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We show, under regularity conditions, that a counting process satisfies a large
deviations principle in R or the Gértner—Ellis condition (convergence of the normal-
ized logarithmic moment generating functions) if and only if its inverse process does.
We show, again under regularity conditions, that embedded regenerative structure is
sufficient for the counting process or its inverse process to have exponential asymp-
totics, and thus satisfy the Girtner—Ellis condition. These results help characterize
the small-tail asymptotic. behavior of steady-state distributions in queuneing models,
e.g., the waiting time, workload and gueue length.
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1. Introduction and summary

Let T={T,:n > 0} be a nondecreasing sequence of real-valued random
variables with Ty = 0, and let

N@O)=max{n>0:T,<¢}, t>0. (1)

Then N = {N(¢) : t > 0} is a counting process and T is its inverse. Motivated by
applications to queues, see Chang [3], Chang et al. [4], Glynn and Whitt [11] and
Whitt [16], we want to relate the large deviations behavior of N to the large devia-
tions behavior of ‘7. This is in the same spirit as previous relations between other
limits for N -and T, such as the law of large numbers and central limit theorem;
see § 7 of Whitt [15], theorem 6 of Glynn and Whitt [9] and § 2 of Massey and Whitt
T o
A real-valued stochastic process Z = {Z(#) : ¢+ > 0} will be said to satisfy the
Gdrtner—Ellis condition with decay rate function v if its normalized logarithmic
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moment generating function has a limit, i.e., if
-1 0Z(1)
7 log B¢ —p(f) ast—ocoforallfeR. (2)

(For a discrete-time process, we let ¢ run through the positive integers in (2).) For
the queueing applications, we want to know when N and T satisfy (2) for 8 in an
appropriate interval. In Glynn and Whitt [11] we consider a single-server queue
with unlimited waiting space and a stationary sequence of interarrival times
independent of a stationary sequence of service times. By theorem 1 and proposi-
tion 2 there, if the partial sums of the interarrival times and service times each
satisfy (2) with decay rate functions 1,(f) and 1;(6), respectively, with these
decay rate functions satisfying regularity conditions, then the steady-state waiting
time has logarithmic asymptotics of the form x 'logP(W > x) — —8" as
x — 0o, where 8* is the root of the equation (f) =0, where ¥(d) =
P(0) + ¥,(—0). (We need (2) only in the neighborhood of #*.) Given this
result, we want to be able to relate (2) for the interarrival-time partial sums (a
process of the form T') to (2) for the corresponding arrival counting process
(a process of the form N).

Since log Ee?? is convex in @ for any random variable Z by Holder’s inequal-
ity, the decay rate function ¢ in (2) is necessarily convex with ¥(0) = 0. For non-
negative random variables Z, log Ee? is also nondecreasing in 6, so that %(f)
will be nondecreasing as well for the processes we consider. Let G’ and 8 be the
limits of the region of increase of ¥ i.e.,

B' = sup{6: $(6) = 9(—c0)} and B*=inf{: P(6) = W(o0)}- (3)

The decay rate function ¢ in (2) will be said to satisfy the auxiliary large
deviations (LD) regularity conditions if (4)—(7) below hold:

g >0, (4)

3 is differentiable everywhere in {—oo, 8%), (5)
Jim /(6) = +o0 if $(6*) < 00 (3 is steep), and (6)
i 0) = 8 ("

Let I be the associated large deviations (LD) rate function (Legendre—
Fenchel transform of ) defined by

I(x) = ¢¥*(x) = sup{fx — ¥(6)} forxeR. (8)

By the Giértner [7]-Ellis [6] theorem, under conditions (2) and (4)—(7), the large
deviations principle (LDP) holds for Z with large deviations rate function [; i.e.,
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for each Borel set 4

— inf 7(x) < lim Mog P(r'Z(2) € A)
x 1—o0
_ 9)
< Iim og P(171Z(t) € 4) < — inf I(x),
— 00 x€A

where A° and A4 are the interior and closure of 4; see §1IB of Bucklew [2], §2.3 of
Dembo and Zeitouni [5] and § 3.1 of Shwartz and Weiss [14]. Moreover, the large
deviation rate function I and the decay rate function % are convex conjugates, i.e.,
they are closed (lower semicontinuous) convex functions related by

P(6) =¢™(0) = I'(0) = sup{fx — I(x)} fordeR; (10)

see p. 183 of Bucklew [2].

A typical LD rate function 7 is depicted in figure 1. Assuming that 4 is non-
decreasing and convex with #'(0) > 0, then 7 is nonnegative and convex with
I{x) = +oo for x <0, I(¢/(0)) =0 and I(x) — co as x — co. Hence, I is non-
decreasing in the interval [¢/(0),c0) and nonincreasing in the interval
(—00,/(0)]. Let v and 4’ be the upper and lower limits of finiteness for I, i.c.,

= sup{x < (0} : [(x) <oco} and 4 =inf{x>¢/(0):/(x) <oc}. (11)

We first determine conditions under which the Gértner—Ellis limits (2) for N
and T are equivalent. All proofs appear in section 2. Let ¢/~ be the inverse of ¢
when 1 is finite. It will be clear for this result, and later results, that T need not be
discrete-time and N need not be integer valued. It suffices for N to be nonnegative
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Fig. 1. A possible large deviations rate function 7.
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and nondecreasing; then we can relate the processes by the inverse map:
xHe) =inf{s: x(s) > t}, > 0.

THEOREM 1

If T satisfies (2) and (4)—(7), then N does too, with the possible exception of
(2) for 8 = By when ¥n(B%) < co. Similarly, if N satisfies (2) and (4)—(7), then T
does too, with the possible exception of (2) for # = 8% when ¢¥r{8%) < co. The
decay rate functions are related by

-6, 8 < By = —r(8%),
() = —vr'(-6), Bk <0< pBY, (12)
+00, 8> B = —pr(f7) = —r(~o)

and
-B%,  0<Br=—yn(B%),
vr(6) =< —4¢5'(-8), Br <8< 8%, (13)
+00, 0> B4 = —bn(Bl) = —vy(-00)

for 5’? B, 8% and 8% defined by (3) with o7 and vy, where 0 > 8% > —oo,
0> 8y > -, 0< 87 <ooand 0 < 8% < co. Moreover, the LD rate functions
are related by

IN(X) = xIT(l/x): 7{7\' S x S 'Ytl‘\h ' (14)
+00, otherwise
and
IT(X) = XIN(]./.X'), 'YIT S X S ’Yg"i (15)
+00, otherwise,
where
Y =1/7 Ve =1/7%, (16)
Y { )
Iy(0) = x]LIEO—TJ(CJt—) and Iy{0) = +oo ifyy=0 (17)
and

I(0) = lim %’Q and I7(0) = +oo0 ifyh =0. (18)

x—00
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Fig. 2. Possible inverse decay rate functions 4; and ¥y = —7'(~-) with finite asymptotes S
and ,@N.

The ambiguous behavior of (2) at the upper boundary points cannot occur if
Wy(6) > 0and ¥7(6) > 0 for all §in (—oo, 0]. We could have included this condition
with (4)—(7), but it is not required to get the LDP in (9).

The conditions of theorem 1 imply that one of the decay rate functions ¥
and ¥y is a closed convex function. The conclusion implies that both are. Figure
2 depicts the two inverse decay rate functions +pr and vy on the same graph; ¥r
appears in the usual position, while 1, increases to the left with its argument w
increasing down.

To illustrate we give two simple examples. It is easy to see that the conditions
of theorem 1 hold for these examples.

EXAMPLE 1

For a deterministic stationary rate-1 ‘process, T,=n for all n, so that
Pr(0) = Yy (0) = 0, while Ir(1) = Iy(1) = 0 and I(x) = Iy(x) = +oo for x # 1.
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EXAMPLE 2

For a rate-1 Poisson process, ¥r(f) = —log(1—8), 8 <1, and ¥pn(d) =
¢’ —1. Hence Iv(x)=1-x+xlogx, x>1, and Iy(x)=1-x—-xlogx,
0<x<; while Ir(x)=x—-1+logx, 0<x<1, and Ir(x)=x+logx—1,
x> 1. .

We now give another example (suggested by a referee), which shows how we
can have ¥r(8%) < co with ¥ steep as in (6).

EXAMPLE 3

Consider a renewal process with interrenewal-time density

Cae™™,  0<1<],
gp(t)':: -p — At
CotPAe™, t21,

where p is a nonnegative real number and C, is chosen to make the total mass 1. The
case p = 0 is the exponential density Ae ™. Note that gpz(t) /85, (%) is nonincreasing
in ¢ for p; < ps, so that the family of distributions g,(¢) is stochasucally decreasing
in p. Moreover, ﬁT = Afor all p, while ¢7, (ﬁT ) <ooforp>1and 1,{JT (,83-) < 00
for p > 2. Hence, for 1 <p=L2 9, (ﬁT) < oo with v,bT (BT,) = o0, 50 that Pr, is
indeed steep as in (6). D

Theorem 1 establishes an equivalence of LDPs in R for the inverse processes
N and T. As in section 7 of [15], it is natural to approach this inverse property via
functional or sample path LDPs in the function space D[0,o0) because in the
function space setting the inverse property can be expressed directly as a con-
tinuous function with an appropriate topology on D[0,00). A functional LDP
analog of theorem 1 is established in Glynn et al. [8].

The processes N and T are easily related via their behavior in semi-infinite
intervals; i.e.,

T, <t if and only if N(¢) > n. (19)
From (19), we obtain for any y > 0 and n > 1,
' log P(n™' T, > y) = y(yn) " log P((yn) ™ N(an) < y'): (20)

From (20) we easily get the foliowing equivalence resuit.
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THEOREM 2

Let » be a nonincreasing function and let / be a nondecreasing function.
{(a) There is convergence

nogP(n'T, > y) » u(y) asn— o0 (21)
at all continuity points y of u if and only if
og PN <y Y= Iy VY =ypuy) ast— oo (22)

for all continuity points of y~' of (™).
(b) There is convergence

n! logP(n ' T, < y) = I(y) asn— oo (23)
for all continuity points ¥ of / if and only if
g PTIN() 2y Y s a(y ) =y7H(y) ast— o0 (29)
for all continuity points y~' of #(y™h.
As a relatively easy consequence of theorem 2, we can directly relate LDPs for
N and T. For this purpose we say that the process Z satisfies a partial LDP if (9)
holds for a proper subclass of the Borel subsets. We say that an LD rate function
is without flat spots if for some X it is strictly decreasing where it is finite in
(—o0, X) and strictly increasing where it is finite in (X, c0).
THECOREM 3
Let I be a closed convex function on R without flat spots. A real-valued
stochastic process Z satisfies an LDP with rate function [ if and only if it satisfies
a partial LDP with rate function I with respect to all semi-infinite intervals
(=00, y] and [y, 00).
We combine theorems 2 and 3 to relate the LDPs for T and N.
THEOREM 4
An LDP holds for T’ with lower semicontinuous rate function I without flat

spots if and only if an LDP holds for N with lower semicontinuous rate function Iy
without flat spots, where Iy and Iy are related by (14)—(18). The functions / and
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!
associated with T in theorem 2 are

u(y)=—infI(x) and Uy)=-infIr(x), (25)

and similarly for (¥, Iy).

For example, theorem 4 and Cramér’s theorem for partial sums of ii.d.
random variables in R in §2.2 of Dembo and Zeitouni [5] immediately imply that
an LDP holds for the associated renewal counting process.

Given that conditions (2) and (4)—(7) for T or N directly imply that an LDP
holds for T or N, theorem 4 implies that we get LDPs for both T" and N under the
conditions of theorem 1. Elementary convex analysis implies that the decay rate
functions 9 and v, and the LD rate functions I and Iy are related by (12)-
(18), see section 2. The remaining step in the proof of theorem 1 (in section 2) is
to prove that the Géirtner—Ellis limit (2) holds for both T and N.

So far we have shown how to relate LD asymptotics for 7" and N. Now we
want to obtain general sufficient conditions for this LD asymptotics to hold for
one of these processes. To do so, we will exploit regenerative structure. In particu-
lar, we will assume that N(¢) is a cumulative process with respect to a sequence of
regeneration times {S,:n >0} and Sy =0. (We could equally weil start with
{T,}.) We will require that the distribution of 7, = S(n) — S(n — 1) be spread out,
see p. 140 of Asmussen [1]. Our result is stronger than (2). It also applies to general
cumulative processes. Another LD result for regenerative processes is in Kuczek
and Crank [12]; they use different arguments.

Let (8, t) be the moment generating function of N{¢), i.e.,

#(8,8) = ESND 1> 0. (26)

If N is a cumulative process, then ¢(8, - ) satisfies the renewal equation

H

8(6,) = b6, 1) + qu(a, t - $)G(6, ds), (27)
J |
where
b(8,1) = E[¢™ 1 > 4 (28)
and

G(0,df) = E [””(Tﬂ 7 € d). (29)

Let Y¥; = N(S;) — N(S;—1), i 2 1.
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THEOREM 35

Suppose that N is a cumulative process with respect to {S,} where  has a
spread out distribution. If

(i) there exists a root ¥x{f) to the equation

Elexp(—y¢n () +6Y1)] =1, (30)
(i) E [J exp(—ton (0t + BN(t))dt] < o0, (31)
¢
(iii) b(8,1) = Elexp(—¢n ()t +ON());m > < M (32)
for some M and
(iv) b(6,f) =0 as t— oo,
then
onl0, 1) ~ an(@)e?®  ast - oo, (33)
where
E I:J exp(—¢y(0) + GN(t))dt:I
__ kO
() = E[r exp(—¢n(0)n +60Y3)]) ' (34)
so that (2) holds.

In applications of theorem 5, it remains to verify conditions (i)—(iv) in
theorem 5 and (4)—(7). It seems difficult to obtain good general results, but some-
thing can be said under strong conditions.

THEOREM 6

Suppose that {N(#)} is a cumulative process with respect to {S,} and that =,
has a spread out distribution. In addition, suppose that P(r; > Kj) =0 and
P(N(n) > K;) = 0 for some K; and K;. Then a unique root 1y(8) to (30) exists
for all 8 and assumptions (ii)—(iv) of theorem 5 hold for all #. Moreover, ¥y is
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differentiable on R, with derivative

= uln(0),0
Yi(0) = , NS
5 fw(¥n(8),6)

where

Su(7,0) = Elexp(—yn +61)). (36)

We can see the duality between N and T in the basic equation (30). In par-
ticular, if we switch the roles of S, and N(S,), then S, = N(S,) may be regenerative
times and T— -~ Ts _, =S, may be cycles associated with the inverse process 7.
When both N and T are cumulative processes this way, we call N and T inverse
cumulative processes. Then we have versions of equation (30) for both processes,
i.e., in addition to (30) for &, we have

Elexp(—¢7r(0) Y, +6n)] = 1. (37)

It follows from (30) and (37) that the decay rate functions 1y and ¥y must be
related by —wr{—vy{#)) =8 for all § where () is finite, i.e., which implies
(12) and (13), which is consistent with theorem 1.

Chang [3] focuses on a discrete-time version of the point process N. The fol-
lowing comes from his example 2.2. Recall that a family of random variables
Z\,..., 2y is associated if

E[fi(Z))..-fiZ)] = E[A(Z))]. .. E[ fu(Z)]

for all nondecreasing real-valued functions f;.

THEOREM 7 (CHANG)

If N has stationary and associated increments, then ¢! log B¢V

decreasing in ¢ and thus convergent, for each 4.

is non-

2. Proofs

We prove the theorems in the order: 2, 3, 1, 5, 6. (No further proof is needed
for theorem 4.)
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Proof of theorem 2
Since T;, > a if and only if N{a) < n,
P(n™'T, > a) = P(T, > an) = P(N{an) < n),

from which (20) follows. From (20), we see that (21) holds if (22) holds, and (23)
holds if (24) holds. To go the other way, note that, for any ¢ > 0,

P(r'N(t) < a™') < P(N(a|t/a] < [t/a]) = P(Tjya > alt/a])
< P(([t/al)"' Ty > a —€)

when ¢ is suitably large, where | x| is the greatest integer less than or equal to x and
[x] is the least integer greater than or equal to x. Hence, if (21) holds, then

T 1 -1 -1 T 1y -1 _
:ll.ngot log P N(t) <a ) £ ,11.120‘ log P(([t/a])” Trya > a—¢)
=a'u(a — ).
Since ¢ was arbitrary and u is continuous at a,

JTm og P(IN(F) < a7h) < a7 u(a).

Similarly,
P(r'N(1) < a™') 2 P(N(alt/a] < |t/a]) = P(T\yq > a[t/a))
2 P(([#/a)) ' Tiya) > a+e)
for ¢ suitably large. Hence, if (21) holds, then

lim og P(t"'N(a) < a™") > a”'u(a).

t— o0

Hence, (22) holds. A similar argument shows that (23) implies (24). O
Proof of theorem 3

We apply the characterizations of the LDP in (1.2.7) and (1.2.8) on p. 6
of Dembo and Zeitouni [5). First we consider the upper bound. For any & < oo,
let x; and x, be the lower and upper boundary points for the level set 1;(c)
needed for the upper bound. (Here the notation ¢;(a) follows [5].) By the lower



118 P.W. Glynn, W. Whitt/|Large deviations behavior

semicontinuity of I, any I with T C +;{a)° has the property that
rc (_Ooay!] U [y2a°°):
where y; < x; and y, > x,. Hence, for such I,
logP(t71Z(f) eT)
< t~1 IOgP(t—lZ(t) € (—00,_])1] U [yZa 00))
< rog max{2P(r ' Z(t) < ), 2Pt Z(1) > »,)}
< (log2)/t + max{r ' log P(t "' Z(t) < y,), ¢ log P(r"* Z(£) > y2)},
so that
tﬁn; log P(r'Z(s) € T)
< max{ Im r'log P(t ' Z(1) < y,), Bm rog P(¢' Z(8) > }’2)}
[t~ {—o0
< max{—I(y), ~1(y2)} £ —o,

since y; <X LX< x5 < 1.

Now we consider the lower bound. For any x in the domain of 7, and any
measurable T with x € T'°, there is a neighborhood (x — &;,x + 8;) CT’. Let % be
the location of the minimum of I and suppose that x < %. (The argument when
X > X is essentially the same.) For any e given, choose §, sufficiently small that
I(x + &) < I{x) + . Now

lim log P(r'Z(2) €T)

[— Q0

> lim log P Z(F) € (x — 6y, x + 6,))

—o0
> lim ' log(P(¢ ' Z(1) < x+ &) — P(r7'Z(f) < x - &)
£—00
However, for any €,
P\ Z(1) < x+6) > o {(x+&)+e)

and

P(r'Z(r) S x— &) < e7WEm0=9)
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for all suitably large ¢. Hence,

P('Z() <x+6) - P Z(H) < x— &)

> e—t(I(x+62)+e’)(1 _e—l([(x—&,)—I(x+62)—25'))’

so that, after choosing ¢, &; and &, so that I(x — &;) — I(x+ 6,) - 2¢ >0,
lim £ log P('Z(1) €T) > —I(x+8) — ¢ > —I(x) —e— €.

=
Since € and € were arbitrary,

lim r'log P(: ' Z(t) € T) > —I(x). O

[= 00

In our proof of theorem 1 we use the following two lemmas.

LEMMA |
For 8 >0,
E exp(BN ()=1+1 j. exp(10x)P(N(f) > tx)dx
0
and for & < 0,
o<
Eexp(ON(1)) = —16 J exp(10x)P(N (1) < tx)dx.
0
Proof
Note that
N(n/

Eexp(6N(1))—1=E t8exp(t0x)dx

= Etf | exp(t0x}I(N(t) > tx)dx

O, § Oty

= 16 | exp(t6x) P(N(2) > tx)dx.

O 8
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For 6 < 0, observe that

18 J exp(t0x)}P(N(t) > tx)dx = 18 J exp(t6x)(1 — P(N (1) < tx)dx)
0 0

exp(18x)P(N(2) < tx)dx

c::..__.,g

oo
= J 10 exp(tfx)dx — 10
0

=1- IGJ exp(t0x) P(N(1) < tx)dx,
0
since P(N(t) < tx) = P(N({) < tx) almost surely with respect to Lebesgue
measure. O
LEMMA 2
If (2) and (4)—(7) hold for T, then

im log B™Y < 0
I—0

for 0 <6 < ~¢r(~co) = lim pr(6).
—~+— 00
Proof
For 0 < 6 < —p(—c0) =%, choose y so that 0 <y<u7(0) and
Ir(y) > 8. To see that this is possible, recall that I is continuous where it is finite

and I7(0) = —¢p(—00) if v = 0. (If v5 > 0, then Ir(y) = oo for some y in this
region.) Then, by the Gértner—Ellis theorem for {7},

lim n~' log P(T,, < yn) = ~I(y) = ~Ir(y).

We assume that I{y) < oco; a minor modification of the same argument treats the
case I{ y) = co. Hence, there exists ny such that for n > n,

't log P(T, < yn) < ~I(y) +e,
where € = (I{y) — 6)/2. Hence, for n > ny,

P(T, < yn) < exp(—n(I(y) - ¢)). (38)
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Now

[s2]
ENY = Z e"P(N(t) = n)
n=0

<1+¢é ieg"P(N(t) > n)

n=0

o0
<1 +eGZe9"P(T,, < t)

n=0

(/2] 0o
<1 +e‘92e6"1"(i!",l <t)+é° Z e"P(T, < yn),
n=0 n={1/y]

where

L¢/y] L/
Z e"P(T, < 1) < Zeg” <M — 1)
n=0

n=0

and, by (38), for ¢ > yny,

o0 o0

Y SP(T, <y < Y expln —n(I(y) —€)
n=[t/y] n={ify]

<Sxp(=[t/y1U(y) - 6)/2)

~ 1—exp(—(I{(y) - 6)/2)

Combining (39)-(41), we obtain the desired conclusion.

Proof of theorem 1

121

(39)

(40)

(41)

We do the proof in only one direction, since the proofs in the two directions
are similar. Suppose that {7, } satisfies (2) and (4)-(7) with decay rate function 7.
Then, by the Girtner—Ellis theorem, {7} obeys the LDP with LD rate function
It = o7. By theorem 4, {N(¢)} obeys the LDP with LD rate function [y defined
by (14)—(18). We then let ¥y = Iy. Since Iy = Iy, it is easy to see that (12)-(18)
are valid. For example, it is easy to see that 1, in (12) has the properties of a decay
rate function (nondecreasing, convex, ¥(0) = 0 and (2)—(5)) if and only if 1 in (13)
does. As indicated after theorem 1, this is easy to see from figure 2. More formally,
to establish convexity, suppose that 17 is twice differentiable for ar <8 < Br
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(where 9(8) > 0). Since ¥y (f) = —w7'(~0), br(—wn(8)) = —6 and
Y7 (= 9) o
P! (- 6'))3 B

Then we can represent a general 4 as the limit of a sequence {4, : n > 1} where
each r_is strictly increasing and twice continuously differentiable in the interval
(og, Br)- Ynn(8) — ¥y (6) as n — oo. Since 1y, is convex for each , 50 is Y.

Given 97 and vy in (12) and (13), it is straightforward to verify that the con- .
vex conjugates I = oy and Iy = v}, defined by (6) have the properties (14)—(18).
For example, for vy < x < v% and x > 0,

Vin(x) = sup{fx —Yy(0) : 0 € R}
= sup{fx — 9n(0) : ay < 8 < By}
= sup{yy' (0)x —0: ay <5 (6) < v}
= sup{—pr(0)x +6: ay < —Pr(6) < By}
= xsup{(8/x) — ¥r(6) : ay < —¥r(6) < By}
= xsup{(8/x) — ¥2(0) : 7\ (~By) < 0 < Y7 (—e)}
= xsup{(8/x) — ¢7(0) : ar <0 < Br}
= xsup{(6/x) — ¥r(6) : 0 € R} = x3(1/x).
For vy = 0 = x, take the limit as x — 0, obtaining

¥i(0) = lim v (x) = }%y‘lw}(y)

Py =

and

¢N(x)

In©) = 11m ¢T(J’)

A similar argument yields vy = Iy and ¥ = It given Iy and fT.
We now show that (2) holds for N when 0 < @ < —¢r(—c0) = 8%. By
lemma 1, it suffices to prove that

t'log J exp(10x) P(N(1) > tx)dx — ¥y (6). (42)
0

By lemma 2, we can choose § with 8 < 8 < —tpr(—oc0) and

£ = Tim + ' log BN < oo

=00
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For ¢ > 0 given, let M be the constant
M= (&-e)/(@-0).

Then, by Markov’s inequality,

Q o0
Jexp(té’x)P(N (1) > tx)dx < ENO J exp(t6x — thx)dx
M M

< EeéN(:)(e-t(é—-B)M)/t(é _ 0)

1 5 6N (1)
< — exp(—#{@ — )M — log Ei
5—g PO - M~ log M)

<

< g PO 0M —E~3)

1
= t(é s exp(2et) (43)

for ¢ sufficiently large. On the other hand,

M
Jexp(t@x)P(N (1) > tx)dx
0

g U+ DM/
= exp(10x)P(N(2) > tx)dx
=0 M}/n
ey FFOM/n
< exp(26(i + YM /n)P(N(1) > itM [n)dx
i=0
iM/n
M n—1
< —;Zexp(tﬂ(i + 1)M/n)P(N(2) > itM /n)
L i=0
M n—1
< —n—e'gM’r" Z exp(t[0Mi/n — tlog P(t"' N (1) > iM/n)))
=0

M n=1 N
< ngf}! . - :
<€ ';E=o expl t{oMi/n i 212_1!‘I¢;‘,]:I,‘,(x)] , (44)
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where n is an arbitrary positive integer. Combining (43) and (44), we obtain

:ﬁ_m;o tlog J exp(10x) P{N(t) > tx)dx
0

0<i<n—1|" B x>iM/n

<2+ 9%+ max {%—— inf IN(x)}
by lemma 1.2.15 on p. 7 of Dembo and Zeitouni [5). However,

max {% — inf IN(x)}g sup{8x — In(x)} = ¥n(6).

0<i<n—-1 n x>iM/n

Letting € — 0 and » — oo, we complete the lim proof.
We now turn to the lower bound. For the same # and a new positive €, choose
& and x; such that

bx — In(x) > SI;p{Oy —Iy(»)} —¢

for |x — x| < 6. Then

oo xy+8
Jexp(r@x)P(N(t) > tx)dx > J exp(t0x) P(N(t} > t(xy + 6))dx
0

XO—-G

> 26 exp(t8(xy — 8))P(t ' N(1) > xo + 8),

so that

o0
lim ' log J exp(0x)P(N(r) > tx)dx
f—00 o
> 0(xg—6) — In(xo+8) =0(xg+ 8) — In(xg+8)—26 -
= sup{fy — Iy(y)} —26 —¢
y
2 ‘l‘bN(g) — 26— €.

Finally, let § — 0 and ¢ — 0 to complete the lim proof. Combining the lim and lim
proofs yields (42).
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We now consider the case in which # < 0. By lemma 1, it suffices to show

that
riog J exp(t0x)P(N(t) < tx)dx — ¢Yn(#) ast— co. (45)
0

Let X = 9y(0) and recall that Iy(%) = 0. Let x V y = max{x, y}. Then note that

J exp(10x) P(N (1) < tx)dx
0

exp(tfx)dx

1 S, &

< | exp(t9x) P(N(f) < tx)dx +

O s, 1

< S &) exp (1653 m)PV(E) < 15+ 1)) = (16)") expl6)
i=0 -

nilexp(tﬂfz'/n — tIy(%(i + 1)/n) + et) — (10) ! exp(16%)
=90

N X

<

for ¢ sufficiently large. Hence,
oD
t@o tlog I exp(tx)P(N(t) < tx)dx
0
< lsglsaf_l{(ﬁa‘ci/n) —Iy(x(i+1)/n) + ¢} v O
< sgg{ﬁx — Iy(x) + € — 8x/n} v 6%
XsX

< (p(0) + € — 0%/n) v 6%,
Now let € — 0 and n — oo, and note that (6) > 6¢(0) for § < 0, to complete the
lim proof.

that
Ox — Iy(x) > sup{fy — In(»)} — «.
, ¥

We now turn to the lower bound. For ¢ > 0 given, let § > 0 and x; be such
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Then
00 xg+86
J'exp(tex)P(N () < tx)dx > J exp{t9x)P(N(1) < t(xy — &8))dx
0 xp—46
> 26exp(t8(xqg + §)P(N (1)} < t(xp — 6)), -
so that

o
lim 'iog J exp(20x)P(N(2) < tx)dx
{—co 5
= B(xo + 5) - IN(xO - 6) = B(JCO - 6) - IN(xo - 6) + 266
> sup{fy — Iy(y)} — e+ 266
y
= ’¢N(9) — e+ 266.
Now let § — 0 and € — 0 to complete the proof of (50).

Finally, it remains to consider the upper boundary point 8% when 8% < co.
Clearly,

lim 1~ log Ee®"V® > 4y (6)

{— o0

for any 8 < B%. Thus, when ¥y (8%) = oo,
tlingo £ log EeP¥V) = ¢y (8%) = +o0.

The only ambiguous case is when 8% < oo and ¥y (8%) < co. O
Proof of theorem 5

In general, G(6, - ) in (29) is not a proper probability distribution. However,
our choice of 1(f) in (30) guarantees that

F(8,d) = exp(—w(B)t)G(G, dr) (46)

is a probability distribution function. Furthermore, F(#,df) is equivalent to
P(ry € dt), so that F(@, -) is spread out. Hence, we can apply Smith’s key renewal
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theorem, (4.4) on p. 120 of Asmussen [1], to the renewal equation -

36,1 = 5(6,1) +j&(e,r~s)F(e,ds), @
i}

where b(6, 7) is in (32) and
(6, 1) = exp(—p(6)1)(8, 1) (48)

to obtain

b(8, 5)ds
é(0,1) — as t — oo. (49)

tF(8,dr)

© S, B Q'—‘S

(Conditions (ii)—(iv) imply that 5(9, t) is directly Riemann integrable, using propo-
sition 4.1(ii) of Asmussen [1]; see proposition 9 of Glynn and Whitt {10] for a related
argument.) By Fubini’s theorem, we see that

J (8, 5)ds = j Elexp(=(8)t + ON(D); 7y > fldt
0

E

Jexp( $(O) + ON())I(r, > 1)dt
0
E|: exp(—y(8)t + ON( ))d] (50)

and

JtF(G, dt) = J tE[exp(—y(0)t + ON(t); 7 € di]
0 0
E

[exp(—9(0) 7y + 8Y1)71]- (51)

Combining (49)—(51), yields the desired (33) and (34). O
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Proof of theorem 6

Under the boundedness assumptions, f ('y, ¢) in (36) is bounded by

exp(|]y1K; +16]1K;) and infinitely differentiable in R%. Also, for each 6, f(-,0) is
strictly decreasing with f(v,8) — 0 as v — oo and f(v,8) — 400 as v — —co.
Hence, the root (8) of (30) exists for each 6. Moreover, it is easy to see that assump-
tions (i1)—(iv) hold.

To see that v is differentiable with derivative (35), apply the implicit function

theorem with (30). Note that /8~ f(«,8) < 0 for all (, 8), so that the denominator

is non-zero. O
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