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We establish functional central limit theorems (FCLTs) for a cumulative input pro-
cess to a fluid quene from the superposition of independent on—off sources, where
the on periods and off periods may have heavy-tailed probability distributions. Vari-
ants of these FCLTs hold for cumulative busy-time and idle-time processes associ-
ated with standard queueing models. The heavy-tailed on-period and off-period
distributions can cause the limit process to have discontinuous sample paths (e.g., to
be a non-Brownian stable process or more general Lévy process) even though the
converging processes have continuous sample paths. Consequentty, we exploit the
Skorohod M, topology on the function space D of right-continuous functions with
left limits. The limits here combined with the previously established continuity of
the reflection map in the M, topology imply both heavy-traffic and non-heavy-
traffic FCLTs for buffer-content processes in stochastic fluid networks.

1. INTRODUCTION

This is part of a series of articles devoted to obtaining approximations via limit
theorems for stochastic fluid queues and stochastic fluid queueing networks with
bursty input. Motivated by evolving communication networks, we represent the
input at each queue (node} in the network as the input from a superposition of mu-
tnally independent on—off sources. Each source is alternately on and off for random
periods of time. During on periods, the source sends packets, represented as deter-
“ ministic fluid, at a constant rate; during off periods, the source is idle, not sending
.input. {We also consider the generalization in which the input during on periods is
stochastic.)
We consider the case of a single-class fluid network. We let fluid be processed
at each node in a first-come first-served (FCES) manner at a constant rate and we
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stipulate that a proportion Qj; of all fluid output from node i is immediately routed to
queue j, where Q = (Q;;) is a substochastic matrix with Q" — 0 as n — oo; fluid not
routed to another node leaves the network. See [18] for additional background.

Network measurements have revealed that the traffic carried on the communi-
cation networks is quite complex, exhibiting features such as long-range dependence,
self-similarity, and heavy-tailed probability distributions (having infinite variance)
(e.g., see [1,8,22,43]). This traffic complexity is evidently due, to a large extent, to
the file sizes being transmitted over the networks having heavy-tailed probability dis-
tributions. We represent this phenomenon in our stochastic fluid network by allow-
ing the source on periods to have heavy-tailed probability distributions. The on period
represents the time a source is active, which will tend to be long when a large file is
to be sent. Because of the fluid assumption, the cumulative input process from each
source and the aggregate cumulative input process at each node have continuous sam-
ple paths, but the limit processes may have jumps due to the burstiness.

As a basis for developing useful approximations, we want to establish Hmit
theorems for the buffer-content stochastic processes in these stochastic fluid net-
works. The limit theorems we have in mind are generalizations of heavy-traffic limit
theorems for the same fluid models in which the on periods do not have heavy-tailed
distributions. Because evolving communication networks with bursty input may be
required to operate far from the heavy-traffic regime, it is significant that our limit
theorems do not require that the models be in the heavy-traffic regime. However, the
heavy-traffic regime is a principal case. There are a variety of detailed assumptions
that can be made about the distribution of the on—off stochastic processes and the
scaling (e.g., see Konstantopoulos and Lin {20], Kurtz [21], and Taqqu, Willinger,
and Sherman [34]. For example, the number of sources can be allowed to go to
infinity in the limit. Here, we assume that there is a fixed number of sources, but we
allow the individual sources to change in the limit process.

Even though the limits are not restricted to heavy traffic, that is a useful refer-
ence case. Even with the usnal independence condition, the heavy-tailed probability
distributions have a dramatic impact on the heavy-traffic limiting behavior, making
the limit become a reflected (non-Brownian) stable process or a more general re-
flected Lévy process instead of a reflected Brownian motion (RBM), as in Reiman
[25]. Reflected stable and Lévy processes have independent increments; they arise
when the on and off periods come from independent sequences of i.i.d. random
variables or, more generally, under weak dependence. Limits with dependent incre-
ments, such as fractional stable processes [29], are also possible when there is more
dependence.

In comparison with the usual heavy-traffic limits, the limits that we establish
involve different scaling and have limit processes with different distributions. The
limit processes also have sample paths with jumps, in contrast to the. continuous
sample paths of RBM. In order to obtain convergence of a sequence of stochastic
processes with continuous sample paths to a limiting stochastic process with jumps,
we need to replace the familiar Skorohod [30] J, topology on the function space D =
D{{0,00),R*) of right-continuous R*-valued functions with left limits with the
Skorohod M, topology {15, p. 301].
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Thus, in [41], we established basic properties of the function space D with the
Skorohod M topologies, and in [42], we showed that the multidimensional reflec-
tion map on D is continuous at limits without simultaneous discontinuities with
different sign in the coordinate functions, provided that a metric inducing the stan-
dard M, topology is used on the domain and a metric inducing the weaker product M,
topology is used on the range. We also applied that continuity result to establish
functional central theorems (FCLTs) for the buffer-content processes in stochastic
fluid networks. Those FCLTs show that a limit holds for the buffer-content process
in the stochastic fluid network with a suitable scaling if a corresponding limit holds
for the cumulative input processes.

The purpose of this article is to fill in the final step and establish FCLTs for a
cumulative input process in the M, topology. Assuming that the different sources, at
each node as well as at different nodes, are mutually independent, it suffices to
establish an FCLT for the cumulative input process associated with a single source.
(The sum of independent Lévy processes will be a new Lévy process.) When we
consider more than one process, we use the product M, topology on the product
space D X -.. X D. Convergence in the product M, topology extends to the standard
M, topology on D([0,00),R¥) when the limit has discontinuities in only one coor-
dinate at a time {41]. A sufficient condition is for the component processes to be
mutually independent and their limits to have no fixed discontinuities. That condi-
tion also implies the continuity of the reflection map.

Because we are considering on—off sources with fluid input, the cumulative
input process of one source is essentially the same as the cumulative busy-time
process. Indeed, suppose that the input rate during on periods is A and B(¢) and C(r)
are the cumulative busy time and input during the time interval [0, t]. Then, C(¢) =
AB(1). Moreover, if I(¢) is the cumulative idle time in [0, ¢], then I{t) = ¢ — B{z).
Hence, FCLTs for C(t), B(¢), and I(t) are all essentially equivalent., We will focus on
the cumulative busy time, B(t). Thus, the results here also apply to busy-time and
idie-time processes in other queueing models.

For a single queue, our results here for the case of heavy-tailed on-period dis-
tributions are very closely related to the non-Brownian limits in [40]. However, in
that paper we considered a discrete-time model with heavy-tailed input distribu-
tions, for which it is possible to apply the familiar Skorohod J, topology throughout.
Nevertheless, the same reflected stable processes and reflected Lévy processes are
obtained as limit processes for the buffer content in our setting when we restrict
attention to a single queue under independence conditions. The methods for calcu-
lating the probability distributions described there apply here as well. In particular,
when the Laplace transforms can be characterized, numerical transform inversion
can be used. However, those explicit results only apply to single queues. More work
is needed to obtain explicit limiting distributions for stochastic fluid networks. For
some results in this direction, see [16,17].

Largely motivated by the traffic measurements, there has been growing interest
in queues with heavy-tailed distributions. Thus, there is a growing body of related
work; see Boxma and Cohen [4,5], Cohen [7], Furrer, Michna, and Weron [13],
Konstantopoulos and Lin {20}, Kuriz [21], Resnick and Rootzén [26], Resnick and
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Samorodnitsky {27], Resnick and van den Berg [28], and Tsoukatos and Makowski
[35-37]. The main contribution here is showing how to obtain results via the con-
tinuous mapping theorem exploiting the M, topology on D. Even though the M,
topology was defined in 1956 by Skorohod [30], it has not received much attention.
Although our primary focus is on obtaining discontinuous limits in the M, to-
pology, stemming from the heavy-tailed on-time distributions, we also discuss the
standard case in which the cumulative-input limit process is Brownian motion in
Sections 5 and 6. Then, attention centers on identifying the variance constant.

2. LIMITS FOR THE CUMULATIVE BUSY TIME

Consider a queueing system in which there are alternating (necessarily positive)
periods I; and B; in which the system is idle (off) and busy (on). We initially aliow
these random variables to be very general. In particular, we allow them to be mutu-
ally dependent and have infinite variance or even infinite mean. As a regularity
condition, we assume that the number of busy cycles (idle period plus following
busy period) in any finite interval {0, ¢] is finite. We assume that the first idle period
begins at time 0.

We now show how FCLTs for partial sums of the vectors (I;, B;) imply corre-
sponding FCLTs for the cumulative busy-time process B(z). To establish the FCLTs,
we exploit results about the Skorohod M, topology in [24,30,39,41]. Let = denote
convergence in distribution and let D = D[0,00) denote the function space of right-
continuous real-valued functions with left limits, endowed with the Skorohod M,
topology. Let the o-field on D be the Borel o-field, which coincides with the usual
Kolmogorov o-field generated by the projection maps. Let D" = (D,M|)" be the
r-fold product space of D with itself, here always endowed with the product M,
topology. Let C and C” be the subsets of continuous functions, endowed with the
relative topology, which corresponds to uniform convergence on all closed bounded
intervals. When the limit processes belong to C’, this becomes the familiar setting.
For a random element of D, let Disc(X) be the (random) set of discontinuities of X
in [0,00). Let £ denote equality in distribution. Let | x] denote the greatest integer
less than or equal to x.

In general, we allow a sequence of models indexed by n, so that we start with a
sequence of sequences {{(1,;, B,;) :i = 1}: n=1}; I; is the ith idle period in model n.
Let N, (¢) be the number of complete busy cycles (idle period plus the following busy
period) in [0, ¢] and let B,(z) be the cumulative busy time in [0, 7], both for model n.
With a sequence of models, it is possible to absorb the normalization constants into
the processes, but we refrain from doing this, so that heavy-traffic limits for a single
model are obtained by a direct application. We write X,,(t) = X(r) as if we were
talking about convergence of the marginal distributions in R, but we establish the
much stronger convergence in D. Weak convergence in D is indicated by “in D"
written after the limit. '

We first obtain an FCLT with time scaling by n and space scaling by c,, where
nc, —» oo (e.g., c, = n~7 for 0 < g < 1) and then afterward obtain FCLTs with the
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space scaling by ¢,, where nc, 5 oo (e.g., ¢, = n~7 for ¢ = 1). The standard case
involving Brownian motion limits is ¢, =n~ "% The case n™! < ¢, < n™ "2 typically
arises when the distribution of B,; or I; has finite mean and infinite variance.

THEOREM 2.1: If

Lt}
Cn E [(Inth') - (mn,lsmn,Z)] = [Xl(t), XZ(t)] in (Dle)z asn— CO, (2'1)
i=1

where nc, > ooandm,; > m;asn—>cofori=12,withQ <m + m, <ooand
P{Disc(X,) N Disc(X,) # D) = 0, (2.2)
then
[Ny (nt) = yont, B,(nt) — £,nt] = (—y[Xi(y1) + Xa(y1)],
(1= &)X,(yt) — £X (1)) (2.3)
in (D,M,)? as n = oo, where

f,,E—ﬂi—ﬁf and y,,E——L——)'y>O. 2.4)
mn,l + mn,2 Mg + Hly 2
Proor: The idea is to repeatedly apply the continuous mapping theorem and its
variants, as in Theorem 5.1 of Billingsley [3]. In particular, we invoke the Skorohod
representation theorem [30], which allows us to replace random elements of a sep-
arable metric space converging in distribution with corresponding random elements
defined on a new sample space having the same distributions that converge with
probability one, In [41], it is shown that the space (D, M,) is metrizable as a com-
plete separable metric space, so that Skorohod’s [30] representation theorem can be
applied. (Even if (D, M) were not topologically complete, the representation would
still be valid, because Dudley [9] showed that topological completeness is not needed.)
First, we observe that the cumulative busy-time processes can be closely ap-
proximated by appropriate random sums. In particular, let the centered approximat-
ing processes be

N Ni(D)

Bi) =&t =(1=£) 2 Bui=mn) =&y 2 (i =maz)y (25

where N2(t) and N,(¢) are the numbers of complete busy periods and idle periods up
to time ¢ in model n. Note that. ..

N,(t) = NE(t) S NUO <N, (t) +1 forall 1, (2.6)
Also note that

Bﬁ(fn,k) = Bn('?'n.k) and Bf:("'r:.k) = Bn('?';,k) forall k = 0, 2.7
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where 1, = 0,

Top =Ly + B+ +1 +B,,, k=1, (2.8)
and

Tok = Tuke ¥ Lirr, k=0, (2.9)

Moreover, B;(t) is piecewise constant, whereas B,,(¢) is piecewise linear in each of
the intervals [ 7, ¢, 7, ;] and [7,, 1, T, x+1]- After appropriate scaling, the busy-period
counting processes N.2(¢) and Nf{(¢) are asymptotically equivalent to inverse partial
sum processes. The partial sum processes are

1¢)
St = X (I + By), =0, (2.10)
=1

and the inverse map {(applied to functions unbounded above} is

x~ ) = inf{s = 0:x(s) > 1}, t=0. (2.11)
Note that
[N (t) = 8.7 (Dl = 1, (2.12)
so that
ca([N,(nt) = ny,t] =[S (lnt]) — ny,t) =0 (2.13)

inD asn — oo,
Starting with the assumed limit (2.1), we consider the sum to obtain

|ane]
cp 2+ By) = (mny +m, )] 2 X, + X, (2.14)
i=1

jointly with the limits in (2.1), invoking (2.2) and the analog of Theorem 4.1 of [39]
for the M, topology, which is contained in [41]. (Equivalently, condition (2.2) al-
lows us to replace convergence in the product M, topology in (2.1) by convergence
in the strong M, topology on D([0,00),R?); see [41].) We next get a limit for N, (z).
To do so, we apply the Skorohod representation theorem and replace the conver-
gence in distribution with convergence with probability one (w.p.1). We then apply
the inverse map in (2.11), using (2.13) and Theorem 7.5 of [39] with ¢, = n{m, ; +
m, 2)c, playing the role of ¢, there and

Lnz)
> (I + B,) = (ny")'S.(nz)). (2.15)

x,\f) =
n( ) n(mn.l + mn,2) =1

We first get ¢, (x, — ) — x as n — oo, where e is the identity map and x = X + X,.
Then, we get cL(x;' —e) = —xas n— oo, where x; ' = n~ 'S, o ny, te, so that

caNy(nt) — y,nt) = — y[ X, (vt) + X, (ve)], (2.16)
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again jointly with the limits above. As a consequence of (2.16), we get
n~ (N'(nt),N¥(nt)) = (yt,y1) in(D,M;)? (2.17)

jointly with the limits above. Applying the continuous mapping theorem with the
composition map and using (2.14), (2.5), and (2.17), we get

B(t) = c,[Bi(nt) — §,nt] = L(1) = (1~ £)X,(y7) — £X,(yr) in (D, M)
(2.18)
jointly with the previous limits. We will use (2.18) to get the desired limit

B,(1) =c,[B,(nt) — £,nt] = L(¢t) in(D,M)). (2.19)

We now apply the Skorohod representation theorem to replace the convergence in
distribution by convergence w.p.1. From the special version of B2 in (2.18), we can
directly construct the associated special version of B, in (2.19). For each continuity
point ¢ of the limit function L, we obtain B, (1} — L(¢) w.p.l from (2.18). From
(2.5)—(2.9), we are able to bound the M, oscillation function of B, in (2.19) over any
finite interval [0,T] by the corresponding oscillation function of B¢ in (2.18). In
particular,

WS(B",S) = s(Bﬁaza)
for all suitably large n, where

w;(x,8) = sup {lx(%) = [x (), x(82)]}
Ov(1—8)=s1, <ty << =<(1+8)AT
and {a, b] is the segment joining a and b (1.e., [a,b] ={aa + (1 —a)b: 0 =a =1}).
We can thus apply Theorem 6.1(iv) in [41] to establish convergence w.p.1 of the
special versions of B,, jointly with the other quantities. That, in turn, implies the
convergence in distribution of the original versions.

Remark 2.1: As a consequence of the FCLT (2.3), we obtain the functional weak
law of large numbers (FWLLN)

n~'[N,(nt), B,(nt)] = (yt,é1) (2.20)

in (D, M,)? as n — oo. Since the limit in {2.20) is continuous, the M, convergence is
equivalent to uniform convergence in bounded intervals. Note that the limit of
n~'B,(nt) in (2.20), £1, trivially increasing in £, as we would expect. However, when
X, = 0, from (2.3), the limit of c,|B,(nt) — &nt|, (1 — £)| X2 (ve), is decreasing in
£&. Upon reflection, this is consistent with intuition as well. For example, suppose
that I, is a deterministic value for all n, so that X,(¢) = 0. Then, as £ = 1, B,(¢)
approaches ¢, and we should anticipate that the limit of ¢,[B,(nf) — §nnt] ap-
proaches 0 as first n — co and then £ — 1, as'implied by (2.3).

Remark 2.2: When we can establish condition (2.1), even with a discontinuous
limit, it will typically be pessible to obtain convergence in the stronger Skorohod J,
topology (e.g., by applying results in Jacod and Shiryaev [15]). However, we cannot
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as a consequence obtain the conclusion (2.3) in the J, topology unless the limit
process has continuous paths. Because the normalized cumulative-busy-time pro-
cesses have continuous sample paths, the M, topology is needed in the final limit.
The M, topology is also needed to obtain (2.16) for the counting processes via the
inverse map. Theorem 7.4 of [39] shows that a limit does not hold in the J; topology
for limit processes with discontinuities.

Remark 2.3: The discontinuity condition P(Disc(X,) N Disc(X,) # &) = in Theo-
rem 2.1 is obviously automatically satisfied if one of the two limit processes X; and
X, has continuous paths (i.e., if P(X; € C) =1 for one i). In fact, both have contin-
uous paths in the standard short-range-dependence finite-variance case, in which
they are Brownian motions, which we consider in Section 3. Otherwise, the discon-
tinuity condition is automatically satisfied if X, and X, are independent processes
without fixed discontinuities.

Remark 2.4: If the scaling is not by ¢, = n~'2, then often the busy periods will

dominate the idle periods in the sense that X;{¢) = 0, t = 0, in (2.1). Then, the
discontinuity condition (2.2) is trivially satisfied and the limit process in (2.3} sim-
plifies. Indeed, it is a simple time-and-space rescaling of the limit X in (2.1).

Assuming that the limit process in Theorem 2.1 is continuous at ¢ w.p.1, we
obtain the associated ordinary CLT (convergence of marginal distributions) in R? by
applying the continuous mapping theorem with the projection map ,;: D? — R?
defined by 7, (x|, x2) = (x,(£), x2(£)).

The limit processes in (2.1) and (2.3) will often be self-similar; that is, the
finite-dimensional distributions will satisfy

[X(ct,),..., X(ct,)] = [c"X(ty,...,c"(1,)] 2.21)

foralln, 0 <t < -..- <t,andc > 0; see [29, p. 311]. Then, H is the self-similarity
index. Indeed, in the case that there is only a single model (i.e., in which {(;, B;)} are
not indexed by n), the limit process is necessarily self-similar. We summarize the
observation.

THEOREM 2.2: If the conditions of Theorem 2.1 hold with ¢, = n™7 for a single
model {(I;,B;):i = 1}, then the limit process [X(t), X>(t)] in (2.1) is self-similar
with index q and the limit process in (2.3) is distributed as

(1= &)y, (8) — &v7X, (). (2.22)
Proor: Consider the limits two ways, first replacing ¢ by yt and then replacing n by
¥n in the time argument nf. n

We next consider the case in which the partial sums of the busy periods satisfy
an FCLT with normalization c,, where ne, — ¢ =< 1, which corresponds to the oc-
currence of exceptionally long busy periods. When ¢ = 0, the average busy period
B,=(B,, + -+« + B,,)/nis diverging to +co as n — co. We assume that the idle times
satisfy an FWLLN with the usual normalization n~. The dual case involving large
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idle times and standard busy times is covered by just changing the names. We con-
sider the case in which both idle and busy times are large afterward.

Let e denote the identity map on [0,00). Let C¥ be the subset of functions in C*
with each coordinate function being monotone. Let Dt be the subset of nondecreas-
ing nonnegative functions in D! that are unbounded above,

THEOREM 2.3: If

Lree]
n"’EI,,,—::»mlt in(D,M\Yasn— o (2.23)

i=1
and

Lne]
o 2 Bu=>X,(t) in(D',M,)asn— oo, (2.24)

i=1

where nc, = ¢ = 1 and P(X;'(0) = 0) = 1, then
nTHNG(er 0 Laley 0, Buler ') — e ') = (M (), (1), — La(e))  in (D, M,)°

(2.25)
as n — oo, where
Pl c=10
hn) = {(mle + X)), e=1 (2.26)
and _
Y,(r) = m Y,(z). (2.27)

ProoF: We modify the proof of Theorem 2.1. First, by Theorem 4.4 of Billingsley
[3], because the limit in (2.23) is deterministic, the separate convergence in (2.23)
and (2.24) implies joint convergence. We first assume that ¢ = 0. Multiplying by nc,,
in (2.23), we obtain

{nt)
cn Oy (Lir Bu) = (0,X,(2)) inD?asn — oo, (2.28)

i=1
Then, adding, we get
kne)
ey 2 (i + Bi) = X,(t) inDasn— oo, (2.29)
i=1 ,

joint with (2.23) and (2.24). Using (2.12) and the inverse map, from (2.29) we get
n"IN,(c,t) = X;'(t) inDasn— o, (2.30)

again joint with the limits above. We use Lemma 2.1 of [24], which requires the
assumed condition P(X;5 (0} = 0) = 1. Note that X, necessarily has nondecreasing
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sample paths because [,,; = 0 and B,; = 0 for all n and /. The processes B and [ can
be treated at once because B{¢) = r — I(t). We apply composition with (2.23) and
(2.30) to get

N (et}

nt D L= mX;7(t) inDasn— oo (2.31)
i=1

jointly with (2.30), using Theorem 9.1 of [41] with the limit (x, y) € C% X D1 there
(i.e., exploiting the fact that m, ¢ is continuous and monotone). Next, note that

Nylep ')

nT e )~ Y L =T e e (2.32)
i=1

By (2.23), ”_lfn,lmj = 0 in (D, M,). That with (2.30) implies that
nyneriger =0 in (D, M) (2.33)

Hence, we have established (2.25) in the case ¢ = 0. When ¢ =1, (2.28) and (2.29)
hold with the limits changed to (m £, X5(¢)) and m(¢) + X,(t), respectively. Thus,
(2.30) holds with the limit changed to (m;e + X,)7!(z). Similarly, (2.31) holds with
the limit process changed to m(m e + X5) ™ (¢}, so that we have (2.25)—(2.27) when
c=1. u

Remark 2.5: As noted in Remark 2.2 about Theorem 2.1, we typically will be able
to obtain convergence in the stronger J; topology in condition (2.24). However, we
use the M, topology when we work with the inverse map. The inverse map is con-
tinuous in the J; topology if the limit is strictly increasing; see Theorem 7.2 of [39].
Because the processes in (2.24) are nondecreasing, the M, topology is equivalent to
pointwise convergence on a dense subset.

The following lemma helps to apply Theorem 2.3.
LEMMA 2.4; Let X be an element of D'}l. Foralls,t > 0,
P(X () =5)=P(X(s) >¢).
Proor: From (2.11),
X&) >p={X"") =5} | u

Now, we consider the case in which both the partial sums of /,; and B,; have a
nondegenerate limits without translation terms. In general, we have difficulty if the
limit process X has discontinuities. Hence, the following theorem seems less useful.

- Let Cqt be the subset of strictly increasing nonnegative functions in C.
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THEOREM 2.5: Suppose that

Lrer)
Cn 2, Unis Bui) = (X1(1), Xo(8))  in (D', M) as n — oo, (2.34)
i=1

where ¢, —> asn — oo,

(a) If X, and X, are independent processes without fixed discontinuities and
(Xl + Xz)_l(O) = 0, then

nTIN (e )= (X, + X,)7(e) in(D,M,)asn — oo, (2.35)
(b) If, in addition,
P((X, (X, + X2)") E(C,, X D) U (D X Cp1)) = 1, (2.36)
then

(n7'WN (e '), ol (e 1)) = (X + Xo) (1), Xp 0 (X, + X)) (1) in (D,M))?
(2.37)

asn—co,

ProOOF: The argument is similar to that for Theorems 2.1 and 2.3. For both parts, the
conditions on the limit processes X, and X, allow us to apply the continuous map-
ping theorem with addition to get

Lne]
cp 2 {1y + Bu) = X, (1) + X5(2) (2.38)

i=1
joint with (2.34). Using (2.12) and the inverse map (2.11), from (2.38) we get (2.35),
again joint with the limits above. We again use Lemma 2.1 of [24]. Note that the
limit processes X; in (2.34) necessarily have nondecreasing nonnegative sample
paths because /,; = 0 and B,;; = 0 for all n and i. Turning to (2.37), in part (b) we use
the extra condition to justify applying the continuous mapping theorem with com-
position, using Theorem 9.1 of {41]. We use the argument in the proof of Theorem
2.1 to relate the cumulative-busy-time process to the random sum. u

3. RANDOM INPUT DURING ON PERIODS

We have indicated that the limits for the cumulative busy time B(¢) in Section 2
translate immediately into corresponding limits for the cumulative input C(¢) for an
on—off source when the input during the on periods is always at a constant rate A;
then, C(¢) = AB(t). In this section, we consider the more general situation in which
the input during on periods occurs randomly according to a stochastic process
{A(#): ¢ = 0} with nondecreasing sample paths. Now, we assume that A(0) = 0 and

C(z) = A(B(2)), t=9. 3.1}
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Definition (3.1) means that input for the source is generated from the stochastic
process {A(r): ¢ = 0} whenever the process is on, with successive increments from
the same stochastic process {A(r):¢ = 0} being used whenever the source turns on.
A simple case naturally covered by (3.1) is when {A(z):¢= 0} and {B(z) : £ = 0} are
independent stochastic processes with {A(r) : £ = 0} having stationary and indepen-
dent increments. However, {3.1) can apply usefully in much more general situations.

A first general result is a direct consequence of the M|, limit under a random time
change in Theorem 11.2 of [41]. We use the M, topology in the condition because
that is the mode of convergence obtained from Theorem 2.1, Note that condi-
tion (3.2) below for B, () corresponds to the conclusion of Theorem 2.1 here, in the
situation considered there (nc, — co and £, — £).

THEOREM 3.1: If

co[Ba(nt) — Ent, A (nt) — A nt] = [X,(2), X,(2)] in(D,M,)? asn — oo,

(3.2)
where nc,, > 00, &, > &, and A, — A asn —» oo and
P(Disc(X; e £e) N Disc(X,) = ¢) =1, 3.3
then
c [ Coulnt) ~ A, € nt] = Xo(ét) + AX (¢) in(D,M,)asn — co. (3.4)

ProoFr: Note that
c[Culnt) — A E.t] = e, [(A,(nt) — A nt) e n 1B (nt) + A,(B,(nt) — &,nt)]
= X, (&) + AX,(¢)
by Theorem 11.2 of [41]. ) w

There are two sources of variability in Theorem 3.1: the two processes A, and

" B,. When the nonstandard scaling with ¢, # n~? occurs in condition (3.2) of Theo-

rem 3.1, we should anticipate that the processes B, and A, typically will require
different normalizations in order to have nondegenerate limits. Thus, we regard the
case in which either X, or X, in (3.2) is the zero process as the common case with
¢, # n~ "2 That is fortunate because the limit (3.2) will then typically be easier to
verify. ' :

Moreover, Theorem 3.1 invites us to compare the two sources of variability in
applications and determine which dominates, which could conceivably vary from

situation to situation. However, if burstiness is primarily due to exceptionally long

on periods, then we should anticipate that X, will be the zero process; that is, the
fluctuations in A, should be asymptotically negligible compared to the fluctuations
in B, so that P{X,(t) = 0) = 1 in (3.2). Then, we can treat the two componeunts in
(3.2) separately, applying Theorem 4.4 of Billingsley [3]. Moreover, it is not nec-
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essary to identify a nondegenerate limit for A,, which necessarily must involve a
different scaling. We may well be able to deduce that

co[A(nt)—A,nt]=0 in(D,M)asn— (3.5)

for quite general processes A, (without requiring independent increments). Finally,
in this case, the limit process is the same as if A(z) = Az, as assumed in Section 2.

We can combine Theorems 2.1 and 3.1 to show that the limit for the cumulative
input processes C, after appropriate normalization is just a deterministic scaling of
the limit process X, for the partial sums of the busy times when the idle times and the
processes A, are asymptotically negligible compared to the busy times.

CoROLLARY 3.2: If condition (2.1) in Theorem 2.1 holds with P(X,(t}) =0) =1 for
all t and if

A, (nt) = A,nt] =0 in(D,M;)asn— oo,
where A,, > A asn —> o, then
ol Colnt) = E A nt ] = A1 — E)X,(vt) in(D,M,) as n — oo,

where X5, v, and & are as in Theorem 2.1.

4. SUFFICIENT CONDITIONS

The main remaining problem is to provide useful sufficient conditions for the con-
ditions in the theorems in Sections 2 and 3, especially condition (2.1) in Theorem
2.1. As noted in Remark 2.2, this condition requires convergence in the M, topology,
but we typically will be able to establish the required convergence in (2.1} in the
stronger J, topology, even with heavy-tailed probability distributions and discon-
tinuous sample paths. Indeed, Jacod and Shiryaev [15] give numerous sufficient
conditions for convergence of the form (2.1) to processes with discontinuous sample
paths, all in the J; topology.

The theorems in Sections 2 and 3 do not require any independence for the un-
derlying random variables B,; and [,;, but that is an important special case. In par-
ticular, if we assume that the pairs (7,;,B,;) for i = 1 are i.i.d. for each #n, then
condition (2.1) falls into the classical setting of limits for triangular arrays of partial
sums of i.i.d. random vectors, for which the limits are known to be Lévy processes.
Such limits with applications to the single-server queue are discussed in [40]. (How-
ever, there the summands have a different interpretation than busy and idle periods.})

The standard framework for heavy-traffic limit theorems for queues involves a
sequence of queueing processes associated with a sequence of queueing models,
which we take to be indexed by n. The condition of heavy traffic is achieved by
having the associated traffic intensities p, approach 1, the critical level for stability,
from below as n — co. The queueing models can change quite generally with n, but
it often suffices to consider essentially a single model, Ietting the nth arrival (cumu-
lative input) process be a simple time-scaling of a single reference arrival process.
‘We can achieve the same simple scaling in our idle-busy cycles by letting the idle
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and busy periods in model n be obtained by simply scaling the idle and busy periods
in a single reference system. In particular, suppose that I,; and B,; are defined in
terms of I; and B; by letting

I;,=a,l; and B, =p8,B; 4.1)

where o, > e and 8, > B asn — oo.

With the framework (4.1), we can easily establish the conditions in the theorems
in Section 2 using limits for the single sequence {(/;, B;):{ = 1}. We state the ele-
mentary result for Theorem 2.1,

THEOREM 4.1: Suppose that (4.1) holds with a + B > 0,

Lrt]
Cn[z (IiaBi) - (ﬁlhﬁlz)} = (YnYz) in (D:Ml)z asn — o0, 4.2)
i=1

where nc, — oo as n — oo, my + A, > 0, and
P(Disc(Y;) N Disc(Y) # ¢) = 0. 4.3)

Then, the conditions and conclusions of Theorem 2.1 hold with X, = aY), X> = Y.,
mpy = anﬁzl’ Mgy = Bnﬁlzv mp = a}?zl’ my = BﬁlZ: Cmd?’ = (ml + mZ)—l > Q.

For the single-model framework in (4.1), it suffices to establish condition (4.2).
If, as above, we assume that the pairs (I;, B;) for { = 1 are i.i.d., then we are in the
restricted classical setting of limiting stable processes. We will elaborate, as this
seems to be the most relevant for treating heavy-tailed on periods.

We now discuss nonstandard limits when there is essentially a single model
with i.i.d. busy cycles, where the busy-period cumulative distribution function
(cdf)} has a heavy tail but the idle-period cdf does not. In that setting, it turns out
that a nonstandard limit in Theorem 2.1 or 2.3 holds with ¢, = n~" if and only if
the busy-period cdf has a power tail with decay rate x™* for 0 < a < 2. (If we
allow more general normalization constants, then the busy-period cdf tail can be
regularly varying.) Under that condition, the limit process X,(¢) becomes a stable
Lévy motion (totally skewed to the right and centered), by which we mean that
X5(0) = 0, {X,(¢):¢ = 0} has stationary and independent increments, and X(¢) —
X(s) £ S.(a(t — 5)¥2,1,0), where S,(c,B,u) denotes a stable probability law
on R with index a(0 < a = 2), scale parameter o, skewness parameter S(—1 =
B = 1), and location (or shift) parameter x as in Samorodnitsky and Taqqu [29],
to which we refer for background. In particular, the logarithmic characteristic func-
tion of an S, (o, B,u) variable X is

—o*|0|*(1 — iB(sign O) tan(mwa/2) + iuyh, o +#1
0X —

2 _ (4.4)
: —o|0|(1 + i — (sign 8) In(|8]) + iub, a=1,
: T

log Ee
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where sign# = +1,0,0or —1 for 8§ > 0, 8 =0, and 8 < 0, respectively. The stable law
is skewed totally to the right when 8 = 1 and skewed totally to the left when 8= —1;
we are interested in the case 8 = 1. It is centered when u = 0.

A random variable X distributed as S, (o, 1,0) for a < 2 has a cdf with the power
upper tail decaying as x~*; in particular,

lim x“P(X > x)=K,0% 4.5)
where
e #1
= -t I'(2 — a)cos(ma/2) *
K,= x *sinxdx = (4.6)
0 2
-, a=1,
a

and T'(x) is the gamma function. For 0 < a < [, the stable law S,(c,1,0) is concen-
trated on the positive half-line, and the associated stable process has nonnegative
nondecreasing sample paths. In that case, the positively skewed stable Lévy motion
is called a stable subordinator. For 1 = a < 2, the skewed stable law S,{c,1,0) has
support on the entire line, but it decays faster than exponentially as x — —oco. If X has
the S.{a,1,0) law, then the logarithm of its Laplace transform (defined only for real
positive s for & = 1) is

AT
—— ifa
log Ee=* = cos(ma/2) @7
2sn(s) |
— ifa=1,
o

for Re(s) > 0. Closed-form representations for stable probability density functions
(pdf’s) and cdf’s are available in only a very few cases, but numerical calculations
can be done by exploiting finite-interval integral representations in Section 2.2 of
Zolotarev [44]. These integral representations have been applied to generate tables
of pdf, cdf, and factile values, as indicated in Section 1.6 of Samorodnitsky and
Taqqu {29].

With this background, we can state the basic limit theorem. We omit the some-
what pathological boundary case of @ = 1. Note that our assumptions are about I,
and B, separately; we need not make any assumption about the joint distribution of
I, and B,.

THEOREM 4.2: Consider a single model with i.i.d. busy cycles in which EI? < oo.

(a) The conditions of Theorem 2.1 (or Theorem 4.1) with nérmalization con-
stants ¢, = n~Y* hold for 1 < a < 2 if and only if there is a constant K for
which : -

lim x*P(B, >x)=K, =~ (4.8)
X=300
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in which case my = EI|, m, = EB; < o, and the limit process [ X (1), X,(2)]
has X,(t) = 0 and X,(t) stable Lévy motion with marginals distributed as
S.(at1,0) for o = (K/K,)"* with K in (4.8) and K, in (4.5). The limir
process (1 — £)X,(yt) in (2.3) has one-dimensional marginals at t distrib-
uted as S,(ot'/%,1,0), where o = (1 — £)(Ky/K )V* for £ = p = EB,/
(EB, + EI,) and y in (2.4) and K and K, as above.

(b) The conditions of Theorem 2.3 with normalization constants ¢, = n~ '/«
hold for 0 < a < 1 if and only if (4.8) holds, in which case X5(t) is the
stable subordinator, with marginals distributed as S, (etV%1,0) foro =
(K/K, )V with K in (4.8) and K, in (4.5). The limit process —m, X5 '(¢) in
(2.26) and (2.27) has marginal distribution

P(—m X;'(t) = —x) = P(m X5 (1) = x) = P(X,(x/m,) > 1) (4.9)
with X,(x/m,) being distributed as S, (o (x/m}"/%,1,0).

We omit the proof of Theorem 4.2 because it is contained in Theorems 3.3 and
3.8 of [40], which draws on Feller [12] and Jacod and Shiryaev [15]. See [40] for
further discussion,

5. LIMITS FOR A SINGLE QUEUE

We now combine the previous results to obtain FCLTs for a single-server fluid queue
fed by the superposition of k independent on—off sources with heavy-tailed on pe-
riods. We construct a sequence of models indexed by n, letting p, be the traffic
intensity for model n.

As in [40], we consider a single-server queue with finite waiting space, which
is defined by the two-sided reflection map R. The reflection map R takes elements
x € D=D([0,T],R) with 0 < x(0) < Cinto (z,L,u) = (¢(x), ¢, (x),¥,(x)) in D3,
where

z(6) = x(t) + () — u(z), = 0. (5.1}

I and & have nondecreasing sample paths with /{(0) = «(0) = 0,{(¢) increases only
when z(¢) = 0, and u(¢) increases only when z(z) = C; that is,

fmz(r) di(r) = fw[C— z(t)] du(t) = 0. . (58.2)
0 4]

As shown in [42], the reflection map on D([0,00), R) into D([0,00), R?) is continu-
ous, provided the product M, (WM,) topology is used on the range. If we focus on
the one-dimensional buffer content process z, the topologies on the domain and
range become just M, on D([0,c0),R!).

We first establish a general limit in the setting of Section 2. Let {Z,(z) : 1 = 0} be
the buffer-content stochastic process in model n with buffer capacity C, and fluid
processing rate r,. Let the input rate during the on periods be A. Let ¢ be the identity
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map on [0,00). We obtain the following from Theorem 2.1 by applying the continu-
ous mapping theorem with the reflection map above.

THEOREM 5.1: If the conditions of Theorem 2.1 hold with C, = ¢;' C, ¢,Z,(0) =
Z(0)Yasn — oo in R and

ne,(Af, —r,) —>ec (3.3)
asn — oo, then
Z,= (A1 —£&)X,0ve — AéX o ye+ce) in(D,M,)asn— oo, 5.4)
where ¢ is the first (content) component of the reflection map.

ProoF: By (5.3),
cnZ,(nt) = ¢{{c.[AB,(nt) — ront]})
= ¢({c.[AB,(nt) = Af,nt] + (A€, — ro)nc,1})
= AL = €)X, {yt) — AEX (1) + c1})

by the continuity of the reflection map. This two-sided reflection map with the M,
topology is discussed in Section 10 of [42]. .

In the standard heavy-traffic applications of Theorem 5.1, £, — é > 0andr, —
r>0,sothat A¢, —r,— 0and p,= A{,/r, — 1. However, we can have non-heavy-
traffic applications by having nc, A, 2> a>0and nc,r, > b > 0,sothatc=a—b
and p, = A£,/r, — a/b, where a/b can be any positive value. Then, £ = 0 and the
limit in (5.4) simplifies.

COROLLARY 5.2: If, in addition to conditions of Theorem 5.1, nc, A, = a > QG and
ne,r, = b > 0asn — co, then,

Z,= ¢{(AX o ye +ce) in(D,M,;)asn — oo,
where X, has nondecreasing sample paths but AX; © ye + ce need not.

It is natural to treat the non-heavy-traffic case in Corollary 5.2 without using the
scaling in Theorem 2.1. We can then consider fixed capacity C and fluid processing
rate r. The idea is to define the sequence of models so that {B,(¢):7 = 0} directly
converges to a limiting process, say {B(#):7= 0}. (The limit B corresponds to AX,
o ye in Corollary 5.2.) By the continuity of the reflection map, the associated buffer-
content stochastic processes {Z,(z}:¢ = 0} converge to ¢(B — re), where ¢ is the
first component of the reflection map. If the sequence {(B,;,[,;}:i = 1} is i.i.d. for
each n, then the limit process X, in Theorem 2.1 can be a general Lévy process with
nondecreasing sample paths (subordinator), so that ¢(B — ce) is a reflected Lévy
process. If we work in the single-model framework of Theorem 4.1, we still do not
need to be in heavy traffic, but the possible limit processes are more restricted; then,
the limit processes B and ¢{B — ce) become a stable process with nondecreasing
sample paths (stable subordinator) and a reflected stable process, respectively.
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We now describe the standard heavy-traffic limit in more detail, allowing sto-
chastic input during on periods as in Section 3. We now choose measuring units so
that the constant fluid processing rate is 1 for all n. The net-input process in modei
nis

Xn(t) = Cn(t) -1 (5'5)

with the cumulative input process being

k
C.(t) = >, A (Biz)), t=0, (5.6)
i=1

corresponding to the superposition of k independent on—off sources, where the ith
source submits fluid according to the stochastic process A',(¢) when it is on.
As in Corollary 3.2, we will assume that

co[Ap(nt) = Ant] =0 in(D,M,)asn— 5.7

for 1 < i <k, where A, = A' > 0 as n — oo; where n ™"/ is the final normalization,
we will use it to obtain a nondegenerate limit.

For source { in model n, Bi(t) is the cumulative busy time in [0, ¢]. It is deter-
mined by on periods B;, and off periods /;. As in Section 4, we assume that we have
essentially a single model; that is,

Bi,=BiBi and Ii=allf (5.8)

forl<i=<k j=1,and n = 1, where 8. and «/ are constants satisfying 8} — B’
and a) — o as n — oo, where o + 87 > 0. Without loss of generality, we assume
that EB] = EIf = 1, so that EB}; = B} and EI}; = a}. We assume that {B}:j = 1}
and {I/:j = 1} for 1 = [ < k are 2k mutually independent sequences of i.i.d.
random variables.

We will consider the case in which the first j of the k on periods have power tails
with exponent x ~%, and the rest are asymptotically negligible. Let Z,,(¢) be the buffer
content at time 7 in model 7.

THEOREM 5.3: Consider the fluid queue model with k independent on—off sources,
each with independent sequences of i.i.d. on periods and off periods as specified
by (5.6)-(5.8), where o’ + B° > 0 for 1 =i =< k. Suppose that E[(I{)*] < oo for

I<i<k

lim x*P(B{ > x) =K' 5.9)
forl=i=<jand
lim x*P(B{ > x)=0 ' (5.10)

X300 .

forjt+1=i=kandl < a<2. Then,

n= V[ C. (nf) — £,nt] = S§(2) in (D,M,) as n— oo, (5.11)
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where
k - -
L= 2 Nol (5.12)
i=1
with A determined by (5.7),
&= _B:; - > &' asn— oo (5.13)
el B

as determined by (5.8), $%(t) is a Stable Lévy motion with marginal distribution
Sy(ot21,0), and

J . ' ) K,‘ 1/
o= (E(,\'(l - §’)B’)"%—E) , (5.14)
i=1 o

with K; in (5.9), K, in (4.6), X, = A}, B — B', and

1 1
a+pl @ +p

yi= =yi>0 asn— . (5.15)

If, in addition,
nlme N ~1)>c asn— 0, — o0 <c < oo,
then the net-input processes satisfy
n~VeX (nt) = ct + §°(t)  in (D,M,;) as n — co. (5.16)
If, in addition, the capacity in model n is n\'*C and n~"%Z,,(0) = Z(0), then
r_f”“Z,,(nt) = Z(t) in(D,M,)asn— oo, (5.17)

where Z = (J{(S® + ce) for $* in (5.11) and e is the identity map. Then,

H
' ’lin; P((S* +ce)(t) =x) = H((;)), 0=x=C, (5.18)
where H is a cdf with pdf h with Laplace transform
. it 1
h(s) = ~h =— 5.19
(s) fo e h(x)dx 1% (o) (5.19)
and scaling constant v defined by
vt — L5 (5.20)
© ccos(mal2) )

for o in (5.14).
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Proor: By previous results, the cumulative input process from the ith source, | <
[ = j, has the limit

n~Ve[Ci(nr) — X, xmt] = N (1 — €5)y!* BIX4(0), (.21

as n — oo, where D is endowed with the M, topology, X4 is stable Lévy motion with
Xi(¢) having marginal distribution S,{o;#'%,1,0), and o; = (K*/K,)"* for k' in
(5.9) and K, in (4.6). Thus, the limit has marginal distribution S,{;1'/%,1,0), where

Ki 1/
o; = f’li(l“fi)’)’illaﬁi(?) ; (3.22)
see (1.2.3) of {29]. Because the k sources are mutually independent and the last
k — j are asymptotically negligible, we can add over the first j sources using (5.22)
and 1.2.1 of [29], to obtain the limit (5.11) with o in (5.14). The net-input limit in
(5.16) differs only by a deterministic translation. Finally, we obtain (5.17} by ap-
plying the continuous mapping theorem with the reflection map. The steady-state
distribution of & (S* + ce) is classic; see [40] and references therein. |

Remark 5.1: Asillustrated in [40], numerical values of the steady-state distribution
of the limiting reflected stable process in Theorem 5.3 are easily obtained by nu-
merical transform inversion.

6. THE STANDARD CASE: BROWNIAN LIMITS

The standard case involves a single model with short-range dependence and finite
variances for the variables I; and B;. Then, the basic limit process [X,(¢), X,(¢)] in
Theorem 2.1 should be the Wiener process or Brownian motion, here denoted by
W(#) to distinguish it from the cumulative busy process B(f). Because the Wiener
process has continuous sample paths, the M, convergence in the theorems of Sec-
tion 2 is equivalent to uniform convergence on compact intervals. In this section, we
give further results for this case.

THEOREM 6.1: [f

L]
n= 2> [(1, By) — (my,my)] = [Wi (1), Wa(t)] inD%asn— oo, 6.1)
=1

where [W(2), Wa(t)] is a centered (0-drift) two-dimensional Brownian motion or
Wiener process with covariance matrix

2 2
o Oy

s=(, . 6:2)
Tz O3

n~Y2[B(nt) — ént] = o W(2), (6.3)

then
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where & and y are as in (2.4), W(t) is a centered Wiener process, and

o =y[§Pof + (1 - £)0f —26(1 = §)od]. (6.4)
ProoF: We apply Theorem 2.1 with ¢, = n~"/2 to obtain the limit process
(1= &)y'2X, (1) — £v'2X,(2), (6.5)

where X;(t) = W;{(z). Next, note that this linear combination of centered Wiener

processes is again a centered Wiener process with variance parameter o2 in (6.4).
|

To apply Theorem 6.1, we need to verify that the assumed FCLT in (6.1) holds
and identify the five parameters m,, m,, o, o, and 0. We now consider addi-
tional assumptions under which the conditions of Theorem 6.1 are satisfied and we
can identify the parameters.

THEOREM 6.2: If the successive pairs (I;, B;) are i.i.d. and, in addition, have finite
second moments, then the condition of Theorem 6.1 holds and the parameters in
(2.4) and (6.4) can be identified as

m; = EI, m, = EB, (6.6)
ol = Varl, of=VarB, and o%= Cov(l,B). (6.7)

Proor: The limit (6.1) holds with the parameters as in (6.6) and (6.7) by the two-
dimensional version of Donsker’s FCLT; see Chapter 7 of Ethier and Kurtz [11].
|

In the setting of Theorem 6.2, if I; and B; are also mutually independent, then
ap = Cov(l,B) = 0. Then, we can characterize variability in terms of the squared
coefficient of variation (SCV, variance divided by the square of the mean) of the
individual variables I and B. The variance parameter in (6.4) becomes

o? = M(1 - £)%07 + £%07

1

= m [m2o? + méic?

m?m?
= m (e + ¢3], (6.8)
Th1 2 .

where ¢? and ¢3 are the SCVs of I and B.

We now consider special cases in which the busy and-idle periods are associated
with a queueing system. It is possible that the environment of the fluid model could
involve a queue, but now we are thinking of simply developing limits for the cumu-
lative busy time in the interval [0, ] in a queueing model. Many queueing systems
have Poisson arrival processes. Then, /is exponentially distributed and independent
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of B. If, as in the M/GI/s/r queueing model with finite waiting room, / is exponen-
tially distributed and independent of B, then o = m? and the variance parameter in
(6.8) becomes

2 mim3

= sl (6.9)

a

From (6.9), we see that for the M/G/s/r model there are only two unspecified
parameters: the mean and SCV of the busy period. Of course, these are well known
for the M/GI/1 queue (e.g., see [6, p. 251]). The result in this case has a long
history: see [31, Thm. 4, p. 115].

THEOREM 6.3: For the M/GI/1/c0 model where the service time has mean 1 and
SCVcZ,

1 i 1
m =, mp = ’ :P(l "'P)’ (6'10)
p 1-p m, + m,
c2+ o] 2+ p
2 s ’ 2 S , 6.11
T U= CT 1y (10
and the variance parameter in (6.9) becomes
o? = p(c2+1). (6.12)

We now consider the M/M/1/r model with r extra waiting spaces. For the
M/M/1/r queue, we can apply results for its busy period in Section 3 of [2]. For this
model, we can have any traffic intensity p.

THEOREM 6.4: For the M/M/1/r model with service rate 1 and arrival rate p,

r+1 ifp=1

my,=E[B]=11-p'! (6.13)
ifp*l
1=p
8r% +46r + 39 1
48 fr=

(c3+1)m}=E[B*]=

(1-p) {L=@r+3)p™' (1 —p)=p>*} ifp+1.

(6.14)

Another relatively élementary example is the M/M/co queue. The following
comes from Dupius and Guillemin [10].
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THEOREM 6.5: For the M/M/co queue with individual service rate 1 and arrival
rate A,

(e*-1)
A

m, =EB = (6.15)

and

(c24+ 1)mi= E[Bz]—?.e’\i AE—)

ProOF: From of Dupius and Guillemin [10, p. 61], the Laplace transform of the
busy period (at least one server is busy) is

(6.16)

Bls) = Ee-® = 215 _ e’s , (6.17)
A A{l + 58(s))

where

n

,,;; (s +n)nt’ (6.18)
|

A generalization of Theorems 6.4 and 6.5 arises whenever the queue-content
process evolves as a Markov chain (MC). Then, the idle period and busy period are
independent, and the idle period has an exponential (geometric) distribution if the
MC evolves in continuous (discrete) time, so that we are in the setting of Theorem
6.3. The busy period then is a first passage time, whose moments can be readily
computed (e.g., see Chap. IIl of Kemeny and Snell [19], especially p. 51). For larger
state spaces, care needs to be given in the computation; see Heyman and O’Leary
[14].

For extensions to M/G/1/r systems with finite waiting room, see Chapter 5 of
Takagi [33]. For busy-period results in corresponding finite-population M/G/1
queues, see Chapter 4 of [33].

7. BUSY AND IDLE PERIODS FROM THE G/G/1/ QUEUE

In this section, we consider the special case in which the successive busy and idle
periods are associated with the general infinite-capacity single-server queue. For the
G/G/1/c0 queue, we can apply asymptotics associated with the one-dimensional
reflection map, as in [38] and Section 6 of [39]. For this purpose, we assume that the
interarrival times 7; and service times S; satisfy a joint FCLT. When the busy and idle
periods are associated with a queueing model, it is natural to regard the sequence
{(T;;5;): i = 1} as the basic model data instead of the sequence {([;, B;) :i = 1} con-
sidered in Sections 2 and 3. .
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Let A(¢) count the number of arrivals in [0, ¢]. In this setting, the cumulative
busy time B(t) is closely related to the total input of work, X(¢), where

A(r)

X =28, t=0. (7.1)
i=1

Indeed, the two processes are identical whenever the system is empty. Hence, it
should come as no surprise that their limit processes are identical. With Brownian
limits, they have the same distribution and thus the same variance parameters. Let
Z(t) be the buffer content (workload) in the queue. The following is a generalization
of results in [38].

As in Theorem 2.1, we consider a sequence of models indexed by n. Let
{T,;,S.:i = 1} be the sequence for model n. We scale time so that the mean
service time is 1.

THEOREM 7.1: If

Lat] Lne]
CN[ETHI_pn_lntssz'_nt]=[Yl(t)sY2(t)] in (DsMI)2 asn—, (7.2)

i=1 i=1

where nc, — coand p, > p asn — 0, 0 < p =1, and P(Disc(Y,) N Disc(Y,) #
@) =1, then '

Ap{nn)
Cn [An(nr) — pant, 2‘1 Sai — Pn nt] = [-pY(pt).Ya(pt) — pYi(pt)]  (7.3)

in (D,M,)? as n — oo. If, in addition, p < 1, then
c.[Z.(nt), B,(nt) — (pInt} = (0,Ya(pt) — pYi(pt)) in(D,M,)* as n— co.
(7.4)
If, instead, p = 1 and ﬁc,,( 1—p,) = c, then
c [ Z.(nt), I, (nt)] = (Z(t),—inf{Z(s):0 = s =<1t} (7.5)

in (D,M,)? as n — oo, where Z = (Y} for the first component ¢ of the reflection
map in (5.1) and (5.2) without upper barrier and Y(t) = Y2( pt) — pYi(pt), t = 0.

Proor: The proof of (7.3) is a minor modification of the proof of Theorem 2.1. We
apply the inverse map to the arrival process to get the first component of (7.3). We
then apply composition with addition to get the second component of (7.3). Then,
{7.4) follows from Theorem 6.3 (ii) of [39]. The limit (7.5) is the heavy-traffic limnit,
as in [38]. We apply the continuous mapping theorem with the reflection and supre-
mum maps; see Whitt [42]. '

Remark 7.1: The general triangular-array limit in Theorem 7.1 is used by Kurtz [21]
to obtain an FCLT for the total input process with a fractional Brownian motion
(FBM) limit process. He has scaling by ¢, = n~'/2, but general self-similarity index
H. See Willinger et al. [43] for another FBM limit. Fractional Brownian motion has
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continuous sample paths, which implies that the discontinuity condition in Theorem
2.1 is automatically satisfied; see [29, Exc. 10.1].

We now consider the special case of a Brownian motion limit. The next result
follows from Theorem 7.1 just like Theorem 6.1 follows from Theorem 2.1.

THEOREM 7.2: If the condition of Theorem 1.1 holds with ¢, = n~ 2 and [¥,(t), Y2(1)]
two-dimensional zero-drift Brownian motion with covariance matrix

i ok
(7 ), o
then the limit in the second term of (1.4) is distributed as o W(t), where
o? = plp*c} —2pol +o}] | (7.7)

where W(t) is standard (drift 0, diffusion 1) Brownian motion. '

We next consider the GI/GI/1 queue, which combines conditions for (7;,,5,,)
assumed for (7,, B,} in Theorem 6.2 and (6.8). The next result follows by the same
reasoning. The ordinary CLT version is an early result: again see Takacs [31,32].

THEOREM 7.3: In the standard GI/GI/1 queue, if S, and T, have means ES,, = 1
and ET, = p~! and finite second moments, then the conditions of Theorem 7.2
hold with a2 = Var(T,), o2 = Var(S,), and c2 = 0. Moreover, the variance
parameter in (1.7) is

o2 = ple2 +c?l, (7.8)

where ¢ and c? are the SCVs of an interarrival time T and a service time S,
respectively.

Note that the GI/GI/1 result in Theorem 7.3 is consistent with the M/GI/1
result in Theorem 6.3. It remains to relate the GI/GI/1 results in Theorems 7.3
and 6.2. .

We next observe that for more general G/G/1 models than GI/GI/1, we can
further identify some of the parameters, but it remains to relate the GI/GI/1 results
in Sections 6 and 7. ' :

T_HEOREM 7.4: Assume that (S,;,T,;) is a stationary ergodic sequence. Then,

EBu - _ d EL,=(-2"\EB 19
Bl +EBy T T M T\, ) ;

If, in addifion, condition (2.1) of Theorem 2.1 holds, then

6, [Bo(nt) — punt] = (1 — )Xo (yt) = pXo(yt) in (DML) (7.10)
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as n = oo, If, in addition, the conditions of Theorem 6.2 hold, then the variability
parameter o2 there can also be expressed as

o2 =y[piof+(1—p)of—2p(1—p)od]. (7.11)

Remark 7.2: Combining (7.8) and (7.11), we see that in the GI/ GI/l queue, there
are two expressions for the variability parameter o %, which provides a relationship
among the parameters:

1
o? = P[Cg + Csz] = (m)(pzaf +(1— F’)zo'ﬁ2 —2p(1— P)U'I?B)- (7.12)
Given (7.9), it suffices to learn one of EI and EB. Given p, c2, c2, and (7.12), it
suffices to learn two of ¢, o3, and o 75.

Remark 7.3: Expressions for the variability parameter of the total input processes
are available in the literature. For example, the asymptotic variance of the batch
Markovian arrival process (BMAP), also known as the versatile Markovian point
process, is given in Theorem 5.4.1 of Neuts [23].

Remark 7.4: Itmay also be useful to consider non-Normal approximations when the
basic variables (7},,S,) are i.i.d. For example, we may want to allow for infinite
variances. That case is discussed in [40].

8. CONCLUSIONS

We have obtained FCLTs for a cumulative input process associated with on—off
sources feeding a fluid queue. Because the cumulative input process is closely re-
lated to cumulative busy-time and idle-time processes, we also obtained results for
those processes. Because the limit involves a sequence of processes with continuous
sample paths converging to a limiting process that may have jumps, we used the
Skorohod [30] M, topology on D, using recent results about the inverse and com-
position maps in [24,41]. As shown in [42], the limits here combined with the re-
flection map yield FCLTs for buffer-content processes in single-class stochastic fluid
networks, where the on—off sources may have heavy-tailed on-period distributions.
Under independence assumptions, the limiting processes are reflected stable pro-
cesses or more general reflected Lévy processes. However, the general limiting re-
sults apply without the independence assumptions. We illustrated the heavy-traffic
FCLTs in Section 5 by establishing a reflected stable process limit for a single-fluid
queue with finite waiting space in which the on-period distributions have power
tails. The results in that one-dimensional case are more tractable than for the multi-
dimensional stochastic fluid networks, because we can explicitly calculate the steady-
state distribution of the limiting reflected stable process, exploiting numerical
transform inversion.

Our main focus was on the case in which the busy periods have heavy-tailed
probability distributions. However, in Sections 6 and 7, we also obtained results for
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the standard case in which the normalized cumulative input processes converge to
Brownian motion. Then, the goal is to identify the variance constant.
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