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A. Overview

A.1. The Main Paper

Following Liu and Whitt (2011a,2012a), in the main paper we have developed, implemented

and tested three algorithms to compute the transient performance functions in fluid queue

networks (FQNets). The first two algorithms apply to Gt/Mt/st + GIt)
m/Mt FQNets with

m queues and proportional routing. The first algorithm Alg(FPE) in §3 iteratively solves a

single fixed point equation (FPE) for the vector of total arrival rate (TAR) functions over

the entire time interval [0, T ]. Since the operator in the FPE is a contraction, the iteration

for calculating the TAR converges geometrically fast. Given the TAR at each queue, we can

apply the fluid algorithm for single queues (FASQ) with Mt service reviewed in §2 to each

queue separately.

The second algorithm Alg(ODE) in §4 finds the TAR vector in any interval for which

no queue changes its regime by solving an m-dimensional ordinary differential equation

(ODE). However, just as for the FASQ, it is necessary to control the switching from one

network regime to another. Both Alg(FPE) and Alg(ODE) have been shown to be effective.

Alg(ODE) is appealing because it is easier to implement and is faster for small networks,

but Alg(FPE) has been found to be more efficient for large networks, having run time of

order O(m) as compared to O(m2) for Alg(ODE).

The third algorithm Alg(FPE,GI) in §5 is a new algorithm to analyze FQNets with non-

exponential service at each queue. This algorithm is less efficient computationally, but is

appealing because non-exponential service times arise in many applications. Like algorithms

FASQ and Alg(ODE), Alg(FPE,GI) requires working over intervals with a fixed network

regime, so that the algorithm exploits a regime switching step size. For the individual

queues with GI service, we apply the algorithm for the single fluid queue with GI service

developed in Liu and Whitt (2012a), which is more complicated than the FASQ in §2 because
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it involves another FPE to calculate the flow rate into service. Fortunately, the operators in

both these FPE’s are contractions, so that iterations converge geometrically fast.

In §6 we described results of implementing and testing these algorithms for FQNets. The

examples showed that all algorithms are effective and can provide useful approximations for

corresponding stochastic queueing networks (SQNets) of many-server queues, experiencing

periods of overloading.

A.2. The Contents of this Supplement

This is a supplement to the main paper, with material expanding on the paper presented in

the order of the sections in the main paper. At the outset in §1, we assumed that our staffing

functions are feasible, never forcing fluid out of service. We start in §B by discussing how to

detect the first violation of feasibility in the FQNets, if any, and how to find the minimum

feasible staffing function greater than or equal to an initial one if that one is infeasible. Next

in §C we present additional material on the algorithm for single fluid queues in §2. We give

a formal statement of the algorithm and we examine the running time as a function of the

interval length, T , the number of switches, S, and the switching step size, ∆T .

We give formal statements of the FPE-based and ODE-based algorithms for FQNets in

§§D and E. Finally, we provide more results for the examples in §G. In §G.1.2 we give an

example with a time-varying staffing function, illustrating that it can be effectively treated

as well.

B. Detecting Staffing Function Feasibility

We now discuss how to detect the first violation of feasibility of a staffing function and how

to find the minimum feasible staffing function greater than or equal to the original staffing

function if that one is infeasible.

In general, there is no guarantee that a staffing function s is feasible, i.e., having the

property that the staffing function is set exogenously and adhered to, without forcing any

fluid that has entered service to leave without completing service, because we allow s to

decrease. (The fluid is assumed to be incompressible.) At any time t > 0 and i ∈ O(t), we

require

bi(t, 0) = s′i(t) + σi(t) ≥ 0. (B.1)
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We note that the above criterion becomes s′i(t)+µi(t) si(t) ≥ 0 for all i ∈ O(t) forMt service.

Hence, we immediately have a sufficient condition for Mt service:

s′i(t) + µi si ≥ 0, for all 1 ≤ i ≤ m.

However, since we allow si to decrease, the feasibility condition in (B.1) might be violated

in general when the given staffing functions decrease too quickly, i.e., when −s′i > 0 is too

large. The detection of infeasibility and construction of feasible staffing for a single fluid

queue has already been discussed in §9 of Liu and Whitt (2012a). Also see Appendix G.2

there for an example. We next explain how to generalize our approach to the algorithms for

the FQNets.

The idea is in the same spirit as in Liu and Whitt (2012a). Suppose in the kth iteration,

the algorithm considers the time interval Ik ≡ [t∗, t∗ + ∆T ]. If there exists a time t′ ∈ Ik

such that the condition in (B.1) is violated for some i ∈ O(t′), then we set bi(t, 0) = 0

(shut the flow from the queue into the service facility) starting from time t′. Of course, the

resulting staffing function s∗i (t) = B(t) will be strictly greater than si(t). We continue with

this strategy until our revised staffing function s∗i coincides with the original si (if ever before

T ). See §9 and Appendix G.2 of Liu and Whitt (2012a) for more discussion.

For the FPE algorithm, we follow this strategy in each FPE iteration when we call FASQ

with a temporary TAR λ(k), k ≥ 1. For the ODE and FPE-GI algorithms, in each iteration

interval Ij , we check the feasibility condition (B.1) for every i ∈ O(t), i ∈ Ij , and construct

revised staffing functions if needed.

C. More on the Single-Queue Algorithm

We first give a formal statement of the single fluid-queue algorithm (FASQ) from Liu and

Whitt (2011a,2012a) that was reviewed in §2.3. For each new regime switch time t, we use

k to set up all computations needed from time t until the end of the interval at time T , but

restart by selecting a new larger starting time whenever a regime switch is detected.

C.1. Sensitivity to the Switching Step Size

We now see how the FASQ run time depends on the switching step size ∆T . For that

purpose, consider an Mt/M/st +M queue over the time interval [0, T ] for T = 20 with a

sinusoidal arrival rate λ(t) = a+b sin(c·t), exponential service and abandonment distributions
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Algorithm 1 : A Fluid Algorithm for Single Queues (FASQ) for the Gt/Mt/st + GIt fluid

model, with model data D ≡
(

λ, s, G, F, P̂(0)
)

and switching step size ∆T

1: Initialization: Set R(0) and let t := 0
2: repeat
3: for k = 0, 1, . . . , ⌈(T − t)/∆T ⌉ do
4: Given R(t) = UL, compute (b, B) in interval [t+ (k− 1)∆T, t+ k∆T ] using (2.18);
5: Given R(t) = OL, compute P in interval [t+(k−1)∆T, t+k∆T ] using (2.19)-(2.22),

(2.2)-(2.4);
6: if TR(t) < t + k∆T , then
7: t := TR(t)
8: R := {OL,UL}\R
9: BREAK for-loop
10: end if
11: end for
12: until t ≥ T .

G(x) = 1 − e−µ x and F (x) = 1 − e−θ x, constant staffing s(t) = s, with a = c = µ = s = 1,

b = 0.6 and θ = 0.5. We manually made the system switches for about 100 times between

UL and OL intervals (i.e., S = O(100)) by setting c = 30 so that the arrival-rate period is

τ = 2π/c = 0.21. The total number of periods in [0, 20] is N(τ) = 20/τ1 = 95.2.

In Table 4, we provide the computation times T (∆T ) as a function of ∆T for 0.02 ≤
∆T ≤ T = 20.

∆T 20 10 6.67 5 4 2 1.33 1
T (∆T ) 15.36 12.89 10.25 7.99 6.62 3.57 3.54 1.93

∆T 0.67 0.5 0.33 0.25 0.2 0.1 0.04 0.02
T (∆T ) 1.93 1.93 1.93 1.93 1.93 1.93 1.94 1.94

Table 4: The computation time T (∆T ) (seconds) as a function of ∆T in the interval [0, T ],
T = 20.

We observe that T (∆T ) is almost insensitive to the choices of ∆T as long as ∆T is

not too big. First, clearly it is not efficient to have a big ∆T when S is large. Suppose

the current interval is [t, t + ∆T ]. If the system changes regime right after t, say at t + h,

then all computation for the performance functions in [t + h, t + T ] is wasted and has to

be redone later (possibly many times). Second, if ∆T is small, the computation obviously

becomes efficient for large S. Third, if we choose a small ∆T when S is small, for instance,

the system stays OL (or UL) for the entirely interval [0, T ], the algorithm could experience
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a large number of iterations N(∆T ) ≡ T/∆T before reaching time T . However, since

the computation complexity in each iteration is linear in ∆T , the total complexity will be

(T/∆) · O(∆T ) = O(T ), which is independent with ∆T . Hence, consistent with Table 4,

we conclude that it should always be good to have a small ∆T regardless of the number of

regime changes S.

C.2. Sensitivity to S and T

We now see how the FASQ run time depends on the number of switches, S, and the length

of the time interval T . We consider the dependence upon S for fixed T and the dependence

upon T for fixed S. To do so, we use the same example considered in §C.1.
Table 5 gives the computation times T (S) for 1 ≤ S ≤ 96 in the interval [0, T ] with

T = 20 by varying c. Here ∆T = 0.5.

S 1 2 4 7 13 20
T (S) 0.98 0.75 0.76 1.13 1.76 2.50

S 26 32 48 64 80 96
T (S) 3.25 4.09 6.32 8.91 11.51 15.32

Table 5: The computation time T (S) (seconds) as a function of S, the number of regimes
switches (between UL and OL) using FASQ in the interval [0, T ], T = 20.

Next, Tables 6 and 7 give the computation times T (T ) for 1 ≤ T ≤ 300 in two cases:

(i) with c = 10π/T and (ii) with c = 1. We choose ∆T = T/150. In case (i), we fixed

the number of switches S ≈ 5 by decreasing c; in case (ii), the number of switches S grows

linearly with T since c is a constant.

S 5 10 15 20 25 30 40 50
T (T ) 0.267 0.32 0.71 0.97 1.25 1.53 2.12 2.72

S 60 80 100 120 150 200 250 300
T (T ) 3.33 4.56 5.78 6.99 8.82 11.85 14.89 17.85

Table 6: The FASQ computation time T (T ) (seconds) as a function of the length of time
interval, T , for fixed total number of switches.

We plot T (S) as a function of S for fixed T in Figure 4(a) and T (T ) as a function of

T for fixed S in Figure 4(b) for case (i) and in Figure 5 for case (ii). Figure 4 shows
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Figure 4: Computation times of FASQ in case (i) where S is independent of T , as functions
of (a) the number of switches S for fixed T and (b) the length of time interval T for fixed S.

that the computation time is linear in S (when T is fixed) and linear in T (when S is

fixed). Figure 5 shows that the computation time is quadratic in T when S = O(T ), because

T (S T ) = O(S T ) = O(T 2). These experiment support our observations in §2.3.

S 5 10 15 20 25 30 40 50
T (T ) 0.26 0.30 0.48 0.76 1.10 1.50 2.42 3.61

S 60 80 100 120 150 200 250 300
T (T ) 4.98 8.40 12.71 17.94 27.34 47.54 73.33 104.31

Table 7: The computation time T (T ) (seconds) as a function of the length of time interval,
T , when S, the number of switches, is proportional to T .
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Figure 5: Computation times of FASQ in case (ii) where S is proportional to T , as functions
of (a) T , the length of time interval, and (b) T 2.
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D. The FPE-Based Algorithm

We now give a formal statement of the FPE-based algorithm in §3.

Algorithm 2 : An FPE based algorithm for the (Gt/Mt/st +GIt)
m/Mt Fluid Network

1: Initialization: λ(1) := λ(0), 0 ≤ i ≤ m,
2: for k = 1, 2, . . . do
3: for i = 1, 2, . . . , m do

4: Compute σi in [0, T ] using FASQ (Algorithm 1) with data
(

λ
(k)
i , si, Gi, Fi, P̂i(0)

)

and switching step size ∆T
5: end for
6: Let λ(k+1) := λ(0) + P T · σ in [0, T ]
7: if ‖λ(k+1) − λ(k)‖T < ǫ then
8: λ := λ(k+1)

9: Break
10: end if
11: end for
12: Compute Pi for 1 ≤ i ≤ m using FASQ (Algorithm 1) with data

(

λi, si, Gi, Fi, P̂i(0)
)

and switching step size∆T .

E. The ODE-Based Algorithm

The ODE-based algorithm in §4 obtains the TAR vector over any interval over which there

are no regime switches at any queue by solving an ODE. Thus, a key step is identifying

successive intervals during which all queues remain in the same regime. Paralleling the

FASQ, that is done with a network switching step size ∆T .

We now summarize the algorithm. It requires that we specify the desired time interval

[0, T ], the vector of model data defined in (3.4), and a positive network switching step size

∆T (which should typically be shorter than for a single queue).

F. The FPE Algorithm for GI Service

We now present more about the algorithm for GI service distributions. Given a desired

duration T of an interval [0, T ], the vector of the model data defined as (3.4), a step size

0 < ∆T ≤ T , and an error tolerance parameter (ETP) ǫ > 0, we summarize the algorithm

formally as the following.
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Algorithm 3 : An ODE based algorithm for the (Gt/Mt/st +GIt)
m/Mt Fluid Network

1: Initialization: t := 0
2: repeat
3: for k = 0, 1, . . . , ⌈(T − t)/∆T ⌉ do
4: Compute λ(s) and B(s) for s ∈ [t + (k − 1)∆T, t+ k∆T ], using (4.3)-(4.4)
5: Compute P(s) for s ∈ [t + (k − 1)∆T, t + k∆T ] using (2.18)-(2.22), (2.2)-(2.4)
6: if TR(t) < t + k∆T for TR(t) in (4.6) then
7: t := TR(t)
8: Update U(t) and O(t) by (4.1)-(4.2)
9: BREAK for-loop
10: end if
11: end for
12: until t ≥ T

Algorithm 4 : An FPE based algorithm for the (Gt/GI/st +GIt)
m/Mt Fluid Network

1: Initialization: t := 0
2: repeat
3: for k = 0, 1, . . . , ⌈(T − t)/∆T ⌉ do
4: for all i ∈ O(t) do
5: - Compute bi(s, 0) solving FPE (5.3) with ETP ǫ, s ∈ [t+ (k − 1)∆T, t+ k∆T ]
6: - Let σi(s) := bi(s, 0)− s′i(s)
7: end for
8: Compute λ(s) using FPE (5.5) with ETP ǫ, s ∈ [t+ (k − 1)∆T, t+ k∆T ]
9: Compute P(s) for s ∈ [t + (k − 1)∆T, t + k∆T ] using (2.18)-(2.22), (2.2)-(2.4) or

the algorithm from Liu and Whitt (2012a) if the service is GI
10: if TR(t) < t + k∆T for TR(t) in (4.6) then
11: t := TR
12: Update U(t) and O(t) by (4.1)-(4.2)
13: BREAK for-loop
14: end if
15: end for
16: until t ≥ T
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G. More for the Examples

G.1. More on the Two-Queue FQNet

We demonstrate how the FPE-based algorithm works. Since it is key to obtain the total

arrival rates λ1(t) and λ2(t) for 0 ≤ t ≤ T , we first demonstrate how fast the fixed-point

algorithm converges. We initially let λ
(1)
i be λ

(0)
i , i = 1, 2. In Figure 6, we plot the total

arrival rates in every iteration. The two functions at the bottom are λ
(0)
1 (t) and λ

(0)
2 (t); the

functions at the top are the λ1(t) and λ2(t), computed using the ODE based algorithm; the

other functions are the intermediate values computed using the FPE based algorithm. The

monotone convergence and geometric rate of convergence are evident from Figure 6.
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Figure 6: The convergence to the fixed point of the total arrival rate vector: the increasing
computed values at each queue in successive iterations.

In Figure 7, we plot all standard performance measures of the fluid network using the

FPE based algorithm, including λi, Qi, wi, Bi, Xi, and bi(·, 0), i = 1, 2.

Figure 8 illustrate how these approximations perform for the same example with n = 50.

Now the solid lines are simulation estimates of the mean of these scaled stochastic processes,

obtained by averaging multiple independent sample paths. For this small value of n, the

stochastic variability cannot be simply ignored. But the means can be well approximated

by the fluid functions. Figure 1 and 8 show that the fluid approximation is effective in

describing the performance of the stochastic system.
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Figure 7: Computing the fluid performance functions for the (Mt/M/st +M)2/Mt network
fluid model.

G.1.1. Different Phases

Complementing the two-queue example in §6.2, we now consider the same model with dif-

ferent phases in the sinusoidal arrival-rate functions. In particular, let φ1 = 0 and φ2 = 1

and let all other model parameters remain the same. As the analogs of Figure 7 and 8 (with

φ2 = −3), we plot the fluid function and perform simulation comparison in Figure 9 and 10

with φ2 = 1. In this case the two queues become OL and UL almost at the same time.

G.1.2. Time-Varying Staffing

The two-queue example in §6.2 had constant staffing functions. To show that the algorithms

can also handle the important feature of time-varying staffing, we now consider sinusoidal

staffing, using the staffing functions

si(t) = αi + βi · sin(γi t+ ψi), i = 1, 2, (G.1)

with α1 = 1, α2 = 2, β1 = 0.6α1, β2 = 0.5α2, γ1 = 1, γ2 = 0.5, ψ1 = 3, ψ2 = 0. While other

model parameters remain the same. With these particular choices on the model parameters,
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Figure 8: A comparison of performance functions in the (Mt/M/st +M)2/Mt FQNet with
simulation estimates of time-varying mean values, obtained by averaging n = 50 independent
sample paths from the corresponding QNet.

it is not hard to see that for i = 1, 2,

s′i(t) + µi si(t) = βiγi cos(γi t + ψi) + µi (αi + βi sin(γi t+ ψi)) ≥ 0,

or equivalently,

sin

(

γi t+ ψi + arctan

(

γi
µi

))

≥ − µiαi
√

µ2
i + γ2i

, for all t ≥ 0,

which guarantees the feasibility for both staffing functions s1 and s2. See the Appendix I.2.1

of Liu and Whitt (2012a) for more discussion.

As the analogs of Figure 9, we plot the fluid function in Figure 11.
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Figure 9: Computing the fluid performance functions for the (Mt/M/st +M)2/Mt network
fluid model.
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Figure 10: A comparison of the (Mt/M/st+M)2/Mt network fluid model with a simulation
run averaging 50 independent sample paths, n = 100.
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Figure 11: Computing the fluid performance functions for the (Mt/M/st+M)2/Mt network
fluid model with sinusoidal staffing functions.
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G.2. More on the Many-Queue Example

We now provide more material related to the many-queue example in §6.3.
Complementing the example in §6.3, we let m = 10, φi = 0, i = 1, . . . , 10. We repeat the

experiment and plot the fluid functions for all 10 queues in Figure 12 (which is an analog of

Figure 13). Figure 13 shows plots of the performance functions for m = 10. The red dashed

lines are λi, i.e., the total arrival rates which are the solutions to the FPE; the blue solid

lines are λ
(0)
i , i.e., the external arrival rates.
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Figure 12: Computing the fluid performance functions for the (Mt/M/st+M)10/Mt network
fluid model.
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Figure 13: Computing the fluid performance functions for the (Mt/M/st+M)10/Mt network
fluid model (φi = π(1.5− i/m)).

G.3. More on the GI Service Example

Figure 14 compares the results of Alg(FPE,GI) applied to the (Mt/LN/s+E2)
2/M FQNet

with simulation estimates of mean values for the corresponding stochastic processes in the

corresponding SQNet with n = 50, obtained by averaging the sample paths from 200 inde-

pendent replications.

45



0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

w
(t

)

Time t

 

 

0 2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

Q
(t

)

Time t

 

 

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

B
(t

)

Time t

 

 

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

X
(t

)

Time t

 

 

w
1
(t): sim

w
2
(t): sim

w
1
(t): num

w
2
(t): num

Q
1
(t): sim

Q
2
(t): sim

Q
1
(t): num

Q
2
(t): num

B
1
(t): sim

B
2
(t): sim

B
1
(t): num

B
2
(t): num

X
1
(t): sim

X
2
(t): sim

X
1
(t): num

X
2
(t): num

Figure 14: A comparison of the (Mt/LN/st+E2)
2/Mt network fluid model with a simulation

run averaging 50 independent sample paths, n = 100.
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