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network of many-server fluid queues. The deterministic fluid model has time-varying ex-

ternal arrival rate, service capacity and non-exponential abandonment at each queue, with

proportional routing from one queue to another. The model serves as an approximation

for the corresponding stochastic network of many-server queues with Markovian routing,

experiencing periods of overloading at the queues. Simulation experiments are conducted to

confirm that the algorithms are effective in computing the performance functions and that

these performance functions provide useful approximations for the corresponding stochastic

models.
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1. Introduction

In this paper we develop and study alternative algorithms to calculate the (exact, deter-

ministic) time-dependent performance of a time-varying open network of many-server fluid

queues, which we call a fluid queue network (FQNet). We consider three different algorithms

for (generalizations of) the (Gt/M/st + GI)m/Mt FQNet, which has m fluid queues, each

with time-varying external arrival rate (the Gt), a time-varying staffing function (the st)

with unlimited waiting space, exponential service (the M) and abandonment from queue

according to a general distribution (the +GI), plus time-varying proportional routing from

one queue to another (the final Mt). The general patience (time-to-abandon) distribution
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and service distribution (which appears in one algorithm) lead to considering two-parameter

performance functions at each queue, such as Q(t, y), the fluid content in queue at time t

that has been so for at most time y, as a function of t and y.

These FQNets are intended to serve as approximations for corresponding stochastic queue-

ing networks (SQNets), where the Mt routing becomes time-varying Markovian routing; a

departure from queue i at time t goes (instantaneously) next to queue j with probability

Pi,j(t), independent of the system history up to that time. In the FQNet, a proportion Pi,j(t)

of the fluid flow out of queue i at time t goes next to queue j. In the SQNet, service times

and patience times are random times for individual customers; in the FQNet, they specify

flow proportions; i.e., with patience cdf Fi at queue i, Fi(t) represents the proportion of all

fluid that abandons by time t after it joins the queue, if it has not already entered service.

The broad goal of this work is to develop tools to analyze the performance of stochastic

queues with time-varying arrival rates. Motivated by large-scale service systems, we focus on

many-server queues with time-varying arrival rates; see Green et al. (2007). The motivation

and theory for single many-server fluid queues has been given in Liu and Whitt (2011a-e).

The algorithm for a single fluid queue exploits the assumption that the model alternates

between successive overloaded (OL) and underloaded (UL) intervals. That work includes ex-

tensive comparisons with simulations of stochastic models and supporting heavy-traffic limit

theorems. These fluid queues with alternating OL and UL intervals tend to be relevant when

the stochastic system experiences such alternating periods of overloading and underloading.

That behavior commonly occurs when it is too difficult or costly to dynamically adjust

staffing in response to time-varying arrival rates to precisely balance supply and demand at

all times. An alternative algorithm for a fluid queue based on a random-measure perspective

that does not require alternating OL and UL intervals, but so far requires constant staffing

(which can be applied more generally in a piecewise-constant manner), has been developed

by Kang and Pang (2011).

Following Liu and Whitt (2011b), we now consider the more general FQNets. For the

associated SQNets, there are few useful analysis tools besides discrete-event stochastic sim-

ulation. We envision the FQNets here being used in performance analysis together with

simulation of associated SQNets. The FQNets can be analyzed much more rapidly, and so

may be used efficiently in preliminary analyses, e.g., to efficiently derive candidate staffing

functions at all queues. Then simulation of SQNets can be applied to verify and refine the

FQNet analysis.
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Among the limited literature on SQNets with time-varying arrival rates, an important

contribution was made by Mandelbaum et al. (1998), who established many-server heavy-

traffic limits for Markovian SQNets, showing that FQNets and associated diffusion process

refinements arise in the many-server heavy-traffic limit, in which the arrival rate and staffing

are both allowed to grow; see also Mandelbaum et al. (1999a-b). Detailed analysis can also be

successfully performed for infinite-server (IS) SQNets, having infinitely many servers at each

queue. Markovian IS SQNets were studied by Massey and Whitt (1993) while IS SQNets with

time-varying phase-type (PHt) distributions were studied by Nelson and Taaffe (2004a-b).

They investigated (PHt/PHt/∞)m SQNets with multiple customer classes and time-varying

phase-type arrival and service processes. They showed that this IS network with k classes

is mathematically equivalent to k single-class IS networks, each of which is furthermore

equivalent to the PHt/PHt/∞ IS model with a modified service distribution. They therefore

directly applied the numerical algorithm they first developed for the PHt/PHt/∞ model to

the (PHt/PHt/∞)m SQNets. Paralleling that analysis technique, we demonstrate how the

algorithm for the single Gt/GI/st +GI fluid queue in Liu and Whitt (2011a) can be applied

to the (Gt/Mt/st +GIt)
m/Mt FQNet.

The main contribution of the present paper is to develop new algorithms for FQNets and

study them. The first of the three algorithms considered here, referred to as Alg(FPE), is the

algorithm proposed in Liu and Whitt (2011b) for the more general (Gt/Mt/st + GIt)
m/Mt

FQNets, allowing time-dependent service rates and abandonment times; it combines a fixed

point equation (FPE) for the vector of total arrival rates to the queues with the algorithm for

a single fluid queue from Liu and Whitt (2011a-b). We implement and study that algorithm

for the first time here.

The second algorithm, introduced here, is for that same FQNet and is referred to as

Alg(ODE). It is based on an m-dimensional ordinary differential equation (ODE), where m

is the number of queues. This new algorithm is appealing because it is relatively easy to

implement. For the special case of m = 2 queues, we obtain an explicit analytical solution

for the arrival rate functions, using the ODE representation; see Appendix E.1.

The third algorithm is a new FPE-based algorithm for (Gt/GI/st + GIt)
m/Mt FQNets,

allowing non-exponential service-time distributions at each queue, which we consider for the

first time here. We refer to it as Alg(FPE,GI). Thus, we find the solution to an important

new model as well as study alternative algorithms. For applications, this generalization is

important because non-exponential service distributions are seen in many service systems;
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e.g., see Brown et al. (2005).

We evaluate the performance of these three algorithms by implementing them and con-

ducting simulation experiments for associated SQNets for several examples. To relate the

FQNets to associated SQNets, we use many-server heavy-traffic scaling, as in Liu and Whitt

(2011d-e) and references therein. Thus, for a stochastic queue indexed by scale parameter

n, we let the arrival rate be nλ(t) and the number of servers be ⌈n s(t)⌉, where λ(t) and s(t)

are the fluid model counterparts and ⌈x⌉ is the least integer greater than or equal to x.

We illustrate now with an example of a two-queue SQNet, as depicted in Figure 1 of

Liu and Whitt (2011b); see §6.2 for details about this example. Figure 1 compares the

fluid approximation (the dashed lines) with simulation estimates of the performance in the

stochastic model (the solid lines) for n = 4000. We plot single sample paths of the following
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Figure 1: A comparison of performance functions in the two-queue FQNet with single sample
paths from a simulation of the corresponding SQNet with scale parameter n = 4000.

processes: (i) the elapsed waiting time of the customer at the head of the line, Wn(t), (ii)

the scaled number of customers waiting in queue, Q̄n(t) ≡ Qn(t)/n, (iii) the scaled number

of customers in service, B̄n(t) ≡ Bn(t)/n, and (iv) the scaled total number of customers in

the system X̄n(t) ≡ Xn(t)/n. For this extremely large value of n, there is little variability in

the simulation sample paths. Figure 1 shows that each simulated sample path falls right on

top of the the FQNet approximation. The close agreement confirms that both the numerical
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algorithm and the simulation must be done correctly, and it empirically validates the many-

server heavy-traffic limit.

For more realistic stochastic models with fewer servers, the fluid performance functions

serve as approximations for the mean values of the corresponding stochastic processes. A

figure nearly identical to Figure 1 (Figure 8 in the appendix) shows that the fluid model

provides excellent approximations for the mean values for the same example with n = 50.

Then the solid lines become simulation estimates of the mean of these scaled stochastic

processes, obtained by averaging multiple independent sample paths.

Here is how the rest of this paper is organized. In §2 we review the definitions, as-

sumptions and dynamics of the single Gt/Mt/st + GIt fluid queue discussed in Liu and

Whitt (2011a-b). In §3 we review the (Gt/Mt/st + GIt)
m/Mt FQNet and the results for

it developed in Liu and Whitt (2011b). We also specify the first FPE-based algorithm

Alg(FPE) there. In §4 we develop the alternative algorithm Alg(ODE) based on solving an

m-dimensional ODE. In §5 we develop the new FPE-based algorithm Alg(FPE,GI) for the

(Gt/GI/st + GIt)
m/Mt model with general service-times distributions at each queue. In §6

we demonstrate the performance of the algorithms by considering several examples. We also

confirm conclusions drawn about the computational complexity there. Additional material

appears in an appendix available online, including a discussion about checking for violation

of staffing feasibility and the analytical solution for the arrival rates from the m-dimensional

ODE for m = 2.

2. The Gt/Mt/st +GIt Fluid Queue

In this section we review the established results for the Gt/Mt/st +GIt fluid queue from Liu

and Whitt (2011a-b); see those sources for more details.

2.1. Model Definition

There is a service facility with finite capacity and an associated waiting room or queue

with unlimited capacity. Fluid is a deterministic, divisible and incompressible quantity that

arrives over time. Fluid input flows directly into the service facility if there is free capacity

available; otherwise it flows into the queue. Fluid leaves the queue and enters service in a

first-come first-served (FCFS) manner whenever service capacity becomes available. There

cannot be simultaneously free service capacity and positive queue content.
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The staffing function (service capacity) s is an absolutely continuous positive function

with

s(t) ≡
∫ t

0

s′(y) dy, t ≥ 0. (2.1)

We assume that the service capacity is exogenously specified and that it provides a hard

constraint: the amount of fluid in service at time t cannot exceed s(t). In general, there is

no guarantee that some fluid that has entered service will not be later forced to leave without

completing service, because we allow s to decrease. We directly assume that phenomenon

does not occur; i.e., we directly assume that the given staffing function is feasible. However,

Theorem 6 of Liu and Whitt (2011b) shows how to construct a minimum feasible staffing

function greater than or equal to an initial infeasible staffing function. In the appendix we

indicate how infeasibility can be detected whenever it occurs and corrected in each algorithm.

The total fluid input over an interval [0, t] is Λ(t), where Λ is an absolutely continuous

function with

Λ(t) ≡
∫ t

0

λ(y) dy, t ≥ 0, (2.2)

where λ is the arrival-rate function. Service and abandonment occur deterministically in

proportions. Since the service is Mt, the proportion of fluid in service at time t that will still

be in service at time t+ x is

Ḡt(x) = e−M(t,t+x), where M(t, t+ x) ≡
∫ t+x

t

µ(y) dy, (2.3)

for t ≥ 0 and x ≥ 0. The time-varying service-time cumulative distribution function (cdf) of

a quantum of fluid that enters service at time t is Gt ≡ 1−Ḡt(x); Ḡt(x) is the complementary

cdf (ccdf). The cdf Gt has density gt(x) = µ(t+ x)Ḡt(x) and hazard rate hGt
(x) = µ(t+ x),

x ≥ 0.

The model allows for abandonment of fluid waiting in the queue. In particular, a pro-

portion Ft(x) of any fluid to enter the queue at time t will abandon by time t + x if it has

not yet entered service, where Ft is an absolutely continuous cdf for each t, −∞ < t < +∞,

with

Ft(x) =

∫ x

0

ft(y) dy, x ≥ 0, and F̄t(x) ≡ 1 − Ft(x), x ≥ 0. (2.4)

Let hFt
(y) ≡ ft(y)/F̄t(y) be the hazard rate associated with the patience (abandonment) cdf

Ft. We assume that ft(y) is jointly measurable in t and y, so the same will be true for Ft(y)

and hFt
(y).
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System performance is described by a pair of two-parameter deterministic functions

(B̂, Q̂), where B̂(t, y) (Q̂(t, y)) is the total quantity of fluid in service (in queue) at time

t that has been so for a duration at most y, for t ≥ 0 and y ≥ 0. These functions will be

absolutely continuous in the second parameter, so that

B̂(t, y) ≡
∫ y

0

b(t, x) dx and Q̂(t, y) ≡
∫ y

0

q(t, x) dx, (2.5)

for t ≥ 0 and y ≥ 0. Performance is primarily characterized through the pair of two-

parameter fluid content densities (b, q). Let B(t) ≡ B̂(t,∞) and Q(t) ≡ Q̂(t,∞) be the total

fluid content in service and in queue, respectively. Let X(t) ≡ B(t) +Q(t) be the total fluid

content in the system at time t. Since service is assumed to be Mt, the performance will

primarily depend on b via B. (We will not directly discuss B̂.) The total service completion

rate and abandonment rate at time t are

σ(t) ≡
∫ ∞

0

b(t, x)hGt
(x)dx = B(t)µ(t), t ≥ 0, (2.6)

α(t) ≡
∫ ∞

0

b(t, x)hFt
(x)dx, (2.7)

respectively. Let S(t) be the total amount of fluid to complete service in the interval [0, t];

then

S(t) ≡
∫ t

0

σ(y) dy =

∫ t

0

B(y)µ(y) dy, t ≥ 0. (2.8)

Since fluid in service (queue) that is not served (does not abandon or enter service)

remains in service (queue), we see that the fluid content densities b and q must satisfy the

equations

b(t+ u, x+ u) = b(t, x)
Ḡt−x(x+ u)

Ḡt−x(x)
= b(t, x)e−M(t,t+u), (2.9)

q(t+ u, x+ u) = q(t, x)
F̄t−x(x+ u)

F̄t−x(x)
, 0 ≤ x+ u < w(t), (2.10)

for t ≥ 0, x ≥ 0 and u ≥ 0, where M is defined in (2.3) and w(t) is the boundary waiting

time (BWT) at time t,

w(t) ≡ inf {x > 0 : q(t, y) = 0 for all y > x}. (2.11)

(By Assumptions 4 and 5 below, we are never dividing by 0 in (2.9) and (2.10).) Since the

service discipline is FCFS, fluid leaves the queue to enter service from the right boundary of

q(t, x).
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Let A(t) be the total amount of fluid to abandon in the interval [0, t] and Let E(t) be the

amount of fluid to enter service in [0, t]. Clearly, we have the flow conservation equations:

For each t ≥ 0,

Q(t) = Q(0) + Λ(t) − A(t) − E(t) and B(t) = B(0) + E(t) − S(t). (2.12)

The abandonment satisfies

A(t) ≡
∫ t

0

α(y) dy, α(t) ≡
∫ ∞

0

q(t, y)hFt−y
(y) dy (2.13)

for t ≥ 0, where α(t) is the abandonment rate at time t and hFt
(y) is the hazard rate

associated with the patience cdf Ft. (Recall that Ft is defined for t extending into the past.)

The flow into service satisfies

E(t) ≡
∫ t

0

b(u, 0) du, t ≥ 0, (2.14)

where b(t, 0) is the rate fluid enters service at time t. If the system is OL, then the fluid to

enter service is determined by the rate that service capacity becomes available at time t,

η(t) ≡ s′(t) + σ(t) = s′(t) +B(t)µ(t), t ≥ 0, (2.15)

Then η(t) coincides with the maximum possible rate that fluid can enter service at time t,

γ(t) ≡ s′(t) + s(t)µ(t). (2.16)

To describe waiting times, let the BWT w(t) be the delay experienced by the quantum

of fluid at the head of the queue at time t, already given in (2.11), and let the potential

waiting time (PWT) v(t) be the virtual delay of a quantum of fluid arriving at time t under

the assumption that the quantum has infinite patience. A proper definition of q, w and v is

somewhat complicated, because w depends on q, while q depends on w, but that has been

done in §7 in Liu and Whitt (2011a).

We specify the initial conditions via the initial fluid densities b(0, x) and q(0, x), x ≥ 0.

Then B̂(0, y) and Q̂(0, y) are defined via (2.5), while B(0) ≡ B̂(0,∞) and Q(0) ≡ Q̂(0,∞),

as before. Let w(0) be defined in terms of q(0, ·) as in (2.11). In summary, the six-tuple

(λ(t), s(t), µ(t), Ft(x), b(0, x), q(0, x)) of functions of the variables t and x specifies the model

data. The system performance is characterized by (b(t, x), q(t, x), w(t), v(t), α(t), σ(t)).
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2.2. Assumptions on the Model Data

We directly assume that the initial values are finite:

Assumption 1 (finite initial content) B(0) <∞, Q(0) <∞ and w(0) <∞.

As in Liu and Whitt (2011a-b), we consider a smooth model. Let Cp be the space of

piecewise continuous real-valued functions of a real variable, by which we mean that there

are only finitely many discontinuities in each finite interval, and that left and right limits

exist at each discontinuity point, where the whole function is right continuous. Thus, Cp is

a subset of D, the right-continuous functions with left limits.

Assumption 2 (smoothness) s′, λ, ft, f·(x), µ, b(0, ·), q(0, ·) in Cp for each x ≥ 0 and t,

−∞ < t <∞.

To treat the BWT w, we need to impose a regularity condition on the arrival rate function

and the initial queue density, as in Assumption 10 of Liu and Whitt (2011a). Here and later

we use the notation ↑ and ↓ to denote supremum and infimum, respectively, e.g.,

λ↑t ≡ sup
0≤u≤t

{λ(u)} and λ↓t ≡ inf
0≤u≤t

{λ(u)}. (2.17)

These apply in the obvious way, e.g., q↓(0, x) below denotes the infimum over the second

variable over [0, x] and λ↑∞ denotes the supremum over the positive halfline.

Assumption 3 (positive arrival rate and initial queue density) For all t ≥ 0, λ↓t > 0 and

q↓(0, w(0)) > 0 if w(0) > 0.

Appendix E of Liu and Whitt (2011a) illustrates the more complicated behavior that can

occur for the BWT w when λ↓t = 0.

To ensure that the PWT v is finite, we assume bounds on the minimum staffing level

and the minimum service rate, as in Assumptions 7 and 8 of Liu and Whitt (2011b).

Assumption 4 (minimum staffing and service rate) s↓∞ > 0 and µ↓
∞ > 0.

To treat the time-varying abandonment cdf Ft, we introduce bounds for the time-varying

pdf ft and complementary cdf F̄t, as in Liu and Whitt (2011b). Let

f ↑ ≡ sup
−∞<t<∞,x≥0

{ft(x)} and F̄ ↓(x) ≡ inf
−∞≤t<∞

{F̄t(x)}. (2.18)
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Assumption 5 (controlling the time-varying abandonment) f ↑ < ∞ and F̄ ↓(x) > 0 for all

x > 0, where f ↑ and F̄ ↓(x) are defined in (2.18).

We analyze the fluid queue under the assumptions above by considering alternating inter-

vals over which the system is either UL or OL, where these intervals include what is usually

regarded as critically loaded. In particular, an interval starting at time t0 with (i) Q(t0) > 0

or (ii) Q(t0) = 0, B(t0) = s(t0) and λ(t0) > s′(t0) + σ(t0) is OL. We thus use R to denote

the current system regime and let R(t0) ≡ OL. The OL interval ends at the OL termination

time

TOL(t0) ≡ inf {u ≥ t0 : Q(u) = 0 and λ(u) ≤ s′(u) + σ(u)}. (2.19)

Case (ii) in which Q(t0) = 0 and B(t0) = s(t0) is often regarded as critically loaded, but

because the arrival rate λ(0) exceeds the rate that new service capacity becomes available,

s′(t0) + σ(t0), we must have the right limit Q(t0+) > 0, so that there exists ǫ > 0 such that

Q(u) > 0 for all u ∈ (0, 0 + ǫ). Hence, we necessarily have TOL(t0) > 0.

An interval starting at time t0 with (i) Q(t0) < 0 or (ii) Q(t0) = 0, B(t0) = s(t0) and

λ(t0) ≤ s′(t0) + σ(t0) is UL, designated by R(t0) = UL. The UL interval ends at UL

termination time

TUL(t0) ≡ inf {u ≥ t0 : B(u) = s(u) and λ(u) > s′(u) + σ(u)}. (2.20)

As before, case (ii) in which Q(t0) = 0 and B(t0) = s(0) is often regarded as critically

loaded, but because the arrival rate λ(t0) does not exceed the rate that new service capacity

becomes available, η(t0) ≡ s′(t0) + σ(t0), we must have the right limit Q(t0+) = 0. The

UL interval may contain subintervals that are conventionally regarded as critically loaded;

i.e., we may have Q(t) = 0, B(t) = s(t) and λ(t) = s′(t) + σ(t). For the fluid models,

such critically loaded subintervals can be treated the same as UL subintervals. However,

unlike an overloaded interval, we cannot conclude that we necessarily have TUL(t0) > 0 for

a UL interval. Moreover, even if TUL(t0) > 0 for each UL interval, we could have infinitely

many switches between OL intervals and UL intervals in a finite interval. Thus we make

assumptions to ensure that those pathological situations do not occur. We define the interval

termination time

TR(t0) ≡ TOL(t0) 1{R(t0)=OL} + TUL(t0) 1{R(t0)=UL}. (2.21)

As discussed in Liu and Whitt (2011a), for engineering applications it is reasonable to

directly assume that there are only finitely many switches between OL and UL intervals
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in each finite time interval, but it is unappealing mathematically. In §3 of Liu and Whitt

(2011b) we provided sufficient conditions based directly on the model parameters for there

to be only finitely many switches between OL intervals and UL intervals in each finite time

interval. In particular, we showed that it suffices to impose regularity conditions on the

function ζ(t) ≡ λ(t) − s′(t) − s(t)µ(t), t ≥ 0. Let Zζ,T be the subset of zeros of the function

ζ in [0, T ] and let |A| be the cardinality of a set A. Theorem 2 of Liu and Whitt (2011b)

shows that the number of switches between overloaded and underloaded intervals is finite in

each finite interval if |Zζ,T | <∞ for each T > 0.

Assumption 6 (controlling the number of switches) For all T > 0, |Zζ,T | <∞.

In §3 of Liu and Whitt (2011b) we also showed that a sufficient condition for |Zζ,T | <∞
for each T > 0 is for the functions λ, s and µ to be piecewise polynomials (with finitely

many discontinuities in each finite interval). Assumption 6 is also easy to verify in other

settings, as we illustrate here with sinusoidal functions. We assume that all assumptions in

this section are in force throughout the paper.

2.3. The Performance Formulas

In Liu and Whitt (2011a-b) we showed how the system performance expressed via the basic

functions P̂(t) ≡ (b(t, ·), q(t, ·)) depends on the model data D ≡
(

λ, s, µ, F, P̂(0)
)

. From

the basic performance vector P̂ , we easily compute the associated vector of all performance

functions

P(t) ≡
(

P̂(t), w(t), v(t), B(t), Q(t), X(t), σ(t), S(t), α(t), A(t), E(t)
)

(2.22)

via the definitions in §2.1. We quickly review the main results for the basic functions

(b, q, w, v); see Liu and Whitt (2011a-b) for more details.

For the fluid model with unlimited service capacity (s(t) ≡ ∞ for all t ≥ 0), starting at

time 0,

b(t, x) = e−M(t−x,t)λ(t− x)1{x≤t} + e−M(0,t)b(0, x− t)1{x>t}, (2.23)

B(t) =

∫ t

0

e−M(t−x,t)λ(t− x) dx+B(0)e−M(0,t), t ≥ 0.

where M is defined in (2.3). If, instead, a finite-capacity system starts UL, then the same

formulas apply over the interval [0, T ), where T ≡ inf {t ≥ 0 : B(t) > s(t)}, with T = ∞ if

the infimum is never obtained.
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For the fluid model in an OL interval, B(t) = s(t) and

b(t, x) = (s′(t− x) + s(t− x)µ(t− x))e−M(t−x,t)1{x≤t}

+b(0, x− t)e−M(0,t)1{x>t}. (2.24)

Let q̃(t, x) be q(t, x) during an OL interval [0, T ] under the assumption that no fluid

enters service from queue. During an OL interval,

q̃(t, x) = λ(t− x)F̄t−x(x)1{x≤t} + q(0, x− t)
F̄t−x(x)

F̄t−x(x− t)
1{t<x}; (2.25)

q(t, x) = q̃(t− x, 0)F̄t−x(x)1{x≤w(t)∧t} + q̃(0, x− t)
F̄t−x(x)

F̄t−x(x− t)
1{t<x≤w(t)}

= λ(t− x)F̄t−x(x)1{x≤w(t)∧t} + q(0, x− t)
F̄t−x(x)

F̄t−x(x− t)
1{t<x≤w(t)}.

We characterize the BWT w appearing in the formula for q above by equating the quantity

of new fluid admitted into service in the interval [t, t + δ) to the amount of fluid removed

from the right boundary of q(t, x) that does not abandon in the same interval [t, t+ δ). By

careful analysis (Theorem 3 of Liu and Whitt (2011a)), that leads to the nonlinear first-order

ODE

w′(t) = Ω(t, w(t)) ≡ 1 − γ(t)

q̃(t, w(t))
, (2.26)

for γ in (2.16), where w′(t) denotes the derivative. (By Assumptions 3, 4 and 5, we are not

dividing by 0 in (2.25) and (2.26). More detail on the structure of w is given in Liu and

Whitt (2011a). Overall, w is continuously differentiable everywhere except for finitely many

t.) We compute the end of an OL interval by letting it be the first time t that w(t) = 0

and λ(t) ≤ s′(t) + s(t)µ(t). During an OL interval, the PWT v is finite and is the unique

function in D satisfying the equation

v(t− w(t)) = w(t) for all t ≥ 0. (2.27)

2.4. The Fluid Algorithm for Single Queues (FASQ)

The results above yield an efficient algorithm to compute the basic performance four tuple

(b, q, w, v) over a finite interval [0, T ]. First, for each UL interval, we compute b directly via

(2.23), terminating the first time we obtain B(t) > s(t). Second, for each OL interval, we

compute b via (2.24), q̃ via (2.25) and then the BWT w by solving the ODE (2.26). We

consider terminating the OL interval when w(t) = 0. We actually do terminate the OL
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interval if also λ(t) ≤ s′(t) + s(t)µ(t). The proof of Theorem 5 in Liu and Whitt (2011a)

provides an elementary algorithm to compute v during an OL interval from (2.27) once w

has been computed. Theorem 6 of Liu and Whitt (2011a) shows that v satisfies its own ODE

under additional regularity conditions.

The key step beyond direct computation is to control the switching between UL and OL

intervals. That can be done by selecting a fixed switching step size ∆T over which to perform

all calculations before checking to see if there is a regime change. Starting at time t in regime

R(t), the calculations are performed over the interval [t, t+ ∆T ]. Then the algorithm finds

the first time s in (t, t + ∆T ] at which there is a regime change, if any, and that becomes

the new initial time t. If the switching step size ∆T is too large, then there can be much

wasted computation. Otherwise, the algorithm tends to be insensitive to the choice of ∆T ,

as we show in Appendix C.

A formal statement of the single-queue algorithm appears in Appendix C. For a time

interval [0, T ] with S regime switches, examples show that the running time of FASQ tends to

be linear in both T , for fixed S, and S, for fixed T , and independent of ∆T , provided that ∆T

is suitably small, e.g., if ∆T ≤ T/S, assuming that the switching points are approximately

uniformly distributed throughout the interval [0, T ]. Thus, for a fixed density of switches

per time, the run time should be O(T 2), because S would be proportional to T . These

observations are illustrated by a numerical example in Appendix C.

3. The (Gt/Mt/st +GIt)
m/Mt Fluid Network

We now review the (Gt/Mt/st +GIt)
m/Mt FQNet introduced by Liu and Whitt (2011b) and

the FPE-based algorithm to compute all transient performance functions proposed there.

3.1. Model Properties

There are m queues, where each queue has model parameters as given in §2. In addition, a

proportion Pi,j(t) of the fluid output from queue i at time t is routed immediately to queue j,

and a proportion Pi,0(t) ≡ 1−
∑m

j=1 Pi,j(t) ≤ 1 is routed out of the network (departs having

successfully completed all required service). Consistent with the terminology, we assume

that P (t) is sub-stochastic for each t.

Assumption 7 (proportional routing) The routing matrix function for proportional routing,

P : [0,∞) → Rm2
, is in Cp and

∑m

j=1 Pi,j(t) ≤ 1 for each t ≥ 0 and i, 1 ≤ i ≤ m.

13



Since we have a deterministic fluid model, it is elementary to treat the basic network

operations of superposition and splitting: If two input streams are combined to form a

single input (superposition), then the arrival rate functions are simply added. If one stream

with arrival rate function λ is split, such that a proportion p(t) of that stream goes into a

new split stream at time t, then the arrival-rate function of the split stream is λp, where

λp(t) ≡ λ(t)p(t), t ≥ 0; just like λ, the splitting proportion can be time-dependent. Similarly,

if the departure flow from one queue becomes input to another, then the resulting arrival-

rate function is σ; (We do not let the abandonment flow from one queue become input

to another, but if we did, then the resulting arrival-rate function would be α.) However,

converting departure rate or abandonment rate into new input rate is more complicated

when feedback is allowed. We discuss that case now, for departures only.

As is usual with open queueing networks, there is an external exogenous arrival rate

function to each queue (from outside the network, which could be null at some queues)

and there is a total arrival rate function to each queue (which we simply call the arrival

rate function), taking into account the flow from other queues. Let the external arrival rate

function into queue j be denoted by λ
(0)
j ; let the arrival rate function into queue j be denoted

by λj . The model data for the Gt/Mt/st + GIt fluid queues directly provides the external

arrival rate functions λ
(0)
j (with the superscript 0 now added), while the arrival rate function

itself satisfies a system of traffic rate equations. In particular,

λj(t) = λ
(0)
j (t) +

m
∑

i=1

σi(t)Pi,j(t), (3.1)

where

σi(t) = Bi(t)µi(t), t ≥ 0. (3.2)

Equations (3.1) and (3.2) produce a system of equations, with λj depending upon σi for

1 ≤ i ≤ m, while σi in turn depends on λi for each i, because Bi depends on λi. The

formulas for Bi as a function of λi have been given in 2.3, provided that we know the current

system status, i.e., whether the queue is OL or UL. That requirement is the major source of

complexity.

Since (3.1) is a linear equation, it can be written in matrix notation as λ = λ(0) + σ P

by omitting the argument t as below, provided that the product σP is interpreted as in

(3.1). Moreover, we can combine (3.1) and (3.2) to express λ as the solution of a fixed

point equation mapping Cm
p over [0, T ] into itself. To see this, note that Bi(t) in (3.2) is
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a function of λi(u), 0 ≤ u < t, and the model data (only needed for queue i). Hence the

vector B(t) ≡ B1(t), . . . , Bm(t) is a function of λ over [0, t) and the model data. Hence we

can express (3.1) and (3.2) abstractly as λ = Ψ(λ), where Ψ(x)(t) depends on its argument

x only over [0, t] for each t ≥ 0. Here the function Ψ depends on all the model data

(λ
(0)
i , si, µi, Fi,·, bi(0, ·), qi(0, ·), P ), 1 ≤ i ≤ m.

Assumption 8 (finitely many switches between different regimes) There are finite many

switches between OL and UL intervals in each finite interval [0, T ] for every queue i of the

(Gt/Mt/st)
m +GIt fluid network.

Under Assumption 8, the operator Ψ above is a monotone contraction operator on the

m-dimensional product space Cm
p , by Theorem 10 of Liu and Whitt (2011b). Therefore, we

can approach this system recursively. If we do so with initial vector λ̃ = λ(0), the vector

of external arrival rate functions, then the recursion has an important practical interpreta-

tion. Then the kth iterate λ
(k)
j is the arrival rate of fluid that has previously experienced k

transitions in the fluid network. With this notation, we can write the recursive formulas

λ
(n)
j (t) = Ψ(n)(λ(0))j(t) = λ

(0)
j (t) +

m
∑

i=1

σ
(n−1)
i (t)Pi,j(t), n ≥ 1, (3.3)

where

σ
(n)
i (t) = B

(n)
i (t)µi(t) n ≥ 0. (3.4)

Since we necessarily have λ
(1)
i ≥ λ

(0)
i for each i, this recursion converges monotonically to

the fixed point λ.

3.2. The FPE-Based Algorithm Alg(FPE)

The algorithm Alg(FPE) consists of two successive steps: (i) solving the traffic-rate equations

(3.1) and (3.2) and (ii) solving for the performance vector (b, q, w, v, σ, α) at each queue using

the algorithm in §2. For step (i), we start with an initial vector of arrival rate functions,

which can a rough estimate of the final arrival rate functions or the given external arrival rate

functions. We then apply the performance formulas in §2.3 to determine the performance

functions Bi and σi at each queue to determine a new vector of arrival rate functions. We then

iteratively calculate successive vectors of arrival rate functions until the difference (measured

in the supremum norm over a bounded interval) is suitably small. Then we apply step (ii).
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Given a desired duration T of an interval [0, T ], we specify the following input data: (i)

the model parameter vector

(

λ(0), s, G, F,P(0)
)

≡
(

λ
(0)
i (t), si(t), Gi, Fi,Pi(0), 1 ≤ i ≤ m, t ∈ [0, T ]

)

, (3.5)

where the initial performance vector (at time 0) of queue i, 1 ≤ i ≤ m, is

Pi(0) ≡ (bi(0, ·), qi(0, ·), Bi(0), Qi(0), wi(0), vi(0), αi(0), σi(0)) ;

and (ii) the algorithm parameters: the iteration error tolerance parameter (ETP) ǫ and the

switching step size (SSS) ∆T , both assumed to be strictly positive. (We assume that the

switching step size is the same for all queues, which usually provides little loss of generality.)

We give a formal statement of the algorithm in the appendix.

From the structure of the algorithm, we can directly determine the computational com-

plexity (computer-dependent required run time) CFPE ≡ CFPE(ǫ, T,m,S) as a function of

the ETP ǫ, number of queues m, length of the time interval T , and the number of regime

switches per queue S, but we will also confirm it in numerical examples.

Let I ≡ I(ǫ) be the number of iterations of the FPE as a function of the ETP ǫ. Roughly,

we need to apply the FASQ for each of the m queues I times, although the full FASQ is not

needed in the steps before the final one needed to compute the actual performance functions

at each queue. Let Si be the number of regime switches at queue i over [0, T ]. Thus the

overall complexity should be CFPE = O(IT
∑m

i=1 Si). Assuming that Si ≈ S for all i, with

the switches at different queues occurring at different times, that yields CFPE(I, m, T,S) =

O(ITmS). Moreover, I(ǫ) = O(log (1/ǫ) where ǫ is the ETP, because the convergence to

the fixed point in successive iterations is geometrically fast. Thus, we conclude that

CFPE ≡ CFPE(m,T,S, ǫ) = O(mTS log (1/ǫ)). (3.6)

Unfortunately, unlike the other parameters, the number of regime switches per queue,

S, cannot be directly observed from the model data. However, if the model parameters,

such as λ and s, are periodic functions with periods τλ and τs, then the total number of

switchings is usually bounded by 2T/τλ + 2T/τs, so that we may regard S = O(T ), making

CFPE(m,T, ǫ) = O(mT 2 log (ǫ)). See the examples in §6.
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4. The Alternative ODE-Based Algorithm Alg(ODE)

Now we develop the new algorithm Alg(ODE) for the (Gt/Mt/st +GIt)
m/Mt FQNet. Again,

the key is to compute total arrival rates (TARs) for all queues and then treat each of these

queues independently. In some special cases, analytic formulas are available.

4.1. Finding the Total Arrival Rate (TAR) Vector

Instead of solving the fixed-point equation as in §3 to find the TARs, we now solve an

m-dimensional ODE. To do that, we need to work over subintervals where all queues are

in specified regimes. So now we consider successive switching times for any queue in the

network. We recursively solve the ODE in each of these intervals. The key is to characterize

and update the system regime in different intervals and recursively advance in t. We describe

the system regime at t with two sets: U(t) (the set of indices of queues that are UL) and

O(t) (the set of indices of queues that are OL). In other words,

U(t) ≡ {1 ≤ i ≤ m : Bi(t) ≤ si(t), Qi(t) = 0}

O(t) ≡ {1 ≤ i ≤ m : Bi(t) = si(t), Qi(t) > 0}.

Of course, U(t) is simply the complement of O(t) within the set {1, . . . , m}.
Given U(t) and O(t), consider 1 ≤ i ≤ m. (i) If Queue i is UL, i.e., i ∈ U(t), flow

conservation implies that

B′
i(t) = λ

(0)
i (t) +

∑

j∈U(t)

µj(t)Pj,i(t)Bj(t) +
∑

k∈O(t)

µk(t)Pk,i(t)sk(t) − µi(t)Bi(t).

If i ∈ O(t), Bi(t) = si(t). We partition and regroup the indices of queues so that B(t) ≡
[BU(t),BO(t)]T , λ(t) ≡ [λU(t), λO(t)]T , λ(0)(t) ≡ [λ

(0)
U (t), λ

(0)
O (t)]T , µ(t) ≡ [µU(t), µO(t)]T ,

s(t) ≡ [sU(t), sO(t)]T , ΓU(t) ≡ diag(µU(t)), ΓO(t) ≡ diag(µO(t)), Γ(t) ≡ diag(ΓU(t),ΓO(t)),

P(t) ≡
U O

U
O

[

PUU(t) PUO(t)
POU(t) POO(t)

]

,

where PUU(t) (POU(t), PUO(t), and POO(t)) denotes the transition probability from a state in

U (O, U , and O) to a state in U (U , O, and O) at time t. Let POU(t) = PUO(t) = POO(t) = φ

when PUU(t) = P(t) (i.e., all queues are UL) and let POU(t) = PUO(t) = PUU(t) = φ when

POO(t) = P(t) (i.e., all queues are OL), where φ denotes an empty matrix (with rank 0).
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Therefore, in matrix notation, we have

B′
U(t) = C(t) · BU(t) + D(t), and BO(t) = sO(t), (4.1)

where

D(t) ≡ λ
(0)
U (t) + PT

OU(t)ΓO(t)sO(t)

C(t) ≡
(

PT
UU(t) − I

)

ΓU(t).

If the service rates and the routing probability matrix are independent of time: µi(t) = µi

and Pi,j(t) = Pi,j, i.e., the model becomes the (Gt/M/st + GIt)
m/M network, then ΓU ≡

ΓU(t) = diag(µU), C ≡ C(t) =
(

PT
UU − I

)

ΓU , and (4.1) has the unique solution

BU(t) = e−C t

(
∫ t

0

e−CuD(u)du+ B(0)

)

.

In all cases, the TAR vector

λ(t) = λ(0)(t) + PT (t)Γ(t) ·B(t). (4.2)

When m = 2, analytic formulae are available, see Appendix E.1.

4.2. The Overall Algorithm and its Complexity

Just as for FASQ in §2, the key step beyond direct computation is to control the switching

between regimes. Since each queue can be either UL or OL, there are overall 2m different

network regimes. We say that the system changes its regime at some time if one or more

of the queues changes its regime, either from UL to OL or from UL to OL. We provide the

following regime termination time

TR(t0) ≡ T1(t0) ∧ T2(t0), where (4.3)

T1(t0) ≡ inf{t > t0 : some i ∈ O(t0) s.t. Qi(t) = 0, λi(t) ≤ σi(t)},

T2(t0) ≡ inf{t > t0 : some j ∈ U(t0) s.t. Bj(t) = sj(t), λj(t) > σj(t)},

with t0 being the starting time of the desired interval and the infimum of an empty set

understood to be infinity.

Within each regime, we use an ODE to compute the TARs λi(t) and the service content

functions Bi(t), based on (4.1) and (4.2). Given the TARs at all queues, we use the FASQ

to calculate the performance functions. We give a formal algorithm statement in §E.
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The computational complexity clearly depends largely on the computational complex-

ity of the ODE solver. Fortunately the ODE’s arising in the present context tend not to

be computationally difficult; e.g., they are rarely stiff. Let Oode(m, t) be the computa-

tional complexity for solving an m-dimensional ODE over an interval of length t. For the

conventional solvers we use (see §6.1), we should have approximately Oode(m, t) = O(mt).

From the structure of algorithm Alg(ODE), we can determine the computational complexity

CODE ≡ CODE(T,m,S), as a function of the number of queues m, length of the time interval

T and the number of regime switches per queue, S, but we will also confirm it in numerical

examples. As before in §3.2, the parameter pair (m,T ) is directly observable, but S is not.

Let Si be the number of regime switches at queue i over [0, T ]. Hence the total number of

regime switches for any queue in the network is
∑m

i=1 Si. Assuming that Si ≈ S for all i as

before, we see that the ODE must be solved mS times over subintervals, whose combined

length is T . In addition, there is some computational cost of carrying out the switching in

each regime switch. For the ODE portion of the algorithm, the computational complexity is

O(m,S, T ) =

mS
∑

j=1

O(m,Ti) where

mS
∑

j=1

Ti = T. (4.4)

Hence, the overall computational complexity for the ODE solver is O(mT ). But we must

factor in the regime switching, which has computational effort proportional to the number of

network regime switches, which is O(mS). Assuming that these components each contribute

significantly we get an overall computational complexity

CODE ≡ CODE(T,m,S) = O(m2ST ). (4.5)

We find that formula (4.5) is consistent with numerical examples. e.g., see Figure 2 in §6.3.

5. Allowing GI Service Distributions: Alg(FPE,GI)

We now generalize the model, allowing the service distribution at each queue to be GI

instead of M ; for motivation, see Brown et al. (2005). We need a new algorithm because

neither the FPE-based algorithm Alg(FPE) in §3 nor the ODE-based algorithm Alg(ODE)

in §4 is directly applicable. For simplicity, we focus on the (Gt/GI/st + GI)m/Mt FQNet,

where the service and patience distributions are not time varying; the analysis easily can be

generalized to (Gt/GIt/st + GIt)
m/Mt. As part of the model data, we let (Gi, 1 ≤ i ≤ m)

be the general service cdf’s of the (Gt/GI/st +GI)m/Mt FQNet and let Ḡi ≡ 1−Gi be the

associated ccdf’s; e.g., Ḡi(x) = e−µi x for M service.
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5.1. A New FPE for the TAR Vector

The key is to obtain the TAR λi(t) for 1 ≤ i ≤ m and 0 ≤ t ≤ T . Once λi(t) is obtained, the

single-queue algorithm for GI service developed in Liu and Whitt (2011a) can be applied to

compute all other performance measures; see §8 and Appendix G there. This single-queue

algorithm for GI service is a generalization of FASQ, which requires solving another FPE

to find the rate that fluid enters service b(t, 0) (which we call the rate into service (RIS))

during each OL interval. For M service, this FPE for RIS simplifies to (2.24) with x = 0.

We next analyze the transient dynamics of the (Gt/GI/st +GI)m/Mt model at arbitrary

time t assuming the knowledge of the current system status. We refer to the explicit formulas

for b(t, x) developed in Liu and Whitt (2011a) during our analysis. The formulas for q(t, x)

and w(t) are identical to those in §2.

Consider a queue j that is UL, i.e., j ∈ U(t), from Proposition 2 of Liu and Whitt (2011a)

we have that (as a generalization of (2.23))

bj(t, x) = Ḡj(x)λj(t− x)1{x≤t} +
Ḡj(x)

Ḡj(x− t)
bj(0, x− t)1{x>t},

σj(t) =

∫ ∞

0

bj(t, x)hG,j(x)dx

=

∫ t

0

gj(x)λj(t− x)dx+

∫ ∞

0

gj(x+ t)

Ḡj(x)
bj(0, x)dx. (5.1)

Note that the above formula for queue j is in terms of the TAR λi which is unknown.

Consider a queue k that is OL, i.e., k ∈ O(t). From equations (17)-(20) of Liu and Whitt

(2011a), we obtain

σk(t) = bk(t, 0) − s′k(t), (5.2)

where the RIS bk(t, 0) satisfies the FPE (as a generalization of (2.24))

bk(·, 0) = Φ(bk(·, 0)), (5.3)

with

Φ(y)(t) ≡ âk(t) +

∫ t

0

y(t− x)gk(x)dx,

âk(t) ≡ s′k(t) +

∫ ∞

0

bk(0, y)gk(t+ y)

Ḡk(y)
dy.

Moreover, we have shown in Theorem 2 of Liu and Whitt (2011a) that Φ is a contraction

operator under mild conditions, which thus implies that the FPE (5.3) has a unique solution.
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We note that the RIS for an OL queue depends on the rate at which the service capacity

becomes available (defined in (2.15)) and is independent of the TAR, unlike during an UL

regime. Hence, having σk(t) and bk(t, 0) available (by solving the FPE (5.3) and (5.2) ) for

all OL queues (i.e., for all k ∈ O(t)), the TAR of queue i satisfies the following traffic-rate

equation

λi(t) = λ
(0)
i (t) +

∑

k∈O(t)

Pk,i(t)σk(t) +
∑

j∈U(t)

Pj,i(t)σj(t)

= γ̂i(t) +
∑

j∈U(t)

Pj,i(t)

(
∫ t

0

gj(x)λj(t− x)dx

)

, (5.4)

where

γ̂i(t) ≡ λ
(0)
i (t) +

∑

k∈O(t)

Pk,i(t)σk(t) +
∑

j∈U(t)

Pj,i(t)

∫ ∞

0

gj(x+ t)

Ḡj(x)
bj(0, x)dx,

with γ̂i not depending on the TAR and determined by the FPE (5.3) and the second equality

holding by (5.1).

Equation (5.4) expresses the TAR vector λ as the solution of a FPE, i.e.,

λ = J (λ), (5.5)

where J : D
m → D

m with

J (u)i(t) ≡ γ̂i(t) +
∑

j∈U(t)

Pj,i(t)

(
∫ t

0

gj(x)uj(t− x)dx

)

, 1 ≤ i ≤ m, (5.6)

where u ≡ (u1, . . . , um) ∈ Dm. Under regularity conditions, we can show that there exists

a unique solution to equation (5.4) by applying the Banach contraction theorem. We will

use the complete (nonseparable) normed space Dm with the uniform norm over the interval

[0, T ], i.e.,

‖u‖T ≡
m

∑

i=1

sup
0≤t≤T

|ui(t)|. (5.7)

Theorem 5.1 (TAR for GI service) Assume the system regime does not change in a small

interval [0, T ], then the operator J in (5.6) is a monotone contraction operator on Dn with

norm defined in (5.7).
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Proof. Assume that T > 0 is small enough so that the system regime does not change,

i.e., U(t) = U and O(t) = O for 0 ≤ t ≤ T . Then

‖J (u1) − J (u2)‖T =
m

∑

i=1

sup
0≤t≤T

∣

∣

∣

∣

∣

∑

j∈U

Pj,i(t)

[
∫ t

0

gj(x) (u1,j(t− x) − u2,j(t− x)) dx

]

∣

∣

∣

∣

∣

≤
m

∑

i=1

sup
0≤t≤T

∑

j∈U

‖u1,j − u2,j‖TPj,i(t)Gj(t)

≤ m max
1≤j≤m

Gj(T ) · sup
0≤t≤T

∑

j∈U

‖u1,j − u2,j‖T ≤ C̃(T ) ‖u1 − u2‖T ,

where C̃(T ) ≡ mmax1≤j≤mGj(T ). This provides what we need, because we can make

C̃(T ) < 1 for sufficiently small T > 0, because Gi(t) → 0 as t → 0 for all 1 ≤ i ≤ m by our

assumption on the existence of the service densities.

5.2. The Overall FPE-Based Algorithm with GI Service

Algorithm Alg(FPE,GI) has two parts: (i) regime switching and (ii) the new FPE within

each fixed network regime. The regime switching can be managed just as for the FASQ and

Alg(ODE). As before, we work with a regime switching step size ∆T . Given a time t, we

apply the new FPE in §5.1 to find a new TAR vector over the interval [t, t+ ∆T ]. However,

after doing that calculation, we must check to see if there is a regime switch at any queue in

the network. If such a regime switch occurs at time s ∈ [t, t+ ∆T ], then we replace t with s

and repeat. In this way, we move forward in time until we compute the TAR vector for all

of [0, T ].

Within each interval with fixed network regime, we calculate the TAR using FPE (5.5).

Given that TAR within each interval with fixed network regime, we apply the single-queue

algorithm from Liu and Whitt (2011a) to calculate the queue performance at each queue.

That is more complicated than the FASQ in §2, because it is necessary to solve the FPE

(5.3) at each queue that is OL in that particular network regime.

For this last algorithm, the computational complexity is more difficult to determine from

the algorithm structure, because the algorithm is more complicated. Just as for Alg(ODE),

there are O(mS) network regimes, so that regime switching should have complexity of order

O(mS). The new FPE is more complicated, requiring an FPE within the overall FPE at

each queue. Since the first-step FPE (5.3) is done at each queue throughout [0, T ], we can

estimate its complexity as O(mT ). The second-step FPE (5.5) also may have complexity of
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order O(mT ). In addition, these FPE’s depend on the ETPs ǫ. Since both operators are

contraction, the rate of convergence is geometric. Hence the computational complexity of

both iterations as functions of ǫ are O(log (1/ǫ)). Thus, we estimate that the computational

complexity should be

CFPE,GI(m,T,S, ǫ) = O

(

(mT +mT )mS log

(

1

ǫ

))

= O(m2ST log (1/ǫ)). (5.8)

6. Examples

In this section we report the results of implementing the algorithms in §§3-5 and applying

them to three examples: (i) a Markovian (Mt/M/s + M)2/M two-queue FQNet, (ii) a

Markovian (Mt/M/s + M)m/M FQNet with m queues, 2 ≤ m ≤ 160, and (iii) a non-

Markovian (Gt/LN/s + E2)
2/M model. For simplicity, in these example we make only the

arrival rate time-varying. The extension to time-varying staffing is of course very important

and is not difficult to do as well, as we illustrate with an example in the appendix. Adding

time-varying functions to the service, abandonment and routing is less important, so we do

not directly illustrate those extensions. The third algorithm applies to all three examples,

but the first two algorithms only apply to the first two examples. In §6.1 we first provide

details about our implementation.

6.1. Implementation Details

Before discussing the examples, we briefly explain how we implemented the numerical algo-

rithms and conducted the simulation experiments. For both, we used Matlab on a personal

computer. To numerically solve ODEs, both one-dimensional for w(t) at each queue, as in

(2.26), and multi-dimensional for the TAR, as in (4.1), we used the Matlab solvers ”ode23”

and ”ode45”, which employ automatic step-size Runge-Kutta-Fehlberg integration methods.

The first one, ode23, uses a pair of simple second-order and third-order formulas. The sec-

ond, ode45, uses a pair of fourth-order and fifth-order formulas. See Thomas (1995) for

details on finite-difference methods for numerically solving differential ODE’s. As a base

case for the examples, we considered a system starting empty over the time interval [0, T ]

with T = 20. In that framework, we divided continuous time interval [0, T ] into discrete

intervals with length 0.002.

Care is needed in estimating the various time-dependent performance functions in the

simulation experiments. For the mean head-of-line waiting time, E[W (t)], the mean queue
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length E[Q(t)] and the mean number of busy servers E[B(t)], we divide the interval [0, T ]

into subintervals or bins. For E[W (t)], we kept track of all customer arrivals in each sample

path. For a customer n, we keep track of the arrival time An, and the time that the customer

enters service En. Therefore, one value for this sample path is (t, Ŵ (t)) = (En, En − An).

Of course, this customer may have already abandoned by time En. Since we are interested

in the potential waiting time, assuming infinite patience, we keep track of the time that

the customer would enter service even after it abandons; i.e., our procedure includes the

behavior of virtual customers. The bin size for E[W (t)] is 0.1, while the bin size for E[Q(t)]

and E[B(t)] is 0.05. Thus, we sampled the queue length once every 0.05 units of time.

6.2. A Two-Queue FQNet Example

We first consider the two-queue (Mt/M/s+M)2/M FQNet discussed in §1. It has sinusoidal

external arrival rates

λ
(0)
i (t) = ai + bi sin(ci t+ φi), i = 1, 2, (6.1)

exponential service and patience distributions: Ḡi(x) = e−µi x, F̄i(x) = e−θi x, i = 1, 2,

constant staffing functions si, i = 1, 2, and a constant 2 × 2 Markov transition probability

matrix P with elements P1,2 = P2,1 = 0.2 and Pi,i = 0.3, so that Pi,0 = 0.5, i = 1, 2. Let

a1 = a2 = 0.5, b1 = 0.25, b2 = 0.35, c1 = c2 = 1, φ1 = 0, φ2 = −3, µ1 = 1, µ2 = 0.5, θ1 = 0.5,

θ2 = 0.3, s1 = 1, and s2 = 2. We let the network be initially empty.

We first show how the FPE-based algorithm Alg(FPE) from §3 works. It is based on a

FPE for the total arrival rates (TARs) λ1(t) and λ2(t) for 0 ≤ t ≤ T , Figure 6 in Appendix

G.1 displays the arrival rates in successive iterations, dramatically showing both the mono-

tone convergence and the geometric rate of convergence of the operator Ψ in §3.1. Alg(FPE)

terminates after iteration I(ǫ), where ǫ > 0 is the pre-specified error tolerance parameter

(ETP) and

I(ǫ) ≡ inf

{

n ≥ 0 : ET (n) ≡ max
j=1,2

‖λ(n)
j − λ

(n−1)
j ‖T ≤ ǫ

}

,

yielding final TARs λi ≡ λ
(I(ǫ))
i , i = 1, 2 For this example, we show how the number of

iterations I(ǫ), the total run time T (ǫ) and the terminating error ET (I(ǫ)) depend on the

EPT ǫ in Table 1.

Figure 7 in Appendix G.1 shows plots of all the standard performance functions in the

fluid network using Alg(FPE), including λi, Qi, wi, Bi, Xi, and bi(·, 0), i = 1, 2. Figure
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log10(ǫ) -1 -2 -3 -4 -5 -6 -7 -8 -9
I(ǫ) 3 6 8 11 13 15 16 17 19
T (ǫ) 1.03 1.82 2.41 2.90 3.12 3.67 3.94 4.28 4.73
ET (I(ǫ)) 0.081 0.007 9.2E-4 4.8E-5 4.9E-6 2.8E-7 5.2E-8 8.3E-9 1.4E-10

Table 1: The number of iterations I(ǫ), computation time T (ǫ) and terminating error
ET (I(ǫ)) for algorithm Alg(FPE) as a function of the ETP ǫ ≡ 10−n, n ≥ 1, for the two-queue
FQNet example using T = 20 and ∆T = 2.

1 compares the fluid approximations with results from a simulation experiment for a very

large-scale queueing system. The queueing model has nonhomogeneous Poisson external

arrival processes with sinusoidal rate functions λ
(0)
n,i(t) = nλ

(0)
i (t), i = 1, 2, with n = 4000.

We compare the fluid model predictions to a single sample path of the queueing system (one

simulation run). In Figure 1 the solid lines are the simulation estimations of single sample

paths applied with fluid scaling, and the dashed lines are the fluid approximations.

When the scale of the queueing model is not large, i.e., when n is smaller, single sample

paths of the queueing functions typically do not agree closely with the fluid functions be-

cause of stochastic fluctuations. However, the mean functions of these processes can be well

approximated, as shown in Appendix G.1 in Figure 8 for the case n = 50. In this example,

the two queues do not become OL (UL) at the same time because of the phase difference

of the external arrival rates (i.e., φ1 = 0, φ2 = −3). We also consider different phases φi in

another example in Appendix G.1.

All three algorithms were run on this example; the resulting identical performance func-

tions confirm all the algorithms. For this small FQNet example, the most important char-

acteristic is ease of implementation, for which the Alg(ODE) from §4 tends to be easiest,

while Alg(FPE,GI) from §5 is hardest. For all examples, Alg(FPE,GI) tends to have the

longest run time, as expected because it involves an FPE for each queue, as well as an FPE

for the TARs. For two-queue examples like the one just considered, the running time of

Alg(FPE,GI) tends to be twice as long as for Alg(ODE).

6.3. A Network with Many Queues

We next evaluate the performance of algorithms Alg(FPE) and Alg(ODE) as a function of

the number of queues, m. To do so, we consider a simple idealized network with m queues.

Each queue i has a time-varying arrival rate as in (6.1), exponential service and patience
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times with rate µi and θi, constant staffing level si, and constant routing probabilities Pi,j,

where

ai = 0.5, bi = iai/m, φi = π(1.5 − i/m), θi = 0.5,

ci = si = µi = 1, Pi,j = 1/2m, 1 ≤ i ≤ m, 1 ≤ j ≤ m.

Figure 13 in Appendix G.2 shows plots of the performance functions for m = 10.

m 2 4 6 8 10 12 14 16 18 20
I(m) 12 12 12 13 12 12 12 12 12 12
T (m) 2.86 4.68 6.43 8.75 11.02 11.96 13.96 15.63 17.39 19.21

m 30 40 50 60 70 80 100 120 140 160
I(m) 12 12 12 12 12 12 12 12 12 12
T (m) 29.76 37.37 48.67 58.42 68.15 73.63 96.77 115.0 134.84 147.7

Table 2: The number of iterations I(m) and computation time T (m) (seconds) as a function
of m, the number of queues, using ALG(FPE) with fixed EPT ǫ = 10−5.

m 2 4 6 8 10 12 14 16 18 20
T (m) 2.77 3.67 6.16 8.92 12.03 15.46 20.35 25.95 31.30 37.37

m 30 40 50 60 70 80 100 120 140 160
T (m) 64.72 107.05 132.65 178.7 227.64 312.61 411.09 567.15 765.55 1013.1

Table 3: The computation time T (m) (seconds) as a function of the number of queues m
using ALG(ODE).

Table 2 shows the number of iterations I(m) and computation time T (m) in seconds as

a function of the number of queues, m, 2 ≤ m ≤ 160, using algorithm Alg(FPE) with fixed

EPT ǫ = 10−5. In this example we observe that (i) the number of iterations I(m) does not

grow with the number of queues, m, and (ii) the computation time T (m) grows linearly in

m.

We also analyzed the performance of this same model using Alg(ODE). Table 3 shows

the computation times T (m) as a function of m. Since we used the ODE solvers ode23

and ode45, which are O(m) algorithms, the running time for Algorithm 3 becomes O(m2S).

Figure 2 dramatically shows the difference in the algorithm performance.

We conclude this section with some general observations comparing the performance of

the two algorithms Alg(FPE) and Alg(ODE). For small m (e.g., 2 ≤ m ≤ 8) and small ǫ
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Figure 2: Computing times of algorithms Alg(FPE) and Alg(ODE) for the m-queue FQNet
as a function of m, 2 ≤ m ≤ 160.

(e.g., ǫ < 10−5), ALG(ODE) runs faster than Alg(FPE); for big m and medium ǫ, Alg(FPE)

runs faster than Alg(ODE). Of course, the complexity of Alg(ODE) depends on the choice

of the multi-dimensional ODE solver. The polynomial growth in m as shown in Table 3

is attributed to the specific numerical scheme (such as Runge-Kutta-Fehlberg) of the ODE

solver.

6.4. A (Gt/LN/s+ E2)
2/M non-Markovian Example

We now consider an example with a non-exponential service-time distribution, for which

only the final algorithm Alg(FPE,GI) introduced in §5 applies. To illustrate this example,

we consider the (Gt/LN/s + E2)
2/M model with Lognormal service distributions at each

queue (the LN) and Erlang-2 patience distributions at each queue (the E2). Specifically,

we let the service time at station i be Si ≡ eZi , where Zi is a normal random variable with

mean µ̂i and variance σ̂2
i , i.e., Zi ∼ N(µ̂i, σ̂

2
i ), i = 1, 2. The service pdf is

gi(x) =
1

xσ̂i

√
2π

e
−

(log x−µ̂i)
2

2σ̂2
i , x ≥ 0, i = 1, 2.

For i = 1, 2, the mean service times and the variances are

µ−1
i ≡ E[Si] = eµ̂i+

1
2
σ̂2

i and σ2
i ≡ V ar(Si) = (eσ̂2

i − 1) e2µ̂i+σ̂2
i .

The LN assumption is representative because Brown et al. (2005) showed that service times

in call centers follow LN distributions.
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We let the patience distribution be Erlang-2 (E2) with pdf

fi(x) = 4θ2
i x e

−2θi x, x ≥ 0.

Letting Ai be a generic patience time of a customer at queue i, we have E[Ai] = 1/θi, i = 1, 2.

The E2 distribution has a squared coefficient of variation c2 ≡ V ar(X)/E[X]2 = 1/2. We

choose µ̂1 = −0.549, σ̂1 = 1.048, µ̂2 = 0.144, σ̂2 = 1.048 such that µ1 = 1, µ2 = 0.5, σ2
1 = 2,

σ2
2 = 8. Thus, we have c2 = 2 for the service distributions. We let θ1 = 0.5, θ2 = 0.3. In

this way both the service rates (µ1 and µ2) and the patience rates (θ1 and θ2) remain the

same as in the example in §6.2. For comparison purpose, we let the external arrival rate λ(0)

be sinusoidal as in (6.1) and the Markovian routing matrix P be constant with the same

parameters as in §6.2. We also let the system be initially empty.
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Figure 3: Computing the fluid performance functions for the (Mt/LN/st +E2)
2/Mt network

fluid model.

Figures 3 above and 14 in Appendix G.3 show plots of the standard performance functions

and compares them to simulation experiments in the two cases n = 4000 and n = 50. These
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two figures are analogs of Figures 7 and 8. As before, for n = 4000 the fluid performance

agrees with individual sample paths of the SQNet; for n = 50 the fluid performance agrees

with the mean values of the time-varying stochastic SQNet performance. In Figure 3, we

compare the fluid functions of the two-queue Markovian model (the solid lines: blue for

Queue 1 and red for Queue 2) and those of the non-Markovian (Mt/LN/s+E2)
2/M model

(the dashed lines: light blue for Queue 1 and light brown for Queue2). As indicated above,

these two models have the same model parameters, including the service and patience rates

µ and θ, except for the service and patience distributions.

In addition to showing that the new algorithm Alg(FPE,GI) is effective, Figure 3 shows

that the service and patience distributions beyond their means play an important role in the

time-dependent performance of the fluid network with time-varying model parameters. For

the stationary G/GI/s+GI fluid queue, Whitt (2006) showed that the patience distribution

beyond its mean plays an important role, while the service-time distribution does not. In

Liu and Whitt (2011a) we showed that the service-time distribution beyond its mean is also

important in the time-dependent behavior.
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ONLINE SUPPLEMENT

Algorithms for Time-Varying Networks of Many-Server Fluid

Queues

by Yunan Liu and Ward Whitt

A. Overview

A.1. The Main Paper

Following Liu and Whitt (2011a-b), in the main paper we have developed, implemented

and tested three algorithms to compute the transient performance functions in fluid queue

networks (FQNets). The first two algorithms apply to Gt/Mt/st + GIt)
m/Mt FQNets with

m queues and proportional routing. The first algorithm Alg(FPE) in §3 iteratively solves a

single fixed point equation (FPE) for the vector of total arrival rate (TAR) functions over

the entire time interval [0, T ]. Since the operator in the FPE is a contraction, the iteration

for calculating the TAR converges geometrically fast. Given the TAR at each queue, we can

apply the fluid algorithm for single queues (FASQ) with Mt service reviewed in §2 to each

queue separately.

The second algorithm Alg(ODE) in §4 finds the TAR vector in any interval for which

no queue changes its regime by solving an m-dimensional ordinary differential equation

(ODE). However, just as for the FASQ, it is necessary to control the switching from one

network regime to another. Both Alg(FPE) and Alg(ODE) have been shown to be effective.

Alg(ODE) is appealing because it is easier to implement and is faster for small networks,

but Alg(FPE) has been found to be more efficient for large networks, having run time of

order O(m) as compared to O(m2) for Alg(ODE).

The third algorithm Alg(FPE,GI) in §5 is a new algorithm to analyze FQNets with non-

exponential service at each queue. This algorithm is less efficient computationally, but is

appealing because non-exponential service times arise in many applications. Like algorithms

FASQ and Alg(ODE), Alg(FPE,GI) requires working over intervals with a fixed network

regime, so that the algorithm exploits a regime switching step size. For the individual

queues with GI service, we apply the algorithm for the single fluid queue with GI service

developed in Liu and Whitt (2011a), which is more complicated than the FASQ in §2 because
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it involves another FPE to calculate the flow rate into service. Fortunately, the operators in

both these FPE’s are contractions, so that iterations converge geometrically fast.

In §6 we described results of implementing and testing these algorithms for FQNets. The

examples showed that all algorithms are effective and can provide useful approximations for

corresponding stochastic queueing networks (SQNets) of many-server queues, experiencing

periods of overloading.

A.2. The Contents of this Supplement

This is a supplement to the main paper, with material expanding on the paper presented in

the order of the sections in the main paper. At the outset in §1, we assumed that our staffing

functions are feasible, never forcing fluid out of service. We start in §B by discussing how to

detect the first violation of feasibility in the FQNets, if any, and how to find the minimum

feasible staffing function greater than or equal to an initial one if that one is infeasible. Next

in §C we present additional material on the algorithm for single fluid queues in §2. We give

a formal statement of the algorithm and we examine the running time as a function of the

interval length, T , the number of switches, S, and the switching step size, ∆T .

We give formal statements of the FPE-based and ODE-based algorithms for FQNets in

§§D and E. We give explicit formulas for the arrival rates using the ODE-based algorithm

for the case m = 2 in §E.1. Finally, we provide more results for the examples in §G. In

§G.1.2 we give an example with a time-varying staffing function, illustrating that it can be

effectively treated as well.

B. Detecting Staffing Function Feasibility

We now discuss how to detect the first violation of feasibility of a staffing function and how

to find the minimum feasible staffing function greater than or equal to the original staffing

function if that one is infeasible.

In general, there is no guarantee that a staffing function s is feasible, i.e., having the

property that the staffing function is set exogenously and adhered to, without forcing any

fluid that has entered service to leave without completing service, because we allow s to

decrease. (The fluid is assumed to be incompressible.) At any time t > 0 and i ∈ O(t), we

require

bi(t, 0) = s′i(t) + σi(t) ≥ 0. (B.1)
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We note that the above criterion becomes s′i(t)+µi(t) si(t) ≥ 0 for all i ∈ O(t) for Mt service.

Hence, we immediately have a sufficient condition for Mt service:

s′i(t) + µi si ≥ 0, for all 1 ≤ i ≤ m.

However, since we allow si to decrease, the feasibility condition in (B.1) might be violated

in general when the given staffing functions decrease too quickly, i.e., when −s′i > 0 is too

large. The detection of infeasibility and construction of feasible staffing for a single fluid

queue has already been discussed in §9 of Liu and Whitt (2011a). Also see Appendix G.2

there for an example. We next explain how to generalize our approach to the algorithms for

the FQNets.

The idea is in the same spirit as in Liu and Whitt (2011a). Suppose in the kth iteration,

the algorithm considers the time interval Ik ≡ [t∗, t∗ + ∆T ]. If there exists a time t′ ∈ Ik

such that the condition in (B.1) is violated for some i ∈ O(t′), then we set bi(t, 0) = 0

(shut the flow from the queue into the service facility) starting from time t′. Of course, the

resulting staffing function s∗i (t) = B(t) will be strictly greater than si(t). We continue with

this strategy until our revised staffing function s∗i coincides with the original si (if ever before

T ). See §9 and Appendix G.2 of Liu and Whitt (2011a) for more discussion.

For the FPE algorithm, we follow this strategy in each FPE iteration when we call FASQ

with a temporary TAR λ(k), k ≥ 1. For the ODE and FPE-GI algorithms, in each iteration

interval Ij , we check the feasibility condition (B.1) for every i ∈ O(t), i ∈ Ij , and construct

revised staffing functions if needed.

C. More on the Single-Queue Algorithm

We first give a formal statement of the single fluid-queue algorithm (FASQ) from Liu

and Whitt (2011a-b) that was reviewed in §2.4. For each new regime switch time t, we use

k to set up all computations needed from time t until the end of the interval at time T , but

restart by selecting a new larger starting time whenever a regime switch is detected.

C.1. Sensitivity to the Switching Step Size

We now see how the FASQ run time depends on the switching step size ∆T . For that

purpose, consider an Mt/M/st + M queue over the time interval [0, T ] for T = 20 with a

sinusoidal arrival rate λ(t) = a+b sin(c·t), exponential service and abandonment distributions
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Algorithm 1 : A Fluid Algorithm for Single Queues (FASQ) for the Gt/Mt/st + GIt fluid

model, with model data D ≡
(

λ, s, G, F, P̂(0)
)

and switching step size ∆T

1: Initialization: Set R(0) and let t := 0
2: repeat
3: for k = 0, 1, . . . , ⌈(T − t)/∆T ⌉ do
4: Given R(t) = UL, compute (b, B) in interval [t+ (k− 1)∆T, t+ k∆T ] using (2.23);
5: Given R(t) = OL, compute P in interval [t+(k−1)∆T, t+k∆T ] using (2.24)-(2.27),

(2.5)-(2.7);
6: if TR(t) < t+ k∆T , then
7: t := TR(t)
8: R := {OL,UL}\R
9: BREAK for-loop

10: end if
11: end for
12: until t ≥ T .

G(x) = 1 − e−µ x and F (x) = 1 − e−θ x, constant staffing s(t) = s, with a = c = µ = s = 1,

b = 0.6 and θ = 0.5. We manually made the system switches for about 100 times between

UL and OL intervals (i.e., S = O(100)) by setting c = 30 so that the arrival-rate period is

τ = 2π/c = 0.21. The total number of periods in [0, 20] is N(τ) = 20/τ1 = 95.2.

In Table 4, we provide the computation times T (∆T ) as a function of ∆T for 0.02 ≤
∆T ≤ T = 20.

∆T 20 10 6.67 5 4 2 1.33 1
T (∆T ) 15.36 12.89 10.25 7.99 6.62 3.57 3.54 1.93

∆T 0.67 0.5 0.33 0.25 0.2 0.1 0.04 0.02
T (∆T ) 1.93 1.93 1.93 1.93 1.93 1.93 1.94 1.94

Table 4: The computation time T (∆T ) (seconds) as a function of ∆T in the interval [0, T ],
T = 20.

We observe that T (∆T ) is almost insensitive to the choices of ∆T as long as ∆T is

not too big. First, clearly it is not efficient to have a big ∆T when S is large. Suppose

the current interval is [t, t + ∆T ]. If the system changes regime right after t, say at t + h,

then all computation for the performance functions in [t + h, t + T ] is wasted and has to

be redone later (possibly many times). Second, if ∆T is small, the computation obviously

becomes efficient for large S. Third, if we choose a small ∆T when S is small, for instance,

the system stays OL (or UL) for the entirely interval [0, T ], the algorithm could experience

34



a large number of iterations N(∆T ) ≡ T/∆T before reaching time T . However, since

the computation complexity in each iteration is linear in ∆T , the total complexity will be

(T/∆) · O(∆T ) = O(T ), which is independent with ∆T . Hence, consistent with Table 4,

we conclude that it should always be good to have a small ∆T regardless of the number of

regime changes S.

C.2. Sensitivity to S and T

We now see how the FASQ run time depends on the number of switches, S, and the length

of the time interval T . We consider the dependence upon S for fixed T and the dependence

upon T for fixed S. To do so, we use the same example considered in §C.1.

Table 5 gives the computation times T (S) for 1 ≤ S ≤ 96 in the interval [0, T ] with

T = 20 by varying c. Here ∆T = 0.5.

S 1 2 4 7 13 20
T (S) 0.98 0.75 0.76 1.13 1.76 2.50

S 26 32 48 64 80 96
T (S) 3.25 4.09 6.32 8.91 11.51 15.32

Table 5: The computation time T (S) (seconds) as a function of S, the number of regimes
switches (between UL and OL) using FASQ in the interval [0, T ], T = 20.

Next, Tables 6 and 7 give the computation times T (T ) for 1 ≤ T ≤ 300 in two cases:

(i) with c = 10π/T and (ii) with c = 1. We choose ∆T = T/150. In case (i), we fixed

the number of switches S ≈ 5 by decreasing c; in case (ii), the number of switches S grows

linearly with T since c is a constant.

S 5 10 15 20 25 30 40 50
T (T ) 0.267 0.32 0.71 0.97 1.25 1.53 2.12 2.72

S 60 80 100 120 150 200 250 300
T (T ) 3.33 4.56 5.78 6.99 8.82 11.85 14.89 17.85

Table 6: The FASQ computation time T (T ) (seconds) as a function of the length of time
interval, T , for fixed total number of switches.

We plot T (S) as a function of S for fixed T in Figure 4(a) and T (T ) as a function of

T for fixed S in Figure 4(b) for case (i) and in Figure 5 for case (ii). Figure 4 shows
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Figure 4: Computation times of FASQ in case (i) where S is independent of T , as functions
of (a) the number of switches S for fixed T and (b) the length of time interval T for fixed S.

that the computation time is linear in S (when T is fixed) and linear in T (when S is

fixed). Figure 5 shows that the computation time is quadratic in T when S = O(T ), because

T (S T ) = O(S T ) = O(T 2). These experiment support our observations in §2.4.

S 5 10 15 20 25 30 40 50
T (T ) 0.26 0.30 0.48 0.76 1.10 1.50 2.42 3.61

S 60 80 100 120 150 200 250 300
T (T ) 4.98 8.40 12.71 17.94 27.34 47.54 73.33 104.31

Table 7: The computation time T (T ) (seconds) as a function of the length of time interval,
T , when S, the number of switches, is proportional to T .
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Figure 5: Computation times of FASQ in case (ii) where S is proportional to T , as functions
of (a) T , the length of time interval, and (b) T 2.
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D. The FPE-Based Algorithm

We now give a formal statement of the FPE-based algorithm in §3.

Algorithm 2 : An FPE based algorithm for the (Gt/Mt/st +GIt)
m/Mt Fluid Network

1: Initialization: λ(1) := λ(0), 0 ≤ i ≤ m,
2: for k = 1, 2, . . . do
3: for i = 1, 2, . . . , m do

4: Compute σi in [0, T ] using FASQ (Algorithm 1) with data
(

λ
(k)
i , si, Gi, Fi, P̂i(0)

)

and switching step size ∆T
5: end for
6: Let λ(k+1) := λ(0) + P T · σ in [0, T ]
7: if ‖λ(k+1) − λ(k)‖T < ǫ then
8: λ := λ(k+1)

9: Break
10: end if
11: end for
12: Compute Pi for 1 ≤ i ≤ m using FASQ (Algorithm 1) with data

(

λi, si, Gi, Fi, P̂i(0)
)

and switching step size∆T .

E. The ODE-Based Algorithm

The ODE-based algorithm in §4 obtains the TAR vector over any interval over which there

are no regime switches at any queue by solving an ODE. Thus, a key step is identifying

successive intervals during which all queues remain in the same regime. Paralleling the

FASQ, that is done with a network switching step size ∆T .

We now summarize the algorithm. It requires that we specify the desired time interval

[0, T ], the vector of model data defined in (3.5), and a positive network switching step size

∆T (which should typically be shorter than for a single queue).

E.1. Explicit Formulas with the ODE-Based Approach for m = 2

The ODE-based approach in §4 yields analytic solutions when m = 2. Consider the following

four system regimes:

(i) When Queue 1 is OL and Queue 2 is UL (i.e., B1(t) = s1(t), Q1(t) ≥ 0, B2(t) < s2(t)),

B1(t) = s1(t),

B′
2(t) = λ

(0)
2 (t) + P1,2(t)µ1(t)s1(t) + (P2,2(t) − 1)µ2(t)B2(t),
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Algorithm 3 : An ODE based algorithm for the (Gt/Mt/st +GIt)
m/Mt Fluid Network

1: Initialization: t := 0
2: repeat
3: for k = 0, 1, . . . , ⌈(T − t)/∆T ⌉ do
4: Compute λ(s) and B(s) for s ∈ [t+ (k − 1)∆T, t+ k∆T ], using (4.1)-(4.2)
5: Compute P(s) for s ∈ [t+ (k − 1)∆T, t+ k∆T ] using (2.23)-(2.27), (2.5)-(2.7)
6: if TR(t) < t+ k∆T for TR(t) in (4.3) then
7: t := TR(t)
8: Update U(t) and O(t) by (??)-(??)
9: BREAK for-loop

10: end if
11: end for
12: until t ≥ T

which has a unique solution

B2(t) = e
∫ t

0
(P2,2(u)−1)µ2(u)du

[
∫ t

0

e
∫ u

0
(P2,2(v)−1)µ2(v)dv

(

λ
(0)
2 (u) + P1,2(u)µ1(u)s1(u)

)

du+B2(0)

]

.

(ii) When Queue 1 is UL and Queue 2 is OL (i.e., B1(t) < s1(t), B2(t) = s2(t), Q2(t) ≥ 0),

B′
1(t) = λ

(0)
1 (t) + (P1,1(t) − 1)µ1(t)B1(t) + P2,1(t)µ2(t)s2(t),

B2(t) = s2(t).

which has a unique solution

B1(t) = e
∫ t

0
(P1,1(u)−1)µ1(u)du

[
∫ t

0

e
∫ u

0
(P2,1(v)−1)µ1(v)dv

(

λ
(0)
1 (u) + P2,1(u)µ2(u)s2(u)

)

du+B1(0)

]

.

(iii) When both queues are OL,

B1(t) = s1(t), B2(t) = s2(t).

(iv) When both queues are UL,

B′
1(t) = λ

(0)
1 (t) + (P1,1(t) − 1)µ1(t)B1(t) + P2,1(t)µ2(t)B2(t),

B′
2(t) = λ

(0)
2 (t) + P1,2(t)µ1(t)B1(t) + (P2,2(t) − 1)µ2(t)B2(t),

or

B′(t) = λ(0)(t) + C(t) · B(t), (E.1)

where

C(t) ≡
(

PT (t) − I
)

Γ(t) and Γ(t) ≡
[

µ1(t) 0
0 µ2(t)

]

.
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After B(t) is obtained, the aggregated arrival rate

λ1(t) = λ
(0)
1 (t) + P1,1(t)µ1(t)B1(t) + P2,1(t)µ2(t)B2(t),

λ2(t) = λ
(0)
2 (t) + P1,2(t)µ1(t)B1(t) + P2,2(t)µ2(t)B2(t).

F. The FPE Algorithm for GI Service

We now present more about the algorithm for GI service distributions. Given a desired

duration T of an interval [0, T ], the vector of the model data defined as (3.5), a step size

0 < ∆T ≤ T , and an error tolerance parameter (ETP) ǫ > 0, we summarize the algorithm

formally as the following.

Algorithm 4 : An FPE based algorithm for the (Gt/GI/st +GIt)
m/Mt Fluid Network

1: Initialization: t := 0
2: repeat
3: for k = 0, 1, . . . , ⌈(T − t)/∆T ⌉ do
4: for all i ∈ O(t) do
5: - Compute bi(s, 0) solving FPE (5.3) with ETP ǫ, s ∈ [t+ (k − 1)∆T, t+ k∆T ]
6: - Let σi(s) := bi(s, 0) − s′i(s)
7: end for
8: Compute λ(s) using FPE (5.5) with ETP ǫ, s ∈ [t+ (k − 1)∆T, t+ k∆T ]
9: Compute P(s) for s ∈ [t + (k − 1)∆T, t + k∆T ] using (2.23)-(2.27), (2.5)-(2.7) or

the algorithm from Liu and Whitt (2011a) if the service is GI
10: if TR(t) < t+ k∆T for TR(t) in (4.3) then
11: t := TR
12: Update U(t) and O(t) by (??)-(??)
13: BREAK for-loop
14: end if
15: end for
16: until t ≥ T

G. More for the Examples

G.1. More on the Two-Queue FQNet

We demonstrate how the FPE-based algorithm works. Since it is key to obtain the total

arrival rates λ1(t) and λ2(t) for 0 ≤ t ≤ T , we first demonstrate how fast the fixed-point

algorithm converges. We initially let λ
(1)
i be λ

(0)
i , i = 1, 2. In Figure 6, we plot the total

arrival rates in every iteration. The two functions at the bottom are λ
(0)
1 (t) and λ

(0)
2 (t); the
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functions at the top are the λ1(t) and λ2(t), computed using the ODE based algorithm; the

other functions are the intermediate values computed using the FPE based algorithm. The

monotone convergence and geometric rate of convergence are evident from Figure 6.
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Figure 6: The convergence to the fixed point of the total arrival rate vector: the increasing
computed values at each queue in successive iterations.

In Figure 7, we plot all standard performance measures of the fluid network using the

FPE based algorithm, including λi, Qi, wi, Bi, Xi, and bi(·, 0), i = 1, 2.

Figure 8 illustrate how these approximations perform for the same example with n = 50.

Now the solid lines are simulation estimates of the mean of these scaled stochastic processes,

obtained by averaging multiple independent sample paths. For this small value of n, the

stochastic variability cannot be simply ignored. But the means can be well approximated

by the fluid functions. Figure 1 and 8 show that the fluid approximation is effective in

describing the performance of the stochastic system.

G.1.1. Different Phases

Complementing the two-queue example in §6.2, we now consider the same model with dif-

ferent phases in the sinusoidal arrival-rate functions. In particular, let φ1 = 0 and φ2 = 1

and let all other model parameters remain the same. As the analogs of Figure 7 and 8 (with

φ2 = −3), we plot the fluid function and perform simulation comparison in Figure 9 and 10

with φ2 = 1. In this case the two queues become OL and UL almost at the same time.
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Figure 7: Computing the fluid performance functions for the (Mt/M/st +M)2/Mt network
fluid model.

G.1.2. Time-Varying Staffing

The two-queue example in §6.2 had constant staffing functions. To show that the algorithms

can also handle the important feature of time-varying staffing, we now consider sinusoidal

staffing, using the staffing functions

si(t) = αi + βi · sin(γi t+ ψi), i = 1, 2, (G.1)

with α1 = 1, α2 = 2, β1 = 0.6α1, β2 = 0.5α2, γ1 = 1, γ2 = 0.5, ψ1 = 3, ψ2 = 0. While other

model parameters remain the same. With these particular choices on the model parameters,

it is not hard to see that for i = 1, 2,

s′i(t) + µi si(t) = βiγi cos(γi t+ ψi) + µi (αi + βi sin(γi t+ ψi)) ≥ 0,

or equivalently,

sin

(

γi t+ ψi + arctan

(

γi

µi

))

≥ − µiαi
√

µ2
i + γ2

i

, for all t ≥ 0,
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Figure 8: A comparison of performance functions in the (Mt/M/st + M)2/Mt FQNet with
simulation estimates of time-varying mean values, obtained by averaging n = 50 independent
sample paths from the corresponding QNet.

which guarantees the feasibility for both staffing functions s1 and s2. See the Appendix I.2.1

of Liu and Whitt (2011a) for more discussion.

As the analogs of Figure 9, we plot the fluid function in Figure 11.
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Figure 9: Computing the fluid performance functions for the (Mt/M/st +M)2/Mt network
fluid model.
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Figure 10: A comparison of the (Mt/M/st +M)2/Mt network fluid model with a simulation
run averaging 50 independent sample paths, n = 100.
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Figure 11: Computing the fluid performance functions for the (Mt/M/st +M)2/Mt network
fluid model with sinusoidal staffing functions.
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G.2. More on the Many-Queue Example

We now provide more material related to the many-queue example in §6.3.

Complementing the example in §6.3, we let m = 10, φi = 0, i = 1, . . . , 10. We repeat the

experiment and plot the fluid functions for all 10 queues in Figure 12 (which is an analog of

Figure 13). Figure 13 shows plots of the performance functions for m = 10. The red dashed

lines are λi, i.e., the total arrival rates which are the solutions to the FPE; the blue solid

lines are λ
(0)
i , i.e., the external arrival rates.
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Figure 12: Computing the fluid performance functions for the (Mt/M/st +M)10/Mt network
fluid model.
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Figure 13: Computing the fluid performance functions for the (Mt/M/st +M)10/Mt network
fluid model (φi = π(1.5 − i/m)).

G.3. More on the GI Service Example

Figure 14 compares the results of Alg(FPE,GI) applied to the (Mt/LN/s+E2)
2/M FQNet

with simulation estimates of mean values for the corresponding stochastic processes in the

corresponding SQNet with n = 50, obtained by averaging the sample paths from 200 inde-

pendent replications.
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Figure 14: A comparison of the (Mt/LN/st+E2)
2/Mt network fluid model with a simulation

run averaging 50 independent sample paths, n = 100.
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