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The Power of Alternative Kolmogorov-Smirnov Tests Based
on Transformations of the Data

SONG-HEE KIM, Yale University
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The Kolmogorov-Smirnov (KS) statistical test is commonly used to determine if data can be regarded as a
sample from a sequence of independent and identically distributed (i.i.d.) random variables with specified
continuous cumulative distribution function (cdf) F, but with small samples it can have insufficient power,
that is, its probability of rejecting natural alternatives can be too low. However, in 1961, Durbin showed that
the power of the KS test often can be increased, for a given significance level, by a well-chosen transformation
of the data. Simulation experiments reported here show that the power can often be more consistently and
substantially increased by a different transformation. We first transform the given sequence to a sequence
of mean-1 exponential random variables, which is equivalent to a rate-1 Poisson process. We then apply
the classical conditional-uniform transformation to convert the arrival times into i.i.d. random variables
uniformly distributed on [0, 1]. And then, after those two preliminary steps, we apply the original Durbin
transformation. Since these KS tests assume a fully specified cdf, we also investigate the consequence of
having to estimate parameters of the cdf.
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1. INTRODUCTION

We are pleased to contribute to this special issue honoring Donald L. Iglehart, our
academic grandfather and father, respectively. Don deserves recognition in this journal
because of the research he and his students have done on simulation methodology, for
example, Crane and Iglehart [1974a, 1974b, 1975], Glynn and Iglehart [1989], and
Heidelberger and Iglehart [1979].

We consider the basic statistical problem of testing whether observations can be re-
garded as a sample from a sequence of independent and identically distributed (i.i.d.)
random variables with a specified cumulative distribution function (cdf). Such testing
commonly should be done in simulation input modeling, for example, to judge whether
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customer service-time data from service systems are consistent with a particular dis-
tribution. The testing often is also appropriate for simulation output analysis.

A common way to determine if data can be regarded as a sample from a sequence
of i.i.d. random variables {Xk : k ≥ 1}, each distributed as a random variable X with a
specified continuous cdf F(x) ≡ P(X ≤ x), x ∈ R, is to apply the Kolmogorov-Smirnov
(KS) statistical test. The KS test is based on the maximum difference Dn between the
empirical cdf (ecdf)

Fn(x) ≡ 1
n

n∑
k=1

1{Xk≤x}, x ∈ R, (1)

and the underlying cdf F, where n is the sample size, 1A is an indicator function, equal
to 1 if the event A occurs, and equal to 0 otherwise, that is,

Dn ≡ sup
x

{|Fn(x) − F(x)|}, (2)

which has a distribution that is independent of the cdf F, provided that the cdf is
continuous. The null hypothesis in the KS test is that the data indeed comes from a
sequence of i.i.d. random variables {Xk : k ≥ 1}, each distributed as F.

For any observed value y of the maximum difference Dn from a sample of size n, we
compute the p-value P(Dn > y|H0) under the null hypothesis H0 that the sequence is
i.i.d. with cdf F, for example, by using the Matlab program ksstat, and compare it to
the significance level α, that is, for specified probability of rejecting the null hypothesis
when it is in fact correct (type I error), which we take to be α = 0.05. For n ≥ 35, P(Dn >
1.36/

√
n|H0) ≈ 0.05. Sometimes it is preferable to use corresponding one-sided KS tests,

but we will concentrate on the two-sided test. See Simard and L’Ecuyer [2011] and
Shorack and Wellner [2009] for additional background and references on the KS test.

Alternative KS tests can be obtained by considering various transformations of the
data, based on transformations of the hypothesized sequence of i.i.d. random variables
{Xk : k ≥ 1} with continuous cdf F into a new sequence of i.i.d. random variables
{Yk : k ≥ 1} with continuous cdf G, while keeping the significance level α unchanged.
Since the KS test applies in both settings, we should prefer the new test based on
the transformed data if it has substantially greater statistical power for contemplated
alternatives, that is, if it has a higher probability of rejecting the null hypothesis when
the null hypothesis is false. Specifically, for specified significance criterion α, the power
of a specified alternative is the probability 1 − β, where β ≡ β(α) is the probability of
incorrectly accepting the null hypothesis (type II error) when it is false (which of course
depends on the alternative as well as α).

Durbin [1961] suggested transforming the data to increase the power of the KS test
(without altering the distribution under the null hypothesis) and proposed a specific
transformation for that purpose. In this article we study the issue further. We conclude
that a good data transformation can indeed significantly increase the power of the KS
test, but that a modification of the Durbin [1961] transformation consistently has even
more power. Given the null hypothesis of an i.i.d. sequence {Xk} with cdf F, our pro-
posed test starts by transforming the given random variables Xk into i.i.d. mean-1
exponential random variables through the transformation Yk ≡ − loge {1 − F(Xk)},
which can be regarded as the interarrival times of a rate-1 Poisson Process (PP).
Then we apply a statistical test of a PP proposed by Lewis [1965]. The first step
is to apply the classical conditional-uniform transformation to the associated arrival
times Tk ≡ Y1 + · · · + Yk, 1 ≤ k ≤ n of the PP; that is, under the null hypothesis, we
obtain a new sequence of i.i.d. random variables Tk/Tn that are i.i.d. random vari-
ables uniformly distributed on the interval [0, 1]; for example, see Section 2.3 of Ross
[1996]. After those two steps have been completed, we apply the original Durbin [1961]
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transformation. While the component transformations that we use are not new, to the
best of our knowledge, this combination of transformations has not been considered be-
fore. The idea of considering this alternative KS test came to us while working on ways
to test if service-system arrival process data can be modeled as a nonhomogeneous PP,
which is reported in Kim and Whitt [2014a, 2014b] and Kim et al. [2015]; we elaborate
after we define the alternative tests that we examine.

We close this introduction by indicating how the rest of the article is organized. We
start in Section 2 by carefully defining the six different KS tests we consider. Next,
in Section 3, we elaborate on our motivation and explain why the new method should
be promising. In Section 4 we describe our first simulation experiment, which is a
fixed-sample-size discrete-time stationary-sequence analog of the fixed-interval-length
continuous-time stationary point process experiment, aimed at studying tests of a PP,
conducted in Kim and Whitt [2014b]. In addition to the natural null hypothesis of
i.i.d. exponential random variables, we also consider i.i.d. nonexponential sequences
with Erlang, hyperexponential, and lognormal marginal cdf ’s. We report the results in
Section 5, which surprisingly show that the original Durbin [1961] method performs
poorly, but we consider different models than those in Durbin [1961]. In contrast, our
new method, which we call the Lewis test because it is based on an idea from Lewis
[1965], performs well, providing increased power. However, Durbin [1961] considered
different examples. Motivated by the good results found for a standard normal null
hypothesis by Durbin [1961], in Section 6 we consider a second experiment to test
for a sequence of i.i.d. standard normal random variables. Consistent with Durbin
[1961], we find that the original Durbin [1961] method performs much better for the
standard normal null hypothesis, but again the new version of the Lewis [1965] test
also performs well. In Section 7 we discuss the common problem that we typically must
estimate parameters when we apply the KS test. We draw conclusions in Section 8.
Additional information appears in the online Appendix.

2. THE ALTERNATIVE KS TESTS

We consider the following six KS tests of the null hypothesis H0 that n observations
Xk, 1 ≤ k ≤ n, can be considered a sample from a sequence of i.i.d. random variables
having a continuous cdf F. We start by forming the associated variables Uk ≡ F(Xk),
which are i.i.d. uniform variables on [0, 1] under the null hypothesis.

Standard Test. We use the standard KS test based on (2) to test whether Uk ≡ F(Xk),
1 ≤ k ≤ n, can be considered to be i.i.d. random variables uniformly distributed
on [0, 1].

Sort-Log Test. Starting with the n random variables Uk, 1 ≤ k ≤ n, in the standard
test, let U( j) be the jth smallest of these, so that U(1) < · · · < U(n). As in Section 3.1
of Brown et al. [2005], we use the fact that under the null hypothesis

Y (L)
j ≡ − j loge

(
U( j)/U( j+1)

)
, 1 ≤ j ≤ n − 1,

are n−1 i.i.d. mean-1 exponential random variables; a proof is given in Section 2.2
of Kim and Whitt [2014c]. We then apply the KS test with n replaced by n− 1 and
the mean-1 exponential cdf.

Durbin (≡ Sort-Durbin) Test. This is the original test proposed by Durbin [1961],
which also starts with Uk ≡ F(Xk) and U(k) with U(1) < · · · < U(n) as previously. In
this context, look at the successive intervals between these ordered observations:

C1 ≡ U(1), Cj ≡ U( j) − U( j−1), 2 ≤ j ≤ n + 1, and Cn+1 ≡ 1 − U(n).

Then let C( j) be the jth smallest of these intervals, 1 ≤ j ≤ n, so that 0 < C(1) <
· · · < C(n+1) < 1. Now let Zj be scaled versions of the intervals between these new
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ordered intervals, that is, let

Zj = (n + 2 − j)(C( j) − C( j−1)), 1 ≤ j ≤ n + 1, (with C(0) ≡ 0). (3)

Remarkably, Durbin [1961] showed (by a simple direct argument giving explicit
expressions for the joint density functions, exploiting the transformation of ran-
dom vectors by a function) that, under the null hypothesis, the random vector
(Z1, . . . , Zn) is distributed the same as the random vector (C1, . . . , Cn). Hence,
again under the null hypothesis, the vector of associated partial sums (S1, . . . , Sn),
where Sk ≡ Z1 + · · · + Zk, 1 ≤ k ≤ n, has the same distribution as the original
random vector (U(1), . . . ,U(n)) of ordered uniform random variables. Hence, we can
apply the KS test with the ecdf

Fn(x) ≡ n−1
n∑

k=1

1{Sk≤x}, 0 ≤ x ≤ 1,

for Sk above, comparing it to the uniform cdf on [0, 1].

CU (Conditional-Uniform ≡ Exp+CU) Test. We start with Yk ≡ − loge {1 − F(Xk)},
1 ≤ k ≤ n, which are i.i.d. mean-1 exponential random variables under the null
hypothesis. Thus, the cumulative sums Tk ≡ Y1 + · · · + Yk, 1 ≤ k ≤ n, are the
arrival times of a rate-1 PP. In this context, the conditional-uniform property
states that, under the null hypothesis, Tk/Tn, 1 ≤ k ≤ n − 1, are distributed as
the order statistics of n− 1 i.i.d. random variables uniformly distributed on [0, 1].
Thus we can apply the KS statistic with the ecdf

F (CU )
n (x) ≡ 1

n − 1

n−1∑
k=1

1{(Tk/Tn)≤x}, 0 ≤ x ≤ 1, (4)

and the underlying uniform cdf on [0, 1].

Log (Exp+CU+Log) Test. We start with the partial sums Tk, 1 ≤ k ≤ n, used in the
CU test, which are the arrival times of a rate-1 PP under the null hypothesis. We
again use the conditional-uniform property for fixed sample size to conclude that,
under the null hypothesis, Tk/Tn, 1 ≤ k ≤ n− 1, are distributed as U(k), the order
statistics of n− 1 random variables, with U(1) < · · · < U(n−1). Hence, just as in the
previous Sort-Log test,

Y (L)
j ≡ − j loge

(
Tj/Tj+1

)
, 1 ≤ j ≤ n − 1,

should be n − 1 i.i.d. rate-1 exponential random variables, to which we can apply
the KS test.

Lewis (Exp+CU+Durbin) Test. We again start with the partial sums Tk, 1 ≤ k ≤ n,
used in the CU test, which are the arrivals times of a rate-1 PP under the null
hypothesis. We again use the conditional-uniform property for fixed sample size
to conclude that, under the null hypothesis, Tk/Tn, 1 ≤ k ≤ n − 1, are distributed
as U(k), the order statistics of n− 1 random variables uniformly distributed on [0,
1], with U(1) < · · · < U(n−1). From this point, we apply the previously mentioned
Durbin [1961] test with n replaced by n− 1, just as Lewis [1965] did in his test of
a PP.

3. MOTIVATION AND EXPLANATION

In this section, we describe our motivation for considering these new KS tests and we
explain why the good performance we find in our experiments might be anticipated.
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3.1. Testing if Arrival Processes Can be Regarded as Nonhomogeneous Poisson Processes

Our research was motivated by the desire to fit stochastic queueing models to data
from large-scale service systems, such as telephone call centers and hospital emergency
rooms, as discussed in Brown et al. [2005] and Armony et al. [2011]. These queueing
models typically possess at least two stochastic elements that might be tested: arrival
processes and service times. We started by looking at the arrival processes.

Since the arrival rate typically varies strongly by time of day in these service sys-
tems, the natural arrival process model is a nonhomogeneous PP (NHPP). The Poisson
property arises from many people acting independently, each of whom uses the service
system infrequently. Mathematical support is provided by the Poisson superposition
theorem (see Section 9.8 of Whitt [2002], and references therein).

However, as emphasized by Brown et al. [2005], it is important to perform statistical
tests on arrival data to see if the NHPP model is appropriate. For that purpose, Brown
et al. [2005] proposed a variant of the Log KS test. First, Brown et al. [2005] assumed
that the arrival rate function can be approximated by a Piecewise-Constant (PC) arrival
rate function, which is often reasonable, because the arrival rate evidently changes
relatively slowly. (We investigate how the subintervals should be chosen in Kim and
Whitt [2014a].) Under the PC NHPP null hypothesis, the NHPP is then equivalent to a
PP over each subinterval where the rate is constant. Then Brown et al. [2005] applied
the CU transformation over each of these subintervals. Since the CU transformation
is independent of the rate of the PP, the CU transformation can be applied to each
interval where the rate is constant, and then all the data can be combined into a single
sequence of i.i.d. random variables uniformly distributed on [0, 1].

For a PC NHPP, we strongly exploit the fact that the CU transformation eliminates all
nuisance parameters. We need not estimate the rate on each of the many subintervals.
As a consequence, however, the KS test after applying the CU transformation does not
support any given arrival rate, and even allows it to be random. Thus, as discussed in
Kim and Whitt [2014a, 2014b], the KS test might also be regarded as being for a Cox
process, that is, a PP with a rate function that is a stochastic process. However, the
possible rate stochastic processes are greatly restricted by the requirement that the
rate be constant over each subinterval over which the CU property is applied.

After applying the CU transformation in that way to the PC NHPP, it is possible to
apply the standard KS test directly, but Brown et al. [2005] did not do that. Instead,
they performed the Log test. They then justified an NHPP model for the banking call
center arrival data they were studying by showing that they could not reject the PP
hypothesis with their Log KS test.

We wondered why Brown et al. [2005] applied the Log test with the additional loga-
rithmic transformation instead of applying the CU KS test. As we presumed must be
the case, we found that the CU KS test of a PP has remarkably little power against
common alternative hypotheses such as renewal processes with nonexponential inter-
arrival time distributions. We present theoretical support via asymptotic analysis and
empirical evidence from extensive simulation experiments in Kim and Whitt [2014b].

We also found that there is a substantial history in the statistical literature. First,
Lewis [1965] made a significant contribution for testing a PP, recognizing that the
Durbin [1961] transformation could be effectively applied after the CU transformation.
Second, from Lewis [1965] we discovered that the direct CU KS test of a PP was
evidently first proposed by Barnard [1953]; and Lewis [1965] showed that it had little
power.

Upon discovering Lewis [1965], we first supposed that the Log KS test of Brown et al.
[2005] would turn out to be equivalent to the Lewis [1965] transformation and that the
KS test proposed by Lewis [1965], drawing upon Durbin [1961], would coincide with the
KS test given in Durbin [1961], but neither is the case. Thus, this past work suggests
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several different KS tests. In Kim and Whitt [2014b], we concluded that the Lewis test
of a PP has the most power against stationary point processes having nonexponential
interarrival distributions, providing a significant improvement over the Log KS test.

On the other hand, we also found that none of the KS tests has much power against
stationary point processes with dependent exponential interarrival times, that is, which
differ from a PP only through the dependence. In fact, for those alternative hypotheses,
we found the CU KS test tended to be most effective.

3.2. The Explanation

The key insight is the observation that the uniform random variables in the CU KS
test are very different from the uniform random variables in the Standard KS test.
Under the null hypothesis of i.i.d. exponential variables, these exponential variables
directly correspond to the interarrival times of a PP. The uniform random variables in
the standard test are direct transformations of these interarrival times, one by one.

In contrast, the uniform random variables produced by the CU transformation ap-
plied to the PP correspond to the successive arrival times in the PP, that is, the cu-
mulative sums of the interarrival times. As a consequence, the CU KS test is evidently
less able to detect differences in the interarrival-time distribution. In Section 7 of
Kim and Whitt [2014b] we provide mathematical support by proving that the ecdf in
Equation (1) converges to the uniform cdf as the sample size n increases for any rate-1
stationary ergodic point process, that is, for any stationary point process satisfying a
strong law of large numbers. Thus, to first order, asymptotically, the CU KS test has
no power at all against any of the alternatives in this large class.

This insight also helps explain why the Lewis test does so much better. It applies
the Durbin transformation after performing the CU transformation. However, the first
step of the Durbin transformation is to focus on the interarrival times and put them
in ascending order. Thus, the Durbin transformation strongly brings the focus back to
the interarrival times.

This advantage of the Lewis test is well illustrated by the problem of data rounding,
which is studied in Kim and Whitt [2014a]. In applications, the data are often rounded,
for example, to the nearest second. With large datasets, this produces zero-length
interarrival times. Before applying the Durbin transformation, these are spread out
throughout the data, so that they tend not to be detected by the KS test. On the other
hand, the Durbin transformation shifts all these zero-length interarrival times to the
left end of the distribution, leading to rejection. This is easy to see in the plots of the
ecdfs.

The reordering property of the Durbin transformation also helps explain why the
CU KS test tends to do relatively well against dependent exponential sequences. The
reordering of the interarrival times, which is helpful for identifying nonexponential
distributions, tends to dissipate the dependence among dependent exponential random
variables. The cumulative impact of the dependence evidently can best be seen through
the cumulative sums of the interarrival times, that is, the arrival times, without re-
ordering.

4. THE FIRST EXPONENTIAL EXPERIMENT

Our first simulation experiment is for the discrete-time analog of the experiment for
testing the continuous-time PP in Kim and Whitt [2014b]. To study the alternative KS
tests of a PP, in Kim and Whitt [2014b] we let the null hypothesis in the base case be
a rate-1 PP observed over the time interval [0, 200], so that the expected sample size
was 200, but we also considered the longer time interval [0, 2,000].

Hence, closely paralleling that experimental design, our null hypothesis here in the
base case is a sample of size n = 200 i.i.d. mean-1 exponential random variables, but
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to see the impact of the sample size, we also give results for the larger sample size of
n = 2,000.

Closely linking the experiments helps make insightful comparisons. From an applica-
tions perspective, the exponential distribution is also a natural reference case, because
the exponential distribution is often assumed for service times as well as interarrival
times in queueing models in order that associated stochastic processes, such as the
number of customers in the system, will be Markov processes. We are thus developing
statistical tests of Markov model components.

4.1. The Cases Considered

We use the same alternative hypotheses to the continuous-time PP used in Kim and
Whitt [2014b], except that we replace the time intervals of fixed length t by sample
sizes of fixed size n. That is, we now consider stationary sequences of mean-1 random
variables. There are nine cases, each with from one to five subcases, yielding 29 cases
in all. Again, using the same cases as before facilitates comparison.

The first five cases involve i.i.d. mean-1 random variables; the last four cases involve
dependent identically distributed mean-1 random variables. The first i.i.d. case is our
null hypothesis with exponential random variables. The other i.i.d. cases have nonexpo-
nential random variables. Cases 2 and 3 contain Erlang and hyperexponential random
variables, which are, respectively, stochastically less variable and stochastically more
variable than the exponential distribution in convex stochastic order, as in Section 9.5
of Ross [1996]. Thus, they have squared coefficient of variation (scv; variance divided
by the square of the mean, denoted by c2), c2 < 1 and c2 > 1, respectively. These
distributions show deviations from the exponential distribution in their variability.
They are special phase-type distributions, which are also often assumed in order to
obtain Markov process models (that are more complicated than when the distribution
is exponential); for example, see Neuts [1981].

Cases 4 and 5 contain other i.i.d. sequences with nonexponential cdfs. Case 4 contains
a nonexponential distribution with the same scv c2 = 1 as the exponential distribution,
as well as E[X] = 1, while Case 5 contains lognormal distributions, with four different
scvs. Lognormal distributions often have been found to fit service-time data well (e.g.,
see Brown et al. [2005]).

Case 1, Exponential. The null hypothesis with i.i.d. mean-1 exponential random
variables (Base Case).

Case 2, Erlang, Ek. Erlang-k (Ek) random variables, a sum of k i.i.d. exponentials
for k = 2, 4, 6 with c2

X ≡ c2
k = 1/k .

Case 3, Hyperexponential, H2. Hyperexponential-2 (H2) random variables, a mix-
ture of two exponential cdfs with c2

X = 1.25, 1.5, 2, 4, and 10 (five cases).
The cdf is P(X ≤ x) ≡ 1 − p1e−λ1x − p2e−λ2x. We further assume balanced
means (p1λ

−1
1 = p2λ

−1
2 ) as in (3.7) of Whitt [1982] so that given the value of

c2
X, pi = [1 ±

√
(c2

X − 1)/(c2
X + 1)]/2 and λi = 2pi.

Case 4, mixture with c2
X = 1. A mixture of a more variable cdf and a less variable

cdf so that the c2
X = 1; P(X = Y ) = p = 1 − P(X = Z), where Y is H2 with c2

Y = 4,
Z is E2 with c2

Z = 1/2, and p = 1/7.

Case 5, lognormal, LN. Lognormal (LN(1, σ 2)) random variables with mean 1 and
variance σ 2 for σ 2 = c2

X = 0.25, 1.0, 4.0, 10.0 (four cases).
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Cases 6 and 7 are dependent stationary sequences that deviate from the null hypoth-
esis (Case 1) only through dependence among successive variables, each exponentially
distributed with mean 1. It is not customary to test for dependence among successive
service times in applications, but see Gans et al. [2010]. We think that it deserves more
attention. Toward that end, we consider the two cases:

Case 6, RRI, dependent exponential interarrival times. Randomly Repeated Interar-
rival (RRI) times with exponential interarrival times, constructed by letting each
successive interarrival time be a mixture of the previous interarrival time with
probability p or a new independent interarrival time from an exponential distri-
bution with mean 1, with probability 1 − p (a special case of a first-order Discrete
Autoregressive process, DAR(1), studied by Jacobs and Lewis [1978, 1983]). Its
serial correlation is Corr(Xj, Xj+k) = pk. We consider three values of p: 0.1, 0.5,
and 0.9.

Case 7, EARMA, dependent exponential interarrival times. A stationary sequence
of dependent exponential interarrival times with the correlation structure of an
autoregressive-moving average process, called EARMA(1,1) in Jacobs and Lewis
[1977]. Starting from three independent sequences of i.i.d. random variables {Xn :
n ≥ 0}, {Un : n ≥ 1}, and {Vn : n ≥ 1}, where Y0 and Xn, n ≥ 1, are exponentially
distributed with mean m = 1, while

P(Un = 0) = 1 − P(Un = 1) = β and P(Vn = 0) = 1 − P(Vn = 1) = ρ, (5)

the EARMA sequence {Sn : n ≥ 1} is defined recursively by

Sn = βXn + UnYn−1,

Yn = ρYn−1 + VnXn, n ≥ 1. (6)

Its serial correlation is Corr(Sj, Sj+k) = γρk−1, where γ = β(1−β)(1−ρ)+(1−β)2ρ.
We consider five cases of (β, ρ): (0.75, 0.50), (0.5, 0.5), (0.5, 0.75), (0.00, 0.75), and
(0.25, 0.90) so that the cumulative correlations

∑∞
k=1 Corr(Sj, Sj+k) increase: 0.25,

0.50, 1.00, 3.00, and 5.25. For more details, see Pang and Whitt [2012]. We specify
these cases by these cumulative correlations.

The final two cases are stationary sequences that have both nonexponential marginal
distributions and dependence among successive variables:

Case 8, mH2, superposition of m i.i.d. H2 renewal processes. A stationary sequence of
interarrival times from a superposition of m i.i.d. equilibrium renewal processes,
where the times between renewals (interarrival times) in each renewal process
has a hyperexponential (H2) distribution with c2

a = 4 (mH2). As the number m
of component renewal processes increases, the superposition process converges
to a PP, and thus looks locally more like a PP, with the interarrival distribution
approaching exponential and the lag-k correlations approaching 0, but small cor-
relations extending further across time, so that the superposition process retains
an asymptotic variability parameter, c2

A = 4. We consider four values of m: 2, 5,
10, and 20.

Case 9, RRI (H2), dependent H2 interarrival times with c2 = 4. RRI times with H2
interarrival times, each having mean 1, c2 = 4 and balanced means (as specified
in Case 3). The repetition is done just as in Case 6. We again consider three values
of p: 0.1, 0.5, and 0.9.

Cases 6 and 7 have short-range dependence, whereas Case 8 for large m tends to
have nearly exponential interarrival times, but longer-range dependence. For small
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m, the mH2 superposition process should behave much like the H2 renewal process in
Case 3 with the component c2 = 4; for large m, the mH2 superposition process should
behave more like Cases 6 and 7 with dependence and exponential interarrival times.

Since the new KS tests apply to i.i.d. sequences with arbitrary continuous cdfs, we
also consider alternative null hypotheses. In particular, here we report results for E2,
H2 (with c2 = 2), and lognormal LN(1, 4) (with c2 = 4) marginal cdfs having mean 1 as
well as the exponential base case.

4.2. Simulation Design

For each case, we simulated 104 replications of 3,000 interarrival times. We generate
much more data than needed in order to get rid of any initial effects. We are supposing
that we observe a stationary sequence. There is, of course, no problem if the sequence
is i.i.d. However, for the dependent sequences, stationarity is achieved approximately
by having the system operate for some time before collecting data. The initial effect
was observed to matter for the cases with dependent interarrival times and relatively
small sample sizes.

We use this simulation output to generate sample sizes of a fixed size n. With fixed
sample size n = 200, in each replication of the 104 simulated interarrival times we use
interarrival times from the 103th interarrival time to the 103 +200th interarrival time.
To consider large sample sizes, we increased n from 200 to 2,000. We then consider the
interarrival times from the 103th interarrival time to the 103 + 2,000th interarrival
time to observe the effect of larger sample size. This choice leaves little doubt about
the stationarity assumption.

For each sample, we checked our simulation results by estimating the mean and scv
of each interarrival-time cdf both before and after transformations; tables of the results
and plots of the average of the ecdfs appear in the online Appendix.

5. RESULTS OF THE FIRST EXPERIMENT

The online Appendix contains detailed results of the experiments; we present a sum-
mary here. First, we found that the sort-Log and Log tests were consistently dominated
by the Durbin [1961] test or the Lewis [1965] test, so we do not present detailed results
for those two Log cases here. For the CU, CU+Log, and Lewis tests, we considered
variants based on the exponential variables − loge {F(X)} and well as − loge {1 − F(X)},
but we did not find great differences, so we do not report those either. Thus, we present
the results of four KS tests: (i) the standard test, using the variables Uk ≡ F(Xk),
(ii) the Durbin [1961] test, (iii) the CU test, and (iv) the Lewis [1965] test, as specified
in Section 2. Under the null hypotheses, the cdf in all four cases is uniform on [0, 1].

5.1. The Base Case: i.i.d. Mean-1 Exponential Variables

For our base case, we let the null hypothesis H0 be that the data are from i.i.d. mean-
1 exponential variables. We report the number of KS tests passed (not rejected) out
of 10,000 replications as well as the average p-value with associated 95% confidence
intervals. Thus, the estimate of the power is 1−(number passed/10,000). The p-value is
the significance level below which the hypothesis would be rejected. Thus low p-values
indicate greater power. Just as in Table 1 of Kim and Whitt [2014b], the differences in
the tests is striking for the middle H2 alternative with c2 = 2.0, as shown in Table I
here. The results for the Lewis, standard, and CU tests are very similar to those for
the corresponding KS tests of a PP in Table 1 of Kim and Whitt [2014b], but the results
for the Durbin [1961] test are new, and surprisingly bad.

The results for all 29 cases are given in Table II. The first “exponential” case is the
i.i.d. exponential null hypothesis. The results show that all tests behave properly for
the i.i.d. exponential null hypothesis. The results also show that the tests perform quite
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Table I. The Power of Alternative KS Tests of the Null Hypothesis
that Data are i.i.d. Mean-1 Exponential Variables for the Sample
Size n = 200 with Significance Level α = 0.05: The Alternative

Hypothesis of i.i.d. H2 Interarrival Times having c2
X = 2

KS test Lewis Standard CU Durbin
Power 0.93 0.64 0.28 0.14
Average p-value 0.02 0.09 0.24 0.40

Table II. The Power of Alternative KS Tests of the Null Hypothesis that Data are i.i.d. Mean-1 Exponential
Variables for the Sample Size n = 200 for Various Alternative Hypotheses: Number of KS Tests Passed (denoted
by #P) at Significance Level 0.05 out of 10,000 Replications and the Average p-Values (denoted by E [ p-value ])

with Associated 95% Confidence Intervals

Standard Durbin CU Lewis
Case Subcase #P E[p-value] #P E[p-value] #P E[p-value] #P E[p-value]

Exp − 9487 0.50 ± 0.0057 9515 0.50 ± 0.0056 9511 0.50 ± 0.0056 9493 0.50 ± 0.0057
Ek k = 2 28 0.00 ± 0.0001 3320 0.08 ± 0.0029 9985 0.78 ± 0.0045 0 0.00 ± 0.0000

k = 4 0 0.00 ± 0.0000 0 0.00 ± 0.0000 10,000 0.94 ± 0.0021 0 0.00 ± 0.0000
k = 6 0 0.00 ± 0.0000 0 0.00 ± 0.0000 10,000 0.98 ± 0.0011 0 0.00 ± 0.0000

H2 c2 = 1.25 8843 0.42 ± 0.0058 9451 0.49 ± 0.0057 8956 0.41 ± 0.0056 7501 0.30 ± 0.0056
c2 = 1.5 7204 0.27 ± 0.0053 9331 0.48 ± 0.0058 8418 0.33 ± 0.0053 3966 0.12 ± 0.0039
c2 = 2 3603 0.09 ± 0.0032 8667 0.40 ± 0.0058 7186 0.24 ± 0.0046 695 0.02 ± 0.0013
c2 = 4 90 0.00 ± 0.0003 4569 0.13 ± 0.0039 3648 0.08 ± 0.0027 22 0.00 ± 0.0003
c2 = 10 0 0.00 ± 0.0000 878 0.02 ± 0.0012 928 0.02 ± 0.0014 67 0.00 ± 0.0006

Mixture − 1200 0.02 ± 0.0009 7016 0.26 ± 0.0053 9438 0.57 ± 0.0061 187 0.00 ± 0.0004
LN (1, 0.25) 0 0.00 ± 0.0000 0 0.00 ± 0.0000 10,000 0.94 ± 0.0022 0 0.00 ± 0.0000

(1, 1) 98 0.00 ± 0.0002 3482 0.08 ± 0.0025 9517 0.53 ± 0.0058 24 0.00 ± 0.0001
(1, 4) 176 0.00 ± 0.0005 5542 0.18 ± 0.0047 4742 0.13 ± 0.0036 28 0.00 ± 0.0002
(1, 10) 0 0.00 ± 0.0000 353 0.01 ± 0.0008 2024 0.04 ± 0.0019 0 0.00 ± 0.0000

RRI p = 0.1 9048 0.41 ± 0.0055 1911 0.03 ± 0.0012 9044 0.42 ± 0.0056 9121 0.41 ± 0.0054
p = 0.5 4659 0.11 ± 0.0030 0 0.00 ± 0.0000 5587 0.16 ± 0.0039 4624 0.11 ± 0.0030
p = 0.9 16 0.00 ± 0.0001 0 0.00 ± 0.0000 701 0.01 ± 0.0011 13 0.00 ± 0.0001

EARMA 0.25 9284 0.47 ± 0.0058 9475 0.50 ± 0.0057 8564 0.36 ± 0.0055 9498 0.50 ± 0.0057
0.5 8865 0.43 ± 0.0059 9516 0.50 ± 0.0057 7519 0.27 ± 0.0050 9393 0.49 ± 0.0058
1 8178 0.37 ± 0.0059 9419 0.50 ± 0.0057 6009 0.19 ± 0.0043 8964 0.44 ± 0.0059
3 5209 0.21 ± 0.0055 6356 0.23 ± 0.0050 1896 0.04 ± 0.0018 6796 0.30 ± 0.0061
5.25 4100 0.14 ± 0.0044 8215 0.38 ± 0.0061 1598 0.03 ± 0.0018 5680 0.21 ± 0.0051

mH2 m = 2 4398 0.14 ± 0.0044 8871 0.42 ± 0.0058 4355 0.11 ± 0.0032 1546 0.04 ± 0.0024
m = 5 7514 0.32 ± 0.0058 9363 0.48 ± 0.0057 5400 0.17 ± 0.0043 7228 0.29 ± 0.0057
m = 10 7818 0.35 ± 0.0060 9423 0.49 ± 0.0057 6562 0.24 ± 0.0051 9004 0.44 ± 0.0059
m = 20 7996 0.37 ± 0.0060 9457 0.50 ± 0.0057 7804 0.33 ± 0.0057 9431 0.49 ± 0.0057

RRI(H2) p = 0.1 104 0.00 ± 0.0003 126 0.00 ± 0.0003 2987 0.07 ± 0.0024 37 0.00 ± 0.0003
p = 0.5 253 0.00 ± 0.0005 0 0.00 ± 0.0000 1105 0.02 ± 0.0013 215 0.00 ± 0.0006
p = 0.9 4 0.00 ± 0.0000 0 0.00 ± 0.0000 229 0.00 ± 0.0005 5 0.00 ± 0.0000

differently for the alternative hypotheses. Table II shows that the standard and Lewis
tests all perform reasonably well for the i.i.d. cases with nonexponential interarrival-
time cdfs, in marked contrast to the CU and Durbin tests. Table II also shows that the
Lewis test is consistently most powerful for these cases. The ordering remains for H2
cdfs with both lower and higher scvs.

Just as in Kim and Whitt [2014b], the story is more complicated for the depen-
dent sequences. The Durbin KS test performs remarkably well for the RRI cases, far
better than all others. Upon further reflection, this makes sense, because the RRI
sequence produces strings of identical observations. When the random variables are
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Fig. 1. Comparison of the average ecdf based on H2 (c2 = 2) data for 104 replications and n = 200 with the
cdf of the exponential null hypothesis: Standard, Durbin, CU, and Lewis tests (from left to right).

Fig. 2. Comparison of the average ecdf based on E2 data for 104 replications and n = 200 with the cdf of the
exponential null hypothesis: Standard, Durbin, CU, and Lewis tests (from left to right).

Fig. 3. Comparison of the average ecdf based on LN(1, 4) data for 104 replications and n = 200 with the cdf
of the exponential null hypothesis: Standard, Durbin, CU, and Lewis tests (from left to right).

ordered in ascending order, all repeated values will remain next to each other. And then,
afterwards, when the Durbin transformation looks at the intervals between the ordered
variables, these intervals will all be 0’s. Hence, all the repetitions will be converted to
0’s by the Durbin transformation. That in turn increases F̄n(0) for the ecdf F̄n in Equa-
tion (1), which typically increases the KS statistic Dn in Equation (2). It is evident that
this property is not achieved by any of the other KS tests.

For the RRI(H2) cases, all tests except CU perform very well. Hence, the Lewis test is
consistently superior against nonexponential marginals. As in Kim and Whitt [2014b],
none of the tests has much power against the EARMA alternatives, but the CU test
has the most power.

5.2. Plots of the Average Empirical Distributions

As in Kim and Whitt [2014b], we find that useful insight is provided by plots comparing
the average of the ecdfs over all 10,000 replications to the cdf associated with the null
hypothesis, which is uniform in each case here. Figures 1–4 illustrate for the i.i.d.
variables having cdfs H2 with c2 = 2, E2, and LN(1, 4), and for the dependent RRI(0.5)
variables with n = 200. These figures show that the transformation in the Lewis KS
test provides greater separation between the average ecdf and the cdf in the i.i.d. cases.

ACM Transactions on Modeling and Computer Simulation, Vol. 25, No. 4, Article 24, Publication date: May 2015.



24:12 S.-H. Kim and W. Whitt

Fig. 4. Comparison of the average ecdf based on RRI(0.5) data for 104 replications and n = 200 with the cdf
of the exponential null hypothesis: Standard, Durbin, CU, and Lewis tests (from left to right).

In each case, the Durbin and Lewis tests tend to produce stochastic order compared
to the uniform cdf, whereas the ecdf crosses over for the standard KS test, which is
especially evident for E2.

We have already observed that the Durbin test excels for RRI because it converts
the repetitions into 0’s. For RRI with p = 0.5, half of the variables are repetitions.
Hence, half of the variables will be transformed into 0’s. That is confirmed by the ecdf
associated with the Durbin test in Figure 4.

5.3. Erlang, Hyperexponential, and Lognormal Null Hypotheses

We now consider three different i.i.d. null hypotheses: E2, H2 with c2 = 2, and LN(1, 4);
lognormal hypotheses are especially interesting for service systems, for example, Brown
et al. [2005]. The results are shown for the same 29 cases in the following Tables III–V
for the base case of n = 200. As before, all tests perform properly for the null hy-
potheses. The ordering of the tests by power when we consider the i.i.d. exponential
alternative hypothesis is the same as before. Overall, these tables show that the pre-
vious conclusions for the i.i.d. exponential null hypothesis conclusions extend to i.i.d.
null hypotheses with other marginal cdfs.

As with the exponential null hypothesis, the Durbin test performs especially well
for the RRI, because the repetitions are converted to 0’s, but for these other null
hypotheses, the standard and Lewis tests have almost equal power.

5.4. Larger Sample Sizes

Tables II–V clearly show how the power decreases as the alternative gets closer to the
i.i.d. null hypothesis. For the i.i.d. exponential null hypothesis and the i.i.d. alternative
hypotheses, we see this as the scv c2

X approaches 1; for the dependent exponential
sequences, we see this as the degree of dependence decreases. However, all of these are
for the sample size n = 200. The power also increases as we increase the sample size, as
we now illustrate by considering the case n = 2,000 for the exponential null hypothesis
in Table VI. Corresponding results for Erlang, hyperexponential, and lognormal null
hypotheses appear in the online Appendix. When the sample size is increased to n =
2,000, all the tests except the CU test reject the alternative hypotheses in all 104

replications for most of the alternatives. Nevertheless, the superiority of the Lewis test
for nonexponential marginals is evident from the H2 case with c2 = 1.25, the superiority
of the Durbin test for the RRI cases is evident, and the superiority of the CU test for
the EARMA cases is evident, consistent with the previous results for n = 200.

6. THE SECOND NORMAL EXPERIMENT

The poor results for the Durbin [1961] test for the i.i.d. cases in Section 5 seem incon-
sistent with the results in Durbin [1961] and the enthusiastic endorsement by Lewis
[1965], so we decided to repeat some of the experiments actually performed by Durbin
[1961]. We now consider the same four KS tests applied to the i.i.d. standard normal
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Table III. The Power of Alternative KS Tests of the Null Hypothesis that Data are i.i.d. E2 variables for the Sample
Size n = 200 for Various Alternative Hypotheses: Number of KS Tests Passed (denoted by #P) at Significance

Level 0.05 out of 10,000 Replications and the Average p-Values (denoted by E [ p-value ]) with
Associated 95% Confidence Intervals

Standard Durbin CU Lewis
Case Subcase #P E[p-value] #P E[p-value] #P E[p-value] #P E[p-value]

Exp − 129 0.00 ± 0.0003 2596 0.06 ± 0.0027 7421 0.24 ± 0.0046 0 0.00 ± 0.0000
Ek k = 2 9492 0.50 ± 0.0056 9500 0.49 ± 0.0057 9497 0.50 ± 0.0057 9506 0.50 ± 0.0057

k = 4 155 0.00 ± 0.0003 4100 0.11 ± 0.0034 9977 0.77 ± 0.0046 0 0.00 ± 0.0000
k = 6 0 0.00 ± 0.0000 7 0.00 ± 0.0001 9999 0.88 ± 0.0033 0 0.00 ± 0.0000

H2 c2 = 1.25 17 0.00 ± 0.0001 1181 0.03 ± 0.0016 6106 0.17 ± 0.0040 0 0.00 ± 0.0000
c2 = 1.5 0 0.00 ± 0.0000 539 0.01 ± 0.0008 4905 0.12 ± 0.0033 0 0.00 ± 0.0000
c2 = 2 0 0.00 ± 0.0000 129 0.00 ± 0.0004 3336 0.07 ± 0.0024 0 0.00 ± 0.0000
c2 = 4 0 0.00 ± 0.0000 0 0.00 ± 0.0000 752 0.01 ± 0.0009 0 0.00 ± 0.0000
c2 = 10 0 0.00 ± 0.0000 0 0.00 ± 0.0000 67 0.00 ± 0.0004 0 0.00 ± 0.0000

Mixture − 8069 0.32 ± 0.0054 9286 0.46 ± 0.0058 7152 0.28 ± 0.0054 4466 0.15 ± 0.0046
LN (1, 0.25) 0 0.00 ± 0.0000 425 0.01 ± 0.0006 9973 0.75 ± 0.0048 0 0.00 ± 0.0000

(1, 1) 3086 0.07 ± 0.0027 8424 0.37 ± 0.0058 6809 0.22 ± 0.0045 331 0.01 ± 0.0009
(1, 4) 0 0.00 ± 0.0000 3 0.00 ± 0.0000 1507 0.03 ± 0.0014 0 0.00 ± 0.0000
(1, 10) 0 0.00 ± 0.0000 0 0.00 ± 0.0000 408 0.01 ± 0.0006 0 0.00 ± 0.0000

RRI p = 0.1 135 0.00 ± 0.0003 24 0.00 ± 0.0001 6455 0.19 ± 0.0042 5 0.00 ± 0.0000
p = 0.5 164 0.00 ± 0.0004 0 0.00 ± 0.0000 2429 0.05 ± 0.0020 45 0.00 ± 0.0002
p = 0.9 3 0.00 ± 0.0000 0 0.00 ± 0.0000 142 0.00 ± 0.0004 3 0.00 ± 0.0000

EARMA 0.25 108 0.00 ± 0.0002 2552 0.06 ± 0.0027 5494 0.15 ± 0.0037 1 0.00 ± 0.0000
0.5 114 0.00 ± 0.0003 2614 0.07 ± 0.0027 4064 0.10 ± 0.0029 0 0.00 ± 0.0000
1 135 0.00 ± 0.0003 2597 0.07 ± 0.0028 2670 0.06 ± 0.0022 6 0.00 ± 0.0001
3 918 0.02 ± 0.0015 3573 0.12 ± 0.0043 508 0.01 ± 0.0008 585 0.02 ± 0.0018
5.25 432 0.01 ± 0.0007 2347 0.07 ± 0.0032 374 0.01 ± 0.0006 339 0.01 ± 0.0007

mH2 m = 2 0 0.00 ± 0.0000 289 0.01 ± 0.0007 1248 0.02 ± 0.0013 0 0.00 ± 0.0000
m = 5 23 0.00 ± 0.0001 1179 0.03 ± 0.0015 2356 0.05 ± 0.0022 0 0.00 ± 0.0000
m = 10 63 0.00 ± 0.0002 1684 0.04 ± 0.0020 3581 0.09 ± 0.0031 0 0.00 ± 0.0000
m = 20 96 0.00 ± 0.0002 2070 0.05 ± 0.0024 4884 0.14 ± 0.0038 0 0.00 ± 0.0000

RRI(H2) p = 0.1 0 0.00 ± 0.0000 0 0.00 ± 0.0000 557 0.01 ± 0.0007 0 0.00 ± 0.0000
p = 0.5 0 0.00 ± 0.0000 0 0.00 ± 0.0000 151 0.00 ± 0.0003 0 0.00 ± 0.0000
p = 0.9 0 0.00 ± 0.0000 0 0.00 ± 0.0000 23 0.00 ± 0.0002 1 0.00 ± 0.0000

(N(0, 1)) null hypothesis. To keep the same mean equal to 0 for all alternatives, we
consider all the previous 29 cases after subtracting 1 to make them all have mean
0. Indeed, the first alternative considered by Durbin [1961] was an i.i.d. sequence of
random variables distributed as Y −1, where Y is a mean-1 exponential variable; it has
the same mean and variance as N(0, 1). We summarize the results for this alternative
with the sample size n = 50 used by Durbin [1961] in Table VII. Table VII shows that
now the Durbin [1961] and Lewis [1965] have essentially the same power, which is far
greater than for the standard and CU tests.

Table VIII shows all the results for our original 29 cases with n = 50. Since
those alternatives have quite a different shape from the symmetric N(0, 1) dis-
tributions, we also considered i.i.d. sequences of random variables distributed as
Zk − 1 +

√
1 − (1/k)N(0, 1), where Zk has an Ek cdf, for k = 2, 4, 6. These have the

same first two moments and approximately the same shape. The new base case is the
i.i.d. standard normal null hypothesis; it appears just below the previous alternatives
in Table VIII. Just as in the previous tables, the results show that all tests behave
properly for the standard normal null hypothesis. Overall, Table VIII shows that the
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Table IV. The Power of Alternative KS Tests of the Null Hypothesis that Data are i.i.d. H2 with c2 = 2 Variables for
the Sample Size n = 200 for Various Alternative Hypotheses: Number of KS Tests Passed (denoted by #P) at
Significance Level 0.05 out of 10,000 Replications and the Average p-Values (denoted by E [ p-value ]) with

Associated 95% Confidence Intervals

Standard Durbin CU Lewis
Case Subcase #P E[p-value] #P E[p-value] #P E[p-value] #P E[p-value]

Exp − 3661 0.10 ± 0.0034 8951 0.43 ± 0.0058 9935 0.69 ± 0.0051 1613 0.03 ± 0.0014
Ek k = 2 0 0.00 ± 0.0000 92 0.00 ± 0.0003 10000 0.89 ± 0.0032 0 0.00 ± 0.0000

k = 4 0 0.00 ± 0.0000 0 0.00 ± 0.0000 10000 0.98 ± 0.0012 0 0.00 ± 0.0000
k = 6 0 0.00 ± 0.0000 0 0.00 ± 0.0000 10000 0.99 ± 0.0005 0 0.00 ± 0.0000

H2 c2 = 1.25 6574 0.23 ± 0.0052 9433 0.49 ± 0.0057 9850 0.63 ± 0.0055 5543 0.15 ± 0.0038
c2 = 1.5 8530 0.39 ± 0.0059 9497 0.50 ± 0.0057 9750 0.58 ± 0.0056 8307 0.34 ± 0.0055
c2 = 2 9511 0.50 ± 0.0056 9482 0.50 ± 0.0057 9482 0.50 ± 0.0057 9507 0.50 ± 0.0056
c2 = 4 4983 0.14 ± 0.0040 9107 0.44 ± 0.0058 8143 0.31 ± 0.0052 3888 0.11 ± 0.0038
c2 = 10 269 0.01 ± 0.0005 6142 0.19 ± 0.0046 5098 0.15 ± 0.0039 1221 0.04 ± 0.0024

Mixture − 0 0.00 ± 0.0000 1932 0.04 ± 0.0021 9989 0.80 ± 0.0043 0 0.00 ± 0.0000
LN (1, 0.25) 0 0.00 ± 0.0000 0 0.00 ± 0.0000 10000 0.98 ± 0.0011 0 0.00 ± 0.0000

(1, 1) 0 0.00 ± 0.0000 585 0.01 ± 0.0006 9982 0.77 ± 0.0046 0 0.00 ± 0.0000
(1, 4) 5685 0.18 ± 0.0045 9051 0.44 ± 0.0059 8493 0.36 ± 0.0055 5281 0.16 ± 0.0043
(1, 10) 13 0.00 ± 0.0001 4888 0.15 ± 0.0043 5824 0.17 ± 0.0042 11 0.00 ± 0.0001

RRI p = 0.1 3400 0.09 ± 0.0032 1352 0.02 ± 0.0010 9804 0.61 ± 0.0056 1410 0.03 ± 0.0013
p = 0.5 2058 0.05 ± 0.0020 0 0.00 ± 0.0000 7608 0.28 ± 0.0050 883 0.02 ± 0.0012
p = 0.9 9 0.00 ± 0.0001 0 0.00 ± 0.0000 1282 0.03 ± 0.0017 6 0.00 ± 0.0000

EARMA 0.25 3697 0.10 ± 0.0035 8922 0.43 ± 0.0058 9684 0.56 ± 0.0056 1577 0.03 ± 0.0014
0.5 3839 0.11 ± 0.0037 8872 0.42 ± 0.0059 9216 0.45 ± 0.0057 1630 0.03 ± 0.0015
1 3755 0.11 ± 0.0037 8629 0.40 ± 0.0059 8364 0.34 ± 0.0055 1607 0.03 ± 0.0017
3 3607 0.13 ± 0.0044 5683 0.19 ± 0.0047 3333 0.08 ± 0.0028 2577 0.07 ± 0.0032
5.25 2770 0.08 ± 0.0032 6642 0.27 ± 0.0056 3118 0.08 ± 0.0029 1690 0.05 ± 0.0025

mH2 m = 2 8771 0.42 ± 0.0058 9466 0.49 ± 0.0057 7788 0.29 ± 0.0052 9091 0.43 ± 0.0057
m = 5 6227 0.24 ± 0.0053 9290 0.47 ± 0.0058 7974 0.33 ± 0.0056 5465 0.16 ± 0.0041
m = 10 5052 0.18 ± 0.0047 9032 0.44 ± 0.0058 8543 0.40 ± 0.0061 3210 0.07 ± 0.0025
m = 20 4598 0.15 ± 0.0044 9013 0.43 ± 0.0058 9265 0.50 ± 0.0061 2263 0.05 ± 0.0018

RRI(H2) p = 0.1 4641 0.14 ± 0.0040 1227 0.02 ± 0.0010 7377 0.26 ± 0.0048 3720 0.11 ± 0.0037
p = 0.5 2542 0.05 ± 0.0022 0 0.00 ± 0.0000 3586 0.09 ± 0.0029 2467 0.05 ± 0.0022
p = 0.9 13 0.00 ± 0.0001 0 0.00 ± 0.0000 440 0.01 ± 0.0008 9 0.00 ± 0.0001

Durbin [1961] test performs much better now, just as originally reported. In this case
both the Durbin [1961] and Lewis [1965] KS tests perform much better than the stan-
dard and CU alternatives. An exception is the set of three modified Erlang cases, with
the same shape and first two moments as N(0, 1). The Lewis test has the most power,
but all four tests have low power for these cases.

As in Section 5, the power increases as the sample size increases; see the Appendix
for the test results for the larger sample size n = 200. In that case, we observe that
all tests except CU have estimated perfect power except in the last three modified
Erlang cases, where the Lewis test stands out with power 0.375 for the modified E2
case compared to 0.130 for standard and CU, and only 0.055 for Durbin. Figures 5 and
6 show that the reason can be seen in the average of the ecdfs of the transformed data.

7. ESTIMATING PARAMETERS

The KS test assumes a fully specified cdf, which is rarely the case in applications. In
this section we investigate the consequence of having to estimate the parameters of
the cdf in the null hypothesis. Before doing so, we observe that there is one case in
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Table V. The Power of Alternative KS Tests of the Null Hypothesis that Data are i.i.d. LN(1, 4) Variables for the
Sample Size n = 200 for Various Alternative Hypotheses: Number of KS Tests Passed (denoted by #P) at

Significance Level 0.05 out of 10,000 Replications and the Average p-Values (denoted by E [ p-value ]) with
Associated 95% Confidence Intervals

Standard Durbin CU Lewis
Case Subcase #P E[p-value] #P E[p-value] #P E[p-value] #P E[p-value]

Exp − 181 0.00 ± 0.0005 5509 0.18 ± 0.0046 9972 0.75 ± 0.0047 38 0.00 ± 0.0002
Ek k = 2 0 0.00 ± 0.0000 0 0.00 ± 0.0000 10000 0.93 ± 0.0024 0 0.00 ± 0.0000

k = 4 0 0.00 ± 0.0000 0 0.00 ± 0.0000 10000 0.99 ± 0.0007 0 0.00 ± 0.0000
k = 6 0 0.00 ± 0.0000 0 0.00 ± 0.0000 10000 1.00 ± 0.0003 0 0.00 ± 0.0000

H2 c2 = 1.25 811 0.02 ± 0.0012 7382 0.29 ± 0.0056 9939 0.70 ± 0.0051 513 0.01 ± 0.0007
c2 = 1.5 2340 0.05 ± 0.0023 8354 0.37 ± 0.0058 9895 0.66 ± 0.0053 2255 0.05 ± 0.0020
c2 = 2 5665 0.17 ± 0.0043 9006 0.43 ± 0.0058 9788 0.59 ± 0.0055 6140 0.19 ± 0.0043
c2 = 4 9164 0.36 ± 0.0048 8864 0.41 ± 0.0058 9294 0.46 ± 0.0056 8783 0.31 ± 0.0046
c2 = 10 3774 0.08 ± 0.0023 6700 0.23 ± 0.0050 8538 0.35 ± 0.0054 5450 0.13 ± 0.0032

Mixture − 0 0.00 ± 0.0000 196 0.00 ± 0.0005 10,000 0.87 ± 0.0034 0 0.00 ± 0.0000
LN (1, 0.25) 0 0.00 ± 0.0000 0 0.00 ± 0.0000 10,000 0.99 ± 0.0005 0 0.00 ± 0.0000

(1, 1) 0 0.00 ± 0.0000 90 0.00 ± 0.0003 9999 0.85 ± 0.0037 0 0.00 ± 0.0000
(1, 4) 9508 0.50 ± 0.0056 9508 0.50 ± 0.0056 9508 0.50 ± 0.0057 9490 0.50 ± 0.0057
(1, 10) 232 0.01 ± 0.0005 6261 0.22 ± 0.0051 8094 0.30 ± 0.0051 185 0.00 ± 0.0004

RRI p = 0.1 193 0.00 ± 0.0005 346 0.01 ± 0.0004 9921 0.68 ± 0.0053 47 0.00 ± 0.0001
p = 0.5 408 0.01 ± 0.0007 0 0.00 ± 0.0000 8255 0.34 ± 0.0054 120 0.00 ± 0.0003
p = 0.9 13 0.00 ± 0.0001 0 0.00 ± 0.0000 1738 0.04 ± 0.0021 3 0.00 ± 0.0001

EARMA 0.25 206 0.00 ± 0.0006 5443 0.18 ± 0.0046 9866 0.64 ± 0.0054 34 0.00 ± 0.0001
0.5 312 0.01 ± 0.0007 5388 0.17 ± 0.0045 9571 0.53 ± 0.0058 44 0.00 ± 0.0002
1 436 0.01 ± 0.0009 5032 0.16 ± 0.0045 9023 0.43 ± 0.0058 72 0.00 ± 0.0003
3 1594 0.04 ± 0.0024 4073 0.13 ± 0.0041 4018 0.10 ± 0.0033 647 0.01 ± 0.0012
5.25 1220 0.03 ± 0.0019 3612 0.12 ± 0.0042 4027 0.11 ± 0.0036 469 0.01 ± 0.0013

mH2 m = 2 4930 0.15 ± 0.0040 8640 0.39 ± 0.0058 8786 0.39 ± 0.0057 4425 0.12 ± 0.0035
m = 5 1706 0.04 ± 0.0022 7193 0.27 ± 0.0055 8677 0.40 ± 0.0059 606 0.01 ± 0.0008
m = 10 1083 0.03 ± 0.0017 6179 0.22 ± 0.0051 9085 0.48 ± 0.0062 178 0.00 ± 0.0004
m = 20 808 0.02 ± 0.0013 5752 0.19 ± 0.0049 9572 0.57 ± 0.0060 79 0.00 ± 0.0002

RRI(H2) p = 0.1 8581 0.29 ± 0.0046 834 0.02 ± 0.0008 8830 0.39 ± 0.0055 8117 0.26 ± 0.0044
p = 0.5 3857 0.08 ± 0.0024 0 0.00 ± 0.0000 5080 0.14 ± 0.0036 3547 0.07 ± 0.0024
p = 0.9 17 0.00 ± 0.0001 0 0.00 ± 0.0000 658 0.01 ± 0.0010 5 0.00 ± 0.0001

which we do not need to estimate any parameters. That fortunate situation occurs with
exponential cdfs. Exponential cdfs can be regarded as the interarrival times of a PP
with a rate equal to the reciprocal of its mean. However, we do not need to know that
mean, because the conditional-uniform transformation is independent of the rate of
the PP. Thus, the new KS tests of an i.i.d. sequence with an exponential cdf that exploit
the CU property have the advantage that they do not require estimating the mean.

Having to estimate the parameters can have a big influence. For example, in Kim
and Whitt [2014b] (see Section 6 of its online Appendix [Kim and Whitt 2014c] for
further details), we found that in a standard KS test of a mean-1 exponential cdf, if we
use the KS test with the estimated mean and act as if it is the known mean, then it
is necessary to increase the nominal significance level from 0.05 to 0.18 with a sample
size of n = 200 in order for the actual significance level to be α = 0.05. The resulting
statistical test with estimated mean then coincides with the Lilliefors [1969] test.

To examine the impact of estimating the parameters, we consider testing for lognor-
mal and normal distributions with estimated parameters, using the maximum like-
lihood estimators. (See Section F of the Appendix for further information on how we
estimated the parameters and selected the nominal significance levels.) The nominal
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Table VI. The Power of Alternative KS Tests of the Null Hypothesis that Data are i.i.d. Mean-1 Exponential
Variables for the Sample Sze n = 2,000 for Various Alternative Hypotheses: Number of KS Tests Passed

(denoted by #P) at Significance Level 0.05 out of 10,000 Replications and the Average p-Values (denoted by
E [ p-value ]) with Associated 95% Confidence Intervals

Standard Durbin CU Lewis
Case Subcase #P E[p-value] #P E[p-value] #P E[p-value] #P E[p-value]

Exp − 9515 0.50 ± 0.0056 9495 0.50 ± 0.0057 9481 0.50 ± 0.0057 9495 0.50 ± 0.0057
Ek k = 2 0 0.00 ± 0.0000 0 0.00 ± 0.0000 9985 0.79 ± 0.0044 0 0.00 ± 0.0000

k = 4 0 0.00 ± 0.0000 0 0.00 ± 0.0000 10,000 0.95 ± 0.0019 0 0.00 ± 0.0000
k = 6 0 0.00 ± 0.0000 0 0.00 ± 0.0000 10,000 0.98 ± 0.0009 0 0.00 ± 0.0000

H2 c2 = 1.25 3380 0.08 ± 0.0029 9360 0.48 ± 0.0057 8957 0.40 ± 0.0055 281 0.01 ± 0.0006
c2 = 1.5 68 0.00 ± 0.0002 8320 0.36 ± 0.0059 8313 0.32 ± 0.0051 0 0.00 ± 0.0000
c2 = 2 0 0.00 ± 0.0000 3425 0.08 ± 0.0030 6893 0.21 ± 0.0043 0 0.00 ± 0.0000
c2 = 4 0 0.00 ± 0.0000 0 0.00 ± 0.0000 2788 0.05 ± 0.0019 0 0.00 ± 0.0000
c2 = 10 0 0.00 ± 0.0000 0 0.00 ± 0.0000 34 0.00 ± 0.0002 0 0.00 ± 0.0000

Mixture − 0 0.00 ± 0.0000 4 0.00 ± 0.0001 9450 0.52 ± 0.0058 0 0.00 ± 0.0000
LN (1, 0.25) 0 0.00 ± 0.0000 0 0.00 ± 0.0000 10,000 0.95 ± 0.0019 0 0.00 ± 0.0000

(1, 1) 0 0.00 ± 0.0000 0 0.00 ± 0.0000 9501 0.51 ± 0.0057 0 0.00 ± 0.0000
(1, 4) 0 0.00 ± 0.0000 0 0.00 ± 0.0000 2610 0.06 ± 0.0023 0 0.00 ± 0.0000
(1, 10) 0 0.00 ± 0.0000 0 0.00 ± 0.0000 242 0.00 ± 0.0005 0 0.00 ± 0.0000

RRI p = 0.1 9010 0.41 ± 0.0055 0 0.00 ± 0.0000 9129 0.41 ± 0.0055 9014 0.40 ± 0.0055
p = 0.5 4410 0.10 ± 0.0028 0 0.00 ± 0.0000 4666 0.11 ± 0.0030 4531 0.10 ± 0.0028
p = 0.9 0 0.00 ± 0.0000 0 0.00 ± 0.0000 25 0.00 ± 0.0001 0 0.00 ± 0.0000

EARMA 0.25 9336 0.47 ± 0.0057 9483 0.50 ± 0.0057 8326 0.33 ± 0.0052 9429 0.49 ± 0.0057
0.5 8806 0.42 ± 0.0059 9505 0.50 ± 0.0057 7063 0.22 ± 0.0044 9408 0.49 ± 0.0057
1 8210 0.37 ± 0.0059 9488 0.50 ± 0.0057 4722 0.12 ± 0.0031 8901 0.43 ± 0.0058
3 5247 0.21 ± 0.0054 6406 0.22 ± 0.0049 822 0.01 ± 0.0008 6715 0.29 ± 0.0061
5.25 4111 0.14 ± 0.0045 9290 0.47 ± 0.0058 193 0.00 ± 0.0003 5769 0.21 ± 0.0051

mH2 m = 2 0 0.00 ± 0.0000 5272 0.16 ± 0.0042 3029 0.06 ± 0.0022 0 0.00 ± 0.0000
m = 5 3135 0.09 ± 0.0032 9281 0.46 ± 0.0058 3434 0.07 ± 0.0024 182 0.00 ± 0.0004
m = 10 6428 0.25 ± 0.0054 9471 0.49 ± 0.0057 3732 0.09 ± 0.0027 4432 0.13 ± 0.0040
m = 20 7364 0.31 ± 0.0058 9470 0.50 ± 0.0057 4365 0.11 ± 0.0033 8127 0.35 ± 0.0058

RRI(H2) p = 0.1 0 0.00 ± 0.0000 0 0.00 ± 0.0000 1897 0.03 ± 0.0015 0 0.00 ± 0.0000
p = 0.5 0 0.00 ± 0.0000 0 0.00 ± 0.0000 177 0.00 ± 0.0003 0 0.00 ± 0.0000
p = 0.9 0 0.00 ± 0.0000 0 0.00 ± 0.0000 0 0.00 ± 0.0000 0 0.00 ± 0.0000

Table VII. The Power of Alternative KS Tests of the Null Hypothesis that Data are
i.i.d. Standard Normal N(0, 1) Variables for the Sample Size n = 50 with Significance

Level α = 0.05: The Alternative Hypothesis of i.i.d. Random Variables Distributed
as Y − 1, where Y is a Mean-1 Exponential Random Variable

KS test Lewis Standard CU Durbin
Power 0.885 0.443 0.328 0.813
Average p-value 0.02 0.07 0.23 0.04

significance level had to be increased from 0.05 to 0.38 for the Standard test and
to 0.16 for the Lewis test in order for the actual significance level to be α = 0.05.
Tables IX–XI provide the test results.

The four lognormal distributions with different variances can each be regarded as
the null hypothesis when the KS tests of a lognormal null hypothesis are applied with
estimated parameters, because they will have the appropriate estimated parameters.
Table IX for n = 200 and Table X for n = 2,000 shows that, after the adjustments
described earlier, they all have the correct significance level. Comparing Table IX to
Table V, we see that the relative performance of the four KS tests is about the same: The
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Table VIII. The Power of Alternative KSTests of the Null Hypothesis that Data are i.i.d. N(0, 1) Variables
for the Sample Size n = 50 for Various Alternative Hypotheses: Number of KS Tests Passed (denoted by #P) at

Significance Level 0.05 out of 10, 000 Replications and the Average p-Values (denoted by E [ p-value ]) with
Associated 95% Confidence Intervals. The First Nine Alternative Hypotheses have Mean

0 by Subtracting 1 from the Previous Mean-1 Cases

Standard Durbin CU Lewis
Case Subcase #P E[p-value] #P E[p-value] #P E[p-value] #P E[p-value]

Exp − 5576 0.07 ± 0.0010 1871 0.04 ± 0.0016 6716 0.23 ± 0.0049 1154 0.02 ± 0.0006
Ek k = 2 3813 0.04 ± 0.0006 2953 0.05 ± 0.0018 9364 0.52 ± 0.0059 376 0.01 ± 0.0004

k = 4 20 0.01 ± 0.0002 336 0.01 ± 0.0004 9977 0.81 ± 0.0043 0 0.00 ± 0.0000
k = 6 0 0.00 ± 0.0000 5 0.00 ± 0.0000 10,000 0.92 ± 0.0026 0 0.00 ± 0.0000

H2 c2 = 1.25 4188 0.05 ± 0.0010 1004 0.02 ± 0.0011 5051 0.16 ± 0.0043 417 0.01 ± 0.0004
c2 = 1.5 3100 0.04 ± 0.0009 629 0.01 ± 0.0009 4022 0.12 ± 0.0039 174 0.00 ± 0.0003
c2 = 2 1747 0.02 ± 0.0008 221 0.00 ± 0.0004 2639 0.07 ± 0.0031 36 0.00 ± 0.0001
c2 = 4 222 0.00 ± 0.0003 17 0.00 ± 0.0001 1237 0.04 ± 0.0027 1 0.00 ± 0.0000
c2 = 10 7 0.00 ± 0.0001 1 0.00 ± 0.0000 1870 0.09 ± 0.0046 0 0.00 ± 0.0000

Mixture − 4836 0.05 ± 0.0008 2671 0.05 ± 0.0018 7273 0.37 ± 0.0065 533 0.01 ± 0.0004
LN (1, 0.25) 0 0.00 ± 0.0001 41 0.00 ± 0.0001 9915 0.76 ± 0.0050 0 0.00 ± 0.0000

(1, 1) 1722 0.03 ± 0.0005 700 0.01 ± 0.0007 5971 0.24 ± 0.0055 89 0.00 ± 0.0002
(1, 4) 460 0.01 ± 0.0004 31 0.00 ± 0.0002 2027 0.06 ± 0.0028 5 0.00 ± 0.0000
(1, 10) 24 0.00 ± 0.0001 0 0.00 ± 0.0000 1168 0.03 ± 0.0021 1 0.00 ± 0.0000

RRI p = 0.1 5219 0.06 ± 0.0010 763 0.01 ± 0.0009 6239 0.21 ± 0.0049 1152 0.02 ± 0.0007
p = 0.5 2791 0.03 ± 0.0008 0 0.00 ± 0.0000 4283 0.13 ± 0.0039 788 0.01 ± 0.0007
p = 0.9 62 0.00 ± 0.0001 0 0.00 ± 0.0000 3696 0.17 ± 0.0057 15 0.00 ± 0.0001

EARMA 0.25 5395 0.07 ± 0.0010 1813 0.04 ± 0.0016 5820 0.20 ± 0.0048 1120 0.02 ± 0.0007
0.5 5296 0.06 ± 0.0011 1872 0.04 ± 0.0016 5140 0.17 ± 0.0045 1192 0.02 ± 0.0008
1 5028 0.06 ± 0.0011 1884 0.04 ± 0.0017 4883 0.17 ± 0.0047 1370 0.02 ± 0.0010
3 3034 0.03 ± 0.0008 2492 0.05 ± 0.0019 2970 0.09 ± 0.0034 1474 0.03 ± 0.0014
5.25 3446 0.04 ± 0.0010 2049 0.05 ± 0.0020 4275 0.17 ± 0.0053 2115 0.05 ± 0.0023

mH2 m = 2 2363 0.03 ± 0.0009 460 0.01 ± 0.0007 2777 0.09 ± 0.0038 76 0.00 ± 0.0002
m = 5 4045 0.05 ± 0.0010 1109 0.02 ± 0.0012 4591 0.16 ± 0.0046 421 0.01 ± 0.0005
m = 10 4667 0.06 ± 0.0010 1477 0.03 ± 0.0015 5682 0.20 ± 0.0049 706 0.01 ± 0.0006
m = 20 4932 0.06 ± 0.0010 1636 0.03 ± 0.0015 6361 0.23 ± 0.0050 891 0.02 ± 0.0007

RRI(H2) p = 0.1 302 0.01 ± 0.0003 3 0.00 ± 0.0001 1306 0.04 ± 0.0028 3 0.00 ± 0.0000
p = 0.5 454 0.01 ± 0.0004 0 0.00 ± 0.0000 2009 0.07 ± 0.0037 12 0.00 ± 0.0001
p = 0.9 17 0.00 ± 0.0001 0 0.00 ± 0.0000 4063 0.21 ± 0.0065 1 0.00 ± 0.0000

N(0, 1) − 9447 0.50 ± 0.0057 9460 0.50 ± 0.0057 9501 0.50 ± 0.0056 9492 0.50 ± 0.0057
Ek − 1 k = 2 9336 0.47 ± 0.0057 9472 0.49 ± 0.0057 8782 0.40 ± 0.0057 8393 0.38 ± 0.0058
+ √

1 − 1/k k = 4 9526 0.51 ± 0.0056 9493 0.50 ± 0.0057 9330 0.47 ± 0.0057 9410 0.48 ± 0.0057
× N(0, 1) k = 6 9503 0.50 ± 0.0057 9476 0.50 ± 0.0057 9427 0.49 ± 0.0057 9445 0.49 ± 0.0057

Fig. 5. Comparison of the average ecdf based on Exp − 1 data for 104 replications with n = 200 with the
N(0, 1) null hypothesis: Standard, Durbin, CU, and Lewis tests (from left to right).
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Table IX. Performance of Alternative KS Tests of i.i.d. Lognormal Variables with Estimated Mean and Variance
for the Sample Size n = 200: Number of KS Tests Passed at Significance Level 0.05 out of 10,000 Replications
The nominal significance levels are increased from 0.05 to 0.38 for the Standard test and to 0.16 for the Lewis
test in order for the actual significance level to be 0.05.

Case Subcase Standard Durbin CU Lewis

Exp − 432 7238 9950 46
Ek k = 2 2712 9001 9896 1030

k = 4 5782 9381 9833 3858
k = 6 7027 9427 9781 5636

H2 c2 = 1.25 926 8152 9931 197
c2 = 1.5 1716 8689 9915 598
c2 = 2 2616 9121 9877 1467
c2 = 4 3358 9036 9695 2823
c2 = 10 1607 7609 9496 1503

Mixture − 1182 8049 9888 483
LN (1, 0.25) 9497 9496 9493 9454

(1, 1) 9501 9525 9505 9477
(1, 4) 9535 9519 9516 9530
(1, 10) 9499 9479 9505 9484

RRI p = 0.1 396 638 9872 61
p = 0.5 223 0 7823 123
p = 0.9 0 0 830 2

EARMA 0.25 435 7313 9795 41
0.5 384 7214 9440 33
1 432 7033 8721 61
3 2606 5846 2862 1369
5.25 712 5716 3318 223

mH2 m = 2 1952 8888 9008 950
m = 5 959 8145 8604 228
m = 10 653 7728 8917 114
m = 20 460 7517 9448 63

RRI(H2) p = 0.1 2874 1173 9437 2644
p = 0.5 1041 0 6128 1408
p = 0.9 1 0 463 4

Fig. 6. Comparison of the average ecdf based on E2 − 1 + √
1 − 1/kN(0, 1) data for 104 replications and

n = 200 with the N(0, 1) null hypothesis: Standard, Durbin, CU, and Lewis tests (from left to right).

Lewis KS test is best, with the standard KS test close behind, and both significantly
better than the other two.

We also find that the relative performance of the KS tests of the normal null hy-
pothesis when we estimate parameters is about the same as for specified parameters.
Table XI shows the results for n = 50. Comparing Table XI to Table VIII, we see that
in some cases the parameter estimation causes a loss in power, but the degradation
is least for the Lewis KS test. As in Section 6, we consider i.i.d. sequences of random
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Table X. Performance of Alternative KS Tests of i.i.d. Lognormal Variables with Estimated Mean and Variance for
the Sample Size n = 2,000: Number of KS Tests Passed at Significance Level 0.05 out of 10,000 Replications

The nominal significance levels are increased from 0.05 to 0.38 for the Standard test and to 0.16 for the Lewis
test in order for the actual significance level to be 0.05.

Case Subcase Standard Durbin CU Lewis

Exp − 0 28 9968 0
Ek k = 2 0 3214 9907 0

k = 4 0 7743 9838 0
k = 6 24 8744 9805 0

H2 c2 = 1.25 0 510 9955 0
c2 = 1.5 0 1857 9922 0
c2 = 2 0 4445 9870 0
c2 = 4 0 4774 9693 0
c2 = 10 0 267 9422 0

Mixture − 0 675 9889 0
LN (1, 0.25) 9522 9496 9521 9500

(1, 1) 9506 9477 9512 9494
(1, 4) 9455 9513 9517 9452
(1, 10) 9482 9494 9483 9488

RRI p = 0.1 0 0 9892 0
p = 0.5 0 0 7717 0
p = 0.9 0 0 203 0

EARMA 0.25 0 22 9797 0
0.5 0 36 9351 0
1 0 21 8295 0
3 0 575 2272 0
5.25 0 95 1322 0

mH2 m = 2 0 3325 8834 0
m = 5 0 625 7830 0
m = 10 0 160 7522 0
m = 20 0 62 7694 0

RRI(H2) p = 0.1 0 0 9445 0
p = 0.5 0 0 5555 0
p = 0.9 0 0 43 0

variables distributed as Ek − 1 +
√

1 − (1/k)N(0, 1) for k = 2, 4, 6, which have the same
first two moments and approximately the same shape as N(0, 1). For this relatively
challenging example, we see from Tables VIII and XI that the Lewis KS test has greater
power than for known parameters, and outperforms the other KS tests. Similar results
for n = 200 can be found in the Appendix.

8. CONCLUSIONS

We have conducted simulation experiments to study the power of alternative KS sta-
tistical tests of the null hypothesis that observations come from a sequence if i.i.d.
random variables with continuous cdf F, focusing on the exponential and standard
normal null hypotheses. Our analysis strongly supports the data-transformation ap-
proach proposed by Durbin [1961] for the normal null hypothesis, but we find that it
performs poorly for the exponential distribution and related distributions of nonnega-
tive random variables.

Our main conclusion is that a new KS test, involving a new combination of trans-
formations, has more power. In particular, we find that it is better to transform the
given hypothesized sequence to i.i.d. exponential random variables (under the null
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Table XI. Performance of Alternative KS Tests of i.i.d. Normal Variables with Estimated Mean and Variance for
the Sample Size n = 50: Number of KS Tests Passed at Significance Level 0.05 out of 10,000 Replications

The first nine alternative hypotheses have mean 0 by subtracting 1 from the previous mean-1 cases. (The nominal
significance levels are increased from 0.05 to 0.38 for the Standard test and to 0.16 for the Lewis test in order for
the actual significance level to be 0.05.)

Case Subcase Standard Durbin CU Lewis

Exp − 431 2511 6425 170
Ek k = 2 3083 7517 7417 1465

k = 4 6063 9185 8168 4001
k = 6 7199 9400 8468 5392

H2 c2 = 1.25 141 1293 5490 52
c2 = 1.5 58 774 4753 22
c2 = 2 21 339 3778 7
c2 = 4 14 167 2197 7
c2 = 10 68 424 1659 24

Mixture − 2053 5699 5795 925
LN (1, 0.25) 3409 8109 7089 1618

(1, 1) 268 2154 5009 80
(1, 4) 3 75 3110 0
(1, 10) 0 5 2299 0

RRI p = 0.1 464 1161 5785 200
p = 0.5 276 0 2962 260
p = 0.9 2 0 742 5

EARMA 0.25 482 2663 5272 180
0.5 604 2924 4411 251
1 924 3456 3819 440
3 1668 4500 1244 896
5.25 3282 5718 1771 2534

mH2 m = 2 68 667 2826 19
m = 5 222 1680 4277 72
m = 10 343 2181 5287 117
m = 20 380 2419 6046 142

RRI(H2) p = 0.1 26 77 1958 10
p = 0.5 54 0 1265 51
p = 0.9 1 0 575 4

N(0, 1) − 9489 9477 9516 9437
Ek − 1 k = 2 8670 9489 8826 7729
+

√
1 − (1/k) k = 4 9469 9504 9348 9314

× N(0, 1) k = 6 9526 9465 9439 9415

hypothesis), which can be regarded as the interarrival times of a PP. Then we apply
the CU transformation to the PP and afterwards apply the Durbin transformation,
as was done by Lewis [1965] in his test of a PP. This new KS test, which we call the
Lewis test, is usually superior, often markedly so. Thus, we recommend the Lewis test,
implemented as described in Section 2.

The Lewis test was found to have more power against alternatives with nonexpo-
nential distributions. To test against dependent exponential alternative hypotheses,
we recommend also applying the CU KS test. None of the KS tests has much power
against dependent exponential alternatives, but the CU KS test seems best.

The realized performance of these different KS tests can be better understood by
recognizing that the CU transformation converts the arrival times into uniform random
variables, whereas the standard KS test focuses on the interarrival times. The Durbin
[1961] transformation is so effective after the CU transformation because it starts by
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reordering the interarrival times in ascending order. That explains the performance of
the CU and Lewis KS tests.

We have observed that the original Durbin KS test has exceptional power against
the RRI alternative hypotheses and we have explained why. That occurs because the
repeated values are converted into 0’s. That repetition structure makes the model
relatively easy to analyze, but it probably is not often a realistic model of dependence.

Since there is some variation in the results, we recommend applying simulation as
we have done in this article, if there is the opportunity, in order to assess what KS
test has the most power and what that power should be in a new setting of interest.
The tables and plots based on 104 replications give a very clear picture. As we saw
in Section 7, simulation plays an important role in determining the appropriate KS
test with estimated parameters. As in the Lilliefors [1969] test of an i.i.d. sequence
of exponential random variables using the estimated mean, it is often necessary to
increase the nominal significance level substantially in order that the KS test with
estimated parameters has the final desired significance level. For example, to achieve
the target significance level of α = 0.05 in the standard KS test of the exponential null
hypothesis, we found that it is necessary to increase the nominal significance level to
0.18.

Both in Kim and Whitt [2014b] and here we have focused on the two-sided KS test,
but we also conducted one-sided KS tests. We found that the one-sided test can further
increase power when it is justified (see Kim and Whitt [2014c]). As usual with statistical
tests, the power increases with the sample size, so that some sample sizes may be too
small to have any power, whereas other sample sizes may be too large to accept even
the slightest deviation from a null hypothesis. Thus, as many have discovered before,
judgment is required in the use of statistical tests.
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