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Necessary and sufficient conditions are established for cumulative process (associated with regenerative
processes) to obey several classical limit theorems; e.g., a strong law of large numbers, a law of the
iterated logarithm and a functional central limit theorem. The key random variables are the integral of
the regenerative process over one cycle and the supremum of the absolute value of this integral over all possible
initial segments of a cycle. The tail behavior of the distribution of the second random variable determines whether
the cumulative process obeys the same limit theorem as the partial sums of the cycle integrals. Interesting open
problems are the necessary conditions for the weak law of large numbers and the ordinary central limit theorem.
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1. Introduction

In this paper we establish necessary and sufficient (N&S) conditions for several
limits to hold for appropriately normalized cumulative processes (associated with
regenerative processes), with the emphasis being on the necessity. The limits we
have in mind are the limits in the strong law of large numbers (SLLN), the law of
the iterated logarithm (LIL), the weak law of large numbers (WLLN), the central
limit theorem (CLT) and functional generalizations of these, denoted by FSLLN
and so forth; we define the versions we consider precisely in Section 2. The topic
of this paper is very close to classic results, e.g., see Gnedenko and Kolmogorov
(1968), Feller (1971), Chung (1974) and Gut (1988). Hence, there is considerable
related literature. In particular, our papers extends Smith (1955), Chung (1967),
Iglehart (1971), Brown and Ross (1972), Serfozo (1972, 1975), Whitt (1972), Glynn
and Whitt (1987, 1988a,b) and Asmussen (1987).

We use the ‘classical’ definition of regenerative process throughout, i.e., the process
splits into i.i.d. cycles; cf. Asmussen (1987, p. 125). For the necessity results, this is
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without loss of generality. Let 0< T(0)< T(1) <- - - denote the regeneration times,
with T(—1) =0. Consider a stochastic process {X (#): t =0} with general state space
and a measurable real-valued function f. We assume that the process {X(t): t =0}
is regenerative with respect to these regeneration times, and we focus on the
associated cumulative process C ={C(t): t =0}, defined by

C(t)=Jf(X(s))ds, t=0. : (1.1)

The key random variables associated with the cycles are

n=T{)-T(-1),

T(i)

Y,»(f)EJ £(X(s)) ds, (12)
Ti-1)

Wi(f)= sup Ixf(X(T(i—1)+u))du .

By ‘regenerative structure’, we mean that for any suitable f the three-tuples
(7, Yi(f), Wi(f)) are i.id. for i= 1. We also assume throughout that £E7, <co. In
addition, we assume throughout that

JN |[f(X(s)]ds<co w.p.1 for e‘ach 1, (1.3)

which implies that the cumulative process C has continuous sample paths w.p.1.

We shall consider the given function f and a centered function f, defined by
f(x)=f(x)—a for a constant «, both of which are assumed to satisfy (1.3). When
we write Y, and W, we understand the function f to be the given one.

We are interested in N&S conditions for the cumulative process to obey the
classical limit theorems. For this purpose, it is natural to represent the cumulative
process as a random sum of i.i.d. summands (i.e., a stopped random walk) plus two
remainder terms. In particular,

C(t)= Llf(X(s)) ds =Syt Ri(1)+Ry(1), =0, (1.4)
where

S, =Y, +---+Y, n=1, (1.5)
with S,=0, N={N(t): t=0} is the (possibly delayed) renewal counting process
associated with the regeneration times, i.e.,

N(t)y=max{ir T(i)<t}, t=0, (1.6)

and R;={R;(t): t =0} are the remainder processes, defined by

t

min{s, T}
R,(t)=J f(X(s))ds and Rz(t)=J f(X(s))ds, t=0.

0 T(N(ty)

(1.7)
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Since ET, <0, we have
t'N(t)»A=1/E1, as t->© w.p.l, (1.8)

which we will exploit frequently. Since [Ri(t)|=< W,, we see that the first remainder
term R,(t) in (1.7) is trivially dispensed with in limit theorems since it is bounded
by a random variable that does not depend on t. A significant part of the analysis
is finding what knocks out the second remainder term R,(t) in (1.7). Of course, the
key relation here is

le(t)|§ Wi, t20. (1.9)

From (1.9) it is evident that we could just as well impose conditions on the supremum
over the integral from s to the end of the cycle instead of on W,(f). (This is to be
expected since our definition of regenerative process is time reversible.)

Given (1.4), it is interesting to compare N&S conditions for limit theorems for
the cumulative process C(t) with N&S conditions in the corresponding limit theorem
for the random sums S.,,. In turn it is interesting to compare the N&S conditions
in the limit theorems for the random sums Sy, with the N&S conditions in the
corresponding limit theorem for the ordinary partial sums S,, in (1.5). We state our main
result in Section 3 so as to make these connections clear.

Here is how the rest of the paper is organized. In Section 2 we specify precisely
what we mean by the classical limit theorems. (It is important to note that there
are several possible definitions.) After we state the main results in Section 3, we
establish some supporting propositions in Section 4. We establish N&S conditions
for the WLLN and a joint CLT for C and N in the case f is nonnegative in Section
5. We then prove the main result in Section 6. To shorten the paper, we have omitted
several proofs; see the original unpublished paper for more details.

2. The classical limit theorems

Consider a stochastic process Z ={Z(t): t = 0} with real-valued sample paths having
limits from the left and right. We say that Z obeys a SLLN if there exists a constant
a such that t7'Z(t) > a as t > © w.p.1. We say that Z obeys a FSLLN if there exists
a constant « such that, for each T with 0< T <0,
sup |n7'Z(nt)—at|>0 asn->w w.p.l (2.1)
O=1=T
As in Theorem 4 of Glynn and Whitt (1988), such a FSLLN is actually equivalent
to the ordinary SLLN above, so we do not discuss it further. (To verify this, we use
the existence of left and right limits to conclude that supOst,»Z(s)[<00 w.p.1 for
all t; see, e.g., Billingsley, 1968, p. 110).
We say that Z obeys an LIL if there exist constants a and 8 such that 8 =0 and

[Z(1)— at)/V2iLt ~[—VB,VB] w.p1, (2.2)
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where Lx =max{1,log, x}, L,x=L,_,(Lx) and ~ denotes that the set on the left
is relatively compact with the set on the right being the set of all limit points of
convergent subsequences (with £, > c0 as k —»c0).

For the FLIL and FCLT we work in the function space D[0, c0) with the usual
Skorohod (J,) topology, see Billingsley (1968), Whitt (1980) and Ethier and Kurtz
{(1986). Following Strassen (1964), we say that Z obeys a FLIL if there exist constants
« and B with 8 =0 and a compact set C in D[0, ) such that

[Z(nt)—ant}/V2nlon ~VB C w.p.1 (2.3)

where convergence of a subsequence is understood to be in D[0, ) and the limit
set C is the set of all functions {x(f): 73> 0} that are absolutely continuous with respect to
Lebesgue measure with derivative x'(r) satisfying | x'()dr=1.

We say that Z obeys a WLLN if there exists a constant a such that t7'Z(t)=>a
as - o0, where => denotes convergence in law, which coincides with convergence
in probability in this case because «a is deterministic. We say that Z obeys a FWLLN
if there exists a constant « such that

[Z(at)~ant]/n=>0 in D[0,c0) as n- 0, 24)
We say that Z obeys a CLT if there exist constants a and 8 with 8 =0 such that
[(Z(t)—at]/VE=>VB N(0,1) as t->x, (2.5)

where N(0, 1) denotes a standard (mean 0, variance 1) normal random variable.
We say that Z obeys a FCLT if there exist constants @ and 8 with B8 = 0 such that

[Z(nt)—ant}/Vn=>vB B(t) in D[0,©) asn-w, (2.6)

where B(t) is standard (drift 0, diffusion coefficient 1) Browninan motion.

It is significant that in all the limit theorems above we have stipulated fixed
normalization constants and in the CLT we have specified that the limit be standard
normal. For partial sums of i.i.d. random variables, these assumptions are known
to significantly restrict the range of possibilities; i.e., see Gnedenko and Kolmogorov
(1968). For example, for partial sums of i.i.d. random vaiables, the CLT involves
the domain of normal attraction of the normal law, for which the N&S condition
is for the underlying distribution to have finite second moment; see Gnedenko and
Kolmogorov (1968, p. 181).

3. The main result

In this section we state, wherever possible, N&S conditions for the three processes
S,, Sniyand C(t) defined in (1.1), and (1.4)-(1.6) to obey the seven limit theorems:
SLLN, LIL, FLIL, WLLN, FWLLN, CLT and FCLT.

To relate the limit theorems for the partial sums to the random sums and cumulative
processes, we assume that the summands Y; are of the form Y,(f,) for an appropriate
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centering constant a. When E|Y,(f.)] <, the parameter a will be chosen so that
EYI(fc) =0.
We prove the following in Section 6. More results in the case f is nonnegative

appear in Section 5.

Theorem 1. (a) For the WLLN and CLT, the N&S conditions for the random sums
S~ and the cumulative process C(t) are the same. For all other theorems, the N&S
conditions for the partial sums S, and the random sums Sy, are the same.

(b) The specific N&S conditions for the partial sums S,, and the cumulative process
C(t) are given in Table 1, with a question mark indicating that the answer is unknown.
Each established N&S condition for the cumulative process is the N&S condition for
the partial sum plus the indicated extra condition.

Table 1

Necessary and sufficient conditions for the processes to obey the indicated limit theorem. For the established
cumulative process resulits, the condition is the stated one plus the condition for the partial sums at the left.

f
Limit theorem Partial sums S, Cumulative process C(I)EJ f(X(s))ds
o
SLLN ElY < +EW, <
LIL E[Y,(f.Y]<x +E[ W, (f)/ LW (f)]<ec
FLIL E[Y(f)]<x +E[W\(f)/ LW (f)] <
WLLN P(|Y,|>0—>0 and ?
E[Y;|Y]=st]oaasto=
FWLLN tP(|Y,|>1)»>0 and +iP(W(f.)>1)»0as 1>
E[Y;|Yi<i]- aasro=
CLT E[Y,(f)]<x 2
FCLT E[Y,(f)]<x +PP(W(f)>1-0as >x

(¢) For the WLLN and CLT, the N&S condition for the partial sums S, is sufficient
for the random sums S, and the cumulative process C (t). Moreover, these conditions
are necessary in the sense that there are examples for which the random sum and
cumulative process limits do not exist when these conditions are violated. (See Remark
3.2 below.)

(d) For the WLLN and the FWLLN, the centering constant « is necessarily the
limit of E[Y,;|Y,|<1t] as t>o0. In all other cases it is necessarily EY,, which is
consequently finite.

(e) The normalizing constant B in the LIL. FLIL, CLT and FCLT must always be the
variance Var(Y,), which is necessarily finite for those limits.

Remark 3.1. We conjecture that the N&S conditions for the partial sums S, in the
WLLN and CLT are also N&S conditions for the random sum Sy, and the
cumulative process C{t). This would follow if the WLLN and the CLT in (2.5) for
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Swi:) were equivalent to the FWLLN in (2.4) and the FCLT in (2.6), respectively,
for Sn.:,, which we also conjecture to be true.

Remark 3.2. The partial necessity result in part (¢) of Theorem 1 is easily explained
as follows: For any distribution of Y,, we can construct a regenerative process such
that N(¢) =[], C([#])= Sn(n= S{ny» and :

CH=(1—-t+DCLY+-[tPHC[Y+1), =0, 3.1)

where [ t] is the greatest integer less than or equal to ¢; in particular, just let f(x) =x
and

X(t)= Y., t=0. (3.2)

Hence, for the WLLN and CLT, the cumulative process C(t) and the random sum
Sw(r) are equivalent to the partial sum S;,;. For such examples, the N&S condition
for the partial sums also obviously is the N&S condition for Sy ,, and C(¢).

Remark 3.3. The SLLN result is due to Smith (1955); see Theorem 3.1 of Asmussen
(1987, p. 136). The standard sufficient condition for the CLT is Var Y,(f) <o and
Var 7, <0, see Theorem 3.2 of Asmussen (1987, p. 136), which is stronger than our
sufficient condition, because we do not require that Var r; <o0; see Proposition 2
below. To see that we could have Var 1, =0, suppose that Y. (f)=r+ U; where
Var U; <. Then Y;(f.)= U, and Var Y ,(f,) <o for a =1.

Remark 3.4. The sufficient condition for the WLLN is weaker than E|Y,| <. Since
ElY,\|=[gP(|Y | >t)dt E|Y,| <o implies that tP(|Y,| > 1) — 0 as t — =. For example,
if Y, has a symmetric distribution with P(Y, > 1) =A/t(log t)” for p < 1, then the conditions
hold with E|Y,| ==.

Remark 3.5. To see that the established conditions on W,( f.) are needed in addition
to the conditions on Y, consider the following example. Let P(r;=2)=1 and let
f(y=2, for2k—-2=<t<2k—1and f(t)=—-2Z, for 2k — 1<t <2k, where {Z,: k= 1}
is a sequence of i.i.d. random variables. Then P(Y,=0)=P(S,=0 for all n)=1,
while C(2k—1)=Z, = W,. Then apply Propositions 5-8 below.

4. Supporting propositions

In this section we present several basic propositions that help establish and interpret
Theorem 1. The first four propositions show how the conditions on Y,(f.)=
Y, (f—a)=Y,(f)—ar, in Table 1 relate to conditions on Y,(f), 7, and a.
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Proposition 1. If E|Y,(f.)| < holds for some a, then it holds for all a, in which case
EY(f)=EY\(f)—-aEr,. O

Proposition 2. A sufficient (but not necessary) condition for E|Y,( f.)|” <co for p>1
is to have E|Y,(f)|’ <o and Er{ <. O

Proposition 3. A WLLN holds for the partial sums of Y;(f.) for one « if and only if
it does for all a. Moreover, the limit is y for Y,(f —a,) ifand only ifitis y — (a;— a;)A ™"
Jor Yi(f—a).
Proposition 4. (a) If

tP(|Y\(f)|>1)>0 ast->

for some «a, then it holds for all o.

(b) If
E[Y,(f)‘a,ﬂ;]Y,(_f)-—al'rllgt]—)y ast—x,
then

E[Y\(f)— a1y Yl(f)_afrllst]-‘)y_(QZ_al)/\_l as t-> 0.

Proof. We use Proposition 3 plus the fact that the conditions in Proposition 4 are
known to be N&S for the WLLN for partial sums of i.i.d. random variables; see
Feller (1971, p.235). O

The conditions on W, (f.) in Table 1 can be established, explained and applied
via the following propositions.

Proposition 5. Let {Z;: i = 1} be a sequence of i.i.d. random variables and let ¢(t) be
a deterministic function of t such that ¢(t) >0 as t-> 00, Then

¢(n)"" max {{Z[}=>0 asn->o (4.1)

1<=i=n
if and only if
tP(1Z)|> ¢(1))»0 ast>c0. O (4.2)

The following is a consequence of the Borel-Cantelli lemma; see Theorems 4.2.2
and 4.2.4 of Chung (1974).
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Proposition 6. Let {Z;: i=1} be a sequence of i.i.d. random variables and let a, be
constants such that a, » 0 as n -, Then the following are equivalent:

(i Z,/a,—0 w.p.l asn->wx.

(i) max {|Z}/a,»0 wpl asn-oo.

Isk=n
(iii) é P(|Z,|> a,) <.
If these properties do not hold, then lim sup,..{Z./a,}=o wpl. O
As a consequence of Proposition 6, we have:

Proposition 7. In the setting of Proposition 6, if a,=n, then a further equivalent
property is E|Z,|<c0. [

For results related to the following proposition, see Lemma 2.1 of Gut (1978).

Proposition 8. Let ¢ be a constant, 0 < ¢ < 1. For any positive random variable Z,

-

Z
P(Z*>nL,n)<P
(27> nLon) (LZ

2

> n) < P(Z*> cnl,n)

for all sufficiently large n, so that

-

Y P(Z>VaLm)<w ifandonlyif 3 P(LZZ>n><oo. 0
n=1 n=1

2

We now show that the second remainder term R,(t) in(1.7) is asymptotically
negligible in the setting of the WLLN and CLT, because Er,<o0. The asymptotic
negligibility follows from convergence without further normalization, for which we
must distinguish between the lattice and nonlattice cases. Recall that the distribution
of 7 is lattice if ¥.;_o P(r=k8)=1 for some 8, with the largest such & being the
span; otherwise it is nonlattice.

Proposition 9. (2) If T has a nonlattice distribution, then R,(t) = R,(>*) as t — %, where
R5(t) isin (1.7) and R,(>) is a proper random variable with distribution function

P(R(c0)sx)=A J P(R{t)<x; 7, >1t)dt (4.3)
. . Y
(b) If 7 has a lattice distribution with period 8, then R,(ké+y)=>R,(0) as k- ©
for each y. 0<y< 3§, and supos_,,<5{]R2(k6+y)l}=>R’(oo) as k—»co where R, ()
and R’(c0) are all proper random variables.
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Proof. (a) We apply the key renewal theorem; see Asmussen (1987, p. 120). For
this purpose, let g be a continuous nonnegative real-valued function of a real variable
with g(7) < M for all t. Note that E[g(R,(?))] satisfies a renewal equation, i.e.,

'

- E[g(Rx(1))]= E[g(Rz(f))l(T,;,;]JrJ'

0

E[g(R,(t—u))]P(+ edu). (4.4)

Where 1, is the indicator function of the set A. Let z(f)= E[g(R.(1))1{,>4]. We
now show that z is directly Riemann integrable, so that we can apply the key renewal
theorem. For this purpose, we apply Proposition 4.1(ii) of Asmussen (1987, p. 119).
Since z(t)=< M, the function z is bounded. Moreover, b(t)=g(R:(¢)}1, >, as a
function of ¢ has a single discontinuity at 7, for each sample path. Hence, the
function b is continuous w.p.1 at all points ¢ for which P(r, = t) = 0. By the bounded
convergence theorem, z(¢)= Eb(t) is thus continuous at all ¢ for which P(r, =1¢)=0.
Since P(7,=t) =0 for all but countably many ¢, z is continuous almost everywhere
with respect to Lebesgue measure. Next, let

Z(t)=sup{z(y): kh<sy<(k+1)h} for kh<t<(k+1)h (4.5)
as on p. 118 of Asmussen (1987). Since z(t)< P(7,>t),

J Zh(t)dtsi P(r,>h) <

0 0

by Proposition 7 above. Hence, we have shown that z is indeed directly Riemann
integrable. The key renewal theorem thus implies that Eg(R,(t))—> A IS° z(u) du as
t > 00, However, all bounded continuous nonnegative functions g determine con-
vegence, so indeed R.(t)=>R,(c0) as t->0c0. Moreover, we can characterize the
limiting distribution using these functions g, so that (4.3) holds.

(b) The argument is essentially the same; we apply discrete-time renewal theory
along subsequences; see Asmussen (1987, pp. 8 and 121). O

Under our i.i.d. conditions, functional versions of the WLLN and CLT for the
partial sums are equivalent to the ordinary versions. For this purpose, we can apply
Theorem 2.7 of Skorohod (1957), which we now quote.

Proposition 10 (Skorohod, 1957). Let {U,;: i= 1} be i.i.d. for each n and let Z,,(t) =
Y U, t=0. Then
Z,(t)=2Z(t) asn-> in D[0,0),

where Z has stationary independent increments, if and only if Z,(t}=>Z(t) as n> @
in R foreacht. [0

5. A joint central limit theorem

In this section we consider a joint CLT for the cumulative process C and the
counting process N. We obtain a necessity result in the case E|Y,| <20, which holds
when f is nonnegative; necessity in the general case remains open.
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Remark 5.1. Even without the i.i.d conditions, limits for the counting process N
alone hold if and only if the corresponding limit holds for the associated partial
sums; see Section 7 of Whitt (1980), Theorems 3 and 6 of Glynn and Whitt (1988a),
Theorem 1 of Glynn and Whitt (1988b) and Theorem 4.1 of Massey and Whitt
(1993). For example, as a consequence, N satisfies a CLT if and only if Er} <.
For this we apply Theorem 6 of Glynn and Whitt (1988) and Theorem 4, of Gnedenko
and Kolmogorov (1968, p. 181).

We start with a necessary condition for the WLLN when f is nonnegative.

Theorem 2. Suppose that f is nonnegative. Then a N&S condition for the WLLNS5 for
S,,, SN(,) and C(t) is E|Y||<m

Proof. If f is nonnegative, then Y, = W,, so that E|Y,| < is sufficient for the three
SLLNs by Theorem 1. If f is nonegative, then the N&S condition for the WLLN
for S, in Table 1 is equivalent to E|Y,|<co. By Proposition 9, the WLLNSs for Sy,
and C(t) are equivalent. Hence, suppose that C() obeys a WLLN; and E|Y,| = .
Since f =0, we can apply the SLLN to conclude that

n".i Y(f)»© wpl asn->o© (5.1)

(see Exercise 1 of Chung, 1974, p. 130), from which we can deduce from the SLLN
proof in Theorem 1 that

t_'Jlf(X(s))dsew w.p.l1 as (-0, (5.2)

0

(Recall that W, =Y, when f=0.) Hence, (5.1) cannot hold and we must have
ElY,(f)|<c0. O

Remark 5.2. An alternative approach to Theorem 2 (pointed out by A. Pukholskii)
is to note that the WLLN for C(¢) implies the FWLLN because the sample paths
are nondecreasing. This argument also depends critically on f being non negative.

We now state N&S conditions for the joint CLT.

Theorem 3. (a) If E[r3]<00 and E[Y,(f)*]<c0, then (C(t), N(t)) obeys a joint
CLT, ie.,

17V C(t)~at, N(t)=At)=>N(0,%) ast->0 in R’ (5.3)
where A =1/E7,, a=AEY,(f) and N(0, ) is a bivariate normal distribution with

covariance matrix elements 3., =AE[Y,(f.)%], »=AVarr, and 3,=

AE[Y, (f)r].
(b) IfE|Y,|<c0, then the joint CLT (5.3) implies that E[ Y,(f)*] <0 and E[73] <
0,
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Proof. (a) the sufficiency is a minor extension of Theorem 1 of Glynn and Whitt
(1987). (b) Turning to the necessity, we reverse the argument and note that (5.3)
implies

Ny

r'“(z (Y;(H—EY,(H), N(1) —/\t)=N(O, 2), (5.4)

i=1
because the difference is asymptotically negligible, by virtue of Proposition 9. Now
we apply Theorem 7(a) of Glynn and Whitt (1988a), for which we use the assumption
that E|Y,|<oo. It implies that

NN [Af)
r-‘“(i Yi(f)- X Yk<ﬂ>)=>0 as 1>, 5.3
k=1 k=1

which with the converging-together theorem, Theorem 4.1 of Billingsley (1968),
implies that the partial sums of Y;(f.) obey a CLT. As before, Theorem 4 of
Gnedenko and Kolmogorov (1968, p.181) then implies that E[Y,(f.)’]<. By
Remark 5.1, the CLT for N implies that E[r]<c0. [J

6. Proof of Theorem 1

We treat the theorems in order of their appearance in Table 1.

6.1. SLLN

The condition E|Y,| < is well known to be N&S for the partial sums S, and the
random sums Sy,); see e.g., Chung (1974, p. 126). Since
[C (1) = Sninl = ’Rl(t)|+lR2(t)| <|R,(n)|+ Wi+ (6.1)
by (1.4) and (1.7), and
N(+1 Wy _ W v+
t N(1)+1 t

Proposition 7 implies that E|Y;| <0 and EW, < are sufficient for the cumulative
process C(t) to obey the SLLN. To establish the necessity for C(t), suppose that
t7'C(t)»> 0 w.p.1 as t > v, where 0 < y <co. First, since

(6.2)

T. T X T.’ (6.3)
and (1.8) is equivalent to k™' T, > A ™' w.p.1 as k>0, we see that then n™'S, > A 7'y
w.p.1 as n -0, which implies that E|Y,|<c and y=AE[Y,]. Next suppose that
EW,=0c. Then, by Proposition 7, limsup,..n 'W,>0 w.p.1 (indeed, even
lim sup, ... n~' W, =0 w.p.1), so that there is a sequence of random times {8,: k =1}
such that T, < B, <T,., and

By
lim sup,B;'J f(X(s))ds>0, (6.4)
k—soc

'"’\'
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so that
By ER
limsupBZ'J FX(5))ds> lim Ty J’ f(X(s))ds=EY,; (6.5)
k-0 [} k> [}

i.e., then t7'C(t) fails to converge w.p.1 as t >0, so that assuming EW, = o leads
to a contradiction.

6.2. LIL

The condition E[ Yi(f.)] <o is well known to be N&S for the partial sums of Y;(f.)
to obey the LIL with 8 =Var Y,(f.); see Strassen (1966), Heyde (1968) and Stout
(1974, pp. 297-298). Since

S~ _ Snan ( tL.t ) (66
VIN(OL,N(1) 2tLot \N(1)L.N(1) -6)

and (1.8) implies that

tL,t

— 3! .p.-1 v
N(I)LZN(I)_) w.p as t - o0, (6.7)

the LIL holds for the partial sums if and only if it does for the random sums; for

Snin» B=A Var Y (/). By (6.1), we establish sufficiency for the cumulative process

if we show that Wy, (fe)/VtL:t >0 w.p.1 as t > . By (6.7), it suffices to show that
W.(f)

m»o w.p.l as n—>00, (6.8)
Proposition 7 with the condition on W,(f,) implies that W, (f.)/ nL, W,(f.) =~ 0 w.p.1
as n— 00, Propositions 6-8 then imply (6.8).

Turning to the necessity, from the LIL for C(t), we obtain the LIL for the partial
sums themselves by considering the subsequence of times {T(n): n= 1}. By the
known converse of the LIL for the partial sums, we deduce that we must have
E[Y3i(f)]<oo. Finally, if the moment condition on W,(f,) is violated, then, by
Proposition 7,

SN ATA ) |
Pl—————=>n|=c0. 6.9
(sz"(fc) (6.9)
By Proposition 8 and Borel-Cantelli,
W, (f. .
lim sup n{fe) >0 w.p.l. (6.10)

n—-x ann

As in the necessity for the SLLN in (6.4) and (6.5), (6.10) implies that there are
random times B, with T, <p, <T, ., such that

T

By
f(X(s)) ds>lim sup f(X(s))ds=Var Y, (/).

1 1
lim sup ——— -
cx P VBB J e P T T J
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6.3. FLIL

In our i.i.d. setting, the sufficient condition for the LIL implies the FLIL for the
partial sums of Y;(f.); see Strassen (1964). Since the FLIL implies the ordinary
LIL, by virtue of the continuous mapping applied to the projection at time 1, the
N&S condition for the LIL for the partial sums is N&S for the FLIL for the partial
sums. By (1.8) the SLLN holds for N(t). As before, the SLLN for N(t) is equivalent
to a FSLLN of the form

N(nt)

>At w.p.l in D[0,0) as n-co. (6.11)

Using the random time change by N(nt)/n in D[0, ), which is a continuous map
(see Section 17 of Billingsley, 1968, or Whitt, 1980), we obtain

SN(nl)

v2nlL,n

where C’ is the set of y in D[0, ) such that y(¢)=x(At), t=0, for x in C, and C
is the limit set associated with the partial sums. As before, the FLIL for the random
sums implies the ordinary LIL, which we saw in part (1) implies the LIL for the
partial sums.

To establish the FLIL for the cumulative process C(t), we apply the moment
condition on W (/.). With this moment condition, Propositions 6-8 imply that

~C’ w.p.1 in D[0,©) as n->, (6.12)

(nLyn)™"? max {Wi(f.)}=»0 w.p.l asn->co. (6.13)

I=sk=n
Then (6.11) and (6.13) imply that
(nLon)™"?  max {W(f)}>0 wp.l asn-occ (6.14)

1<sk=N(n)+1
Given the FLIL for the random sums, (6.2) and (6.14) imply the FLIL for C(t).
Turning to the necessity for the cumulative process, we obtain the FLIL for the
partial sums by considering the times T(nt)/n. (The first remainder term is obviously
asymptotically negligible.) Hence, E[ Yi(f.)] < is a necessary condition. Since

T(N(nt))_)
n

t in D[0,©) w.p.l as n—->, . (6.15)

we have the joint limit

T(N(n1))

(ann)_'”(J.mfc(X(s)) ds, I £(X(s)) ds) ~(C, C) w.p.l

(6.16)

as n-co in D[0, ©)x D[0, c©). Hence, the normalized difference converges to 0, i.e.,

nt

(ann)_'/zJ’ f(X(s))ds=»0 in D[0,%) w.p.l asn-o0 (6.17)

T(nr}
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or, equivalently, (6.14) holds, which in turn is equivalent to (6.13) given (6.11). By
Propositions 6-8, (6.13) implies the moment condition on W,(f.).

6.4. WLLN

The stated conditions for the partial sums in Table 1 are known to be N&S; see
Theorem 1 of Feller (1971, p.235). By Proposition 10. the WLLN implies the
FWLLN for the partial sums in this setting. Alternatively. it is not difficult to show
that the conditions are N&S for the FWLLN directly. Since the FWLLN implies
the WLLN, we only need demonstrate sufficiency. Instead of (7.4) and (7.5) on
p. 234, 235 of Feller (1971), we write

P( sup |Sgg— tm|> nx)

o=r=1

$P< max |Sy — km[> nx) + P(S, # S; forsome k, 1< k=<n)
1sk<sn
E(X?)

2
nx

< +nP(|X\|> s,)
using Kolmogorov’s inequality in the second step. The rest of the argument is the
same. ,
The FWLLN for the partial sums in turn implies the FWLLN for the random
sums, by virtue of a random-time change argument (as in Section 17 of Billingsley,
1968, or Section 3 of Whitt, 1980). The FWLLN for the random sums implies the
ordinary WLLN. By applying the continuous projection map at ¢t = 1. (Alternatively,
the WLLN for the random sums follows directly from the WLLN for the partial
sums; see Theorem 10.1 of Révész (1968, p. 148).)

Finally, the WLLN for the random sums is equivalent to the WLLN for the
cumulative processes by (6.1) and Proposition 9. In particular, since |R,(t)|< W,,
R, (t)/t=>0 as t > 0; Proposition 9 implies that R,(t)/r=0.

6.5. FWLILN

The sufficiency for the partial sums and random sums follows from the argument
in Subsection 6.4. Given the FWLLN for the random sums, the FWLLN for the
cumulative process follows from the extra condition on W\ (f,), Proposition 5 with
Z;= W(f.) and ¢(1)=1t, and (6.1). Then, by a random time change argument,

n_lWN(nr)+1(fc)=>0 as n>00 in D[0, ) (6.18)
-but, by (6.1),
sup {|n 'S —n T iCn) | }<snT'Wo+n™' max  {Wi(f)}. (6.19)

Ogr< ISk N(m+i
We now turn to necessity. Given the FWLLN for the random sums, we obtain
the FWLLN for the partial sums by applying the converse to continuity for com-
position, i.e., Theorem 3.3 of Whitt (1980). We have already seen that the FWLLN
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for the partial sums implies the condition on Y,(f.). For the cumulative process,
first we apply a random time change argument to get the FWLLN for the partial
sums, which in turn implies the condition on Y,(f.). In particular, n ™' T(nt) > At
as n- oo in D0, o), so that
T(nn)
n”'Sy=n" J f(X(s)ds—n"'R,(nt)=0 as n->o in D[0, ).
]
(6.20)
Finally, to establish the condition on W,(f.), we note that T(N(nt)—>t as n>©
in D[0, o), so that
nr T(N(nr))
n"(f fL-(X(s))ds‘J' f(X(s))ds]=(0.0) asn—>=x> 6.21)
Q0 4]

in D[0, ) x D[0, cc), which in turn implies that

}:>0 as n—>o
(6.22)

J" f(X(s))ds

n~' max W (f)< sup {n_l
T(N(n)

O=sk=N(n!) O=r=st

which by Proposition 5 implies the condition on W,(f).

6.6. CLT and FCLT

By p. 181 of Gnedenko and Kolmogorov (1968), E[Yi(f.)] <% and E[Y,(f.)]=0
in N&S for the CLT for the partial sums. Donsker’s theorem of Proposition 10
implies that this condition is also N&S for the FCLT. Given the FCLT for partial
sums, we obtain the FCLT for random sums, by a random time change argument
as in Section 17 of Billingsley. As usual, the FCLT for the random sums implies
the ordinary CLT for random sums by applying the continuous mapping theorem
with the projection at ¢ = 1. Just as in Subsection 6.4, the CLT for the random sums
is equivalent to the CLT for the cumulative process, because R,(1)/vV1=0 and
R,(t)/vV1=>0 as t—> o, the last by Proposition 9. The necessity result for the FCLT
follows by the same reasoning as for the FWLLN in Subsection 6.5. O
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