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Abstract. We propose a medel to help a service provider manage a family of private-line telecommunica-
tion services. The model is a time-dependent network of infinite-server queues. The queueing network is
used to model switching from one service to another. The relevant time scale is quite long: service lifetimes
are measured in years, while service life cycles are measured in decades. To capture changing technology
and customer preferences over this extended period, the model includes time-dependent new-connection
rates, time-dependent switching rates and general time-dependent service-lifetime distributions for the dif-
ferent services. Because of the long service lifetimes, there is typically a significant time lag between the
peak arrival rate and the peak expected number of customers receiving service. Thus sales aad revenue do
not move together; instead sales is a leading indicator of revenue in a service life cycle. The network struc-
ture reveals how the life cycles of different services are related. We show that it is possible to reasonably fit
a version of this relatively complex model to data and then analyze the model to obtain useful descriptions
of system dynamics.
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1. Iniéroduction

In this paper we introduce a time-dependent queueing-network model that can be used
to help a service provider manage a family of private-line telecommunication services.
Private lines provide dedicated bandwidth between two or more locations, typically to
support data communication applications. Service providers such as AT&T have fam-
ilies of private-line offerings at bandwidths varying from under 64 kilobits per second
to 156 megabits per second (OC3), with even higher bandwidths anticipated in the near
future. Customers lease private lines from a service provider, with orders ranging from
single lines to hundreds of lines involved in a customer network. During the lifetime
of the private line, the service provider collects revenue on a monthly basis. The global
revenue derived from private line services was estimated to be $14 billion in 1996, with a
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growth rate of 8% [7]. We primarily want to assist product management in managing the
revenue streams, coordinating the responsibilities for pricing and marketing the family
of private-line services, and equipping the network platform with the requisite type and
level of network resources.

We introduce a mathematical model to help understand and manage the private-line
business. We want to be able to predict future service lifetimes and connection request
rates for each private-line service, and thus predict future sales, costs and revenue. We
want to quantify both the expected values and the level of uncertainty. We want to expose
the life-cycle dynamics of the different private-line services.

Understanding the private-line business is complicated by the very long service
lifetimes, which typically are measured in years. The long service lifetimes imply that
we need historical data over an extended time period. At the same time, there are rapid
changes in technology and customer preferences, as illustrated by the recent explosion
of Internet use. Recent developments in the domestic marketplace for private lines have
witnessed unprecedented high demand accompanied by a migration to the higher band-
width services, along with competitive pressure to reduce price. The great rate of change
suggests that the future cannot be accurately predicted simply by extrapolating from the
past. Thus, an appropriate tool should be able to provide predictions exploiting both
historical data and marketing and technology projections.

We propose a queueing network model for the private line services, with the queues
or nodes representing different private-line services. The number of jobs or customers at
each queue is the number of private lines of a particular service. Since our main concern
is with product management, we do not focus on the location of these lines (but see
section 10). The service times at each queue are the service lifetimes of the private lines.
The external arrtval processes are new connection requests for that private-line service.
The flows from one queue to another are switching from one private-line service to
another. We especially want to distinguish between new demand and switching.

In order for the tool to be useful, e.g., to be able to rapidly answer “what if”
questions, we need to be able to rapidly calculate the desired performance measures,
using approximations if necessary. We need the tractability of the Queueing Network
Analyzer (QNA) and similar performance analysis tools; see [29, 31, and references
therein]. However, the very long service times and rapid changes in technology and cus-
tomer preferences suggest using a very different queueing network model. In particular,
for private lines it is important to represent time-dependent connection rates, disconnect
rates and switching rates. Hence, instead of the stationary model and steady-state analy-
sis in QNA, we propose a time-dependent queueing network model and time-dependent
analysis.

In order to achieve tractability with a time-dependent queueing network model, we
also make a simplifying assumption. We assume that there is always ample capacity;
i.e., we assume that each private-line service request can be met with negligible delay
or blocking (loss). We represent the ample capacity by letting every queue in the net-
work have infinitely many servers. The infinite-server assumption greatly simplifies the
analysis, making the system a linear system. The infinite-server assumption is often
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reasonable when addressing product management concerns, but it should be recognized
that this assumption can potentially limit the applicability of the model.

To analyze a time-dependent network of infinite-server queues, we apply method-
ology from [20], but we also address an important feature not considered there. In
particular, arrivals often occur in batches, with the batch identity not necessarily being
maintained while the lines are in service. For example, there might be new connec-
tions of four lines and ten lines at two different times, and then disconnects of three
lines, six lines and one line at three different times. We are not concerned with describ-
ing these details exactly, but we want to provide a reasonably accurate description of
the overall (macroscopic) behavior. Fortunately, we are able to make a relatively careful
and accurate analysis of the expected number of lines in service over time, and develop a
rougher approximation for the associated time-dependent probability distributions. Thus
we regard the mean number of lines in service as the main prediction, and the standard
deviation and probability distribution as refinements.

Here is how the rest of this paper is organized. We describe related literature in
section 2. In section 3 we describe the business process for a family of private-line
services, highlighting the role of product management. In sections 4-6 we focus on a
single private-line service. In section 4 we develop the specific model and show how it
can be used to calculate the time-dependent mean number of lines in service and describe
the life-cycle behavior. In section 5 we consider the problem of fitting the model to data.
We discuss parametric model simplifications dictated by the need to fit the model to data.
We also show that the analysis of the model simplifies after making these additional
assumptions. In section 6 we develop the method to approximately calculate the full
distribution of the number of lines in service.

In sections 7-9 we extend the model to a time-dependent network of infinite-server
queues to model a family of private-line services. We discuss an important decomposi-
tion property making it possible to analyze the individual queues separately after deter-
mining the internal arrival rates (combining exogenous input with input from switching
from other services). As in section 5, the need to fit the model to data dictates making
model simplifications. In sections 8 and 9 we show how the network can be analyzed
under such model simplifications. We give illustrative numerical examples.

In section 10 we briefly discuss the application of the model to short-term fore-
casting and capacity management. We introduce a special approach for doing short-term
forecasting that produces reliable variance estimates, allowing for very different arrival
and departure batches. This approach can be used to set thresholds on the deviation
between the forecast and the actual demand that frigger warning signals. Finally, we
present our conclusions in section 11.

2.  Related literature

Private-line service over the telephone network has a long history that goes back to the
invention of the telephone and thereby precedes most other telecommunication services
including switched voice. For an account of some of that history, see [21,23]. In the
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literature there are several papers on mathematical modelling of private-line services.
Nucho [25] used a birth—death process model to capture the transient behavior. Smith
[30] was the first to recognize the value of a time-dependent infinite-server queue to
model private-line services. Specifically, he assumed that service orders arrive according
to a nonhomogeneous Poisson process with exponential arrival rate, each service order is
a random batch of private lines with a general distribution, and the lifetime of the order
(entire batch) has an exponential distribution. Smith’s model was used by Doverspike
and Jha [9] in a study of routing methods of private lines in a network. An infinite-server
model for private lines related to Smith’s but allowing more general new-connection
rates was studied by Jennings et al. [16]. We extend the models of Smith [30] and
Jennings et al. [16] in several ways: by not requiring that the batch stay together while in
service, by allowing more general time-dependent arrival processes, and by introducing
a network of queues to represent a family of private-line services with switching from
one service to another.

There has been some work on analyzing the more difficult problem of time-
dependent queueing networks with significant delays; see [18,26,28]. A principal moti-
vating example for that work is the airport network, where airplane delays clearly play
an important role. There is also a substantial literature on infinite-server queues and
networks of such queues, much of which is cited in [10,20]. Networks of infinite-server
queues are also known as stochastic compartmental models; see [13,14,22].

We have indicated that our model should help understand marketing strategies.
For related work in this direction, see [3,4,0,24]. Unlike much of that literature, we do
not attempt to model customer response to advertising. There already is considerable
understanding of product life cycles. For example, in a situation closely paralleling
private line services, Potts [27] describes dual life cycles in the computer industry due
to (i) revenue from product sales and (ii) from servicing the installed base. Thus, our
contribution is not so much the general structure, but a way to quantify it.

3.  The role of product management

In the introduction we indicated that our proposed methodology is intended to assist
product management. In this section we describe the role of product management in the
business process.

A simplified view of the business process for a family of private-line services is
shown in figure 1. Negotiations are conducted in the sales process to fulfill a service
request, which can range from one to hundreds of private lines. At the conclusion of
a successful sale, the provisioning process is inifiated to assemble the private line from
the inventory of network resources maintained by the capacity management process. If
successful, service is provided to the customer; otherwise it is not (or perhaps delayed).
During the lifetime of a private line, the billing process collects revenue on a monthly
basis, and the maintenance process resolves quality problems when necessary. Shortly.
before the end of the lifetime of the private line, negotiations are once more conducted
in the sales process. The customer can elect to migrate to another private-line service or
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Figure 1. Private-line business process.

leave the system altogether, possibly to subscribe to another service or to another service
provider. Atthe end of the lifetime of the private line service, the network resources used
by the private line are returned to a common pool for reuse by other customers.

The marketing process focuses on the revenue side of the profit equation, while the
technology platform addresses the cost side. The marketing process sets the price levels,
initiates promotion efforts when necessary, establishes the service features (performance,
reliability, etc.), and strives to maintain healthy relationships between the members of
the family of private-line services. The technology platform process ensures that the
network is outfitted with the appropriate technology in the appropriate configuration
to support the evolving needs of family of private line services in a graceful and cost-
effective manner.

In order to meet corporate profitability objectives, product management develops
and executes a business strategy plan that is coordinated across the various business
functions. This plan includes a short-term (1-year horizon) aggregate forecast for each
service that is used to set the budget and to monitor results, and a long term (5-year
horizon) aggregate forecast to set long-term goals and manage the technology platform
process. The formulation and execution of this business strategy depends on knowledge
of the salient characteristics, dynamic behavior and coupling of the service life cycles.
The acquisition and application of this knowledge is the objective of this paper.

In order to meet customer demand at any place and at any time with the right
amount, the capacity management process needs a forecast disaggregated to the network
nodes and links. This is discussed briefly in section 10. It is possible to do more reliable
prediction for product management because it takes an aggregate view over all facilities.
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4. A single private-line service

Before considering the full queueing-network model for a family of private-line services,
we develop the queueing model for a single private-line service. Let customers arrive
according to a stochastic point process {A(?): t > —oo}; i.e., A(?) is the number of
arrivals up to time ¢. There could be a definite starting time #p, so that A(#) = 0, but
we have not specified it. However, we assume that the distant past is not relevant. Let
A(t) be an orderly point process (i.e., have points occurring one at a time) with time-
dependent arrival rate y (¢), i.e.,
t

E[A®] = f y@)ydu, >0, (4.1)
—00

where E[A(#)] < co. Having the mean finite implies that the distant past is indeed not

relevant.

Given that a customer arrives at time ¢, let B(¢) be the (random) number of lines
requested and let S;(t), 1 < j < B(?), be the (random) service lifetimes of these
B(t) lines. Let Q(¢) be the number of lines in service at time ¢, We allow the service
lifetimes associated with a batch B(u) arriving at time u to be dependent, e.g., we could
have §;(#) = S>(u), corresponding to identical lifetimes. We assume that the service
lifetimes associated with a given batch have identical cdf’s; i.e., for all j,

G.(t) = P(S;(w) <t), t=0. 4.2)

The common distribution assamption is without loss of generality because we can as-
sume that the B(r) indices are randomly permuted before being selected. Let GS(¢) =
1 — G, () be the complementary cdf (ccdf). Let B(u) have a distribution depending
on u, but otherwise let B(x) be independent of the arrival process. Similarly, let S; (x)
have a distribution depending on u but be otherwise independent of the batch size B{(u)
and the arrival process. .

With the framework above, Q(f) can be expressed as the stochastic integral

¢ Blu)

Q) =[ > Lism0-u dAG), (4.3)

-0 j=1

where 1z is the indicator function of the event E, i.e., 1z = 1 when E holds and O

otherwise; see [20, section 2] for background on the construction. Letting A; be the kth
arrival time, we can also express (4.3) as
A(r) B(Ag) :
00 = > Lis;apst-an- (4.4)

k=1 j=1

It is significant that the mean of @(¢) and the departure (disconnect) rate A~(¢) can be
expressed relatively simply. Because of the aggregation over all facilities associated with
the product management view, we anticipate that the number of lines in service, Q(z),
will be quite close to its mean, so that the mean is the primary description of interest.
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Theorem 4.1. Under the assumptions above, the mean number of lines in service at
time ¢ is

t
m@) =EQ@®) = f GS(t — w)AT (u) du (4.5)
and the disconnect rate at time ¢ is
!
AT () = [ G,(t — wrt () du, 4.6)
where A1 (¢) is the total arrival rate, i.e.,
M@y =y@0B@), t20, @.7
with 8(¢) = EB(1).
Proof. See [20, (2.13)]. a

Formulas (4.5) and (4.6) coincide with corresponding formulas in the M,/ G1, /oo
model with nonhomogeneous Poisson arrival process having arrival-rate function A*(#)
and independent service times having time-dependent general service-time cdfs G, (f);
see [10, remark 4]. As noted in [20, remark 2.3], the mean formula (4.5) is valid much
more generally, in particular, in our setting without the Poisson property. Also, the
service times within a batch may be dependent. However, we cannot conclude that Q(f)
has a Poisson distribution with the given mean or that the departure process is a Poisson
process, as we can for the M,/G I, /oo model. We develop an approximation for the
distribution of O (¥) in section 6.

Thus, given the model primitives y (¢), S(¢t) and G, (¢), it is possible to calculate
first the total arrival-rate function A+ (¢) by (4.7) and then the mean m(¢) and departure-
rate function A~ (¢) by (4.5) and (4.6). We can describe the service life cycle in terms
of the three functions A*(¢), m(t) and A—(¢#). We assume that all three functions are
unimodal, first increasing and then decreasing. We also assume that there are time lags
in the peaks of m(¢) and A~ (¢) behind the peak of A1 (¢); i.e., the peaks of m(t) and
A~ (2) occur after the peak of A+ (). (Later these properties will be deduced after making
additional model assumptions.) It is thus natural to define three phases of a typical
service life cycle:

(1) growth — when all three functions A (?), m(z) and A~ (¢) are increasing,

(2) mature — when At (¢) is decreasing, but one or more of m(t) and A~(z) is still in-
creasing, and

(3) decline — when all three functions A+ (¢), m(¢) and A~ (¢) are decreasing.

A typical service life cycle is depicted in figure 2. The three phases of a service
life cycle are illustrated from actual add and disconnect data for three different AT&T
private line services in the time period 1991-1997 in figures 3-5.- In doing so, we ig-
nore fluctuations in a short time scale, and focus on the main trend. Figure 3 illustrates
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the growth phase in which both adds and disconnects are increasing; figure 4 illustrates
the decline phase in which both adds and disconnects are decreasing; and figure 5 illus-
trates the mature phase in which adds are decreasing but disconnects are still increasing.
(There may be a transition to the decline phase toward the end of the time interval.)
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5. Model simplification for fitting to data

Even though the single-service model as we have defined it in section 4 is not difficult to
analyze using (4.5)~(4.7), it is difficult to apply because it requires specifying complex
model primitives. It is natural to directly specify A™() in terms of data on new con-
nections (adds), so that it is not necessary to separately specify the component functions
y(¢) and B(z), but specifying A*(¢) and G, (¢) is difficult. We need to specify the func-
tion A*(¢) of the one variable ¢ and the function G, (t) of the two variables ¢ and u. It
can be daunting to fit such functions to data. Over a long time period, there typically will
be only a single observed sample path. We thus propose simplifications that drastically
reduce the model fitting requirements.

We first consider the arrival rate function A¥(f). As can be seen from figures 3-5,
it is often natural to fit A¥(z) to a linear function cp 4- c;£. We can divide the time inter-
val into subintervals and count the number of new connections in each subinterval and
then fit a linear function by least squares. As a refinement, it is natural to consider the
quadratic function A () = ¢ + ¢1f + c2¢2. Other alternative simple parametric models
are exponential (A" (¢) = cp + c1€") and logarithmic (At (£) = ¢p + ¢ log{cy + c3t));
e.g., an exponential form was used by Smith [30]. These specific forms require fitting
only a few parameters. Methods for doing such fitting for nonhomogeneous Poisson
processes have been studied by Massey et al. [19]. It is important to note that the lin-
ear and quadratic functions can make the function A*(¢) negative for some values of ¢.
This usually causes no problem provided that A*(¢) is positive in the region of interest.
However, it is good to check by doing numerical examples using (4.5) and (4.6) that no
significant errors are introduced by the linear and quadratic approximations. Extensive
experience with M,/ G /oo queues indicates that this step is usually appropriate [10].

Next we propose two possible simplifications for the service times: (1) we can as-
sume that the service-time cdf does not depend on the arrival time, giving us the function
G (t) of the one variable ¢, or (2) we can assume that there is a time-dependent service
rate p(f) operative at each time . When the service rate u(¢) is constant, this second
case is tantamount to having an exponential service-lifetime distribution. In the first
case, we let G(¢) have a parametric form, such as gamma or Weibull, depending on only
a few parameters. In the second case, just as with the arrival-rate function A*(¢), we can
assume that z4(z) is linear or quadratic, so that it too depends on only a few- parameters.
The single cdf G(2) is desirable if the time dependence is minor, but the non-exponential
character of a service lifetime is strong. The time-dependent rate w(z) is good if time
dependence is strong. In summary, by the simplifications above, we can specify the ar-
rival and service processes each by two or three parameters, which makes model fitting
manageable. )

The long service lifetimes make it difficult to estimate service-lifetime cdf’s. First,
provisioning records tend to be kept in the operational environment for only a few
months, so that it is necessary to preserve the data in a data warehouse. Second, in
order to determine the lifetime and life status of a specific private line, it is necessary
to associate add and disconnect data for a specific private line over several years of
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provisioning records. Third, it is important to account for censoring (incomplete obser-
vations) in the statistical analysis, because a significant portion of service lifetimes will
have begun before the measurement interval started, and a significant portion of service
lifetimes will still be in progress at the end of the measurement interval. Ways to do
statistical analysis that properly account for censoring are described in [17].

To quickly see the importance of properly treating censoring, suppose that we have
data over 4 years for exponential lifetimes with mean ES = 5 years. A simple (incorrect)
approach would be to restrict attention to the lifetimes that both started and ended in the
4-year measurement interval. Without doing any calculations, we see that this procedure
forces the estimate of the mean to be less than 4, thus underestimating the trie mean 5.
However, the situation is actually much worse than that, because many lifetimes will
start toward the end of the measurement interval. The expected value of this estimated
mean is actually

[LES | S <At de

(5.1
fiar@ar
where A*(¢) is the arrival-rate function. Since
toa—ufs
ue de ¢
E[S|S<1]= ——fo (5.2)

1—e/s 72

E[S| S <t]~t/2for0 <t < 4. Hence, if arrival rate A1 (¢) is constant over the time
interval [0, 4], then the estimated mean is approximately 1, which greatly underestimates
the true mean 5.

However, we can reasonably estimate the complementary cdf {ccdf or survival
function) G°(t) = 1 — G(t) for 0 < ¢ < 4 as the proportion of those service times
starting in [0, 4 — ] whose lifetimes exceed ¢. This procedure yields an unbiased esti-
mate for the cdf G(¢) over 0 € ¢ £ 4, but no estimate for larger ¢. (The estimate will
also tend not to be so good when ¢ is near 4, because then there are relatively few ob-
servations.) Moreover, the estimate for each 7 is the estimate of the mean of 2 Bernoulli
random variable from an i.i.d. sample, so that we know the variance. In particular, with
n data points, the estimate of G°(z) has variance G*(#)G(t)/n.

* We can obtain an estimate for larger ¢ by fitting a convenient parametric cdf, such
as a two-parameter Weibull cdf, to the fitted cdf over [0, 4], with the understanding that
the tail (G°(¢) for ¢ > 4) is obtained as an extrapolation with less justification.

In addition to making model fitting manageable, the model simplification also
make it easier to analyze the model and deduce important managerial insights. First,
if we use the time-dependent service rate u(t), then we can use a single ordinary differ-
ential equation (ODE) to solve for m(¢) and A~ (¢), i.e., letting m (¢} denote the derivative
with respect to time, we have

m(t) = A7 () — m(t)u(@) (5.3)



20 McCALLA AND WHIT]

and
A7) = m{)ulr); (5.4)

e.g., see [10, corollary 4; 20, section 8]. We can initialize the ODE (5.3) by letting m(0)
be the known initial number of lines in service.

Formula (5.4) also helps develop a good way to estimate the service rate p(z). It is
customary to actually have data on the disconnect rate A~ (¢) and m(z). We can think of
w() as A~ (¢)/m(t). We can thus divide the total time interval into subintervals and look
at the ratios of the number of disconnects to the average number of lines in service. We
then can fit a linear or quadratic function to those counts to estimate y£(¢).

Given a service-lifetime cdf G(¢) independent of the arrival time, there are conve-
nient simple forms for the mean m(¢) and departure rate A~ (z); see [10, section 3]. Let §
be a random variable with cdf G(¢) and let S, be a random variable with the stationary-
excess cdf G.(¢) associated with the service lifetime cdf G(¢), i.e.,

1 t
G(t) = P(S. £t) = —f G°(u) du. (5.5)
ES Jp
The moments of S, are simply related to the moments of §, i.e.,
E[Sk-H]
E[§{]=—""——, k2>1. 5.6
1S:1= G DS -0

Given a time-independent service lifetime S, we can conveniently express m(f) and
A7(t) as

m(ty = E[A*(t — S)| E[S] (5.7
and
AT = EM -9 (5.8)

see [10]. From (5.7) and (5.8), we obtain convenient simple approximations by moving
the expectation inside AT, i.e.,

m(t) =~ AT (¢t — ES)E[S] 5.9
and
AT@) = AT — ES). (5.10)
If, in addition, A*(¢) is quadratic, then we obtain simple exact formulas. If A +(¢) =
cg + c1t + cat?, then
m(t) =2T(t — ES)ES + ¢ Var(S.) ES, (5.11)
AT =21 — ES) + ¢ Var(S). (5.172)

Formula (5.11) implies that there is a time lag E S, in m(r) behind A*(t) ES and a space
shift of ¢, Var(S.)ES. Similarly, formula (5.12) implies that there is time lag of ES in
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A~ () behind 1 (¢) and a space shift of ¢, Var(S). Note that the third moment of S enters
in only through the space shift in m(r), i.e., from (5.6),

4E(S}E(S) ~ 3E(S%)?
12E(S)? '

We emphasize that the simple quadratic formulas (5.11) and (5.12) must be re-
garded as approximations, because they may depend on arrival-rate functions that are
negative for some times. However, these approximations are convenient because they
reveal the essential structural form, and they are often sufficiently accurate. Accuracy
can be checked by comparing with the exact formulas in section 4.

Using equations (5.7)~5.12), we would not initialize with the known present num-
ber of lines in service. Instead, we would assume that we started in the indefinite past
and apply the model with the historical arrival-rate function and service-lifetime cdf.
Assuming that there is relatively low variability due to the aggregation over facilities as-
sociated with the product-management view, we anticipate that the mean m (¢} will agree
closely with the observed number of lines in service for past . When this agreement is
close, we will have more faith in the predictions about the future.

The three phases of a service life cycle are conveniently approximated quantita-
tively when we use the quadratic approximation in (5.11) and (5.12). First, from (5.11)
and (5.12), it is evident that m (¢) and A~ (¢) inberit the quadratic form of A% (), and are
unimodal with a unique maximum. Then the peak of m(¢) lags behind the peak of A7 (r)
by ES., while the peak of A~(¢) lags behind the peak of A+ (¢) by ES.

Thus, using the quadratic approximation, the length of the mature period is

ES(1+cd)
1+ 2 Lo TG
L, =max{ES, ES,} = ESmax{]1, = 2
2
ES, C

Var(S,) = (5.13)

(5.14)

where ¢? is the squared coefficient of variation (SCV, variance divided by the square of
the mean) of a service lifetime.

An important implication is that sales (represented by A1 (¢)) is a leading indica-
tor of revenue (represented by m(¢)). Thus, on observing a peak in sales, the product
manager can predict a peak in revenue after a time increment of ES. = ES(1 + cf).
During this interval, the revenue and the supporting network resources continue to grow,
although sales declines. This time lag is significant (e.g., of order 5 years) because of
the long service lifetimes of private-line services. This is in contrast to most economic
endeavors in which sales and revenue move in lockstep.

Formula (5.11) shows the sensitivity of the revenue (again represented by m(t)) to
the mean E S as well as to the distribution of § beyond the mean. The fact that the mean
ES appears as a multiplicative factor in (5.11) shows that revenue tends to be directly
proportional to the mean, as one would expect. However, (5:11) shows that there is an
additional time shift by ES. and space shift by Var(S.). In general (without assuming
AT(#) is quadratic), [10, theorem 3] implies that when the variability of the service-
lifetime cdf decreases (as measured by convex stochastic order), the expected revenue
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m(t) increases when sales is increasing (in the growth phase). The revenue is more
responsive to changes in sales when the variability of the service-lifetime distribution is
lower; see [8].

The dependence of revenue upon the service-lifetime cdf can help product man-
agers decide how to influence the service-lifetime cdf. Currently all leading interex-
change service providers (AT&T, MCI and Sprint) influence service-lifetime cdfs by
offering discounts that increase with the length of the committed lifetime; see [5].

6. Approximating the time-dependent distribution

In formulas (4.5), (5.3) and (5.7), we have provided expressions for m(t) = E Q(t), the
time-dependent mean number of lines in service. We anticipate that the time-dependent
probability distribution will cluster closely about the mean because of the aggregation
over facilities associated with the product-management view, but now we want to pro-
vide a way to estimate the variability. In this section we develop approximations for the
variance and the full time-dependent probability distribution of Q(¢). Our main idea is to
act as if the connecting lines in an arriving batch stay in service together and depart (dis-
connect) together. This allows us to focus on an arrival process of batches with a certain
batch-size distribution. We also must make more explicit probabilistic assumptions.

As approximations, we assume, first, that the connection-request (of batches) sto-
chastic process {A(2): ¢t > —oo} is a nonhomogeneous Poisson process with rate y (¢)
and, second, that each request is for a random number of lines, where successive requests
are i.i.d. and distributed as B with a cdf F having mean S independent of the request
arrival time. Under these assumptions, the number of batches in service behaves as an
M,/ GI /oo queue. If we use a time-dependent service-lifetime cdf G, (¢) for each batch,
then the number of batches in service at time ¢ has a Poisson distribution with mean

r
v(t) = / Gt —uw)yy (u) du. 6.1)

-0
Formqla (6.1) is of the same form as (4.5). If we use a service-rate function u(t), then
the number of batches. in service at time ¢ has a Poisson distribution with mean v(z),
where v(¢) satisfies the ODE

v(t) =y (@) — v(t)u(), - (6.2)

just as in (5.3). Then the number of lines in service at time ¢ has a batch-Poisson (or
compound-Poisson) distribution with Poisson mean v(¢) and batch-size cdf F. With this
framework, we need to fit y (¢) and F to data instead of just A1 (¢). We can fit y (¢) to
connection (batch) request data the same way we fit A* (). We can fit F by looking at
the empirical distribution of actual arriving batch sizes. '

These fitting procedures are straightforward, but a complication:comes from the
fact that the approximation assumptions are not likely to be closely satisfied, so that we
may find it desirable to adjust the estimate of the batch-size distribution. To do so, we

can exploit our more precise knowledge of the time-dependent mean number of lines in
i
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service, m(t), obtained by the methods of sections 4 and 5. Within our batch-Poisson
model, we can express m(t) as

m(t) = v(r)B, (6.3)

where 8 = E B is the mean batch size. If the three separate estimates of m(¢), v(¢) and
B do not satisfy (6.3), then we can redefine B to be §(t) = m(t)/v(). In general, this
will cause 8 to be replaced by the time-dependent S(¢), but that presents no difficulty.

‘We next apply the adjustment to the entire batch-size distribution. We let the batch-
size distribution of the active batches at time ¢ be distributed as B, = m(#)B/Bv(1), i.e.,
with time-dependent cdf

F(x) = F(xpv(@)/m(1)), x >0. (6.4)

This adjustment simply multiplies B by a time-dependent function so that the time-
dependent mean is f(¢) = m(z)/v(t). Thus the SCV of the cdf F, is the SCV of F for
all ¢, say cZ.

After the adjustment, the number of lines in service at time ¢ is approximated by
a batch-Poisson distribution, where the Poisson mean is v(¢) and the batch-size cdf is
F;(x) in (6.4) with mean 8(¢}. The overall mean number of lines in service at time ¢ is
then m(t), as previously determined in sections 4 and 5. We can then proceed to calculate
the variance and cdf of Q(¢), based on this approximation, using standard properties of
batch-Poisson distributions, see {11, chapter X1II]. First, the variance is

o(t) = Var Q1) = v()) E[ BY] = v(t) E[(m(r) B/ Bv(#))’]
_ m(@YE[BY]  m@)*c;+ 1)
oG v €

where c} is the SCV of B and thus also B, for all 7.
Next, suppose that the batch size B, with cdf F, has Laplace—Stieltjes transform

(LST)

[o.0]
fi(s) = Ee™% = f e~ dF, (x). (6.6)
0
Then Q(¢) has the associated LST
G (s) = Ee—s20 — g—v0-fit) 6.7
The associated complementary cdf H(x) = P(Q(#) > x) has Laplace transform

H(s) = / ooc_‘”‘Hf(x) dx = 1—'%@. (6.8)
0

Similarly, if B, is integer-valued with generating function

fHR)=EP =) "2"P(B,=n), (6.9)

n=0



24 McCALLA AND WHITT

then Q(¢) is also integer-valued and its probability mass function P(Q(t) = n) has
generating function

B (2) = Ez20 = ¢~ OU-1"@). (6.10)

Since B; will typically be integer-valued, so will Q(#). Then its probability mass func-
tion can be computed easily from its generating function (6.10) by numerical inversion;
e.g., see [1]. In this way we obtain an estimate of the full time-dependent distribution
of O(1).

If the Poisson mean v(¢) is not too small and the batch-size c¢df F,(x) is not too
irregular, it is natural to approximate the distribution of Q(#) by a normal distribution
with mean m(¢) and variance o2(#) in {6.5). The normal approximation can be checked
by making comparisons with the numerically calculated distribution.

With these approximations, we can check that @ () should indeed be close to its
mean m(t). Since typical values of Q(z) are 10°, there is no problem when the batches
are suitably small. To quickly illustrate, if m(¢) = 10° and all batch sizes are 10, then
SD(Q@))/EQ(r) = 0.01. However reliable prediction can be difficult if there are very
rare, very large batches.

7. A family of private-line services

The methods in sections 4-6 can be applied to any single private-line service. Now we
want to extend the analysis to a family of private-line services. The main phenomenon
we are {rying to capture is switching from one service to another. Suppose that there are
N services and let i index the service. For each service i, there still is the connection
arrival-rate function A} (#), but now we want to distinguish between exogenous requests
and switching from one service to another. Let o; (f) denote the exogenous arrival rate of
new connection requests for service i and let p;;(¢) be the proportion of disconnects from
service { that are followed by conmnects to service j (switching from i to j), which we
also interpret as the probability of switching, assuming Markovian switching. Paralleling
section 4, we also assume that the successive batch-size and service-lifetimes depend
upon time and the service, but otherwise are mutually independent and independent of
the system history. Then the total arrival rate (line connection requests) for service can
be expressed as

N
MO =u®+ ) A7 Opu®, (7.1)

j=1

where A (z) is the line disconnect-rate function for service j. The disconnect flow rate
from service i (without switching to another service) is

N
8:(6) = A7 (@) (1 -3 py (t)) ._ 2)

j=1

- B
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At
net (internal) arrival (1)
rate
. it
number of lines (0 Gin(t), G:i(t) or pi(t)
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Figure 6. Flow through service i for a family of private-line services.

We will show how to determine lf () and A (r) below. The behavior of service i within
the family is described by the flow diagram in figure 6.

The sales process should have information to distinguish between new connec-
tions (to be used for estimating «;(¢)) and switched connections (to be using for es-
timating p;;(z)). However, this information may not be recorded in an operational
database. In that case, it is possible to deduce this information from the provision-
ing (adds/disconnects) records. New connections of one service within a suitably short
time interval (e.g., one month) of disconnects of another service can be designated as
switches. Marketing information may be used to predict switching behavior in the fu-
ture. The analysis can be useful to answer “what if” questions about the life-cycle be-
havior under various possible switching scenarios. Then the future rates «; (t) and p;;(z)
may be postulated as part of the scenario description.

Just as in section 5, there is a need for model simplification in order to fit the
functions o;(¢) and p;;(r) to data. Just as before, we suggest simple parametric forms
that reduce estimation to two or three parameters for each function. In particular, we
propose letting «;(t) be linear or quadratic and p;;(¢) be either constant or linear, but
other possibilities can be analyzed.

Given that o;(¢t) and p;;(¢) have been estimated, there is an important exact-
decomposition property that simplifies the overall analysis. Each queue can be analyzed
separately after the internal arrival rates A;"(t) are determined; i.e., we can separate the
analysis into two steps:
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(1) determining the net “internal” arrival rates A;F(¢) and
(2) analyzing the behavior of each service i given A (z).

The important point is that once we determine A} (¢) we can analyze each service i by
the methods of sections 4-6.

We can calculate )Li+ (#) for all i by the methods [20, section 7] for the
(M,/G1I/oo)N | M, network, which has independent nonhomogeneous Poisson processes
as external arrival processes for the services and time-dependent Markovian routing. For
the purpose of calculating the internal arrival rates A;(¢), the Poisson-arrival-process as-
sumption is not needed.

First, suppose that each line of service i has a time-dependent service-lifetime cdf
G, (t). Paralleling (4.6), the disconnect-rate function should satisfy

1
A7) = f Gt — )2 (u) du. (7.3)
-0

Moreover, [20, theorem 7.2] shows that )L,T"(t) should be regarded as the minimal non-
negative solution to (7.1) and (7.3); i.e., in general the solution is not necessarily unique.
The combination of equations (7.1) and (7.3) constitute the input equations.

We can conveniently calculate A} () recursively by keeping count of transitions.
For that purpose, let A7 (z) be the arrival rate that occurs on the nth transition. Then A;.* ®)
can be calculated as the infinite sum

A =Y M, (1.4)

n=1
where A7 is calculated recursively by setting A}(#) = ;(¢), and for all n > 1

N ot
M@ =) [ 1046 - wpy). @.5)
j=107
- If customers tend not to switch too often before terminating service altogether and leav-
ing the system, which is often the case, then the series in (7.4) will converge rapidly and
can be approximated by truncating to a finite sum with a few terms.
If instead of service-lifetime cdfs G, (t), we postulate time-dependent service rates

Wi (1), then we can solve for the means m; (¢) by solving the system of N ODEs

N
() = a; () + ) m;Ou;Ops ) —mi@Ow(®, 1<i<N.  (16)
=1

Then
AT () = mi (o) )

and Af () can be computed via (7.1). (In this case, we do not afterwards have to calculate

m;(t).)
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In order to calculate the distribution of Q;(¢) for each i, as in section 6, we need
to determine the internal batch arrival rates y,7(¢), so that we can calculate the mean
number of batches in service v;(f) via (6.1). We can obtain yi"'(t) just as we obtained
A,f“ (#) via (7.1)-(7.5) if we replace «; () there by the exogenous batch arrival rate. Simi-
larly, if we work with service-rate functions g;(t), we can obtain v; (£), y,-+ (t) and y,” (¢)
via (7.1), (7.6) and (7.7) if we replace «;(¢) by the exogenous batch arrival rate. The
remaining steps are just as in section 6.

The exact-decomposition property has important implications for the organiza-
tional structure of product management. Given that the internal new-connection rates
A} (z) for each service can be estimated, it is possible to manage the different services
separately. The equations determining the internal rates A} (f) serve a coordinating role.
However, it should be noted that there remains some interdependence; e.g., if the service-
lifetime cdf of one service is altered, then the internal arrival rates of other services will
be altered as well.

8. Time-independent service lifetime CDFs and transition probabilities

In sections 5 and 7 we saw that model fitting to data requires us to introduce simplifying
parametric model assumptions. As a consequence, we assume that the external arrival-
rate functions «;(#) and the switching proportions (or probabilities) p;;(f) be low-order
polynomials. In this section and the following one, we investigate the consequence of
this assumption on the internal arrival rate functions A} (£) and the time-dependent means
m; (t). For this analysis, we assume that the service-lifetime cdfs are independent of the
arrival time. (No special analysis is needed for the service-rate case, because then we
can directly apply (7.6).)

In this section we consider the simplest case, in which «;(¢) is a polynomial for
all i but p;;(t) = p;; independent of ¢ for all i and j. First, by a minor extension of
theorems 6.2 and 7.4 of [20], if &;(¢) is a polynomial of degree at most m for all i and
pi;(t) is independent of ¢, then A (7) itself is a polynomial of degree at most m. The
additional extension is to allow the external arrival processes to be different polynomials
of degree at most m, instead of constant multiples of an single polynomial. It is easy to
see that the same proof applies to this more general case.

Moreover, it is then easy to solve for the coefficients. If ¢; (z) = a;0 + @t +--- +
aGnt™, 1 < i € N, then l?(t) =cop+cnt+---+emt™ 1 €1 € N, where the
coefficients c;; can be calculated directly. In particular, let P be the N x N matrix with
elements p;; and let Cy, be the 1 x N row vector (cy, - .., cyx). Then

Cv= B — P)7!, (3.1)
where By = (b, ..., byy) and '

m N I
bir = ai + 2 Z ci(—1)"* (k)E[Sf;_k]pjf- - (82

I=k+1 j=1
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We solve for b;, and ¢;;, recursively backwards in %, starting with k = m. From (8.1), we
see that b;,, = aj;m, 1 < i € N. When we calculate b;; by (8.2), we will have calculated
¢j; for I > k by using (8.1) and (8.2) in previous steps of the recursion.

Note from (8.2) that the general service-time cdfs G; influence the net arrival rates
AF(#) only through their first = moments. From (4.1), we see that the distributions G;
can thus influence the means m;(¢) only through the first m» moments of S; and S, i.e.,
through the first m + 1 moments of §;, see (5.6). Similarly, since A, () = E [)L}‘“ (t— 351,
the service-time distributions G; can influence the behavior of the net departure-rate
functions A; (¢) only through the first m moments of G;. Thus, if the external arrival-
rate functions are quadratic, only the first three service-time proments matter.

Since the service-lifetime cdf is time-independent, the basic formulas for m(z)
in (4.5) and A~ (¢) in (4.6) are convolution integrals. Hence we can exploit Laplace
transforms to advantage. Moreover, since the switching probabilities are also time-
independent we extend the Laplace transform analysis to the network setting. We are
then able to compute the desired quantities by numerically inverting the Laplace trans-
forms, e.g., by applying [2]. To give the details, let h(s) denote the Laplace transform
of A(¢) and the Laplace-Stieltjes transform of H (¢} when h(f) is the density of a cdf H,
ie.,

h(s) = f - e h(t) dt = / " e dH (1) (8.3)
0 0
Then, by (4.5) and (4.6),
mi(s) = AF()Gs) and A7 (s) = A ()8 (). (84

Moreover, if p;;(#) is independent of time for all i and j, then taking Laplace transforms
in (7.1) and (7.3) yields

N
M) =8;6) + ) A 92 py (8.5)

i=1
or, in matrix notation,

. . -1 AGAHU — B(5)
(s) = I1—B ' = .
A*(s) = A(s)( () el —BG) 8.6)
where At(s) = (A (), .-, Aj(s)), AG) = @1(6), ..., &n(s)) and B(s) = (B (s))
with b;; (s} = £;(s)p;;. We can then combine (8.4) and (8.6) to obtain expressions for
the Laplace transforms of m;(¢) and A, (¢) in the network setting.

Example 8.1. We illustrate the results by considering a two-service example, in which
both services have quadratic external arrival-rate functions with finite positive maxima.
The external arrival rate for product i is o;(f) = aip + a1t + a;pt? for some specified
constants a;;, 0 < j < 2. The general theory then tells us that the net arrival rate
for product 7 is also a quadratic function of the form )L;I_ = ¢ip + €1t + ¢ipt?, where
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the parameters c;; are to be determined. In particular, we have Cp = Bi(J — P)~ ! for
Cr = (cie, o), k=0,1,2.

With switching matrix

0 Pu) -1 L ( 1 Plz)
P = , I—-P = . 8.7
(le 0 ( ) 1 —pupn \pPu 1 @7

We solve for the vectors By and Cy, recursively, in decreasing order. First, b;; = a;;,
so that

1 1 Pu)
C12, C2) = (a3, Gpp)———— s 8.8
(c12, c22) = (@12, ax) 0= prapa) (p21 ] (8.8)
ie.,
1y = aia + ax P21 ’ Cop = appiz + azz- 3.9)
1 — piapa: I — piapar

Note that ¢;p and ¢y, are always negative when a3 and a,; are negative, so that the net
arrival-rate functions JLT(I) and }L;' (t) inherit the finite-positive-maximum property of
the external arrival-rate functions o (¢) and o (2).

Next, given ci» and c22,

biy = app — 2E(Syciapii — 2E(Sy)enpa;. (8.10)
Finally, given c¢;1, €12, ¢21 and ¢;2,
bio = aio + (E(S2)cop — 2E(S2)ca ) pai + (E(SDerz — 2E(Spen)pii- (8.11)

Finally, given A} (¢) for i = 1 and 2, we can calculate m; () and A; (#) by (5.11) and
(5.12). With the new parametric representation, it is easy to see whether we are initially
in a growth phase or a declining phase; i.e., '(0) = dp(d> — dy), so that ’(0) > 0 if and
only if d; = 4.

As a concrete example, we consider the two extremal arrival-rate functions

ai(t) =150 — (¢ —5)% = 125 + 10¢ — 12,

(8.12)
ap(t) =100 — 0.5( + 5)% = 87.5 — 5t — 0.5¢2.

The first function oy (¢) has its peak at 1 = 5 and so is initially in a growth period
{(or1(0) > 0), while the second function o, (f) has its peak at tﬁm = —5 and so is initially
declining (o;(0) < 0). The first external arrival-rate function a(¢) is positive on the
interval (—7.25, 17.2), while the second a(¢) is positive on the interval (—19.14, 9.14).

We set the eight remaining parameters as follows: p1a = 3/4, pu = 1/2,
E(S)) = 2, E(S}) = 8, E($?) = 48, E(S2) = 1, E(8}) = 2, E(S3) = 6. The
lifetime moments are consistent with exponential distributions having means 2 and 1,
respectively. (Hence, this case could also be solved by ODEs as in (7.6).)
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From (8.7)—(8.11), we obtain the solution:
8 6

(I—-P)y'= ) (€12, €22) = (2.0, =2.0),

55
4 8
5 5
{(b11, b21) = (8.0, 1.0), (c11, €21) = (13.60, 11.20),

(Bro, b2o) = (111.60, 35.25), (¢10. €20) = (206.76, 190.32),
so that
At =206.76 + 13.6r — 2.0¢%, tH =34,

A (1) =190.32 + 11.2r — 2.0¢2, 13 =238,

The switching makes the net arrival rate substantially larger than the external arrival
rate, 1.e., ¢;9 > 4o for each i. In this example the switching also has made the net arrival
rate at service 2, A} (¢), be initially in a growth phase (A} (0) > 0), even though the
external arrival rate is declining (a5 (0) < 0).

The means rm;(#) and internal departure rates A; (t) are now easily computed by
combining (5.7), (5.8) and (8.13). Note that the time lags in m;(¢) behind k?'(z) are
E(Sie) = 2 and E(S2) = 1, respectively. Since S, 25 for exponential variables,
Var(S1.) = 4 and Var(S;.) = 1. Hence

m)=227¢ —2)—16 and my@) =2t -1 -2 (8.14)

for A} (¢) and A5 (#) in (8.13). The peak for m;(¢) occurs at z1% + 2 = 5.4, while the
peak for m,(t) occur at t25 + 1 = 3.8. The six functions o; (), A (¢) and m;(¢) for
i = 1,2 are displayed in figure 7.

(8.13)

my(t) = 22} (t —2) — 16
4004

Af{t) = 206.76 + 13.6¢ — 2.04

................ .
e oy () =195+ 107 — ¢ A._‘ ®
d:l_(t) =87.5—-5— 0-5!2 —
——— .
) ; : : ' 6 8

Figure 7. The six quadratic functions.
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In this context we can examine various marketing strategies. If we can estimate
how these strategies will affect the basic model elements o;(¢), pi;(¢) and §;, then we
can apply the model to show the resulting impact upon A7 (#), m;(f) and A7 (t). Fi-
nally, numerical integration can be performed to show that the explicit formulas here are
close to the exact numerical formulas obtained when «;(¢) is replaced by 0 when it is
negative.

9. Polynomial arrival rates and switching probabilities

In this section we allow the switching probabilities p;; () as well as the external arrival
rates o; (¢) to be polynomial functions of £. This case is considerably more complicated
than the case of constant switching probabilities considered in section 8, because the
net arrival-rate functions A} (¢) no longer can be represented exactly as polynomials.

However, we can still represent A} (¢) as the series 3 o0 27(¢) as in (7.4) for A7 (r)
in (7.5). The nice property now is that the terms i?(t) in this series are polynomial
for each n. Unfortunately, though, the degree of the polynomial i? () increases with n.
In particular, by induction with (7.2), if p;;(¢) is a polynomial of degree at most r for
all  and j, and if «;(¢) is a polynomial of degree at most m for all {, then i}‘ (#)isa
polynomial of degree at most m 4- (n — 1)r for all{ and »n.

However, if the series converges rapidly, so that we can consider only a few terms in
the series, then A;F(¢) will be approximated by a polynomial of low degree. For example,
an insightful case is when m = r = 1 and only » = 2 terms are considered. In this case
; (t) and p;;(¢) are linear, while the approximation for )L,-+(t) is quadratic. We consider
a numerical example with that structure below.

Now we indicate how to recursively calculate the coefficients of

m+(r—1)r
& k
MoO= > P

k=0

where ;(#) is a polynomial of degree at most m and p;;(¢) is a polynomial of degree at
‘most r. To express the result, let

M) =E[r¢e—S)] =) dPr and p;) =) piptt. 9.1)
k=0 k=0

Then, by (7.2), we can solve for cl.(:) and d}}? recursively by setting cf,? = Gik,

m+(n—L)r

=3 o (Ilc) (~DE(S7) ©.2

f=k
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and

it = ZZ 7 Piite-ns ©3)

f=11=0

where p;j =0fork > r.

Example 9.1. We illustrate by considering a two-service example, in which the external
arrival rates «; (¢) and switching probabilities are all linear. We assume that the switching
robabilities are sufficiently small that it suffices to consider only two or three terms
AT(1), ie., we assume that A (1) &~ 0_ A%(2).
We now show what the recursion in (9.2) and (9.3) becomes in this simple case.
Here are the formulas for the relevant coefficients:

1 1 1 1 i 1
D — gy, D = g, d‘ ) Cgo) o )E(S 3, dfl) _ 051),

) 1 1 2 1
,(n) —d,(o)Plin + déo)szo, C,gl) = dl(o)Pm + du Puo + d o P21 + d2(1 Pzio,

o =dpu +dypan,  d =clg — cFES) + 25 E(SD,

(2) (2) 2) 2 _ (2)
djl 2(.'}2 E(S ) djz - 12’
3 3 2
,(o) =d( Puio + d20 P20, ,(1) = d( )Pm + du P + dzo P21+ dz] D2i0s

2 2 2
¢ = dmpm +dD prio + dP paiy + d2 paio, @ = dl( piil + dg(z)Pzn-

Note that, just as in example 8.1, only the first two moments of S; affect ;\1 A,z
and A3. However, higher moments play a role in the A7 for n > 3. To consider a
concrete example, let

p2() = p2i(®) =03 —0.05,  o(t) =100+ 105;  an(r) = 100 — 10r,
E(S)=1,El?) =2,E(S) =6fori =1,2. Then

cﬁ,) =dy = cg}) = agy = 100, cgl) =ap = 10, céll) =ay; = —10,
dy =90,  diy =110, diy =10, D = 10,
D =33  Z=27, @ = 25, P = 15,
=05 2=_0s
df =60, 4 =40, dP = -26, &y =14,
‘2) =05  df=-05 =12, =18, =-62

E =108, =055 =145 =0025 « c=-0025
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Thus,

3
Are) ~ Z‘X’;(r) =145 — 21.2t 4 1.05¢% +0.025¢> &~ 145 — 21.2¢ + 1.05¢%, (9.4)

n=1

3
M)~ Y Ra(r) = 145 — 35.8¢ + 0.95% — 0.025:% ~ 145 — 35.8: +0.95>.  (9.5)

n=1

From the coefficients ¢;3, we can see that the cubic term is not too important when ¢ is
suitably small, e.g., for r < 3.

From the results displayed above, we see that, just as for example 8.1, the switching
causes the net arrival rates A;(#) to differ significantly from the external arrival rates
a;(¢). Note that AT (#) and AJ(¢) both are decreasing at time 0, while only oy (2) is.
Using the quadratic approximations for A} (¢) in (9.4) and (9.5), we obtain associated
approximations for the mean m;(¢) from (5.3):

mi@) ~ A (e —1)+1.05 and mp(r) = Af(t — 1) +0.95. (9.6)

Since the service times are exponential, we could also calculate the means by solv-
ing the system of two ODEs. From (7.6), the two ODEs are:

111 (£) = 100 + 102 + m2(£)(0.3 — 0.05¢) — m, (t),
©.7
#i15(t) = 100 — 10¢ + m;(£)(0.3 — 0.05¢) — mo(t)

with an initial condition m;(t) = my(t) = O for ¢ in the suitably distant past, e.g.,
for t = —10. (We avoid initial conditions in (9.3) by assuming that we start empty at
= —00.)

10. Short-term forecasting and capacity management

In the previous sections, we have addressed the issues of fitting model parameters to
available data from which we can obtain a long-term aggregate forecast, describing the
mean as well as some indicator of the variability, such as the variance. For short-term
forecasting, where short term may be a few months, we propose a more elementary
approach. This approach gives the mean and variance of the forecast and requires
the fitting of fewer parameters. A goal here is to better treat batches of private lines,
which we have noted may not stay together in service after arrival. Our idea is that in
a short time scale the adds and disconnects for any service should tend to be approxi-
mately independent batch Poisson processes. Let 1y be the time at which the forecast is
made. We exploit historical data on adds and disconnects to estimate a linear arrival rate
).f“(t) = ¢j0 + ¢i1{t — tp) and a linear departure rate A; () = dio + di1 (¢t — #p) of orders
(batches), ¢ > 5. For example, we might estimate these linear rates by performing least
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squares fits {of batches). Similarly, we would use histerical data to estimate the order-
size {(batch-size) distributions associated with adds and disconnects, treating adds and
disconnects separately. For simplicity, we might assume that the batch-size distribution
does not depend on time. With this method, it is not necessary to assume (and in prac-
tice may be important not to assume) that the order size remains fixed over the service
lifetime, as we have assumed in our basic model in section 6. Instead, we can directly
estimate the arrival and departure order-size distributions from historical data.

Let X; and ¥, represent the random arrival and departure order sizes (whose distrib-
utions have been estimated). Then, assuming that the arrival and departure processes are
independent batch-Poisson processes over the time interval [#, £], the mean and variance
of the number Q;(¢) of lines in service at time ¢ are predicted to be
et — fo)z:'

2

mi(t) = E[Q:(1)] ~ mir) + [c.-o(r — 1) + E[X;]

(t — 1p)*

_ [d,—o(: )+ %1 5 ]E[Y;] (10.1)

and

. 32
of (1) = Var Qi() ~ [Cio(f — ) + M]E [*7]

2
+ [d,-o(r — o) + M]E[Y,?]. (10.2)

The batch-Poisson property is important to avoid underestimating the variance. If
we assume ordinary Poisson processes, then the mean estimate m(¢) in (10.1) would be
unchanged. Then the order-size means E[X;] and E[¥;] would be incorporated in the
arrival and departure rates. With the Poisson assumption, contributions to the mean and
variance would both correspond to [cio(t — #o) + ¢;1 (t — #0)?/21E[X;] and [d;o(t — to) +
di1(z — 1)* /2] E[Y;]. However, with the compound Poisson assumptions, the variance is
larger, because

PR
[Cio(t — i)+ M]E[X?]

i1t = fp)?
2

where cg. is the SCV of X;. If ¢, > 0, then E[X;3(1 + ¢%,) > 1 and the variance
prediction is larger than in the Poisson case.

Given that we can estimate the forecast variance in equation (10.2), this forecast ap-
proach provides a basis for tracking the actual usage with reference to the mean forecast.
A 20 deviation can trigger a warning, while a 3o deviation can indicate that immediate
action is necessary to determine the cause for the deviation from the forecast.

It is often possible to do more accurate short-term forecasting than long-term fore-
casting, because the very large projects leading to very large batch sizes tend to be known

= I:Cio(t — fo) + ]E[X,](E[X,](l + C.%f;))’ | (103)
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and thus can be treated separately. This leads to an adjustment in the mean after analyz-
ing the smaller batches without any increase in the variance.

So far we have focused on the total number of leased lines for each service, which
is appropriate from a product manager’s view, where the primary concerns are sales,
revenue and overall service life cycles. However, the stochastic network model can
also be applied for capacity management. When the concern is capacity management,
our focus shifts to the number of lines in service at a given node or link (facility). An
important simplification when we focus on a single facility is the reduction of the batch
effect. When a customer installs a full private-line network, typically only a few lines
are used on each facility. Since different services may use common facilities, we may
add over different private lines services. Thus we can use the same model to describe
the evolution of capacity in use on specified facilities, focusing on one service at a time.
Further discussion of capacity management using time-dependent infinite-server queues
appears in [15].

When we consider capacity management, we may use either long-term forecasting
formulas developed in previous sections or the short-term forecasting formulas in equa-
tions (10.1) and (10.2). However, it is important to account for the fact that capacity is
often modular; i.e., it often comes in fixed sizes. Assuming that capacity is fungible, as
is likely to be the case in an asynchronous transfer mode (ATM) environment, we can
apply formulas in [15] to determine required capacities. With modularity, we could in-
crease to the next available size. In particular, the normal approximation for the required
capacity at time 7 from [15] is ‘

5(t) = [m(®) + 0.5+ z,0 (1) ], (10.4)

where [x] is the least integer greater than x, N (0, 1) is a standard (mean 0, variance 1)
normal random variable, P(N(0; 1) > z,) = « and the “blocking” requirement is that

P(iy zs®)<a, POQW2s(t)—1) >0 (10.5)

11. Conclusions

We have shown how a time-dependent network of infinite-server queues can be used
to describe the time-dependent use of private-line telecommunication services with rel-
atively long service lifetimes. We have proposed this methodology primarily to assist
product management, whose role in the business process is described in section 3. Sec-
tions 4—6 developed the model for a single private-line service. In section 4 we provided
a remarkably general expression for the time-dependent mean number of lines in ser-
vice. In section 6 we developed an approximation for the full distribution based on the
assumption that batches of lines connected together remain in service together and then
depart together. We suggested keeping the original mean computed via sections 4, 5, and
using the approximation only to develop an approximating distribution beyond the mean.
In section 5 we pointed out that the need to fit the model to data leads us to assume that
the basic model elements are each characterized by only a few parameters. A benefit of
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these simplifying assumptions is that we obtain more elementary descriptions of system
behavior. Examples are the ODE in (5.3) and the quadratic approximation in (5.7).

In sections 7-9 we showed how the model in sections 46 can be extended to a
stochastic network model for a family of private-line services, the primary objective
being to distinguish between new connection requests and switching from one service
to another. A decomposition principle makes it possible to first solve for the net arrival-
rate functions A7 (#) and then afterwards analyze the behavior of each service separately,
using the methods of sections 4-6. In section 7, as in section 5, we pointed out that the
need to fit the model to data leads us to introduce relatively simple parametric models
for the external arrival-rate functions «;(z) and the switching probabilities p;;(¢). In
sections 8 and 9 we showed how the special structure assumed for o;(¢) and p;; () yields
corresponding simple structure in the net arrival-rate functions A (£). In section § we

discussed the special case in which the external arrival-rate functions are polynomials

(e.g., linear or quadratic), while the switching probabilities are not time-dependent. In
section 9 we discussed the more general special case in which both the external arrival-
rate functions and the switching probabilities are polynomials, showing the combined
effect of both forms of time dependence upon the net arrival-rate functions and the time-
dependent mean number of customers in each service. Concrete examples in sections 8
and 9 iflustrated both tractability and the insights that can be gained.

We showed that the model structure supports defining a three-phase life cycle for
each service, depending upon the behavior of the three functions AI?L (£), m;(t) and A (1),
assuming that all three first increase and then decrease. In the growth period, all three
functions are increasing, while in the decline period, all three functions are decreasing.
Since the peaks of m;(¢) and A; (¢) lag behind the peak of )Lj’(t), there is also a mature
period, where )\.;'-(t) is declining, but one of m;(¢) and A (¢) is still increasing, as in
figures 2 and 5. This structure is well illustrated by the case in which A7 (2) is a quadratic
function, which makes m;(¢) and A; (f) quadratic functions as well. Then the relations
among the functions A,.Jr(t), m;(t) and A (¢) are clearly quantified in (5.11) and (5.12).
These formulas show that the time lags in the peaks of m;(¢) and A; (¢) behind the peak
of A are typically different.

. Insection 10 we showed how the model can be used for short-term forecasting and
capacity management. Short-term forecasting can be done by assuming that the adds
and disconnects can be modeled by independent batch-Poisson processes.

Throughout we focused on private-line telecommunication services, but the meth-
ods should also be applicable to other leased services with long service lifetimes, such
as Internet connectivity, cable television and real estate rental.
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