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E-Companion

EC.1. Overview

In this e-companion we supplement the main paper. In §EC.2 we provide the stationary test results

for our call center data. In §EC.3 we supplement §3 and §5.3 by showing how idealized simulation

models for the call center example were constructed. In §EC.4 we elaborate on the confidence

intervals for the mean wait in the transient M/M/1 queue discussed in §6.1. We show that the

distribution of the estimates are nor too far from being normal, and show ways to adjust the

confidence interval halfwidths to get targeted coverage.

Additional material is in a report available online from the authors’ web pages (Kim and Whitt

2012). Following an introduction in §1, in §2 we present additional information about the call

center data used. In §3 we discuss an alternative way to construct the confidence intervals using

the method of batch means and in §4 we elaborate on the bias discussed in §5, discussing the

bias in the estimator W̄ (t) in (1) for W in a stationary setting in §4.1. In §4.2 we discuss the

bias in the alternative estimator W̄L,λ(t) in (3) for E[W (t)] in a nonstationary setting and W in a

stationary setting. In §5 we introduce an alternative algorithm to estimate confidence intervals in

approximately stationary intervals by batch means, exploiting Theorem 2. However, this algorithm

did not improve the estimation for the call center example, so we do not emphasize it. The negative

result itself is interesting, because it is natural to consider such alternatives. It remains to be seen

if the new algorithm can be useful in other contexts. Finally, in §6 we present additional figures

and tables.

EC.2. Results for the Stationarity Tests

In this section, we provide detailed results for the three tests for stationarity applied to the call

center data in §3.2. The three test are the turning points test, the difference-sign test and the rank

test for randomness, all discussed on p. 312 of Brockwell and Davis (1991). Given a sequence of

observations {y1, ..., yn}, these tests basically check the hypothesis that {yi} is an i.i.d. sequence.

For the turning points test, we say that the data has a turning point at time i if yi−1 < yi

and yi > yi+1 or yi−1 > yi and yi < yi+1. Let T be the number of turning points of the sequence

{yi}. If {yi} are observations of an i.i.d. sequence, the expected number of turning points is µT =

2(n− 2)/3 with variance σ2
T = (16n− 29)/90, and T is approximately N(µT , σ

2
T ). A large value of

T − µT means the sequence is fluctuating more rapidly than expected for a random sequence. A

large (in magnitude) negative value of T −µT suggests a positive correlation between neighboring

observations. The difference-sign test counts the number (S) of values of i such that yi > yi−1,
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i = 2, ..., n. Under the i.i.d. sequence assumption, µS = 1

2
(n − 1) with variance σ2

S = (n + 1)/12,

and S is approximately N(µS, σ
2
S). The rank test counts the number (P ) of pairs (i, j) such that

yj > yi, j > i, i= 1, ..., n−1. If {yi} are observations of an i.i.d. sequence, then µP = 1

4
n(n−1) with

variance σ2
P = n(n− 1)(2n+5/8), and P is approximately N(µP , σ

2
P ). A large positive (negative)

value of S−µS or P −µP indicates an increasing (decreasing) trend in {yi}.

We apply the aforementioned three tests on arrival counts over successive subintervals of varying

lengths, 1, 5 and 10 minutes. Table EC.1 provides the result. If we use significance level α= 0.95,

we have Φ1−α/2 = 1.96. The test results depend on the subinterval length, but they mainly accept

the hypothesis that the arrival counts are i.i.d sequence in [10,16], but reject it outside of the

interval [10,16]. The results of the rank test, which is particularly useful for detecting a linear

trend, is especially strong.

Table EC.1 Testing for stationarity: the assumption that {yi} are observations from an i.i.d sequence is

rejected if | · −µ
·
|/σ

·
>Φ1−α/2 where Φ1−α/2 is the 1−α/2 percentage point of a standard normal distribution.

Subinterval Interval T µt |T −µT |/σT S µS |S−µS|/σS P µP |P −µP |/σP

1 [6,10] 112 158.7 7.17 96 119.5 5.24 21517 14340.0 3.85

[10,16] 207 238.7 3.97 159 179.5 3.74 29207 32310.0 0.91

[16,23] 179 278.7 11.56 144 209.5 11.06 15294 43995.0 6.66

5 [6,10] 21 30.7 3.37 25 23.5 0.74 968 564.0 2.39

[10,16] 49 46.7 0.66 31 35.5 1.82 1208 1278.0 0.23

[16,23] 44 54.7 2.79 36 41.5 2.07 567 1743.0 3.03

10 [6,10] 12 14.7 1.34 14 11.5 1.73 244 138.0 1.75

[10,16] 19 22.7 1.49 18 17.5 0.28 299 315.0 0.15

[16,23] 24 26.7 1.00 16 20.5 2.38 109 430.5 2.32

EC.3. Details for the Simulation Experiments in Section 4

In §1.2.2, we suggest applying simulation to study how the estimation procedures proposed in this

paper work for an idealized queueing model of the system. In this section, we describe in detail

how we construct the idealized simulation models in §3.2 for the call center example.

EC.3.1. Fitted Arrival Rate Function

In order to construct an idealized model to evaluate how the estimation procedure perform for the

actual data, we need to mimic the behavior of the actual arrival process of the call center as much

as possible. Given arrival rates measured in units of 10 minutes over the working day [6,23], we fit

the arrival rate function to a continuous piecewise-linear function, with one increasing piece over

[6,10], a constant piece over [10,16] and two decreasing linear pieces over [16,18] and [18,23]. We
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force two extra constraints: (i) the arrival rate starts and ends at 0, and hence the arrival rate is

0 at t= 6 and t= 23 and (ii) the arrival rate of successive pieces agree at endpoints. Figure EC.1

illustrates the result. The exact arrival rate function is given by

λ(t) =



















140(t− 6) on [6,10],

560 on [10,16],

560− 230(t− 16) on [16,18],

100− 20(t− 18) on [18,23].

(EC.1)

We used the same 1000 arrival sample paths for all the infinite-server and finite-server models

used in this paper. We generated these arrival processes by thinning a homogeneous arrival process

with rate λ∗ = 560. The homogeneous Poisson process generates potential arrivals. We then let

a potential arrival at time t be an actual arrival in the nonhomogeneous arrival process with

probability λ(t)/λ∗.
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Figure EC.1 Fitted arrival rate function for the arrivals at the call center on May 25, 2001.

EC.3.2. Histogram of the Waiting Time Distribution in the Call Center

We assumed that all the service times were i.i.d. with a distribution obtained to match the observed

waiting time distribution. In particular, we consider the waiting times (time spent in the system)

over the interval [10,16] on May 25, 2001. Figure EC.2 shows a histogram of the waiting times.

An exponential approximation with mean 3.38 was found to be a good fit and was used. Thus,

service times were generated according to an exponential distribution with mean 3.38 for 1,000
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replications. The same set of generated service times were used for all the infinite-server and finite-

server models used in this paper. (Consistent with many call center empirical studies Brown et al.

(2005), a lognormal distribution with mean 3.38 and squared coefficient of variation c2 = 1.017 was

also found to be a good fit, even better in the neighborhood of the origin, but we were not concerned

that the mode falls to the right of 0. Simulation shows that the results are not significantly altered

by using the fitted lognormal distribution. The exponential distribution makes the staffing easier

for the Mt/GI/st model; e.g., by applying Eick et al. (1993a).)
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Figure EC.2 The histogram (empirical distribution) of the times spent in the system of all arrivals during the

interval [10,16] on May 25, 2001.

EC.3.3. Staffing for the Mt/GI/st Models

For the call center example, we have data on the arrival times and waiting times as well as the

number in system L(s), 0 ≤ s ≤ t, but we do not have data on the staffing and the complex

call routing. Thus, in order to evaluate the estimation procedures, we simulate the single-class

single-service-pool Mt/GI/∞ IS model and associated Mt/GI/st models with time-varying staffing

levels chosen to yield good performance. Specifically, we use the fitted arrival rate function (from

§EC.3.1) and assume service times are exponentially distributed with mean 3.38 (from §EC.3.2).

We then compute m(t), the offered load which is the time-varying mean number of busy servers

in the IS model, using formulas (6) and (7) of Jennings et al. (1996). Finally, the staffing function

s(t) is determined by the SRS formula using a range of Quality-of-Service (QoS) parameters,

β = 2.5,2.0,1.5,1.0. Figure EC.3 illustrates the offered load as well as staffing levels for different

values of β.
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Figure EC.3 The offered load, m(t), and staffing levels, s(t), for different values of β.

EC.3.4. Sample Paths for Different Values of β

One way to diagnose whether simulated Mt/GI/st models with different values of β are working

as expected is to plot some sample paths of the number in the system, L(t), along with the staffing

levels, s(t). In Figures EC.4 - EC.7, we provide one single sample path of eachMt/GI/st model with

different values of β = 2.5,2.0,1.5,1.0 to illustrate that our simulation models work as expected.

EC.4. More on Confidence Intervals for the M/M/1 Example

In this section, we provide more details on confidence intervals for the mean wait in the transient

M/M/1 queue, discussed in §6.1. Recall that we have 10 i.i.d. samples of the same M/M/1 model

over the interval [0,10], starting empty at time 0. To see how the sample average approach in

§6.3 can be applied to estimate CIs for the refined estimator in (41), CI coverage was studied by

performing 1,000 replications of the entire experiment.

In Table 4, we observed that the unrefined estimator W̄L,λ(t) in (3) does a very poor job in

estimating the mean wait because of the bias. The performance of the refined estimator W̄L,λ,r(t)

in (28) and the direct estimator W̄ (t) is not perfect, either, yielding coverage of about 90% instead

of the targeted 95%. To see whether this coverage issue is due to the residual skewness of the

estimates, we perform the Shapiro-Francia normality test, discussed on p. 314 of Brockwell and

Davis (1991). The Shapiro-Francia normality test is specifically designed to address issues related

with large sample sizes. Table EC.2 gives the test results; normality is rejected at 5% significance

level in most cases. We also plot the histogram of the estimators as well as their normality plots,
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Figure EC.4 One sample path of Mt/GI/st

with β = 1.0.
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Figure EC.5 One sample path of Mt/GI/st

with β = 1.5.
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Figure EC.6 One sample path of Mt/GI/st

with β = 2.0.
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Figure EC.7 One sample path of Mt/GI/st

with β = 2.5.

from which we can see evidence of the heavy tails (skewness). However, we see that these are not

extreme examples of non-normality and skewness.

Table EC.2 Shapiro-Francia normality test (discussed on p. 314 of Brockwell and Davis (1991)) of the direct

and indirect mean waiting time estimator values over 1000 replications.

W̄ (t) W̄L,λ(t) W̄L,λ,r(t)

λ R2 p-value R2 p-value R2 p-value

0.7 0.9794 0.0000 0.9941 0.0011 0.9813 0.0000

1.0 0.9892 0.0000 0.9936 0.0006 0.9905 0.0000

2.0 0.9945 0.0019 0.9990 0.8284 0.9977 0.1562



e-companion to Kim and Whitt: Little’s Law ec7

0.5 1 1.5 2 2.5 3 3.5
0

5

10

15

20

25

30

35

direct mean waiting times

fr
e
q
u
e
n
c
y

µ=1.87

Figure EC.8 Histogram of W̄ (t) for the M/M/1

model with λ= 0.7.
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Figure EC.9 Normality plot of W̄ (t) for the

M/M/1 model with λ= 0.7.
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Figure EC.10 Histogram of W̄L,λ(t) for the

M/M/1 model with λ= 0.7.

1 1.5 2 2.5

0.001
0.003

0.01
0.02

0.05

0.10

0.25

0.50

0.75

0.90

0.95

0.98
0.99

0.997
0.999

indirect unrefined mean waiting times

P
ro

b
a
b
ili

ty

Normal Probability Plot

Figure EC.11 Normality plot of W̄L,λ(t) for the

M/M/1 model with λ= 0.7.
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Figure EC.12 Histogram of W̄L,λ,r(t) for the

M/M/1 model with λ= 0.7.
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Figure EC.13 Normality plot of W̄L,λ,r(t) for

the M/M/1 model with λ= 0.7.
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Figure EC.14 Histogram of W̄ (t) for the

M/M/1 model with λ= 1.0.
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Figure EC.15 Normality plot of W̄ (t) for the

M/M/1 model with λ= 1.0.
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Figure EC.16 Histogram of W̄L,λ(t) for the

M/M/1 model with λ= 1.0.
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Figure EC.17 Normality plot of W̄L,λ(t) for the

M/M/1 model with λ= 1.0.
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Figure EC.18 Histogram of W̄L,λ,r(t) for the

M/M/1 model with λ= 1.0.
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Figure EC.19 Normality plot of W̄L,λ,r(t) for

the M/M/1 model with λ= 1.0.
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Figure EC.20 Histogram of W̄ (t) for the

M/M/1 model with λ= 2.0.
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Figure EC.21 Normality plot of W̄ (t) for the

M/M/1 model with λ= 2.0.
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Figure EC.22 Histogram of W̄L,λ(t) for the

M/M/1 model with λ= 2.0.
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Figure EC.23 Normality plot of W̄L,λ(t) for the

M/M/1 model with λ= 2.0.
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Figure EC.24 Histogram of W̄L,λ,r(t) for the

M/M/1 model with λ= 2.0.
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Figure EC.25 Normality plot of W̄L,λ,r(t) for

the M/M/1 model with λ= 2.0.
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One way to try to obtain a better estimate of confidence interval is to use appropriate confidence

interval inflation factor. The idea is to estimate the inflation factor x such that mean ± x confidence

interval halfwidth has targeted (e.g., 95%) coverage. For our transient M/M/1 model, we test

inflation factors ranging from 1.00 to 2.00, with increments of size 0.05. Table EC.3 provides the

results for different values of the inflation factor. Given this result, we would estimate it to be

about 1.55, 1.45 and 1.05 for λ= 0.7, 1.0 and 2.0, respectively.

Table EC.3 Estimating confidence interval inflation factor.

λ= 0.7 λ= 1.0 λ= 2.0

x Cov. of W̄ (t) Cov. of W̄L,λ,r(t) Cov. of W̄ (t) Cov. of W̄L,λ,r(t) Cov. of W̄ (t) Cov. of W̄L,λ,r(t)

1.00 87.3% 87.8% 90.2% 90.7% 94.0% 95.1%

1.05 88.5% 89.3% 91.4% 91.9% 95.4% 95.8%

1.10 89.2% 89.9% 92.3% 92.8% 96.4% 96.9%

1.15 90.2% 90.8% 93.2% 93.3% 96.9% 97.2%

1.20 91.3% 91.6% 93.6% 94.1% 97.2% 97.7%

1.25 91.8% 92.6% 93.9% 95.0% 97.8% 98.1%

1.30 92.7% 93.6% 94.2% 95.2% 98.1% 98.5%

1.35 93.4% 93.9% 94.4% 95.4% 98.5% 98.7%

1.40 93.8% 94.2% 94.7% 95.6% 98.6% 98.9%

1.45 94.2% 94.4% 95.2% 95.6% 98.7% 99.5%

1.50 94.5% 95.1% 95.7% 95.7% 98.7% 99.5%

1.55 94.9% 95.3% 95.9% 96.0% 99.0% 99.7%

1.60 95.2% 95.4% 96.2% 96.3% 99.1% 99.7%

1.65 95.6% 95.7% 96.5% 96.3% 99.3% 99.7%

1.70 95.9% 95.8% 96.7% 96.6% 99.5% 99.7%

1.75 96.3% 96.0% 97.0% 96.6% 99.5% 99.7%

1.80 96.4% 96.1% 97.3% 97.1% 99.6% 99.7%

1.85 96.6% 96.4% 97.3% 97.4% 99.6% 99.7%

1.90 96.9% 96.7% 97.3% 97.5% 99.6% 99.7%

1.95 96.9% 96.9% 97.4% 97.8% 99.6% 99.7%

2.00 97.1% 97.2% 97.6% 97.8% 99.6% 99.7%


