. Given that definition, we
next look for the underlyingmaster schedule. The start-
ing point for our data analysis is the 22 observed
daily schedules. These are displayed in Table 1. Table 1
shows the number of patients scheduled for different
10-minute time slots (displayed vertically) over the a.m.
shifts of 22 days (displayed horizontally). Each 10-min-
ute time slot is specified by its start time.

Most appointment schedules today are designed
and managed to fit into a master schedule, usually
using a computerized appointment management sys-
tem. However, it seems prudent to look at the actual
schedules and infer the realized framework from the
data. Not all variability occurs because of nonadher-
ence to the schedule; rather, the schedules show that
there is substantial variability in the schedule itself.
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Table 1. Number of Patients Scheduled in Each 10-Minute Time Slot (Displayed Vertically) During 22 Morning Shifts
(Displayed Horizontally)

Time slot 22 days in July–October 2013 Avg Var Var/Avg

7:50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00
8:00 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0.32 0.23 0.71
8:10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.05 1.00
8:20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00
8:30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00
8:40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00
8:50 3 4 5 4 4 4 4 4 4 1 3 2 1 4 2 4 4 2 4 5 4 3 3.41 1.30 0.38
9:00 3 4 2 3 3 2 3 3 3 3 3 2 2 2 2 3 4 3 2 3 4 2 2.77 0.47 0.17
9:10 3 3 3 2 2 2 4 2 2 3 2 3 2 3 3 3 2 2 3 2 3 3 2.59 0.35 0.13
9:20 2 2 4 2 3 2 3 2 2 3 3 3 2 3 2 3 3 3 3 2 3 2 2.59 0.35 0.13
9:30 3 2 3 4 3 3 4 3 3 3 3 3 1 3 2 2 2 2 3 3 3 3 2.77 0.47 0.17
9:40 3 3 3 2 2 2 2 3 3 2 2 3 2 3 2 2 2 2 3 2 2 2 2.36 0.24 0.10
9:50 3 3 3 3 2 3 3 3 3 3 3 2 2 3 3 3 3 3 2 2 3 3 2.77 0.18 0.07
10:00 3 2 3 3 2 3 2 3 2 3 3 3 3 3 3 3 4 4 3 3 3 3 2.91 0.28 0.10
10:10 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 3 3 3 3 3 3 2.91 0.09 0.03
10:20 2 3 3 3 3 3 3 2 3 3 2 3 3 3 3 2 3 2 3 4 3 3 2.82 0.25 0.09
10:30 3 2 3 3 3 2 4 2 3 2 3 3 3 3 3 2 3 3 2 4 3 3 2.82 0.35 0.12
10:40 3 1 3 3 3 1 3 2 3 2 3 3 2 3 2 1 3 2 3 3 3 2 2.45 0.55 0.22
10:50 2 3 3 3 1 2 3 2 3 3 3 2 3 3 3 3 3 3 2 3 3 3 2.68 0.32 0.12
11:00 3 2 3 2 3 2 3 2 2 4 4 4 2 3 3 3 3 3 3 4 3 4 2.95 0.52 0.18
11:10 3 3 3 1 3 3 3 3 2 3 3 2 3 2 1 3 2 3 3 3 3 3 2.64 0.43 0.16
11:20 2 3 3 3 3 3 3 3 3 3 3 3 3 2 2 3 3 3 3 3 3 4 2.91 0.18 0.06
11:30 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 3 2 2.77 0.18 0.07
11:40 3 2 3 3 2 3 3 3 3 1 2 3 3 2 3 3 3 3 3 3 2 3 2.68 0.32 0.12
11:50 3 3 3 3 3 2 2 3 3 2 3 2 4 3 3 3 2 2 3 3 1 3 2.68 0.42 0.16
12:00 2 3 3 2 3 3 4 3 3 2 3 3 3 3 3 3 3 3 2 2 3 4 2.86 0.31 0.11
12:10 3 3 3 2 3 3 2 3 2 3 3 2 3 3 4 3 1 2 3 2 3 3 2.68 0.42 0.16
12:20 2 4 3 2 3 3 3 3 4 3 3 3 3 2 2 3 1 3 1 4 3 3 2.77 0.66 0.24
12:30 2 1 0 0 0 3 3 3 3 2 2 2 2 3 3 3 2 4 3 1 2 3 2.14 1.27 0.59
12:40 0 0 0 0 0 2 2 4 3 0 3 2 1 2 3 3 4 2 3 0 0 3 1.68 2.13 1.27
12:50 0 0 0 0 0 0 0 1 4 0 0 0 0 3 4 0 2 0 4 0 0 4 1.00 2.67 2.67
13:00 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.09 0.09 0.95
Daily total 63 62 67 59 61 62 73 70 72 59 69 64 59 70 68 67 68 64 69 66 67 75 66.09 21.32 0.32
[8:50, 12:20] total 60 61 67 59 60 57 67 60 61 57 63 60 56 62 57 61 60 58 59 65 64 64 60.82 9.77 0.16
All slot avg 2.0 2.0 2.2 1.9 2.0 2.0 2.4 2.3 2.3 1.9 2.2 2.1 1.9 2.3 2.2 2.2 2.2 2.1 2.2 2.1 2.2 2.4 2.07 1.73 0.84
All slot var 1.5 1.9 2.2 1.9 1.8 1.5 1.8 1.3 1.5 1.7 1.5 1.5 1.6 1.5 1.3 1.7 1.8 1.6 1.6 2.2 1.8 1.6 (across all days)
All slot var/avg 0.7 1.0 1.0 1.0 0.9 0.8 0.8 0.6 0.6 0.9 0.7 0.7 0.8 0.6 0.6 0.8 0.8 0.8 0.7 1.1 0.8 0.7
[8:50, 12:20] avg 2.7 2.8 3.0 2.7 2.7 2.6 3.0 2.7 2.8 2.6 2.9 2.7 2.5 2.8 2.6 2.8 2.7 2.6 2.7 3.0 2.9 2.9 2.76 0.42 0.15
[8:50, 12:20] var 0.2 0.6 0.3 0.5 0.4 0.4 0.4 0.3 0.4 0.5 0.2 0.3 0.5 0.3 0.4 0.4 0.7 0.3 0.4 0.7 0.4 0.4 (across all days)
[8:50, 12:20] var/avg 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.3 0.1 0.2 0.2 0.1 0.1

We next define what we mean by a master schedule.
A general master schedule has batches of size β j cus-
tomers arriving at intervals τ j after an initial time 0 for
1 ≤ j ≤ ν. Thus, the associated arrival times are

ψ j ≡
j−1∑
i�1
τi for 1 ≤ j ≤ ν and ψ1 ≡ 0. (1)

The framework has a total targeted number NF and
time TF defined by

NF �

ν∑
j�1
β j and TF �

ν−1∑
j�1
τ j � ψν−1. (2)

A principal case is the stationary framework, with
β j � β and τ j � τ for all j, whichmakes NF � βν and TF �

(ν − 1)τ, leaving the target parameter triple (β, τ, ν),
but there often are variations in practice. In the more
general model, it is important to consider alternative
nonstationary schedules that might be used or contem-
plated to improve various measures of performance.

From Table 1, we infer that the master schedule is
valid with τ � 10 minutes. However, the scheduled
arrivals in each time slot are not constant over different
days or over different times on each day. Some shifts
start as early as 8:00, and some end as late as 13:00. We
observe that between 8:50 and 12:20, the average and
average/variance of scheduled arrivals in each time
slot across different days are comparable. Hence, for
the a.m. shifts of the doctor in the endocrinology clinic,
the stationary framework is roughly valid as an ideal-
ized model, with β � 3, τ � 10 minutes and ν � 22 and
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starting at 8:50 and ending at 12:20 (including the inter-
vals [8:50, 9:00) and [12:20, 12:30), closed on the left and
open on the right), which we refer to as the interval
[8:50, 12:20]. The daily total for the stationary frame-
work is 22 × 3 � 66, which matches the average daily
total for the 22 days, even though the schedule is oth-
erwise more variable.
On closer examination, we can see consistent struc-

ture in the schedule variability. First, we see that some
days have higher daily totals, evidently because an
effort is being made to respond to high demand. Sec-
ond, we see random batch sizes in the slots over the
entire shift. We discuss each of these features in turn.

2.4. Low- and High-Demand Service Systems
In general, it seems useful to classify service systems
with arrivals by appointment into two categories. First,
there are the low-demand service systems, for which it
is challenging to fill a target schedule. For such service
systems, the randomness in the schedule is a result
of the random level of demand. We then might focus
on the extent to which demand is adequate to fill the
master schedule.

Second, there are the high-demand service systems,
for which there is almost always ample demand, and
often excess demand. In this case, the system may or
may not actually respond to the excess demand, i.e.,
it may or may not schedule more than the normal
workload to meet that excess demand. Of course, there
can be more complicated scenarios in which a service
system oscillates between the low-demand and high-
demand modes.

If we identify the master schedule for the a.m.
shifts as the 22 10-minute time slots in the interval
[8:50, 12:20] in Table 1, then we observe that the daily
totals within this interval are remarkably stable, hav-
ing mean 60.82 and variance 9.77. In contrast, the full
daily totals for the entire a.m. shifts are much more
highly variable, having a variance of 21.19. From this
observation, we infer that the doctor operates as a high-
demand service system and that indeed he responds
to excess demand on some but not all days. This con-
clusion is further confirmed by the observation that
the extra patients tend to be scheduled outside (after)
the main interval [8:50, 12:20]. Table 2 shows the dis-
tribution of the number of scheduled patients in these
outside intervals No .

Table 2. Estimated Distribution of the Batch Sizes (Bs) Within the Main Interval [8:50, 12:20] and the Estimated Distribution
of the Total Number of Scheduled Arrivals After the Main Interval (No)

P̂(Bs � k) P̂(No � k)

Number k 1 2 3 4 5 0 1 2 3 4 5 6 7 8 9 10

Estimated distribution 0.03 0.26 0.63 0.08 0.00 0.14 0.09 0.14 0.05 0.05 0.14 0.09 0.00 0.14 0.00 0.18

As further confirmation of the idea that overload
appears outside the main time interval, we also see
higher numbers in the first shift, at 8:50 (the inter-
val [8:50, 9:00)); this suggests that at least some of the
patients scheduled in the first interval, at 8:50, are
scheduled in response to pressure to provide service to
more patients than the usual number. We note that the
first interval might be regarded as an overload period
as well, though we choose not to do so. Moreover, the
data show that the appointments in the outside inter-
val (at the beginning and the end) were consistently
made far closer to the actual appointment date than
the other appointments were, with the median number
of days between the appointment scheduling date and
the actual appointment date 85 for the main interval
and 14 for the outside interval.

In the online supplement, we elaborate on the sched-
uled appointments outside the main interval; we dis-
cuss how tomeasure the amount of excess demand and
provide comparisons with three other shifts and dis-
cuss the impact of observed differences on the stochas-
tic arrival process model we develop in this study.

2.5. Random Batch Sizes
Table 1 indicates that the number of patients scheduled
for each 10-minute time slot is variable. Table 2 shows
the distribution of the schedule within each time slot
within the main interval. From Table 2, we conclude
that it is reasonable to assume that the batch sizes in
each of the time slots of the main time interval can
be regarded as realizations of a random variable Bs ,
assuming values in the set {1, 2, 3, 4} for any j. (We
omit the value 5 because the frequency is so low, and
we could also possibly omit the value 1 for the same
reason.) In particular, we estimate the distribution as

P(Bs � k)� 0.03, 0.26, 0.63, 0.08, 1 ≤ k ≤ 4, (3)

so that

E[Bs]� 2.76, E[B2
s ]� 8.02,

Var(Bs)� 0.402, and SD(Bs)� 0.634,
(4)

for all j. The variance is considerably less than the
mean, so we can conclude that the distribution of Bs
is much less variable than Poisson. The squared coef-
ficient of variation (scv, or the variance divided by the
square of the mean) is low as well, being c2

B � 0.053.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

16
0.

39
.2

1.
16

1]
 o

n 
05

 F
eb

ru
ar

y 
20

18
, a

t 1
3:

07
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Kim, Whitt, and Cha: A Data-Driven Model of an Appointment-Generated Arrival Process
188 INFORMS Journal on Computing, 2018, vol. 30, no. 1, pp. 181–199, ©2018 INFORMS

2.6. Independence or Dependence Among
Batch Sizes

In Section 2.5, we focused on the distribution of the
batch size of the scheduled arrivals in any time slot
within the main time interval on any day. We now
consider the joint distribution of the batch sizes over
successive time slots on the same day.
Let Bs , j be the scheduled batch size in slot j, 1 ≤

j ≤ 22, on a given day. For simplicity from a stochas-
tic modeling perspective, it is natural to assume that
the batch variables Bs , j in successive slots j are inde-
pendent, which corresponds to appointments being
made independently for specific slots. However, it may
be more realistic to assume that the appointments are
primarily made with a specific day in mind and that
the actual appointments are distributed approximately
evenly over the day, with the person or system creating
the schedule only partly in response to patient requests
regarding specific time slots. Alternatively, appoint-
ments may overflow into nearby slots, which should
also create positive correlation. Therefore, in any con-
text, it is interesting to explore the dependence among
the scheduled batch sizes Bs , j for each day.

To illustrate, let NS be the daily total of the schedule
(focusing on the main interval [8:50, 12:20] with ν �

22 slots); consider the case in which the distribution
of Bs is independent of j. If the batch sizes are mutually
independent, then

Var(NS)� νVar(Bs). (5)

In contrast, if we assume that the daily total is random
and if we distribute it evenly among the slots, then we
might have

Bs ≈
NS

ν
so that Var(NS)� ν2 Var(Bs). (6)

More generally, the dependence among the batch
sizesmight be usefully summarized by the correlations

ρ j1 , j2 ≡ corr(Bs , j1 ,Bs , j2)�
cov(Bs , j1 ,Bs , j2)√

Var(Bs , j1)Var(Bs , j2)
. (7)

We propose a model that enables us to incorporate a
range of possibilities in a parsimonious manner. We
assume that

ρ j1 , j2 � ρS , −1 ≤ ρS ≤ 1, for all j1 , j2. (8)

We can then estimate the single pairwise correlation
parameter ρS empirically in any given appointment
setting.
Under assumption (8), we have

σ2
S ≡Var(NS)�

ν∑
j�1

ν∑
k�1

Cov(Bs , j ,Bs , k)

� ν Var(Bs)[1+ (ν − 1)ρS]. (9)

We thus estimate the correlation ρS in (8) by

ρS ≡
Var(NS) − νVar(Bs)
νVar(Bs)(ν − 1) , (10)

where we use our estimates of Var(NS) and Var(Bs).
From Table 1, our estimate of Var(NS) is 9.77; from (4),
our estimate of νVar(Bs) is 22 × 0.402 � 8.80. We
thus estimate that ρS is 0.97/185 � 0.0052, which is
sufficiently small that we consider the i.i.d. model
reasonable.

2.7. Outside the Main Time Interval
It remains to specify arrivals scheduled outside the
main time interval. Since the average total outside is
only about 10% of the full daily total and since we do
not have a great amount of data overall, we will not
try to develop a high-fidelity model. Based on the lim-
ited data provided by Tables 1 and 2, we allocate the
total number of scheduled arrivals outside (after) the
main interval according to the distributions specified
in Table 2. If the total number to be scheduled out-
side the main interval is seven or fewer, then we divide
the number into two parts, putting the larger or equal
number in the first slot and the smaller or equal num-
ber in the second slot. If the total number is eight or
more, we divide the total into three parts, as evenly as
possible, and put the numbers in decreasing order in
the first three slots after the main interval.

2.8. Summary of the Schedule Model
In summary, the clinic data clearly indicate a well-
defined structured framework, provided that we focus
on amain time interval [8:50, 12:20] containing 22 slots.
The scheduled numbers in these slots can be regarded
as i.i.d. random variables distributed as the random
variableBs , as in (3).Ouranalysis inSection2.6 supports
regarding these slot numbers asmutually independent.

Our doctor evidently experiences high demand. As
stipulated in Section 2.7, we allocate the totals ran-
domly according to the distributions in Table 2, and we
distribute them in a balanced, decreasing order over
the outside intervals. Since the numbers outside are
smaller, we devote less effort to developing a high-
fidelity model for that part.

Only about 10% of the mean of the daily totals (66) is
due to the arrivals scheduled outside the main interval
(the mean inside is 60.8), while the variance 21.2 in the
daily totals is primarily a result of the random occur-
rence of arrivals scheduled outside the main interval
because the variance inside is 9.77. (See Equation (16)
for a more precise statement.) Thus, we tentatively con-
clude that the greatest contributor to the overall vari-
ability of the schedules for the doctor in our study is
the inconsistent response to extra demand. By examin-
ing both the scheduled and the realized arrivals for the

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

16
0.

39
.2

1.
16

1]
 o

n 
05

 F
eb

ru
ar

y 
20

18
, a

t 1
3:

07
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Kim, Whitt, and Cha: A Data-Driven Model of an Appointment-Generated Arrival Process
INFORMS Journal on Computing, 2018, vol. 30, no. 1, pp. 181–199, ©2018 INFORMS 189

other 15 doctors in the clinic, we find that this obser-
vation applies to all the other doctors as well: see the
online supplement and Figures 1–3 and Figures 4–11
in our longer, more detailed study (Kim et al. 2015a).
To draw a firm conclusion, we would need to consider
data on the original demand, i.e., requests for appoint-
ments, including ones that were not satisfied or that
were moved to another day.

3. Adherence to the Schedule: Patient
No-Shows and Unscheduled Arrivals

We now come to the question of adherence to the
schedule. The level of adherence converts the schedule
into the actual arrival process. We identify three famil-
iar forms of additional randomness in themodel: (i) no-
shows, (ii) extra unscheduled arrivals, and (iii) late-
ness or earliness. We first focus on the no-shows and
the unscheduled arrivals, which together determine
how the scheduled daily number of arrivals is trans-
lated into the actual daily total number of arrivals.
In Section 4, we focus on lateness or earliness, which
each have a significant impact on the pattern of actual
arrivals over the day.

3.1. No-Shows
The no-shows are the scheduled arrivals who do not
actually arrive. Instead of the number of actual arrivals
in time slot j on a given day, which we denote by Ba , j ,
we begin by focusing on the number from among
the Bs , j arrivals who were scheduled to arrive in slot j
on that day who did arrive at some time on that appoint-
ment day, which we denote by Ba | s , j , which necessarily
satisfies the inequalities

0 ≤ Ba | s , j ≤ Bs , j , for all j. (11)

The no-shows in slot j are thus defined as

Bn , j ≡ Bs , j − Ba | s , j . (12)

These are shown in Table 3.
Table 3 shows that no-shows are rarer than in many

other appointment systems: the number of no-shows
ranges from 2 to 10 per day, with an average of 5.45 per
day. The overall proportion of no-shows is 5.45/66.09,
or 8.2%.
In general, we might try to model the no-shows care-

fully, as we did the schedule batch sizes Bs , j , but here,
we simply assume that each scheduled patient fails to
arrive in each slot on each day with probability δ �

0.082, independently of all other patients. Overall, in
the model, the total number of no-shows would have
a binomial distribution with parameters equal to the
total number, say n, of scheduled patients over all days
and with probability p � δ � 0.082, which would make
the distribution approximately Poisson, with variance

slightly less than the mean. Table 3 shows that the
observed sample variance of the average number of no-
shows is 6.35, which is only slightly greater than the
overall average of 5.45. Hence, we conclude that the
model with i.i.d. Bernoulli no-shows is well supported
by the data.

3.2. Unscheduled Arrivals
Some medical services have significant proportions of
both unscheduled and scheduled arrivals. However,
there are relatively few unscheduled arrivals at the
clinic we study. As indicated before, we define them
as arrivals that are scheduled on the same day (after
the end of the previous day). On average, there are
2.18 unscheduled patients per day, among whom 1.95
arrived. In the online supplement, Table 11 shows
all additional unscheduled arrivals, and Table 12
shows the additional unscheduled arrivals that actu-
ally arrived. The total number of unscheduled arrivals
(that arrived) on all 22 days is 43. Table 12 shows
that the total daily number of unscheduled arrivals ex-
ceeds 3 on only two days, with values of 4 and 7. The
one exceptional day is evidently responsible for the
variance for all days, 2.43, being larger than the mean.
The unscheduled arrivals are more likely to be outside
the main time interval, which is consistent with our
interpretation of outside the main time interval being
a time for overload.

Paralleling our previous modeling, we could repre-
sent the daily total number of unscheduled arrivals
within the main time interval as Poisson with mean
1.55 and those outside the main interval as Poisson
withmean 0.40.We could then distribute those arrivals
randomly (uniformly) within the respective time peri-
ods. With larger numbers, we might try more care-
ful modeling. However, in general, some sort of Pois-
son process is natural for unscheduled arrivals because
they are likely to be a result of individual people mak-
ing independent decisions.

3.3. Daily Totals
We now examine the impact of no-shows and unsched-
uled arrivals on the actual daily totals of arrivals. Let
NA, NS, NN , and NU be the random daily total num-
bers of actual arrivals, scheduled arrivals, no-shows,
and unscheduled arrivals, respectively. In general, we
have the basic flow conservation formula

NA � NS −NN + NU . (13)

Combining the summary data from Tables 1, 3, and 12
(Table 12 is in the online supplement), we see that the
means are

E[NA]� E[NS] −E[NN]+E[NU]
� 66.1− 5.5+ 2.0� 62.6. (14)
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Table 3. Number of No-Shows (Bn , j ≡ Bs , j − Ba | s , j) for Each 10-Minute Time Slot j (Displayed Vertically) During 22 Morning
Shifts (Displayed Horizontally)

Var/
Time slot 22 days in July–October 2013 Avg Var Avg

7:50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00
8:00 0 0 0 0 0 0 1 1 1 0 1 0 0 0 1 0 0 0 0 0 1 1 0.32 0.23 0.71
8:10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.05 0.05 1.00
8:20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00
8:30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00
8:40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00
8:50 1 0 0 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.23 0.28 1.23
9:00 0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0.18 0.16 0.86
9:10 0 0 0 1 0 0 2 0 0 0 1 0 1 0 0 0 0 1 0 0 0 0 0.27 0.30 1.11
9:20 0 0 0 0 0 0 0 0 0 0 0 1 0 0 2 0 0 1 0 0 0 0 0.18 0.25 1.38
9:30 0 0 0 2 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.18 0.25 1.38
9:40 0 0 2 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0.18 0.25 1.38
9:50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.00
10:00 0 0 0 0 0 0 0 0 0 1 0 2 1 0 0 0 1 0 1 0 0 0 0.27 0.30 1.11
10:10 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 0 1 0 0 0 2 0 0.32 0.32 1.01
10:20 0 0 1 1 0 0 0 0 1 0 0 1 0 0 0 0 0 0 1 0 0 0 0.23 0.18 0.81
10:30 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0.18 0.16 0.86
10:40 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 1 0.23 0.18 0.81
10:50 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2 0.27 0.30 1.11
11:00 0 0 0 1 1 0 0 0 0 1 1 0 1 0 0 1 0 0 0 1 0 0 0.32 0.23 0.71
11:10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 0.18 0.16 0.86
11:20 0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 0.23 0.18 0.81
11:30 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0.23 0.18 0.81
11:40 0 0 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0.23 0.18 0.81
11:50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 0 0 0.14 0.12 0.90
12:00 0 0 1 0 0 0 1 0 1 1 0 1 2 0 0 1 2 0 0 0 1 1 0.55 0.45 0.83
12:10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0.05 0.05 1.00
12:20 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0.09 0.09 0.95
12:30 0 0 0 0 0 0 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0.14 0.12 0.90
12:40 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0.09 0.09 0.95
12:50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0.05 0.05 1.00
13:00 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0.09 0.09 0.95
Daily total 3 2 6 8 2 2 10 7 5 4 6 10 6 2 5 5 6 5 4 7 5 10 5.45 6.35 1.17
[8:50, 12:20] total 2 2 6 8 1 2 8 4 4 4 4 10 6 1 4 5 6 5 4 7 4 7 4.73 5.64 1.19
All slot avg 2.0 2.0 2.2 1.9 2.0 2.0 2.4 2.3 2.3 1.9 2.2 2.1 1.9 2.3 2.2 2.2 2.2 2.1 2.2 2.1 2.2 2.4 0.17 0.17 1.00
All slot var 1.5 1.9 2.2 1.9 1.8 1.5 1.8 1.3 1.5 1.7 1.5 1.5 1.6 1.5 1.3 1.7 1.8 1.6 1.6 2.2 1.8 1.6 (across all days)
All slot var/avg 0.7 1.0 1.0 1.0 0.9 0.8 0.8 0.6 0.6 0.9 0.7 0.7 0.8 0.6 0.6 0.8 0.8 0.8 0.7 1.1 0.8 0.7
[8:50, 12:20] avg 2.7 2.8 3.0 2.7 2.7 2.6 3.0 2.7 2.8 2.6 2.9 2.7 2.5 2.8 2.6 2.8 2.7 2.6 2.7 3.0 2.9 2.9 0.21 0.21 0.98
[8:50, 12:20] var 0.2 0.6 0.3 0.5 0.4 0.4 0.4 0.3 0.4 0.5 0.2 0.3 0.5 0.3 0.4 0.4 0.7 0.3 0.4 0.7 0.4 0.4 (across all days)
[8:50, 12:20] var/avg 0.1 0.2 0.1 0.2 0.1 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.3 0.1 0.2 0.2 0.1 0.1

We see that the final mean daily number of arrivals
E[NA]�62.6 is only about 5% less than themean sched-
uled daily number E[NS] � 66.1. Hence, from the per-
spective of the daily totals, there is strong adherence to
the schedule.
Moreover, we see that the variability of the daily

number of arrivals NA is primarily caused by the vari-
ability of the schedule. The sample variances of the
four daily numbers were

Var(NA)� 17.4, Var(NS)� 21.3,
Var(NN)� 6.4, and Var(NU)� 2.4.

(15)

Note that the estimated variances are ordered by
Var(NA) < Var(NS). The dispersions (sample variance

divided by the sample mean) are similarly ordered as
follows:

Var(NA)/E[NA]� 17.4/62.6� 0.278
< 0.322� 21.3/66.1�Var(NS)/E[NS]. (16)

4. The Arrival Pattern Over the Day:
Patient Nonpunctuality

We now shift our attention to the pattern of arrivals
over each day, given the daily totals. Here, “pattern”
primarily means whether each patient arrives before or
after the appointment time (earliness or lateness), but
it might also mean systematic time dependence of the
schedule, the no-shows, or the unscheduled arrivals
over the day.
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Table 4. Average Numbers of Scheduled Arrivals for Each 30-Minute Interval Within the Main 3.5-Hour Time Interval as
Well as the Proportions of No-Shows and Lateness and the Average Earliness (X−), Lateness (X+), and Overall Deviation (X),
Plus 95% Confidence Intervals

Interval Avg no. scheduled % no-show % late % (late > 15 min) Avg(X+) Avg(X−) Avg(X)

[8:50, 9:20) 8.8± 0.7 7.9± 4.8 21.2± 6.9 12.3± 5.5 35.8± 18.7 −25.8± 2.7 −11.4± 6.9
[9:20, 9:50) 7.7± 0.5 6.9± 4.6 16.7± 6.1 4.8± 3.4 24.1± 25.4 −35.7± 5.6 −25.7± 5.2
[9:50, 10:20) 8.6± 0.4 6.8± 4.4 15.0± 6.7 6.4± 3.4 20.3± 10.9 −38.8± 5.2 −30.2± 6.5
[10:20, 10:50) 8.1± 0.6 7.9± 3.2 17.6± 5.0 3.3± 2.9 9.7± 4.9 −45.0± 7.3 −34.5± 6.0
[10:50, 11:20) 8.3± 0.5 9.0± 3.9 13.6± 4.4 5.4± 3.9 18.4± 11.2 −48.6± 9.1 −39.2± 8.7
[11:20, 11:50) 8.4± 0.3 7.9± 3.7 10.4± 4.7 3.9± 3.0 16.0± 6.4 −61.2± 9.1 −53.3± 9.4
[11:50, 12:20) 8.2± 0.5 9.3± 4.1 9.5± 5.4 3.8± 3.5 12.7± 6.6 −58.2± 9.5 −51.7± 9.8
[8:50, 12:20) 58.0±1.3 8.0±1.7 15.0±1.5 5.8±1.6 21.3±5.6 −44.9±3.0 −34.9±2.9

4.1. The Big Picture of the Daily Pattern
Table 4 provides the details of the big picture for the
time interval [8:50, 12:20]. The first four columns of
Table 4 show the average numbers scheduled, the per-
centage of no-shows, the percentage late, and the per-
centage late by more than 15 minutes by half-hour
intervals over the a.m. shift, while the first four columns
of Table 5 separately show the same summary statistics
for new and repeat patients; these statistics are signifi-
cantly different. Table 4 shows that the scheduled num-
bers and the no-shows are remarkably stable over time.
As we have observed in previous sections, the main
irregularity in the schedule occurs as a result of occa-
sional overload scheduled outside these time intervals.
However, we see a different pattern in the lateness or

earliness, as shown in the last four columns of Table 4.
Specifically, Table 4 shows the percentage of patients
arriving late, the average of the lateness X+ among
those patients arriving late, the average of the earli-
ness X− among those patients arriving early, and the
overall average lateness X (these values are negative
when the patient is early). Table 4 shows that the like-
lihood of lateness and the expected value of lateness
tend to decrease over the day. In particular, we see that
on average, 15% of the patients are late (arrive after the
appointment time) each day, with an average lateness
of E[X+] � 21 minutes, but the percentage decreases
over the day, from 21.2% in the first half hour to 9.5%
in the last half hour. Meanwhile the average amount
of lateness among these late patients, E[X+], decreases

Table 5. Average Numbers for New and Repeat Patients for the Main Interval and Outside of the Interval as Well as the
Proportions of No-Shows and Lateness and the Average Earliness (X−), Lateness (X+), and Overall Deviation (X), Plus 95%
Confidence Intervals

Interval Avg no. scheduled % no-show % late % (late > 15 min) Avg(X+) Avg(X−) Avg(X)

New 14.2± 1.3 5.5± 2.4 22.2± 4.4 7.7± 3.4 23.2± 9.7 −34.2± 4.4 −21.2± 3.9
New—[8:50, 12:30) 13.7± 1.3 5.7± 2.5 23.1± 4.6 8.0± 3.5 23.2± 9.7 −33.9± 4.7 −20.5± 4.1
New—outside 0.5± 0.3 0 0 0 −42.0± 27.9 −42.0± 27.9
Repeat 51.9± 2.1 8.8± 1.8 11.8± 1.7 4.7± 1.8 18.7± 5.8 −49.3± 3.3 −41.2± 3.6
Repeat—[8:50, 12:30) 47.1± 1.7 8.3± 1.9 12.1± 1.7 4.7± 1.8 18.8± 5.8 −48.7± 2.9 −40.4± 3.1
Repeat—outside 4.8± 1.5 16.9± 11.6 7.0± 6.8 4.0± 5.7 14.6± 12.9 −62.6± 24.1 −59.9± 25.3

from 35.8 to 12.7 minutes. In general, Table 4 shows
that patients tend to arrive early, rather than late. This
again reflects strong adherence to the schedule.

4.2. Toward a Model of the Deviations
We now look closer into the deviations of the actual
arrival times from the scheduled arrival times. Fig-
ure 4 shows the empirical cumulative distribution func-
tions (ecdfs) for the lateness for each of the half-hour
time slots in Table 4. Figure 4 shows that the lateness
consistently decreases over the day in the sense that
each successive ecdf is stochastically less than the one
before; see Ross (1996, Section 9.1). (One ecdf is stochas-
tically less than or equal to another if the entire ecdf lies
above the other; e.g., the stochastically largest ecdf (with
the most lateness) falls below all others and occurs in
the first half hour.)

We now create a model of patient lateness (or earli-
ness). The model has each scheduled arrival arrive at a
random deviation from its scheduled arrival time. Let
the arrivals scheduled to arrive at each time be labeled
in some determined order, independent of the actual
arrival time. We let the kth arrival among the sched-
uled arrivals in time slot j (at time ψ j in (1)) actually
occur at time

A j, k � ψ j +X j, k �

j−1∑
i�1
τi +X j, k , (17)

where X j, k are mutually independent random vari-
ables, independent of the schedule (assuming arrivals
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Figure 4. Lateness Empirical Cumulative Distribution
Functions in Each of the 30-Minute Intervals
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are acting independently), and where X j, k is dis-
tributed as the random variable X j with cumulative dis-
tribution function (cdf)

F j(x) ≡ P(X j ≤ x), −∞ < x < +∞. (18)

We allow X j to assume both positive and negative
values, representing arriving late and arriving early,
respectively.
The ecdfs in Figure 4 can be regarded as estimates

of the cdf F j , and we use the same cdf F j for all three
10-minute time slots j in the specified half hour. For a
simplemodel, wemight want a single cdf F, but Table 4
and Figure 4 present strong evidence that F j should be
allowed to depend on j, at least to some extent.

Finally, we note that it may be useful to incorporate
constraints on the arrival times at the beginning and
the end of the time period. We might replace A j, k with
the constrained version

Ac
j, k ≡max {0,min {TF ,A j, k}}. (19)

To generate concrete stochastic models, we suggest
fitting P(X j > 0) to the observed proportion of lateness
in the half hour containing j and then fitting distri-
butions to the observed values of lateness X+ or earli-
ness X− separately. The lateness probability estimates
are given directly in Table 4. If, instead, we use esti-
mates of the cdf F of earliness or lateness, we would
use the ecdfs, denoted by F̂(x), to generate the model
cdfs of X+ and X−, letting

FX+(x) ≡ P(X ≤ x |X > 0) ≡
F̂ j(x) − F̂ j(0)

1− F̂ j(0)
and

FX−(x) ≡ P(X ≤ −x |X ≤ 0) ≡
F̂ j(−x)
F̂ j(0)

, x ≥ 0.
(20)

Figure 4 suggests it should be possible to use elemen-
tary parametric models. We show the results of fitting

exponential distributions to X+ and X− over different
hours in Figure 5. Figure 5 shows that the estimated
scv c2 is less than 1 for X− and greater than 1 for X+.
Given the limited data, the exponential fit for X−might
be judged adequate, but we might also want to allow
for greater variability in the lateness. We provide for
that by considering a two-moment hyperexponential
(mixture of two exponentials, with c2 > 1 and balanced
means, as in Whitt 1982) in Figure 6.

Given that we have specified the cdf’s F j , we have
completed construction of a full stochastic model of the
arrival process that can be used to simulate arrivals to
the clinic.

4.3. Comparing Arrivals to the Schedule
We now directly compare the realized arrivals to the
schedule. Table 13 in the online supplement shows the
difference between the numbers scheduled for the time
slot and the numbers that arrived in that slot for each
slot during the 22 days. The difference is often large,
which we have seen must be primarily a result of devi-
ations from the scheduled arrival times, especially ear-
liness. Figures 7 and 8 provide summary views.

Let S(t) and A(t) count the number of scheduled
and actual arrivals up to time t. Figure 7 shows the
histograms of the 22 observed values of the counting
processes S(t) and A(t) for a few values of t: 10 a.m.,
11 a.m., 12 p.m., and 1 p.m. In particular, Figure 7 exposes
systematic effects and shows the variability. Based on
the figure, the cumulative number of arrivals sched-
uled is in general smaller than the cumulative number
of actual arrivals for 10 a.m. and 11 a.m., but they are
about the same at 12 p.m. and become smaller at 1 p.m.
We have seen that this is caused by the earliness of
patient arrivals and patient no-shows.

Figure 8 summarizes the data by plotting the aver-
age numbers of scheduled and actual arrivals for each
of the 10-minute time slots within the 22 a.m. shifts.
Figure 8 also shows linear rate functions fit by least
squares to the 22 averages of the scheduled and actual
arrivals for each of the 22 10-minute time slots within
the main time interval (the solid lines). As should be
expected, we see that the estimated rate function for the
schedule within the main time interval is constant but
that the estimated rate function of the actual arrivals
is decreasing because of the tendency for patients to
arrive early.

Finally, Figure 8 shows an additional continuous
piecewise-linear estimated arrival rate function (the
dotted lines) for the arrivals over the three intervals of
the a.m. shift. This dotted line has an extra linear piece
before themain interval to account for the earliness.We
will use this construction as the arrival rate resulting
from the schedule in the main interval in the simple
model constructed in Section 5.3.
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Figure 5. (Color online) Earliness (X−) and Lateness (X+) Histograms and Associated Exponential Fits
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Figure 6. (Color online) Lateness (X+) Histograms and Associated Hyperexponential (H2) Fits
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Figure 7. Histograms of the Counting Processes S(t) and A(t) at Four Different Times
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Figure 8. (Color online) Plots of the Average Numbers of Scheduled (Left) and Actual (Right) Arrivals in Each of the 22
10-Minute Intervals in the Interval [8:50, 12:20] and Their Fitted Lines
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5. Stochastic Models for the
Arrival Process

In this section, we give concise mathematical represen-
tations of the stochastic counting processes S(t) and
A(t), counting the number of scheduled and actual
arrivals up to time t in the a.m. shift, defined in terms
of the model elements developed in previous sections.
The number of scheduled arrivals up to time t can

first be expressed as the sum

S(t)�
k∑

j�1
Bs , j , ψk ≤ t < ψk+1 , k ≥ 0, (21)

for all t, for ψ in (1) and the batch sizes Bs , j . Accord-
ing to the model in Section 2, Bs , j should be i.i.d.
random variables with distribution in (3) inside the
main time interval and distributed outside according
to Section 2.7.
Let AS(t) count the number of scheduled arrivals

that actually arrive up to time t. To define AS(t), let the
scheduled arrivals in each arrival epoch j (at time ψ j)
be ordered in some definite manner not having to do
with their actual arrival time. Let I j, k � 1 if scheduled
arrival k at time ψ j actually arrives on that day and

let X j, k be the deviation of the actual arrival time from
the scheduled time. If X j, k > 0, the arrival is late; oth-
erwise, the arrival is early. (For simplicity in labeling,
we have variables X j, k even when I j, k � 0, but they will
play no role.) We combine these two random features
with the indicator random variable I j, k(t), defined by

I j, k(t) ≡ 1{I j, k�1,X j, k≤t} ,

−∞ < t <∞, 1 ≤ k ≤ Bs , j , j ≥ 0. (22)

Given these definitions, we can write

AS(t)�
∞∑
j�1

Bs , j∑
k�1

1{I j, k�1,X j, k≤t−ψ j }

�

∞∑
j�1

Bs , j∑
k�1

I j, k(t −ψ j), (23)

for −∞ < t < +∞, where ψ j is defined in (1). We may
have AS(t) > 0 for t < 0 because of early arrivals.

Let AU(t) (A(t)) count the number of unscheduled
(all) arrivals by time t. Then we have

A(t)� AS(t)+AU(t), for all t . (24)

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

16
0.

39
.2

1.
16

1]
 o

n 
05

 F
eb

ru
ar

y 
20

18
, a

t 1
3:

07
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Kim, Whitt, and Cha: A Data-Driven Model of an Appointment-Generated Arrival Process
INFORMS Journal on Computing, 2018, vol. 30, no. 1, pp. 181–199, ©2018 INFORMS 195

From Section 3.2, for the clinic, AU would be inde-
pendent of AS, having two independent Poisson-based
components, one for inside the main time interval and
another for outside.

5.1. Conditional Means and Variances
Now suppose that the schedule is known; i.e., we know
Bs , j for all j, as would be the case at the end of the
previous day in the clinic. Let the information about
the schedule (Bs , j for all j) be denoted by S .
Since the ordering on k for each j is totally arbi-

trary, it is natural to assume that the joint distribu-
tion of (I j, k ,X j, k) is independent of k for each j, and
we make that assumption. The conditional cumulative
arrival rate function for the scheduled arrivals given
the schedule is then simply the conditional expected
value

ΛS(t |S ) ≡ E[AS(t) |S ]�
∞∑
j�1

Bs , j p j(t), (25)

−∞ < t < +∞, where

p j(t) ≡ E[I j, k(t −ψ j)]� P(I j, k � 1,X j, k ≤ t −ψ j)
� (1− δ)F j(t −ψ j), (26)

with F j(t) ≡ P(X j, k ≤ t), which is independent of k.
As usual, the associated arrival rate function λS(t |S )
is the derivative with respect to t of the cumulative
arrival rate function ΛS(t |S ); i.e.,

λS(t |S )�
∞∑
j�1

Bs , j(1− δ) f j(t −ψ j), (27)

where f j is the probability density function (pdf) asso-
ciated with the cdf F j . The associated conditional vari-
ance is

VS(t |S ) ≡Var(AS(t) |S )�
∞∑
j�1

B2
s , j p j(t)(1− p j(t))

for p j(t) in (26).

5.2. The Total Mean and Variance of A(t)
The total arrival rate function is then

Λ(t) ≡ E[A(t)]� E[AS(t)]+E[AU(t)]
� E[ΛS(t |S )]+E[AU(t)]

�

∞∑
j�1

E[Bs , j](1− δ)F j(t −ψ j)+E[AU(t)]. (28)

Applying the conditional variance formula, assuming
that the random variables Bs , j are mutually indepen-
dent, the associated variance is

Var(A(t))
�Var(AS(t))+Var(AU(t))
�Var(E[AS(t |S )])+E[Var(AS(t) |S )]+Var(AU(t))

�

∞∑
j�1

Var(Bs , j)[(1− δ)F j(t −ψ j)]2

+

∞∑
j�1

E[B2
s , j]p j(t)(1− p j(t))+Var(AU(t)). (29)

5.3. A Parsimonious Simplified Arrival
Process Model

We divide the overall time interval [8:00, 13:00] into
two parts: before and after 12:30. We let DF be the daily
total during the final interval [12:30, 13:00]. For each
day, we let DF be distributed as in Table 2, whichmakes
the overall mean number in [12:30, 13:00] 4.82. We then
distribute the DF arrivals among the intervals, as indi-
cated in Section 2.7.

We let DI be the random daily total for the initial
interval [8:00, 12:20]. We let E[DI] � 66.1 − 4.8 � 61.3,
making it coincide with the observed average total of
66.1 in Table 1. We let the variance coincide roughly
with the variance of the schedule inside the interval in
Table 1, so that Var(DI) � 10.0. We can use a Gaussian
distribution (rounded to the nearest integer) with this
estimated mean and variance. Alternatively, we can
fit a binomial distribution with parameter pair (n , p)
to this mean and variance, yielding two equations
with two unknowns: E[DI] � np � 61.3 and Var(DI) �
np(1 − p) � 10, so that (1 − p) � 10/61.3 � 0.163 and
n � 61.3/0.837� 73.2, rounded to 73. Hence, we regard
DI as binomial: (n , p)� (73, 0.837).
Given DI , the daily total in the initial interval,

we let these arrivals be i.i.d. over the initial interval
[8:00, 12:20], with a pdf proportional to the continuous
two-piece arrival rate function in Figure 8, i.e., with
a pdf equal to the arrival rate function divided by its
integral over the interval.

In Kim et al. (2015b), binomial-uniform and Gaus-
sian-uniformmodelswere proposed.Ourmodel differs
in two respects. First, we treat the outside inter-
val [12:30, 13:00] separately. Second, we treat the ini-
tial interval similarly, but our more careful analy-
sis suggests a nonuniform density for the individual
arrivals. We propose a scaled version of the continuous
piecewise-linear curve on the right in Figure 8, which
should better fit the actual arrival rate.

6. Guide to Understanding
Appointment-Generated
Arrival Processes

While diverse appointment systems should have much
in common, there also can be important differences.
A useful first step when considering appointment sys-
tems and appointment-generated arrival processes is
to classify the system. Our analysis of the clinic, sum-
marized in Table 6, helps show how that can be done.
There are three main steps.
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Table 6. Steps to Classify an Appointment-Generated Arrival Process and the Steps’ Application to the Arrivals for the
Doctor at the Clinic

Category Issue For the doctor at the endocrinology outpatient clinic

General Time frame for arrivals One morning shift on a single day
Time from scheduling to appointment Mostly 1–4 months
Time sensitivity (urgency) of appointment Not known
Repeat vs. new 78% of visits are repeat
Scale Moderately large, average daily total of 66
Variability of the arrival process Significant but less than Poisson, dispersion V/M � 0.3 for daily totals

Schedule Variability of the schedule Significant but less than Poisson, dispersion V/M � 0.3 for daily totals
Master schedule Identifiable as 22 10-minute intervals with batches of size 3
Primary deviation from the framework Extra arrivals scheduled outside the main interval
High or low demand High demand
Extent of overload Overload producing 10% of daily totals
Manifestation of overload Overload occurs outside, usually after, the main interval
Distribution of the main schedule The data support i.i.d. batches with mean 2.76 in all time slots

Adherence No-shows Relatively few no-shows, or about 8.5%
Unscheduled arrivals Relatively few unscheduled arrivals, or about two per day (3%)
Deviations (lateness or earliness) Significant deviations of about 60 minutes, but mostly early; about 15% late,

with average conditional lateness of about 20 minutes

Step 1. General Classification.We first identify the time
frame, which we take to be a day. However, there are
two different perspectives: first, the times when the
arrivals occur, and second, the timeswhen the appoint-
ments are actually made. We primarily focus on the
times when the arrivals occur, aiming to understand
variability over the day.
However, as in the clinic studied here, the appoint-

ments may have been made over a much longer time
frame, weeks or even months before the appointment
day, so the delay in getting an appointment may occur
over a longer time scale.With such long delays between
the date that the appointment is scheduled and the
actual appointment date, we have observed that it is
important to consider whether arrivals represent, per-
haps routinely, repeat visits or new requests. Especially
in healthcare, an important question is whether the
system can respond well to urgent requests for ser-
vice. Time sensitivity or urgency was not part of the
clinic arrival data analyzed here, but we were able
to identify repeat visits, which accounted for 78% of
all visits. It is important to recognize that long times
between appointments being made and actual clinic
visits for those appointments do not necessarily mean
that patients with urgent problems are experiencing
excessive delays before their needs can be addressed. In
general, for healthcare appointment systems, it would
be useful to have information on the delay sensitivity or
urgency of the service to be provided.

We next focus on the scale, determined by the typical
daily totals. Is the scale large or small? The clinic doc-
tors considered here operate on a large scale, with our
specific doctor seeing about 66 patients in each shift
(a.m. or p.m.).
Assuming that our goal is to understand the arrival

process over a single day and possibly to make im-
provements in this process, the next question is the level

of variability in the appointment-generated arrivals. Are the
arrivals highly regular or not? The analysis is devoted
to the case in which the arrivals exhibit significant vari-
ability. An initial rough classification of the variability
is the dispersion or variance-to-mean ratio V/M of the
daily totals.

The remaining classification is aimed at exposing
the primary sources of the variability observed in the
arrivals. Careful analysis is then devoted to identifying
and quantifying the important sources of that variabil-
ity. Here, it is natural to start with the schedule.

Step 2. The Schedule. Given that the actual arrivals are
irregular, we ask if the scheduled arrivals are also irreg-
ular, exhibiting a significant additional level of vari-
ability. For our doctor, we found that the schedule is
indeed quite irregular, exhibiting significant variabil-
ity, and that too can be roughly quantified based on
the dispersion of the daily totals. In fact, we concluded
that the primary source of variability in the arrivals is
the variability in the schedule. This is supported by the
fact that both the variance and the dispersion of the
scheduled daily totals are greater than for the actual
arrivals.

Whether the schedule is regular, we want to identify
the master schedule, if possible. In general, a first step
in analyzing the schedule is to infer this framework. An
orderly framework might be communicated by system
managers, but it is important to consider data showing
what actually happened. From our examination of the
schedule for the 22 a.m. shifts, we were able to iden-
tify a stationary framework involving small batches of
arrivals at 10-minute intervals during the time interval
[8:50, 12:20].

We then ask what the major deviations from this
framework are. In the present analysis, we found that
the batch sizes in each time slot are variable, but the
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largest deviation from that framework was caused by
extra arrivals scheduled outside themain time interval.
In general, it is important to determine whether the

service system is a high-demand or low-demand system.
Is the variability the result of an uncertain ability to
fill the master schedule in the presence of low demand
or of an uncertain response to pressures to meet high
demand? Or do we see a combination of these? We
concluded that our doctor in the clinic operates as a
high-demand system, with a significant response to
high demand.
We then come to the distribution of the scheduled

arrivals in the main interval. We concluded in Sec-
tions 2.5 and 2.6 that the scheduled arrivals in the 22
daily time slots in the main interval can be regarded
as i.i.d. random variables with the distribution in (3),
which has mean 2.76. We found relatively low variabil-
ity in the scheduled arrivals within the main interval.
Step 3. Adherence to the Schedule. We next shift atten-

tion to the adherence to the schedule. Here, we focus
on three ways that the arrivals might not adhere to the
schedule: (i) no-shows, (ii) extra unscheduled arrivals,
and (iii) deviations in actual arrival times from the
scheduled times. Since our clinic data included can-
cellations, no-shows were easily identifiable as sched-
uled arrivals that never occurred. Given that all arrivals
were included in our clinic data and that our definition
of the schedule was based on its value at the end of
the previous day, we defined unscheduled arrivals as
arrivals that were scheduled and arrived on the cur-
rent day.
It is well known that no-shows and unsched-

uled arrivals can be quite frequent in appointment-
generated arrival processes. However, in the clinic
studied here, there were relatively low percentages of
no-shows and unscheduled arrivals. In particular, the
average percentage of no-shows for our doctor was
about 8.5%. This level was fairly constant over the day
but was somewhat higher during the first intervals
of the a.m. shift. The average number of unscheduled
arrivals in the clinic was only about two per day, which
was 3% of the daily total. About half of those occurred
outside the main interval, again indicating an effort by
the clinic to respond to high demand.
We observed that the actual arrival times deviated

significantly from the scheduled arrival times, with an
average earliness of 45 minutes and an average lateness
of 21 minutes. The deviations were most were due to
early arrivals; only about 6% of the arrivals were late
bymore than 15 minutes. Overall, we conclude that the
adherence to the schedule was good relative to that in
other appointment systems.

7. Conclusions
The Principal Source of Variability Is the Schedule. In
this paper, we have examined an appointment-gener-
ated arrival process for one doctor in an endocrinology

clinic. As a consequence of the appointment system,
the arrival process tends to be much less variable than
a Poisson process, but it is also not nearly a regular
deterministic arrival process. The dispersion (variance-
to-mean ratio) is about 0.3. As others have observed
before, some variability is a result of no-shows, extra
unscheduled arrivals, and deviations of the actual
arrival times from the scheduled appointment times,
but Section 3.3 shows that the dominant source of vari-
ability in the arrival process is the schedule itself. In
particular, surprisingly, the inequality in (16) shows
that the dispersion of the daily schedule is actually
greater than the dispersion of the daily arrivals itself.

New Stochastic Arrival Process Models. Our data
analysis has culminated in both a detailed stochastic
model in Sections 2.8 and 3 and a simplified stochas-
tic model in Section 5.3 that can be used to simulate
the arrival process of patients to see the doctor in the
clinic. The fitting process should be useful for analyz-
ing the other doctors in this clinic as well as for other
applications, and simulation experiments can be used
to evaluate operational procedures in the clinic.

What Is Generalizable? (i) Variations of the specific
arrival process stochastic models developed here may
be useful for analyzing other outpatient clinics, but
what we think is widely generalizable is the data-
analysis process, rather than the model. Consistent with
earlier work, we advocate carefully examining no-
shows, extra unscheduled arrivals, and punctuality.
However, before taking those steps, we recommend
looking at randomness in the schedule. It may even be
important to view the schedule as a stochastic process.
We do not have data on the original demand in the
current analysis, but wewould also advocate collecting
information on requests for appointments, including
ones that were not scheduled or that were moved to
alternate days and times. Additionally, we recommend
determining how the schedule relates to the original
demand.

(ii) The specific arrival process models may also
be useful more widely. Especially promising is the
parsimonious model with Gaussian daily totals and,
given those daily totals, i.i.d. arrival times within the
day with a nonuniform probability density that takes
account of the earliness and lateness of the patients. It
is reasonable to anticipate that the earliness or lateness
will alter the arrival rate during the day, as we have
discovered.

(iii) Even more broadly, it is important to recognize
that appointment-generated arrival processes are likely
to be neither solely deterministic and evenly spaced
nor solely Poisson; rather, many systems will have
variability in between those two extremes, just as we
have seen.
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What Is Missing? While we think that our concen-
trated focus on the clinic arrival process can help
in modeling appointment-generated arrival processes,
we have not discussed the service-provisioning context
beyond our general description of network structure
in Section 1.3. In particular, we do not have data on
the patient departure times or the level of congestion
in the clinic. It was our sense that the clinic was well
run, without major operating problems, and not oper-
ating in a “heavy-traffic” regime, but we did not have
supporting data. To properly understand an arrival
process in a queueing application, we think that it is
important to understand the full context as well as to
look at the arrival process data. We have emphasized a
broader context by our focus on the schedule as well as
the time of arrival, but other important context might
not be included.
What Is the Practical Relevance? In this paper, we
have not conducted a complete performance analysis
of the endocrinology outpatient clinic, so we have not
yet improved the performance of that clinic. However,
based on the long history of modeling and analysis of
outpatient clinics discussed in Section 1, modeling and
analysis can improve system performance. Thus, we
did this workwith the conviction that improved arrival
process models can produce improved performance.
We see two principal ways that the stochastic model

of the appointment system can be used to improve the
performance of the clinic, and similar stochastic mod-
els can also be used to improve performance in other
appointment system applications. First, the model pro-
vides a basis for analyzing the performance of the clinic
with the given arrival process by conducting standard
performance (queueing) analyses after incorporating
an additional detailed analysis of the patient process-
ing and flow after arrival, which we do not consider
here. Second, the model can be used to consider alter-
native scheduling strategies to achieve various objec-
tives, such as reducing the variability of the schedule
and thus reducing the variability in the doctor work-
loads or ensuring that patients with urgent needs have
limited delays in getting an appointment.
Classification of Appointment-Generated Arrival Pro-
cesses. In addition to gaining a better understand-
ing of the appointment-generated arrival process in the
endocrinology clinic, we have learned how to think
about appointment-generated arrival processes more
generally. A useful first stepwhen considering appoint-
ment systems and appointment-generated arrival pro-
cesses is to classify the system, as we did in Table 6
for our analysis of the clinic. For any new appointment
system to be considered, we recommend seeking this
information. After evaluating both the schedule and
adherence to the schedule by comparing them to what
is desired, one could considerways to improve both the
schedule and the adherence.
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