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To describe the congestion in large-scale service systems, we introduce and analyze a non-Markovian open

network of many-server fluid queues with customer abandonment, proportional routing and time-varying

model elements. A proportion of the fluid completing service at each queue is routed immediately to each

other queue, while the fluid not routed to other queues leaves the network. The fluid queue network serves as

an approximation for the corresponding non-Markovian open network of many-server queues with Markovian

routing, where all model elements may be time varying. We establish the existence of a unique vector of (net)

arrival rate functions at each queue and the associated time-varying performance. In doing so, we provide

the basis for an efficient algorithm, even for networks with many queues.

Key words : queues with time-varying arrivals; queueing networks; many-server queues; deterministic fluid

model; customer abandonment; non-Markovian queues.

History : Submitted on February 7, 2010, Revision submitted on July 28, 2010.

1. Introduction

We introduce a new mathematical model, intended to help analyze (and thus manage) the con-

gestion in large-scale service systems, such as in healthcare, judicial and penal systems, and both

front-office and back-office operations in business systems; e.g., see Aksin et al. (2007), Yom-Tov

and Mandelbaum (2010) and references therein for discussion of possible applications to customer

contact centers and healthcare. The model also should have other applications, because the model

is both general and tractable.

The main feature of the model is time-varying arrival rates, which commonly occur in applications

but which make performance analysis difficult; see Green et al. (2007) for background. The specific

model is an open network of time-varying many-server fluid queues with proportional routing.

There are m queues, each with its own external fluid input. In addition a proportion Pi,j(t) of the
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Figure 1 The open (Gt/Mt/st +GIt)
2/Mt fluid network.

fluid output from queue i at time t is routed immediately to queue j, and a proportion Pi,0(t) ≡

1−∑m

j=1 Pi,j(t)≤ 1 is routed out of the network (departs having successfully completed all required

service). This framework permits feedback, both directly and indirectly after one or more transitions

to other queues, as shown in Figure 1 for the case m = 2. Following Massey and Whitt (1993),

we denote the model by (Gt/Mt/st +GIt)
m/Mt, where the subscript t indicates time varying. The

fluid model is intended to serve as an approximation for the corresponding many-server queueing

system, having m queues, each with a general time-varying arrival process (the Gt), time-varying

Markovian service (the first Mt), a time-varying (large) number of servers (the st) and a general

time-varying abandonment-time distribution (the +GIt).

Strong support for the fluid approximation for the stochastic queueing system can be based on

many-server heavy-traffic limits, as in Garnett et al. (2002), Mandelbaum et al. (1998), Pang et

al. (2007), Pang and Whitt (2010), but we do not establish such limits here. The fluid content

is intended to approximate the mean value of the corresponding stochastic process in the many-

server queueing system. For very large-scale service systems (with many servers at each queue and

high arrival rates), the stochastic fluctuations about the mean values tend to be relatively small
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(essentially because of the law of large numbers), so that the deterministic fluid values serve as

good direct approximations for the stochastic queueing quantities. The quality of approximations

can be verified by simulation, as we illustrate here in §EC.6. We also propose a simple heuristic

stochastic refinement to estimate the full distribution at each time, beyond the mean values, in §8.

Since the model is tractable, we are providing the basis for creating a performance-analysis tool

for large-scale service systems (allowing many queues and many servers at each queue) like the

Queueing Network Analyzer (QNA), described in Whitt (1983); also see Buzacott and Shanthiku-

mar (1992). Algorithms based on performance formulas are appealing to supplement and comple-

ment computer simulation, because the models can be created and solved much more quickly. Thus

they can be applied quickly in “what if” studies. They also can be efficiently embedded in optimiza-

tion algorithms to systematically determine design and control parameters to meet performance

objectives.

New methods are required because these large-scale service systems tend to be characterized by

many-server queues, where a large number of homogeneous servers work in parallel. For a many-

server fluid queue with time-varying Markovian service rate µ(t), when the system content is X(t)

and the staffing is s(t), the total service completion rate at time t is min{X(t), s(t)}µ(t). Unlike

in single-server systems, when the many-server system is not overloaded, the service completion

rate is not equal to the input rate, but is instead proportional to the system content, cf. Chen and

Mandelbaum (1991).

When staffing is adequate in many-server systems, waiting times tend to be much shorter than

service times. With few servers, congestion can be caused by only a few customers occasionally

having exceptionally long service times. In contrast, congestion in many-server systems tends to be

caused more by the cumulative impact of many customers and/or many servers. That cumulative

impact often tends to be realized through a time-varying arrival rate and a time-varying staffing

function.

When staffing is adequate and service times are short, as in many customer contact centers, it
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is often possible to apply stationary models to analyze many-server queueing models with time-

varying arrival rates, using some variant of the pointwise-stationary approximation, but when

staffing is occasionally inadequate or service times are longer, then other methods may be needed;

see Green et al. (2007) for a review. To determine appropriate staffing levels and analyze per-

formance in a many-server system with time-varying arrivals, we can often employ infinite-server

models, as in Massey and Whitt (1993), Nelson and Taaffe (2004), Feldman et al. (2008) and refer-

ences therein. However, the effectiveness of infinite-server models depends largely on the assumption

that ultimately the system will be adequately staffed.

Many large-scale service systems inevitably experience periods of significant overloading, in which

queues build up and customers experience significant delays. Indeed, with significant time variation

of arrivals, periods of overloading often occur when it is difficult to dynamically adjust the staffing,

and it is not cost-effective to staff at high levels at all times. We directly address this feature by

considering systems that experience alternating intervals of overload and underload. The proposed

fluid models are in the spirit of early work by Newell (1982), but different in detail.

This paper extends our earlier work. First, in Whitt (2006) we described the steady-state fluid

content in a stationary G/GI/s+GI fluid model. Second, in Liu and Whitt (2010) we developed an

algorithm for describing the time-dependent behavior of the time-varying Gt/GI/st + GI model,

including the first full description of the transient behavior of the stationary G/GI/s + GI fluid

model. We make several important contributions here: First, for the case of exponential service

times we extend the model from a single fluid queue to a network of fluid queues. Second, we

treat time-varying service and abandonment. By focusing on Mt service instead of GI service, we

are able to establish the existence of a unique (computable) performance description for both one

fluid queue and the network generalization without directly assuming that there are only finitely

many switches between overloaded and underloaded intervals in any finite time interval. These

results are based on monotonicity and Lipschitz continuity properties of the fluid queue model in

§5, which are important in their own right. Finally, we characterize the steady state performance

of the stationary network of fluid queues.
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This paper is organized as follows: In §2 we introduce the Gt/Mt/st +GIt model of a single fluid

queue. In §3 we show how the overloaded and underloaded times occur in alternating intervals

of positive length, under regularity conditions, and we introduce a specific piecewise-polynomial

framework for assuring that there are only finitely many switches in each finite time interval. In §4

we present the performance formulas for one queue. In §5 we extend the results to general piecewise-

continuous arrival rate functions, thus providing an essential step for extending the analysis to

networks. In §6 we define the network generalization and establish the existence of a unique vector of

arrival rate functions at each queue and thus the performance in the network. In §7 we characterize

the steady-state performance in the stationary (G/GI/s+GI)m/M fluid queue network. In §8 we

propose a heuristic stochastic refinement. Finally, in §9 we draw conclusions. In the e-companion

we provide (i) some proofs, (ii) some remarks, and (iii) an illustrative comparison with simulation

of a large-scale queueing system.

2. The Gt/Mt/st +GIt Fluid Queue

Fluid is a deterministic divisible quantity, which enters the system from outside. The total fluid

input over an interval [0, t] is Λ(t), where Λ is an absolutely continuous function with Λ(t) ≡
∫ t

0
λ(y)dy, t ≥ 0. Fluid input flows directly into the service facility if the system is underloaded;

otherwise it flows into the queue.

By Mt service, we mean that service is provided at the service facility at time-varying rate µ(t)

per quantum of fluid in the service facility; i.e., if the total fluid content in service at time t is B(t),

then the total service completion rate at time t is

σ(t)≡B(t)µ(t), t≥ 0. (1)

Let S(t) be the total amount of fluid to complete service in the interval [0, t]; then S(t)≡
∫ t

0
σ(y)dy.

Fluid waiting in queue may abandon. Specifically, we assume that a proportion Ft(x) of any fluid

to enter the queue at time t will abandon by time t+ x if it has not yet entered service, where Ft

is an absolutely continuous cumulative distribution function (cdf) for each t, −∞< t < +∞, with

Ft(x) =

∫ x

0

ft(y)dy, x≥ 0, and F̄t(x)≡ 1−Ft(x), x≥ 0. (2)
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Let hFt
(y)≡ ft(y)/F̄t(y) be the hazard rate associated with the patience (abandonment) cdf Ft.

Let the staffing function (service capacity) s be an absolutely continuous function with s(t) ≡
∫ t

0
s′(y)dy, t ≥ 0. Since s is allowed to decrease, there is no guarantee that a staffing function

s is feasible; i.e., having the property that no fluid that has entered service must leave without

completing service. We directly assume that the staffing function we consider is feasible, but we

also indicate how to detect the first violation and then construct the minimum feasible staffing

function greater than or equal to the given staffing function; see Theorem 6.

Assumption 1. (feasible staffing) The staffing function s is feasible, allowing all fluid that enters

service to stay in service until service is completed; i.e., when s decreases, it never forces content

out of service.

System performance will be described by a pair of two-parameter deterministic functions (B̂, Q̂),

where B̂(t, y) is the total quantity of fluid in service at time t that has been so for time at most y,

while Q̂(t, y) is the total quantity of fluid in service at time t that has been so for time at most y,

for t≥ 0 and y ≥ 0. These functions will be absolutely continuous in the second parameter, so that

B̂(t, y)≡
∫ y

0

b(t, x)dx and Q̂(t, y)≡
∫ y

0

q(t, x)dx, (3)

for t ≥ 0 and y ≥ 0. We will be characterizing performance primarily through the pair of two-

parameter fluid content densities (b, q). Let B(t) ≡ B̂(t,∞) and Q(t) ≡ Q̂(t,∞) be the total fluid

content in service and in queue, respectively. Since service is assumed to be Mt, the performance

will primarily depend on b via B. (We will not directly discuss B̂.)

The system has unlimited waiting room and the FCFS service discipline. Whenever Q(t) > 0,

we require that there be no free capacity in service, i.e., B(t) = s(t). Also, whenever B(t) < s(t),

then the queue must be empty. These constraints are summarized in

Assumption 2. (fluid dynamics constraints, FDC’s) For all t ≥ 0, (B(t) − s(t))Q(t) = 0 and

B(t)≤ s(t).
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Let A(t) be the total amount of fluid to abandon in the interval [0, t]; then A(t) ≡
∫ t

0
α(y)dy,

t≥ 0, where α(t) is the abandonment rate at time t. Since q(t, x) is the density of fluid in queue at

time t that arrived at time t−x, the abandonment rate at time t is

α(t)≡
∫ ∞

0

q(t, y)hFt−y
(y)dy, t≥ 0, (4)

where hFt
(y) is the hazard rate associated with the patience cdf Ft. (Recall that Ft is defined for

t extending into the past.) Hence,

A(t) =

∫ t

0

(
∫ ∞

0

q(u, y)hFu−y
(y)dy,

)

du, t≥ 0. (5)

Let E(t) be the amount of fluid to enter service in [0, t]. We have E(t)≡
∫ t

0
γ(u)du, t≥ 0, where

γ(t) ≡ b(t,0) is the rate fluid enters service at time t. The rate fluid enters service depends on

whether the system is underloaded or overloaded. If the system is underloaded, then the external

input directly enters service; if the system is overloaded, then the fluid to enter service is determined

by the rate, η(t), that service capacity becomes available at time t. Service capacity becomes

available due to service completion and any change in the staffing function. Hence the rate service

becomes available is

η(t)≡ s′(t) +σ(t) = s′(t) +B(t)µ(t), t≥ 0, (6)

so that η(t) = s′(t) + s(t)µ(t) if the system is overloaded at time t.

We will also be interested in waiting time functions. Let the boundary waiting time (BWT) w(t)

be the delay experienced by the quantum of fluid at the head of the queue at time t and let the

potential waiting time (PWT) v(t) be the virtual delay of a quantum of fluid arriving at time t

under the assumption that the quantum has infinite patience. Informally,

w(t)≡ inf {x > 0 : q(t, y) = 0 for all y > x}. (7)

A proper definition of q, w and v is somewhat complicated, but that has already been done in §5.2

and §5.3 in Liu and Whitt (2010), to which we refer.
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We need to specify the initial conditions. That is done via the initial fluid densities b(0, x) and

q(0, x), x ≥ 0; then B̂(0, y) and Q̂(0, y) are defined via (3), while B(0) ≡ B̂(0,∞) and Q(0) ≡

Q̂(0,∞), as defined before. Let w(0) be defined in terms of q(0, ·) as in (7).

Assumption 3. (finite initial values) B(0) <∞, Q(0) <∞ and w(0) <∞.

In summary, the basic model data are in the six-tuple (λ, s,µ,F·, b(0, ·), q(0, ·)).

Since the service discipline is FCFS, fluid leaves the queue to enter service from the right bound-

ary of q(t, x). Since the service is Mt, the proportion of fluid in service at time t that will still be

in service at time t+x is

Ḡt(x) = e−M(t,t+x) where M(t, t+x)≡
∫ t+x

t

µ(y)dy, t≥ 0 and x≥ 0. (8)

Note that Gt coincides with the time-varying service-time cdf of a quantum of fluid that enters

service at time t. The cdf Gt has density gt(x) = µ(t+x)Ḡt(x) and hazard rate hGt
(x) = µ(t+ x),

x≥ 0.

Based on the way the queueing system operates, we assume that q and b satisfy the following

two fundamental evolution equations.

Assumption 4. (fundamental evolution equations) For t≥ 0, x≥ 0 and u≥ 0,

q(t+u,x+u) = q(t, x)
F̄t−x(x+u)

F̄t−x(x)
, 0≤ x < w(t), (9)

b(t+u,x+u) = b(t, x)
Ḡt−x(x+u)

Ḡt−x(x)
= b(t, x)e−M(t,t+u), (10)

where M is defined in (8).

We now turn to the regularity conditions we impose on the model data. We develop a “smooth”

model. For that purpose, let Cp be the space of piecewise continuous real-valued functions of a real

variable, by which we mean that there are only finitely many discontinuities in each finite interval,

and that left and right limits exist at each discontinuity point, where the whole function is right

continuous. Hence, Cp ⊂ D, where D is the usual function space of right continuous functions with

left limits; see Whitt (2002).
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Assumption 5. (smoothness) s′, λ, ft, f·(x), µ, b(0, ·), q(0, ·) in Cp for each x and t.

As a consequence, s,Λ, Ft,B(0, ·),Q(0, ·) are differentiable functions with derivatives in Cp for each

t; we say that they are elements of C1
p.

In order to treat the BWT w, we need to impose a regularity condition on the arrival rate

function and the initial queue density (when the initial queue content is positive, which never

occurs after an underloaded interval). We make the following assumption.

Assumption 6. (positive arrival rate and initial queue density) For all t≥ 0,

λinf(t)≡ inf
0≤u≤t

{λ(u)}> 0 and qinf(0)≡ inf
0≤u≤w(0)

{q(0, u)}> 0 if w(0) > 0.

In order to be sure that the PWT function v is finite, we make two more assumptions.

Assumption 7. (minimum staffing level) There exists sL such that s(t)≥ sL > 0 for all t≥ 0.

Assumption 8. (minimum service rate) There exists µL such that µ(t)≥ µL > 0 for all t≥ 0.

Finally to treat A with the time-varying abandonment cdf Ft, we first introduce bounds for the

time-varying pdf ft and complementary cdf F̄t. Let

f ↑ ≡ sup{ft(x) : x≥ 0, −∞< t≤ T} and F̄ ↓(x)≡ inf {F̄t(x) :−∞≤ t≤ T}. (11)

Assumption 9. (controlling the time-varying abandonment distribution) f ↑ < ∞ and F̄ ↓(x) > 0

for all x > 0, where f ↑ and F̄ ↓(x) is defined in (11).

In summary, here we have made Assumptions 3.1-3.6 and 5.4-5.7 of Liu and Whitt (2010)

(with minor modifications because of Mt service and GIt abandonment instead of both being GI).

Assumption 3 above combines Assumptions 3.4 and 5.4 there. We show how to relax Assumption

3.7 there in the next section. We no longer need Assumptions 5.1-5.3 because we do not need to

solve the fixed point equation for b in Theorem 5.1 of Liu and Whitt (2010). Assumption 9 here is

new, because of the time-varying abandonment.
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3. Underloaded and Overloaded Intervals

In Assumption 3.7 of Liu and Whitt (2010), we directly assumed that the system alternates between

underloaded intervals and overloaded intervals, with there being only finitely many switches in any

finite interval. In this paper, we provide conditions under which that assumption can be guaranteed

to hold, and then show how to treat the more general case as a limit of such systems. This extension

is important to rigorously treat fluid queue networks. This extension is facilitated by having Mt

service.

We initially classify the system state as overloaded or underloaded at time t as follows. Recall

that the rate service capacity becomes available at time t is η(t)≡ s′(t) +σ(t), as in (6) above.

Definition 1. The system is overloaded if either (i) Q(t) > 0 or

(ii) Q(t) = 0, B(t) = s(t) and λ(t) > η(t) = s′(t) + s(t)µ(t);

the system is underloaded if either (i) B(t) < s(t) or

(ii) B(t) = s(t), Q(t) = 0 and λ(t)≤ η(t) = s′(t) + s(t)µ(t).

At every time t, the system is thus either overloaded or underloaded.

We now define the set of switch times. For that purpose, let O(A) (U(A)) be the set of overloaded

(underloaded) times t in the subset A of a designated interval [0, T ]. From Definition 1, U(A) =

A−O(A) for each subset A (the complement relative to A).

Definition 2. The subset S be of switch times in [0, T ] is the subset of t for which

U(((t− ǫ)∨ 0, (t+ ǫ)∧T )) 6= ∅ and O(((t− ǫ)∨ 0, (t+ ǫ)∧T )) 6= ∅ for all ǫ > 0. (12)

To neatly classify the switching times, we further classify some of the underloaded times.

Definition 3. An underloaded time t is isolated if (i) either [0, t) or (a, t) is an overloaded interval

and (ii) either (t, T ] or (t, b) is an overloaded interval.

We now reclassify all isolated underloaded points as overloaded points. When we reclassify each

isolated underloaded point, we replace the two connecting overloaded intervals by the common
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overloaded interval; e.g., when t is an isolated underloaded time between overloaded intervals (a, t)

and (t, b), we replace the two intervals by the single interval (a, b). In §EC.1 we show that this

procedure is well defined. In the remainder of this section we present the key results allowing us

to ensure that S is finite. We present the proofs in §EC.1. Our first structural result is

Theorem 1. (partition into intervals) After all isolated underloaded times have been reclassified

as overloaded and all overloaded intervals have been increased as specified above, the interval [0, T ]

can be partitioned into at most countably many alternating overloaded and underloaded intervals (of

positive length). The resulting switch points are the boundary points between overloaded intervals

and underloaded intervals.

Our analysis above has shown how to partition the interval [0, T ] into alternating overloaded

and underloaded intervals of positive length. Then the switch points are clearly identified as the

boundary points. It is then convenient to adopt the convention that all intervals be left closed

and right open (e.g., of the form [a, b)), except at the interval endpoints 0 and T , so that the

regime identification function r(t)≡ 1{O([0,T ])}(t), where 1{A} is the usual indicator function, is right

continuous with left limits. This convention does not alter the switch points.

We now relate the subset S to the set of discontinuity points and the zero set of the function

ζ(t)≡ λ(t)− s′(t)− s(t)µ(t), t≥ 0. (13)

Note that ζ depends only on the basic model functions λ, s and µ. Also note that ζ = λ − η

in the overloaded case of Definition 1. Let Dζ be the set of discontinuities of ζ in (13) and let

Zζ ≡{t∈ [0, T ] : ζ(t) = 0} be the zero set.

Theorem 2. (relating switches to zeros and discontinuities of ζ) For any interval [0, T ], the subsets

S, Zζ and Dζ are closed subsets with |S| ≤ |Zζ | + |Dζ | − 1. Moreover, the bound in is tight; i.e.,

there are examples for which the bound holds as an equality.

We now introduce a convenient subset of functions in Cp to represent our model data λ, µ and

s′. The class is sufficiently general that it can represent any function in Cp and, at the same time,
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it allows us to control the zeros of ζ, so that we know in advance that there are only finitely many

switches between overloaded and underloaded intervals in any finite interval.

Let Pm,n ≡ PT,m,n be the space of piecewise polynomials on the interval [0, T ], where [0, T ] is

partitioned into n subintervals, on each of which there is a polynomial of order at most m. We

start with three elementary lemmas about Pm,n. (We do not require that the overall function be

continuous, but each function necessarily is in Cp.) The first lemma states that any function in

Cp can be approximated uniformly by a function from Pm,n, so that there is no practical loss of

generality to restricting the model data to be in Pm,n instead of Cp.

Lemma 1. (uniform approximation) For any function h ∈ Cp over a finite interval [0, T ] and any

ǫ > 0, there exists a function h̃∈Pm,n for some positive integers m and n such that ‖h− h̃‖T < ǫ.

The second lemma states that we can go back and forth between the functions λ, s′, µ and their

integrals Λ, s,M in Pm,n conveniently; i.e., the integral or derivative of a polynomial is again a

polynomial. In particular, we can analytically calculate the integral for M in definition (8), as

needed for the fundamental evolution equation for b in (10).

Lemma 2. (representation of integrals) λ, s′, µ∈Pm,n ⊂ Cp if and only if Λ, M(t, t+ ·), M(u−·, u),

s ∈Pm+1,n ∩C.

The third lemma states that the function ζ inherits piecewise-polynomial structure assumed for

the basic model functions λ, s′, µ.

Lemma 3. (preservation of piecewise-polynomial structure) If λ ∈ Pm1,n1
, s′ ∈ Pm2,n2

, and µ ∈

Pm3,n3
, then ζ ∈Pm,n, where n≤ n1 +n2 +n3 and m≤m1 ∨m2 ∨m3(m2 +1).

The following theorem serves as the basis for our analysis.

Theorem 3. (finitely many switches) If ζ ∈Pm,n for ζ in (13), then |S| ≤ n(m+1)− 1.

Hence, we can carry out the construction of the desired performance vector (b, q,w, v,σ,α) under

the assumptions that the basic model functions (λ, s,µ) are such that there are only finitely many

switches between overloaded intervals and underloaded intervals in any given interval [0, T ]. It



Liu and Whitt: Time-Varying Many-Server Fluid Queues

Article submitted to Operations Research; manuscript no. OPRE-2010–02-067-R1 13

suffices to have λ, s′, µ ∈ Pm,n for some m and n. The space Pm,n is useful for the theory, but it

should not be needed in applications; see Remark EC.3.

4. The Performance at One Queue

In this section we determine the performance functions under the assumption that there are only

finitely many switches between overloaded and underloaded intervals. We have just seen that a

sufficient condition for that is to have ζ ∈Pm,n for some m and n, for which a sufficient condition is

to have λ, s′, µ∈Pm,n for some m and n. Here we can apply the previous results in Liu and Whitt

(2010), making proper adjustments to account for the change from GI service and abandonment

to Mt service and GIt abandonment.

An underloaded interval requires modification to account for Mt service. Since the rate fluid

enters service is γ(t) = b(t,0) = λ(t) when the system is underloaded, we immediately obtain an

expression for b(t, x) from (10). Recall that we have assumed that b(0, ·)∈Cp.

Proposition 1. (service content in the underloaded case) For the fluid model with unlimited

service capacity (s(t)≡∞ for all t≥ 0), starting at time 0,

b(t, x) = e−M(t−x,t)λ(t−x)1{x≤t} + e−M(0,t)b(0, x− t)1{x>t},

B(t) =

∫ t

0

e−M(t−x,t)λ(t−x)dx+B(0)e−M(0,t), 0≤ t < T, (14)

where M is defined in (8). If, instead, a finite-capacity system starts underloaded, then the same

formulas apply over the interval [0, T ), where T ≡ inf {t≥ 0 : B(t) > s(t)}, with T = ∞ if the infi-

mum is never obtained. Hence, b(t, ·), b(·, x),B ∈Cp for all t≥ 0 and x≥ 0, for t in the underloaded

interval.

There is dramatic simplification in going from GI service to Mt service in an overloaded interval.

Then we simply have B(t) = s(t). The rate fluid enters service is equal to the rate service capacity

becomes available: γ(t) = η(t) = s′(t) + s(t)µ(t). For an overloaded interval starting at time 0, we

have
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Proposition 2. (service content in the overloaded case) For the fluid model in an overloaded

interval, B(t) = s(t) and

b(t, x) = (s′(t−x) + s(t−x)µ(t−x))e−M(t−x,t)1{x≤t} + b(0, x− t)e−M(0,t)1{x>t},

where M is defined in (8). Hence, b(t, ·), b(·, x),B ∈ Cp for all t ≥ 0 and x ≥ 0 in an overloaded

interval.

Corollary 1. (overall smoothness for the service content) If there are only finitely many switches

between overloaded and underloaded intervals in [0, T ], then b(t, ·), b(·, x),B ∈ Cp for all t, 0≤ t≤ T ,

and x≥ 0.

We treat q, w and v just as in §5.2 and §5.3 in Liu and Whitt (2010), making adjustments for

the time-varying abandonment cdf Ft. Let q̃(t, x) be q(t, x) during the overload interval [0, T ] under

the assumption that no fluid enters service from queue.

Proposition 3. (queue content without transfer into service in the overloaded case) During an

overloaded interval,

q̃(t, x) = λ(t−x)F̄t−x(x)1{x≤t} + q(0, x− t)
F̄t−x(x)

F̄t−x(x− t)
1{t<x}. (15)

so that q̃(t, ·) and q̃(·, x) belong to Cp for each t and x.

We get an expression for q provided that we can find w.

Corollary 2. (from q̃ to q) Given the BWT w in an overloaded interval,

q(t, x) = q̃(t−x,0)F̄t−x(x)1{x≤w(t)∧t} + q̃(0, x− t)
F̄t−x(x)

F̄t−x(x− t)
1{t<x≤w(t)}

= λ(t−x)F̄t−x(x)1{x≤w(t)∧t} + q(0, x− t)
F̄t−x(x)

F̄t−x(x− t)
1{t<x≤w(t)}. (16)

Moreover, q(t, ·)∈Cp for all t≥ 0.

It now remains to define and characterize the BWT w. We can define the BWT w by postulating

that two expressions for the amount of fluid to enter service over any interval [t, t+ δ], namely,

E(t+ δ)−E(t)≡
∫ t+δ

t

b(u,0)du = I(t,w(t), q̃)−A(t, t+ δ), (17)
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where I ≡ I(t,w(t), q̃) is the amount of fluid removed from the right boundary of q̃ during the time

interval [t, t+δ] and A(t, t+δ) is the amount of the fluid content in I that abandons in the interval

[t, t+δ]. We then show that, if (17) holds, then w satisfies an ODE. However, our previous proof of

uniqueuenss for the solution of that ODE does not extend directly to time-varying abandonment

cdf’s. Hence we assume that either (i) the abandonment cdf Ft is independent of t or (ii) extra

conditions hold, allowing us to apply the classical Picard-Lindelöf theorem, Theorem 2.2 of Teschl

(2000); see §EC.2. One extra requirement is that the rate fluid enters service is bounded below; we

also show how to obtain that in EC.2. The proofs of Theorems 4 and 6 are in §EC.2.

Theorem 4. (the BWT ODE) Consider an overloaded interval [0, T ). The BWT w is well defined

by the relation (17), being Lipschitz continuous on [0, T ] with w(t+u)≤w(t) +u for all t≥ 0 and

u≥ 0 with t+u≤ T . Moreover, w is right differentiable everywhere with right derivative

w′(t+) = Υ(t,w(t))≡ 1− γ(t+)

q̃(t,w(t)−)
, (18)

where γ(t) = s′(t) + s(t)µ(t), t ≥ 0, and left differentiable everywhere (but not necessarily

differentiable) with value

w′(t−) = Υ̃(t,w(t))≡ 1− γ(t−)

q̃(t,w(t)+)
. (19)

Overall, w is continuously differentiable everywhere except for finitely many t. If either (i) the

abandonment cdf ’s Ft are independent of t or (ii) the partial derivative ∂Ft(x)/∂t is bounded

over [0, T ] × [0, c] for all c, and λ, q(0, ·) have bounded derivatives in the intervals where they

are continuous, and there exists a constant eL > 0 such that γ(t) ≥ eL for 0 ≤ t ≤ T , then w is

characterized as the unique solution of the initial value problem (IVP) on [0, T ) based on the ODE

(18) and any initial value w(0).

Corollary 3. (end of the overloaded interval) We can compute the end of an overloaded interval

as T ≡ inf {t≥ 0 : w(t) = 0 and λ(t)≤ s′(t) + s(t)µ(t)}.

Corollary 4. (smoothness of q(t, ·)) Under the assumptions of Theorem 4, q is given by (16)

with q(·, x) ∈Cp for all x. (We have already deduced that q(t, ·)∈Cp for all t in Corollary 2.)
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Theorem 5. (the PWT v and the BWT w) In an overloaded interval, the PWT v is finite and is

the unique function in D satisfying the equation

v(t−w(t)) = w(t) or, equivalently, v(t) = w(t+ v(t)) for all t≥ 0, (20)

where w is the BWT. Moreover, v is discontinuous at t if and only if there exists ǫ > 0 such that

w(t + v(t) + ǫ) = w(t + v(t)) + ǫ, which in turn holds if and only if b(u,0) = 0 for t + v(t) ≤ u ≤

t+ v(t) + ǫ. If b(·,0) > 0 a.e. with respect to Lebesgue measure, then v is continuous.

As shown in Liu and Whitt (2010), the proof of Theorem 5 provides an elementary algorithm to

compute v once w has been computed. Theorem 5.6 of Liu and Whitt (2010) shows that v satisfies

its own ODE under additional regularity conditions.

The Algorithm for One Queue. We now summarize the algorithm to compute the perfor-

mance function (b, q,w, v,σ,α) in the Gt/Mt/st +GIt model, assuming that there are only finitely

many switches in each finite interval. During each underloaded interval, we compute b and B, and

determine the end of the interval, by applying Proposition 1. During each overloaded interval, we

compute these by applying Proposition 2. During each overloaded interval, we successively com-

pute q̃, the BWT w, q and the PWT v, respectively, from Proposition 3, Theorem 4, Corollary 2

and Theorem 5. While computing w, we determine the end of the overloaded interval by applying

Corollary 3. We compute the service completion rate σ from (1) and the abandonment rate rate α

from (4).

Feasibility of the staffing function. The construction above has been done under the assump-

tion that the staffing function is feasible. As in §6.2 of Liu and Whitt (2010), the algorithm

can detect violations of feasibility whenever they occur and can then produce the minimum fea-

sible staffing function greater than or equal to the initial proposed staffing function. A viola-

tion is easy to detect; it necessarily occurs in an overloaded interval in O([0, T ]) at time t∗ ≡

inf {t∈O([0, T ]) : γ(t) < 0}. As in Liu and Whitt (2010), let Sf,s be the set of feasible staffing

functions over the interval [0, t] for t > t∗.
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Theorem 6. (minimum feasible staffing function) There exist δ > 0 and s∗ ∈ Sf,s(t
∗ + δ) such

that s∗ = inf {s̃∈ Sf,s(t
∗ + δ)}; i.e., s∗ ∈ Sf,s(t

∗ + δ) and s∗(u) ≤ s̃(u), 0 ≤ u ≤ t∗ + δ, for all s̃ ∈

Sf,s(t
∗ + δ). In particular,

s∗(t∗ +u)≡B(t∗) · e−M(t∗,t∗+u), 0≤ u≤ δ. (21)

Moreover, δ can be chosen so that δ = inf {u≥ 0 : s∗(t∗ +u) = s(t∗ +u)}, with δ ≡∞ if the infimum

is not attained.

Corollary 5. (minimum feasible staffing with M service) For M service, i.e., with exponential

service times, so that Ḡ(x)≡ e−µx, (21) becomes simply s∗(t∗ +u) = B(t∗)e−µu, 0≤ u≤ δ.

Theorem 6 shows how to construct a new staffing function that (i) agrees with the proposed

staffing function s over its interval of feasibility [0, t∗) and (ii) itself is feasible over the longer

interval [0, t∗ + δ) for some δ > 0. To construct the minimum feasible staffing function over [0, T ],

this algorithm may need to be applied several times.

5. General Arrival Rate Functions

In the previous two sections we have seen that we can get a nice clean theory if we assume that

λ, s′, µ∈Pm,n. In order to treat open networks of fluid queues, we would want the service completion

rate σ, which becomes the part of the input rate at other queues, to be in Pm,n for some m and n

as well, but σ does not inherit this property, because σ(t) = B(t)µ(t) and B(t) has a complicated

non-polynomial form in underloaded intervals, as shown in (14). We do have σ ∈ Cp by virtue of

Corollary 1, but we need not have σ ∈Pm,n. Hence, we show how to treat the general case in which

initially we only assume that λ∈Cp.

We will treat the case of general λ ∈ Cp as the limit of a sequence of systems with λ ∈ Pm,n.

In particular, for arbitrary λ ∈ Cp, we can represent it as the limit of a sequence of functions

{λk : k ≥ 1}, where λk ∈ Pmk,nk
and λk ≥ 0 for each k, and ‖λk − λ‖T → 0 as k →∞, with ‖ · ‖T

denoting the uniform norm over [0, T ]. (Positivity is no problem because of Assumption 6 and the

uniform convergence.) If we also assume that s′, µ ∈ Pm,n for some m,n, then we will necessarily
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have ζk ∈ Pmk,nk
for all k, with mk < ∞ and nk < ∞ for all k. We will also have mk → ∞ and

nk →∞ as k →∞ unless λ∈Pm,n for some m,n.

In this section we establish results that allow us to treat the case of general arrival rate functions

λ ∈ Cp, without requiring that λ ∈Pm,n and without directly requiring that there be only finitely

many switches between overloaded and underloaded intervals in the interval [0, T ]. To do so, we

establish monotonicity and Lipschitz continuity properties, which are of independent interest. We

first establish these results assuming that ζ ∈ Pm,n, and then we show that they extend when we

allow arbitrary λ∈Cp. We thus start by assuming that ζ ∈Pm,n. The proofs of the three theorems

in this section are relatively straightforward, but long; they appear in §EC.3.

The Mt service allows us to extend the elementary comparison results in Propositions 4.2 and 5.3

of Liu and Whitt (2010). Recall that order of functions (vectors) is defined as pointwise order for all

arguments (coordinates). Let X(t)≡B(t)+ Q(t) be the total system fluid content. Let subscripts

designate the model.

Theorem 7. (fundamental comparison theorem) Consider two Gt/Mt/st +GIt fluid models with

common staffing function s and service rate function µ. If ζ1, ζ2 ∈Pm,n with λ1 ≤ λ2, B1(0)≤B2(0),

q1(0, ·)≤ q2(0, ·) and hFt,1
≥ hFt,2

, then

(B1(·), q̃1, q1,Q1(·),X1,w1, v1, σ1)≤ (B2(·), q̃2, q2,Q2(·),X2,w2, v2, σ2). (22)

In addition to monotonicity, the model has additional basic Lipschitz continuity properties

(beyond Proposition EC.2).

Theorem 8. (more Lipschitz continuity) Consider a Gt/Mt/st + GIt fluid model with λ, s′, µ ∈

Pm,n for some m,n. Then the functions mapping (i) (λ,B(0)) in Pm,n ×R into (B,σ) in C2
p, (ii)

(λ,B(0),Q(0)) in Pm,n ×R2 into Q in Cp, and (iii) (λ,X(0)) in Pm,n ×R into X in Cp, all over

[0, T ], are Lipschitz continuous. In particular,

‖B1 −B2‖T ≤ (1∨T )(‖λ1 −λ2‖T ∨ |B1(0)−B2(0)|), ‖σ1 −σ2‖T ≤ µ↑
T‖B1 −B2‖T ,

‖Q1 −Q2‖T ≤ (1∨T )(‖λ1 −λ2‖T ∨ |B1(0)−B2(0)| ∨ |Q1(0)−Q2(0)|),
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‖X1 −X2‖T ≤ 2(1∨T )(‖λ1 −λ2‖T ∨ |X1(0)−X1(0)|). (23)

If B1(0) = B2(0) and Q1(0) = Q2(0) (for Q and X), then

‖B1 −B2‖T ≤ T‖λ1 −λ2‖T , ‖Q1 −Q2‖T ≤ T‖λ1 −λ2‖T , ‖X1 −X2‖T ≤ 2T‖λ1 −λ2‖T . (24)

As a consequence of Theorems 3–8, we can regard the case of a general function λ as the limit

of a sequence {λk : k ≥ 1}, where ζk ∈Pmk,nk
with mk →∞ and nk →∞ as k →∞. Hence, results

for the kth system can be “lifted” to the general case; i.e., Theorems 7–8 combine to imply the

following general result.

Theorem 9. (lifting) For a Gt/Mt/st + GIt fluid model with s′, µ ∈ Pm,n and λ ∈ Cp, the system

performance via (B, q̃,w), for B ≡{B(t) : 0≤ t≤ T}, is well defined and the conclusions of §3 and

Theorems 7 and 8 remain valid.

6. The (Gt/Mt/st +GI)m/Mt Fluid Queue Network.

We now introduce the open network of Gt/Mt/st +GI fluid queues, with time-dependent propor-

tional routing. There are m queues, where each queue has model parameters as already defined in

§2, with its own external fluid input, but in addition a proportion Pi,j(t) of the fluid output from

queue i at time t is routed immediately to queue j, and a proportion Pi,0(t)≡ 1−∑m

j=1 Pi,j(t)≤ 1

is routed out of the network, as shown in Figure 1 for the case m = 2.

Assumption 10. (proportional routing) The routing matrix function for proportional routing, P :

[0,∞)→ [0,1]m
2

, is in Cp and
∑m

j=1 Pi,j(t)≤ 1 for each t≥ 0 and i, 1≤ i≤m.

It is elementary to treat the basic network operations of superposition and splitting: If two input

streams are combined to form a single input (superposition), then the arrival rate functions are

simply added. If one stream with arrival rate function λ is split, such that a proportion p(t) of that

stream goes into a new split stream at time t, then the arrival-rate function of the split stream is λp,

where λp(t)≡ λ(t)p(t), t≥ 0; just like λ, the splitting proportion can be time-dependent. Similarly,

if the departure flow from one queue becomes input to another, then the resulting arrival-rate
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function is σ; (We do not let the abandonment flow from one queue become input to another, but

if we did, then the resulting arrival-rate function would be α.) However, converting departure rate

or abandonment rate into new input rate is more complicated when feedback is allowed. We discuss

that case now, for departures only.

As is usual with open queueing networks, there is an external exogenous arrival rate function

to each queue (from outside the network) and there is a total arrival rate function to each queue

(which we simply call the arrival rate function), taking into account the flow from other queues. Let

the external arrival rate function into queue j be denoted by λ
(0)
j ; let the arrival rate function into

queue j be denoted by λj. The model data for the Gt/Mt/st + GIt fluid queues directly provides

the external arrival rate functions λ
(0)
j (with the superscript 0 now added), while the arrival rate

function itself satisfies a system of traffic rate equations. In particular,

λj(t) = λ
(0)
j (t) +

m
∑

i=1

σi(t)Pi,j(t), where (25)

σi(t) = Bi(t)µi(t), t≥ 0. (26)

Equations (25) and (26) produce a system of equations, with λj depending upon σi for 1≤ i≤m,

while σi in turn depends on λi for each i, because Bi depends on λi. The formulas for Bi as a

function of λi have been given in Propositions 1 and 2, provided that we know whether the queue

is overloaded or underloaded. That requirement is the major source of complexity.

Since (25) is a linear equation, it can be written in matrix notation as λ = λ(0) +σ P by omitting

the argument t as below, provided that the product σP is interpreted as in (25). Moreover, we

can combine (25) and (26) to express λ as the solution of a fixed point equation mapping Cm
p over

[0, T ] into itself. To see this, note that Bi(t) in (26) is a function of λi(u), 0≤ u < t, and the model

data (only needed for queue i). Hence the vector B(t)≡ (B1(t), . . . ,Bm(t)) is a function of λ over

[0, t) and the model data. Hence we can express (25) and (26) abstractly as

λ = Ψ(λ), (27)

where Ψ(x)(t) depends on its argument x only over [0, t] for each t≥ 0. Here the function Ψ depends

on all the model data (λ(0)
i , si, µi, Fi,·, bi(0, ·), qi(0, ·), P ), 1≤ i≤m.
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Theorem 10. (contraction operator) If s′i, µi ∈ Pm,n for 1 ≤ i ≤ m, then the operator Ψ in (27)

is a monotone contraction operator on the m-dimensional product space Cm
p over [0, T ] for all

sufficiently small T > 0. Hence there exists a unique solution λ to the traffic rate equations (25)

and (26) over [0, T ] for any fixed T > 0. For sufficiently short intervals, successive iterates Ψ(n)(λ̃)

converge uniformly, geometrically fast, to the fixed point for any initial point λ̃∈Cm
p .

Proof. We first show that Ψ actually maps Cp into itself. First, if λ ∈ Cm
p , then B ∈ Cm

p by

Corollary 1 and Theorem 9. By assumption µ ∈ Cm
p , so that σ ∈ Cm

p , so the conclusion follows

from (25) and (26). To show that Ψ is a contraction operator for sufficiently small T > 0, we use

the norm ‖λ‖T ≡ ∑m

i=1 ‖λi‖T for λ ≡ (λ1, . . . , λm) ∈ (Cp)
m. For any λ1, λ2 ∈ (Cp)

m, the traffic rate

equations in (25) and (26) imply that

‖Ψ(λ1)−Ψ(λ2)‖T ≤
m

∑

j=1

sup
1≤t≤T

m
∑

i=1

µi(t)|B1
i (t)−B2

i (t)|Pi,j(t)

≤ mµ↑
T

m
∑

i=1

sup
0≤t≤T

|B1
i (t)−B2

i (t)|

≤ mµ↑
T T

m
∑

i=1

sup
0≤t≤T

|λ1
i (t)−λ2

i (t)| ≤mµ↑
T T ‖λ1 −λ2‖T ,

where mµ↑
T T < 1 for all sufficiently small T > 0. The second inequality holds since Pi,j(t)≤ 1. The

crucial third inequality follows from (24) in Theorem 8. To establish uniqueness over [0, T ] for any

fixed T > 0, we consider a succession of shorter intervals, over which the contraction property holds,

and apply mathematical induction. Existence, uniqueness and geometric convergence are standard

consequences of the Banach contraction fixed point theorem. Finally, monotonicity follows from

Theorems 7 and 9 plus the traffic rate equations (25) and (26).

Remark 1. (starting at the external arrival rates) Theorem 10 implies that we can approach

this system recursively. If we do so with initial vector λ̃ = λ(0), the vector of external arrival rate

functions, then the recursion has an important practical interpretation. Then the kth iterate λ(k)
j

is the arrival rate of fluid that has previously experienced k transitions in the fluid network. With

this notation, we can write the recursive formulas

λ
(n)
j (t) = Ψ(n)(λ(0))j(t) = λ

(0)
j (t) +

m
∑

i=1

σ
(n−1)
i (t)Pi,j(t), n≥ 1, (28)
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where σ
(n)
i (t) = B

(n)
i (t)µi(t) n≥ 0. (29)

Since we necessarily have λ(1)
i ≥ λ(0)

i for each i, this recursion converges monotonically to the fixed

point λ. By Theorems 7 and 9, all the performance measures increase toward their limiting values

as well.

The algorithm for the network of fluid queues. The algorithm consists of two successive

steps: (i) solving the traffic-rate equations (25) and (26) (or (27)) and (ii) solving for the perfor-

mance vector (b, q,w, v,σ,α) at each queue using the algorithm in §4. For step (i), we start with an

initial vector of arrival rate functions, which can a rough estimate of the final arrival rate functions

or the given external arrival rate functions as suggested in Remark 1. We then apply Propositions 1,

2, Corollary 2 and (1) to determine the performance functions Bi and σi at each queue to determine

a new vector of arrival rate functions. We then iteratively calculate successive vectors of arrival

rate functions until the difference (measured in the supremum norm over a bounded interval) is

suitably small. Then we apply step (ii).

Remark 2. (an m-dimensional ODE) Algorithmically, there is an alternative approach to

(Gt/Mt/st)
m/Mt fluid queue networks. Instead of applying nm iterations of the single-queue algo-

rithm to achieve n iterations of the operator Ψ, we can characterize the vector of arrival rates λ

as the solution of one m-dimensional ODE. We obtain this ODE by differentiating with respect to

t in the traffic rate equations in (25) and (26). We intend to discuss this approach in a subsequent

paper. It yields useful explicit expressions for the special cases of one fluid queue with immediate

proportional feedback and a network of two fluid queues, as depicted in Figure 1, plus an algorithm

for the general case.

Remark 3. (the (Gt/GI/st + GI)m/Mt Fluid Queue Network) Analogs of what we have done in

this section apply to the (Gt/GI/st + GI)m/Mt generalization of the Gt/GI/st + GI fluid queue

considered in Liu and Whitt (2010); we only need to replace equations (26) and (29) with the more
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complicated expressions given for the service completion rate σ given in Theorem 6.1 of Liu and

Whitt (2010). In particular, (26) should be replaced by

σi(t) =

∫ ∞

0

bi(t, x)hGi
(x)dx =

∫ t

0

bi(t−x,0)gi(x)dx+

∫ ∞

0

bi(0, y)gi(t+ y)

Ḡi(y)
dy,

while (29) should be replaced by

σ
(n)
i (t) =

∫ ∞

0

b
(n)
i (t, x)hGi

(x)dx =

∫ t

0

b
(n)
i (t−x,0)gi(x)dx+

∫ ∞

0

b
(n)
i (0, y)gi(t+ y)

Ḡi(y)
dy, n≥ 0.

However, the service content densities at each queue, bi, in general are characterized only as

the solution of a fixed point equation. Moreover, it remains to establish an analog of Theorem

10. The space Pmn no longer helps immediately. So far, we must assume that there are finitely

many switches between overloaded and underloaded intervals in any finite interval, and assume

that there exists a unique solution to the new equations. However, from a practical perspective, the

(Gt/GI/st + GI)m/Mt and even the more general (Gt/GIt/st +GIt)
m/Mt model can be analyzed

in the same way.

We conclude this section by establishing a network generalization of the single queue comparison

in Theorem 7. The proof appears in §EC.4.

Theorem 11. (network comparison theorem) Consider two (Gt/Mt/st + GIt)
m + Mt fluid queue

networks with common staffing functions si, service rate functions µi, abandonment cdf ’s F·,i and

routing matrix function P for 1≤ i≤m. If λ
(0)
1,i ≤ λ

(0)
2,i , B1,i(0)≤B2,i(0), q1,i(0, ·)≤ q2,i(0, ·), 1≤ i≤

m, then the performance functions are ordered at each queue:

(λ1,i,B1,i, σ1,i, q̃1,i, q1,i,Q1,i, α1,i,X1,i,w1,i, v1,i)

≤ (λ2,i,B2,i, σ2,i, q̃2,i, q2,i,Q2,i, α2,i,X2,i,w2,i, v2,i) for 1≤ i≤m. (30)

7. The Stationary (G/GI/s+GI)m/M Fluid Queue Network

This paper is primarily devoted to the time-varying fluid queue network, but the corresponding

stationary fluid queue network also is of interest. The stationary performance of a single GI/GI/s+
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GI fluid queue was characterized in Whitt (2006). (The proof is completed by Liu and Whitt (2010)

because the transient dynamics are characterized there.) The corresponding stationary (G/GI/s+

GI)m/M fluid queue network is actually quite elementary given Whitt (2006). In particular, the

stationary performance of this model is determined by a fixed point equation for the (now constant)

arrival rates. We start by reviewing that stationary distribution of the GI/GI/s+GI fluid queue.

Theorem 12. (steady state of the G/GI/s + GI fluid queue). The G/GI/s + GI fluid model

specified with model parameter vector (λ, s,µ,G,F ) has a unique steady state described by the vector

(b, q,B,Q,w,σ,α), whose character depends on whether ρ≡ λ/sµ≤ 1 or ρ > 1.

(a) Underloaded and balanced cases: ρ≤ 1. If ρ≤ 1, then for x≥ 0

B = sρ, b(x) = λḠ(x), σ = Bµ = λ, Q = α = w = q(x) = 0,

(b) Overloaded case: ρ > 1. If ρ > 1, then for x≥ 0

B = s, b(x) = sµ Ḡ(x), σ = sµ, α = λ− sµ = (ρ− 1)sµ = λF̄ (w),

w = F−1

(

1− 1

ρ

)

, Q = λ

∫ w

0

F̄ (x)dx and q(x) = λ F̄ (x)1{0≤x≤w}.

We now turn to the arrival rates. As can be seen from Theorem 12 above, unlike for the time-

varying model, for the stationary model we can easily handle GI service, because the total service

content B is independent of the service-time distribution beyond its mean. The vector of constant

arrival rates λ is determined by the system of fixed point equations

λj = λ(0)
j +

m
∑

i=1

(λi ∧ siµi)Pi,j, 1≤ j ≤m, (31)

where λ,λ(0), s,µ ∈ Rm and P is an m×m stochastic matrix. We can write (31) more compactly

as

λ = Φ(λ)≡ λ(0) +(λ∧ sµ)P. (32)

Equation (32) was already analyzed by Goodman and Massey (1984) in the study of non-ergodic

Jackson networks; also see Chen and Mandelbaum (1991) and p. 168 of Chen and Yao (2001).

However, the model here is different.
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Theorem 13. (fixed point equation for stationary arrival rates, from Goodman and Massey

(1984)) The arrival rates in the stationary (G/GI/s+ GI)m/M fluid queue network satisfy equa-

tion (31). Hence, if the stochastic matrix has spectral radius less than 1 (which holds if and only

if P n → 0 as n →∞), then Φ in (32) is a monotone n-stage contraction operator on Rm with an

appropriate norm, so that there exists a unique solution to the fixed point equation in (31) and (32).

The fixed point can be calculated by solving at most m different systems of m linear equations.

Proof. Even for GI service, if fluid queue i is underloaded, then the stationary service content

is Bi = λi/µi and the service completion rate is σi = Biµi = λi. On the other hand, if queue i is

overloaded, then Bi = si and the service completion rate is siµi. In all cases, the service completion

rate at queue i is λi ∧ siµi. Since there is a unique solution to equation (31) or (32), that equation

determines the stationary arrival rates at all queues and which queues are in fact overloaded.

8. Heuristic Stochastic Refinement for Many-Server Queues

As illustrated by Figure EC.2, the fluid model performance functions are remarkably effective in

approximating the performance of large-scale many-server queueing systems. That is to be expected

because of many-server heavy-traffic limits, as we mentioned in §1. In §9 of Liu and Whitt (2010)

we show that the fluid performance functions are useful more generally to describe the mean values

of smaller-scale many-server queueing systems, e.g., with only 20 servers or even fewer, provided

that they experience significant overloading at some times. That should be very helpful, but it is

also of interest to better understand the stochastic fluctuations about those mean values in the

queueing system.

For some of the stochastic processes in the Gt/M/st + GI queueing model, where the service

and abandonment are not time varying, we can invoke existing heavy-traffic limits for infinite-

server queues. In particular, in the Gt/M/st + GI queueing system, the stochastic process B̂(t, y)

recording the number of customers in service at time t that have been so for time at most y is the

same as in the Gt/M/∞ model during each underloaded interval. Similarly, during each overloaded

interval, the stochastic process Q̃(t, y) recording the number of customers in queue at time t that
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have been so for time at most y, not allowing customers to enter service (parallelling Proposition

3), is the same as in the Gt/GI/∞ model, with the abandonment cdf F playing the role of the

service-time cdf. Thus, many-server heavy-traffic limits in Pang and Whitt (2010) apply to them,

yielding Gaussian approximations.

More generally, we suggest a practical heuristic approximation, which is in the spirit of those

infinite-server results. The idea is very simple: We simply approximate the distribution of the total

number of customers in the system, X(t), by a Poisson distribution, taking the computed value

from the fluid queue model as its mean. This simple Poisson approximation approach is in fact

exact in the special case of the Mt/GI/st + GIt and Mt/Mt/st + GIt models if they are always

underloaded, starting out empty at time 0 or in the distant past. As discussed in Liu and Whitt

(2010), in that case the model reduces to the Mt/GI/∞ or Mt/Mt/∞ fluid model, for which the

fluid values of B(t) = X(t) coincide with the mean values in the stochastic model. In addition,

X(t) has a Poisson distribution for the stochastic infinite-server model. Finally, unless the mean is

very small, we approximate the Poisson distribution by a normal distribution. For the underloaded

system, this proposal coincides with §9 of Massey and Whitt (1993).

Given the approximation for X(t) in the queueing system, we approximate the random variables

Q(t) and B(t) using Q(t) = (X(t)−s(t))+ and B(t) = X(t)∧s(t), which leads to “one-sided” normal

approximations, which in regions of significant overload or underload will tend to themselves be

approximately normal. This heuristic refinement should give a rough idea about the stochastic fluc-

tuations, adequate for many engineering applications; e.g., it shows that the stochastic fluctuations

in X(t) should be roughly of order
√

X(t).

9. Conclusions

In section 2 we specified the single Gt/Mt/st +GIt fluid queue; it differs from Liu and Whitt (2010)

by having Mt service and GIt abandonment instead of both being GI. The Mt service eliminates

the need to solve a fixed point equation to find the service content density b. In §3 and §4 we showed

that a single fluid queue can be analyzed by assuming that the arrival rate function λ, the staffing



Liu and Whitt: Time-Varying Many-Server Fluid Queues

Article submitted to Operations Research; manuscript no. OPRE-2010–02-067-R1 27

function s and the service rate function µ are all piecewise polynomials. However, that did not

permit an extension to networks because the departure rate function does not inherit that property.

In §5 we used asymptotic methods to show how to analyze the single fluid queue without having

to assume either (i) that the arrival rate function is piecewise polynomial or (ii) that there are

only finitely many switches between overloaded and underloaded intervals in each finite interval.

In §6 and §7 we showed how to treat the (Gt/Mt/st +GIt)
m/Mt and (G/GI/s+GI)m/M networks

with proportional routing. Theorem 10 established the existence of unique vector of arrival rate

functions, allowing for feedback, and thus a corresponding unique performance description for the

entire network. The performance functions at each queue are given in §4.

As discussed in §9 of Liu and Whitt (2010), we have conducted simulation experiments show-

ing that the fluid model provides very accurate approximations for very large-scale many-server

queueing systems; we show the results of one such experiment in §EC.6. The approximations are

also excellent for the mean values of the corresponding queueing random variables when the scale

is quite small, e.g., when there are 20 servers or fewer; e.g., see Figure 7 of Liu and Whitt (2010).

We have provided a heuristic stochastic refinement in §8; it approximates the number of customers

in the queueing system first by a Poisson distribution, having the fluid value as its mean, and then

by a normal distribution.

There are many directions for future research. It remains to establish supporting many-server

heavy-traffic limits, including stochastic refinements. It remains to examine the algorithms provided

by Theorem 10 and Remark 2; it remains to extend Theorem 10 to GI and GIt service. It remains

to develop alternative approximations for time-varying many-server queueing systems, where the

staffing adjusts dynamically (appropriately) to the time-varying demand, so that the system tends

to be critically loaded at all times, as opposed to switching between overloaded intervals and

underloaded intervals.
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ec2 e-companion to Liu and Whitt: Time-Varying Many-Server Fluid Queues

E-Companion

This e-companion has six sections, presenting supporting material primarily in the order that it

relates to the main paper. In §EC.1 we present the proofs for §3. In §EC.2 we present proofs for

§4. In §EC.3 we present proofs for §5. In §EC.4 we present one proof for §6. In §EC.5, we make

remarks about: (i) characterizing the isolated underloaded points in §3, (ii) representation of the

fluid content B in an underloaded interval via an ODE, and (iii) the applied significance of the

space of piecewise polynomials Pm,n. In §EC.6 we compare the fluid model performance predictions

to simulation results for a large-scale queueing system.

EC.1. Proofs for Section 3.

We need some basic regularity properties of Q and B, which will be valid with the assumptions

in §2. For that purpose, we exploit two basic flow-conservation equations: (i) the queue content at

time t equals the initial queue content plus input minus output to either abandonment or entering

service, and (ii) the service content at time t equals the initial service content plus input minus

output. However, the input enters the queue only when the system is overloaded; otherwise it

directly enters service. Thus we have the following elementary bounds and the subsequent Lipschitz

continuity.

Proposition EC.1. (elementary bounds) Q(t) +A(t) +E(t)≤Q(0) +Λ(t) <∞ and

B(t) +S(t) = B(0) +E(t)≤B(0) +Q(0) +Λ(t) <∞,

so that Q, E, A, B and S are all bounded for 0≤ t≤ T .

Proof. The relations follow from flow conservation. The first relation is an inequality instead of

an equality because input enters the queue instead of the service facility only when the system is

overloaded.

Proposition EC.2. (Lipschitz continuity) The functions S, E, B, A and Q are Lipschitz con-

tinuous.
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Proof. For a nonnegative real-valued function f on [0,∞), let f ↑
t ≡ sup0≤y≤t f(y). To treat S,

recall that S is the integral of σ, where

σ(t) = B(t)µ(t)≤ s(t)µ(t), so that σ(t)≤ s↑t µ
↑
t , t≥ 0, (EC.1)

and

|S(t+u)−S(t)|=
∫ t+u

t

σ(y)dy ≤ s↑T µ↑
T u, 0≤ t≤ t+u≤ T. (EC.2)

To treat E, recall that it is the integral of the rate fluid enters service, where the rate fluid enters

service is either γ(t) = λ(t) if the system is underloaded or γ(t) = s′(t) + σ(t) = s′(t) + s(t)µ(t) if

the system is overloaded. Hence,

|E(t+u)−E(t)| ≤ γ↑
T u, 0≤ t≤ t+u≤ T, (EC.3)

where γ↑
T ≡ λ↑

T ∨ (|s′|↑T + s↑T µ↑
T ) <∞. By the second equation in Proposition EC.1,

B(t+u)−B(t) = (E(t+u)−E(t))− (S(t+u)−S(t)), (EC.4)

so that

|B(t+u)−B(t)| ≤ |E(t+u)−E(t)|+ |S(t+u)−S(t)| ≤ (e↑T + s↑T µ↑
T )u (EC.5)

for 0≤ t≤ t+u≤ T .

Next we combine (4) with (9) to get

α(t) =

∫ t∧w(t)

0

λ(t−x)ft−x(x)dx+

∫ t

w(t)∧t

q(0, x− t)ft−x(x)

F̄t−x(x− t)
dx, (EC.6)

so that, by applying Assumption 9, we get

α(t)≤ α↑
t ≡ f ↑Λ(t) +

f ↑

F̄ ↓(w(0))
Q(0) <∞ (EC.7)

and

|A(t+u)−A(t)| ≤
∫ t+u

t

α(y)dy ≤ α↑
T u, 0≤ t≤ t+u≤ T. (EC.8)

Finally, by the first relation in Proposition EC.1,

|Q(t+u)−Q(t)| ≤ |Λ(t+u)−λ(t)|+ |E(t+u)−E(t)|+ |A(t+u)−A(t)|
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≤ (λ↑
T + γ↑

T +α↑
T )u, 0≤ t≤ t+u≤ T. (EC.9)

We now apply Proposition EC.2 to relate S to the zeros of X − s, where X(t)≡Q(t) +B(t).

Lemma EC.1. (zeros of X − s) S ⊆ZX−s.

Proof. Since Q and B are continuous by Proposition EC.2 and s is continuous by assumption,

X − s is continuous. Since X − s is continuous, if X(t)− s(t) 6= 0, then t cannot be an element of

S.

We now characterize the overloaded times.

Lemma EC.2. (overloaded intervals) With the possible exception of 0 and T , all overloaded times

appear in intervals of positive length. Hence, underloaded sets consist of either single isolated points

or intervals.

Proof. If t ∈ O([0, T ]), then either (i) X(t) − s(t) > 0 or (ii) X(t) − s(t) = 0 and ζ(t) > 0. In

case (i), since X − s is continuous by Proposition EC.2, there exists a neighborhood of t that is

overloaded. In case (ii), since ζ(t) > 0, we will have X(t)− s(t) > 0 in an interval (t, t+ ǫ) for some

positive ǫ. Since overloaded sets are necessarily intervals by Lemma EC.2, each underloaded set

must fall between two overloaded intervals.

Proof of Theorem 1. We apply the results above. Since there can be at most countably many

overloaded intervals of positive length in [0, T ], the isolated points are well defined and countably

infinite. Since the isolated points are at most countably infinite, we can order them and reclassify

them one by one. With that construction, we reduce the number of disjoint overloaded intervals

by one at each step. Finally, all underloaded times appear in intervals too.

We now relate the zeros of ζ in (13) to the overloaded and underloaded intervals.

Lemma EC.3. (zeros and intervals) For each interval in the partition of [0, T ] into underloaded

and overloaded intervals, there exists at least one zero or discontinuity point of ζ.
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Proof. First, consider the closure of an overloaded interval [a, b]. If ζ has one of its finitely many

discontinuity points in [a, b], then we are done. Suppose that ζ is continuous on the closed interval

[a, b]. Necessarily, we have X(a)− s(a) = X(b)− s(b) = 0, ζ(a + ǫ) > 0 for all suitably small ǫ > 0

and ζ(b)≤ 0. First, we could have ζ(b) = 0 and we are done. If instead ζ(U(t)) < 0, then there must

exist t∗ with a < t∗ < b such that ζ(t∗) = 0 by the intermediate value theorem. The reasoning is

essentially the same in the closure of an underloaded interval, say [a, b]. If ζ has one of its finitely

many discontinuity points in [a, b], then we are again done. Suppose that ζ is continuous on the

closed interval [a, b]. If either ζ(a) = 0 or ζ(b) = 0, then we are done. Hence we must have ζ(a) < 0.

Since b is a switch point and ζ is continuous at b, we must have ζ(b) > 0. As before, there must

exist t∗ with a < t∗ < b such that ζ(t∗) = 0 by the intermediate value theorem.

Proof of Theorem 2 Since the interval [0, T ] can be partitioned into at most countably many

intervals that alternate between overloaded and underloaded after reclassifying isolated under-

loaded points as overloaded, the switch points can be placed in one-to-one correspondence with the

internal boundary points (excluding 0 and T ). Hence the number of switch points is equal to n−1,

if the number of intervals in the paritition is n for some n <∞. Otherwise both sets are countably

infinite. Next, Lemma EC.3 implies that there is either a discontinuity point or a zero in every

overloaded and underloaded interval. Since the number of intervals is 1 greater than the number

of switches, we obtain the conclusion. To see that the bound is tight, consider the common case

in which ζ is differentiable on [0, T ] and ζ(t) 6= 0 at all switch times. Then ζ has a zero where it

attains its maximum in each overloaded interval, while ζ has a zero where it attains its minimum

in each overloaded interval. To have the bound an equality, let ζ have no other zeros.

Proof of Theorem 3. First, any discontinuity points of ζ must be contained in the set of n interval

boundary points. Hence, Dζ ≤ n. On each of the n subintervals, ζ is a polynomial of order at most

m. By the fundamental theorem of algebra, on each of these intervals the zero set is either a finite

set of cardinality at most m or it is the entire subinterval. If ζ = 0 throughout the interval, then

there can be at most a single switch in the interval, where (Q(t),B(t)) becomes (0, s(t)), after which

it will remain there throughout the subinterval. In other words, the first subinterval is overloaded
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and the second is underloaded, so this interval produces at most a single switch. We can thus treat

this interval just like any of the others; we can act as if it produces at most m zeros. Hence, Dζ ≤ n

and Zζ ≤mn. Finally, Theorem 2 implies that |S| ≤mn+n− 1, as claimed.

Proof of Lemma 1. The Weierstrass approximation theorem implies that continuous functions

can be approximated uniformly over bounded intervals by polynomials. That uniform approxima-

tion extends to Cp provided that the boundary points of the polynomial pieces of the function in

Pm,n includes the finitely many discontinuity points of the function in Cp.

EC.2. Proofs for §4.

EC.2.1. Proof of Uniqueness in Theorem 4.

When the abandonment cdf’s Ft are independent of t, the proof of uniqueness of the solution to the

ODE (18) in Theorem 4 is the same as the proof of the corresponding part of Theorem 5.3 in Liu

and Whitt (2010). However, that argument does not extend directly to time-varying abandonment

cdf’s. Hence we give a different proof under different conditions. In particular, in Theorem 4 for

time-varying abandonment cdf’s we imposed additional regularity conditions. With those extra

regularity conditions, we can apply the classical Picard-Lindelöf theorem for the uniqueuenss of

a solution to the ODE w′(t) = Ψ(t,w(t)), which requires that Ψ(t, x) be locally Lipschitz in the

argument x uniformly in the argument t; e.g., Theorem 2.2 of Teschl (2000).

One regularity condition added in Theorem 4 was for the rate fluid enters service to be bounded

below. We will show how to guarantee that condition in the next section. Given that the rate fluid

enters service is indeed bounded below, i.e., given that γ(t) ≥ eL > 0 for all t ∈ [0, T ], from (18),

there exists a constant wL > 0 such that w′(t) ≤ 1−wL < 1 for all t ∈ [0, T ]. Since w(0) < ∞, by

assumption, and w(t)≤w(0)+ t for all t, we have w(t)≤w(0)+T for 0≤ t≤ T . Together with the

fact that λ, q(0, ·)∈Cp, that implies that the denominator in (18) is bounded above.

Since w′(t) ≤ 1−wL < 1 for all t, for each x we will have t−w(t) = x for at most one value of

t. Since λ, q(0, ·) have been assumed to have bounded derivatives where they are continuous, and

since the partial derivative ∂Ft(x)/∂t of the time-varying abandonment cdf Ft as been assumed
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to be bounded, the mapping Ψ in (18) is Lipschitz continuous in the argument x except at only

finitely many x, uniformly in t. Hence, we can deduce uniqueness of the solution of the ODE in

(18) under these extra regularity conditions by applying the Picard-Lindelöf theorem.

We now elaborate on the details. Here we have

Ψ(t, x)≡ 1− γ(t)

q̃(t, x)
= 1− µ(t)s(t) + s′(t)

q̃(t, x)
, (EC.10)

where q̃(t, x) is given in (15). Consider the region 0≤ x1 ≤ t, 0≤ x2 ≤ t. In this region we have

|Ψ(t, x1)−Ψ(t, x2)| =
µ(t)s(t) + s′(t)

λ(t−x1)λ(t−x2)F̄t−x1
(x1)F̄t−x2

(x2)
|λ(t−x1)F̄t−x1

(x1)−λ(t−x2)F̄t−x2
(x2)|

≤ µ↑s↑ + s′↑

(λ↓)2(F̄ ↓)2
|λ(t−x1)F̄t−x1

(x1)−λ(t−x2)F̄t−x1
(x1)

+ λ(t−x2)F̄t−x1
(x1)−λ(t−x2)F̄t−x2

(x2)|

≤ µ↑s↑ + s′↑

(λ↓)2(F̄ ↓)2
(|λ(t−x1)−λ(t−x2)|+λ(t−x2)|F̄t−x1

(x1)− F̄t−x2
(x2)|)

≤ µ↑s↑ + s′↑

(λ↓)2(F̄ ↓)2
(λ′↑|x1 −x2|+λ↑|F̄t−x1

(x1)− F̄t−x1
(x2) + F̄t−x1

(x2)− F̄t−x2
(x2)|)

≤ µ↑s↑ + s′↑

(λ↓)2(F̄ ↓)2
(λ′↑|x1 −x2|+λ↑ ∂F̄

∂t

↑

|x1 −x2|+λ↑g↑|x1 −x2|)

≡ C |x1 −x2|,

where C ≡ µ↑s↑+s′↑

(λ↓)2(F̄↓)2
(λ′↑ +λ↑ ∂F̄

∂t

↑
+λ↑g↑). The case x1, x2 > t is similar. Hence the regularity condi-

tions given in Theorem 4 are sufficient for Ψ to be locally Lipschitz in x uniformly in t.

EC.2.2. eL-Feasibility of the Staffing Function s.

We have two goals in this section: first, to prove Theorem 6, showing how to construct the minimum

feasible staffing function greater than or equal to any proposed staffing function s and, second, to

determine the minimum feasible staffing function such that the rate fluid enters service at time

t, γ(t), is bounded below. We use this stronger notion of feasibility to provided conditions for

the ODE in (18) in Theorem 4 to have a unique solution. We treat both problems at once by

introducing the notion of eL-feasibility: A staffing function s is said to be eL-feasible if γ(t)≥ eL ≥ 0

for all t∈ [0, T ].
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So far, we have assumed that the staffing function s is eL-feasible (as one condition in Theorem

4) or simply feasible (eL-feasible for eL ≡ 0), yielding

γ(t)≥ s′(t) +σ(t) = s′(t) +

∫ ∞

0

b(t, x)hG(x)dx≥ eL ≥ 0 when B(t) = s(t). (EC.11)

This requirement is automatically satisfied in underloaded intervals when B(t) = s(t), provided

that λinf (T )≥ eL for λinf in Assumption 6, because in that case we require that s′(t)+σ(t)≥ λ(t)

where necessarily λ(t) ≥ eL; see Definition 1; eL-Feasibility is only a concern during overloaded

intervals, and then only when the staffing function is decreasing, i.e., when s′(t) < 0.

A violation is easy to detect; it necessarily occurs in an overloaded interval in O([0, T ]) at time

t∗ ≡ inf {t∈O([0, T ]) : γ(t) < eL}. Paralleling Liu and Whitt (2010), let Sf,s,eL
be the set of eL-

feasible staffing functions over the interval [0, t] for t > t∗. Then

t∗ ≡ t∗(eL)≡ inf {t∈ I : γ(t) < eL}. (EC.12)

Even though we require (EC.11), so far we have done nothing to prevent having t∗ <∞ (violation).

Thus, we compute γ and detect the first violation.

Correcting the staffing function is not difficult either (by which we mean replacing it with a

higher feasible staffing function): We simply construct a new staffing function s∗ consistent with

reducing the input into the queue to its minimum allowed level (setting γ(t) = eL ≥ 0) starting at

time t∗ and lasting until the first time t after t∗ at which s∗(t) = s(t). (By the adjustment, we will

have made s∗(t∗+) > s(t∗+).) Since the system has operated differently during the time interval

[t∗, t], we must recalculate all the performance measures after time t, but we have now determined

a feasible staffing function up to time t > t∗. By successive applications of this correction method

(adjusting the staffing function s and recalculating b), we can construct the minimum feasible

staffing function overall.

To make this precise, let Sf,s,eL
(t) be the set of all eL-feasible staffing functions for the system

over the time interval [0, t], t > t∗, that coincide with s over [0, t∗]; i.e., let

Sf,s,eL
(t)≡ {s̃∈C1

p(t) : γs̃(u)1{Bs̃(u)=s̃(u)} ≥ eL, 0≤ u≤ t, s̃(u) = s(u), 0≤ u≤ t∗}, (EC.13)
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for t∗ in (EC.12), where γs̃ and Bs̃ are the functions γ and B associated with the model with

staffing function s̃.

Theorem EC.1. (minimum eL-feasible staffing function) For each eL such that 0≤ eL ≤ λinf (T )

for λinf (T ) in Assumption 6, there exist δ ≡ δ(eL) and s∗ ∈ Sf,s,eL
(t∗ + δ) in (EC.13) for t∗ in

(EC.12) such that

s∗ ≡ s∗(eL) = inf {s̃∈ Sf,s,eL
(t∗ + δ)}; (EC.14)

i.e., s∗ ∈ Sf,s,eL
(t∗ + δ) and s∗(u)≤ s̃(u), 0≤ u≤ t∗ + δ, for all s̃∈ Sf,s,eL

(t∗ + δ). In particular,

s∗(t∗ +u) = eL

∫ u

0

e−M(t∗+u−x,t∗+u) dx+B(t∗) e−M(t∗,t∗+u). (EC.15)

Moreover, δ can be chosen so that

δ = inf {u≥ 0 : s∗(t∗ +u) = s(t∗ +u)}, (EC.16)

with δ ≡∞ if the infimum in (EC.16) is not attained.

Proof. First, since γs is continuous for our original s, the violation in (EC.12) must persist for a

positive interval after t∗; that ensures that a strictly positive δ can be found. We shall prove that

s̃≥ s∗ over [t∗, t∗ + δ] for s∗ in (EC.15) and any feasible function s̃, and we will show that s∗ itself

is feasible. For 0≤ t≤ t∗ + δ, suppose s̃ is feasible. Since the system is overloaded, system being in

the overloaded regime implies that

s̃(t∗ +u) = Bs̃(t
∗ +u) =

∫ ∞

0

bs̃(t
∗ +u,x)dx

=

∫ u

0

γs̃(t
∗ +u−x) Ḡt∗+u−x(x)dx+

∫ ∞

u

bs̃(t
∗, x−u)

Ḡt∗+u−x(x)

Ḡt∗+u−x(x−u)
dx

=

∫ u

0

γs̃(t
∗ +u−x) e−M(t∗+u−x,t∗+u) dx+

∫ ∞

u

bs(t
∗, x−u) e−M(t∗,t∗+u)dx

≥ eL

∫ u

0

e−M(t∗+u−x,t∗+u) dx+ e−M(t∗,t∗+u)

∫ ∞

0

bs(t
∗, y)dy = s∗(t∗ +u).

where the second equality holds because of the fundamental evolution equations in Assumption 4,

the third equality holds because bs̃(t
∗, x) = bs(t

∗, x) for all x, and the inequality holds because γs̃ ≥

eL. On the other hand, the equality holds when γs̃(t
∗ + u) = eL for all u, which yields B(t∗ +u) =

s∗(t+u). Therefore, the proof is complete.
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Corollary EC.1. (minimum eL-feasible staffing with exponential service times) For the special

case of exponential service times, i.e., with Ḡ(x)≡ e−µx, independent of t, (EC.15) becomes simply

s∗(t∗ +u) = eL(1− e−µu)/µ+B(t∗)e−µu, 0≤ u≤ δ.

EC.3. Proofs for §5.

EC.3.1. Proof of Theorem 7.

First, the assumption that ζ1, ζ2 ∈Pm,n assures that there are only finitely many switches between

overloaded intervals and underloaded intervals in both systems. That leads to three cases: (i) when

both systems are underloaded, (ii) when the upper system is overloaded and the lower system is

underloaded, and (iii) when both systems are overloaded. We apply mathematical induction over

the successive alternating intervals of these three kinds. (The switch points are the union of the two

separate sets of switch points.) We ensure that the initial conditions for each succeeding interval

satisfy the initial ordering assumed in the theorem. If we start in an interval where both systems are

underloaded, then the ordering holds while both systems are underloaded by virtue of the explicit

representation in Proposition 1. Consequently, the underload termination times are ordered as well,

by Proposition 1. The ordering B1(t) ≤ B2(t) necessarily remains valid when the upper system is

overloaded and the lower system is underloaded, because then we have B1(t) ≤ s(t) = B2(t). For

an interval where both systems are overloaded, it suffices to consider the two systems starting

the first time both systems are overloaded. At that time, the initial conditions necessarily will be

ordered properly, because the system to become overloaded later has Q1(t) = 0. At this initial time,

B1(t) = B2(t) = s(t).

The Mt service assumption comes to the fore in an interval where both systems are overloaded.

Here we use the fact that σ and γ(t) = b(t,0) depend only upon s and µ during the overloaded

interval, and so are the same for the two systems, because the functions s and µ have been assumed

to be fixed. The rate of service completion is σ(t) = s′(t) + s(t)µ(t). When the two systems are

both overloaded over a common interval [t, t + u], the total fluid to enter service from queue,

E(t+u)−E(t) is therefore the same in the two systems.
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When both systems are overloaded, we have the ordering q̃1 ≤ q̃2 directly from Proposition 3,

just as in Proposition 5.3 of Liu and Whitt (2010), exploiting the representation

F̄t−x(x)

F̄t−x(x− t)
= e

−
∫ x
x−t hFt−x

(y)dy
.

Hence, to show that q1 ≤ q2, it suffices to show that w1 ≤ w2, which would imply that that the

overload termination times are ordered as well.

Suppose we start at t1 with w1(t1) ≤ w2(t1). Suppose that w1(t) > w2(t) at some t > t1. The

continuity of w1 and w2 implies that there exists some t1 < t2 < t such that w1(t2) = w2(t2) ≡ w̃.

However, the ordering of q̃1 and q̃2 implies that q̃1(t2, w̃)≤ q̃2(t2, w̃). Therefore, ODE (18) implies

that w′
1(t2)≤w′

2(t2). This contradicts with our assumption that there exists a t such that w1(t) >

w2(t).

Now we turn to v. The equation (20) in Theorem 5 implies that the ordering of w is inherited

by v. That is made clear by applying the proof of Theorem 5, which shows that v(t) is determined

by the intersection of the function w with the linear function Lt(u)≡ t+u. Clearly, if we increase

the w function, then that intersection point increases as well.

EC.3.2. Proof of Theorem 8.

We directly prove (23); the corresponding results in (24) will be obtained along the way. To show

(i), consider two models with common model data except for λ,B(0), where λ1, λ2, s
′, µ∈Pm,n for

some m,n. Without loss of generality, by Theorem 7, it suffices to assume that λ1 ≤ λ2 and B1(0)≤

B2(0). If that is not initially the case, consider λ̃1 ≡ λ1 ∧ λ2, λ̃2 ≡ λ1 ∨ λ2, B̃1(0) ≡ B1(0)∧B2(0)

and B̃2(0) ≡ B1(0) ∨ B2(0) to get λ̃1 ≤ λ̃2 and B̃1(0) ≤ B̃2(0) with ‖λ̃1 − λ̃2‖T = ‖λ1 − λ2‖T and

|B̃1(0)− B̃2(0)|= |B1(0)−B2(0)|.

When both systems are overloaded, we have B1(t) = B2(t) = s(t). Hence, the overall story

depends on what happens when (a) both systems are underloaded, and (b) system 1 is underloaded

and system 2 is overloaded.
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For simplicity, suppose that the two systems both start underloaded at time 0 with B1(0)≤B2(0),

λ1 ≤ λ2. If both systems remain underloaded over the interval [0, t1], then by Proposition 1 we have

|B1(t)−B2(t)| ≤ ‖λ1 −λ2‖T

∫ t

0

e−M(x) dx+ |B1(0)−B2(0)|

≤ t · ‖λ1 −λ2‖T + |B1(0)−B2(0)|, 0≤ t≤ t1. (EC.17)

Suppose system 2 becomes overloaded at t1 > 0 while system 1 remains underloaded. For t > t1,

we have B1(t) ≤ B2(t) = s(t) ≤ X2(t) ≡ B2(t) + s(t). Hence we have 0 ≤ |B2(t)−B1(t)| = B2(t)−

B1(t) ≤ X2(t)−B1(t). Flow conservations of both systems implies that B′
1(t) = λ1(t)− µ(t)B1(t)

and X ′
2(t) = λ2(t)−α2(t)−µ(t) s(t). Therefore,

X ′
2(t)−B′

1(t) = λ2(t)−λ1(t)−α2(t)−µ(t) (s(t)−B1(t))≤ λ2(t)−λ1(t),

which implies that

|B1(t)−B2(t)| ≤ |B1(t1)−B2(t1)|+(t− t1) · ‖λ1 −λ2‖T

≤ t1 · ‖λ1 −λ2‖T + |B1(0)−B2(0)|+(t− t1) · ‖λ1 −λ2‖T

≤ t · ‖λ1 −λ2‖T + |B1(0)−B2(0)|, (EC.18)

where the second inequality follows from (EC.17) with t = t1.

If we then later start a second underloaded interval for both systems at time t2, where 0 < t1 <

t2 < T , then we will have inequality (EC.17) holding at time t2. Thus proceeding forward, applying

(EC.17) with initial values Bi(t2), during the following underloaded interval we have for t > t2

|B1(t)−B2(t)| ≤ ‖λ1 −λ2‖T

∫ t

t2

e−M(x) dx+ |B1(t2)−B2(t2)|

≤ (t− t2) · ‖λ1 −λ2‖T + t2 · ‖λ1 −λ2‖T + |B1(0)−B2(0)|

≤ t · ‖λ1 −λ2‖T + |B1(0)−B2(0)|

≤ (1∨ t)(‖λ1 −λ2‖T ∨ |B1(0)−B2(0)|). (EC.19)

where the second inequality follows from (EC.18) with t = t2. Applying mathematical induction

over successive underloaded subintervals of [0, T ], using the second to last inequality, we obtain the

first relation in (23), from which the desired conclusion follows.
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To show (ii), when both systems are underloaded, we have Q1(t) = Q2(t) = 0. Hence, the over-

all story depends on what happens when (a) both systems are overloaded, and (b) system 1 is

underloaded and system 2 is overloaded.

When both systems are overloaded, flow conservation implies that

Q′
i(t) = λi(t)−αi(t)− γi(t) = λi(t)−αi(t)−µ(t) s(t)− s′(t).

Hence, we have

Q′
2(t)−Q′

1(t) = λ2(t)−λ1(t)− (α2(t)−α1(t))≤ λ2(t)−λ1(t),

where the inequality simply follows from Theorem 7 when the two systems have common abandon-

time distribution. This yields

|Q1(t)−Q2(t)|= Q2(t)−Q1(t)≤ |Q1(0)−Q2(0)|+ t‖λ1 −λ2‖T . (EC.20)

When system 2 is overloaded and system 1 is underloaded. For simplicity, assume at time 0 the two

system have initial conditions B2(0) = s(0) > B1(0), Q2(0) ≥ 0 = Q1(0). Let T ∗ ≡ T1 ∧ T2, where

T1 denotes the underload termination time of system 1 and T2 denotes the overload termination

time of system 2. Hence we know that both systems will not change regimes for 0 ≤ t ≤ T ∗. For

0≤ t≤ T ∗, we have

Q′
2(t) = λ2(t)−α2(t)− γ2(t)≤ λ2(t)− γ2(t)

≤ (λ2(t)−λ1(t)) + (λ1(t)− γ2(t))

≤ (λ2(t)−λ1(t)) + (λ1(t)−µ(t) s(t)− s′(t)),

which implies that

|Q2(t)−Q1(t)|= Q2(t)

≤ Q2(0) + t‖λ2(t)−λ1(t)‖T +

∫ t

0

λ1(u)−µ(u) s(u)− s′(u)du

≤ Q2(0) + t‖λ2(t)−λ1(t)‖T +

∫ t

0

λ1(u)−µ(u)B1(u)du− (s(t)− s(0))
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≤ Q2(0) + t‖λ2(t)−λ1(t)‖T +

∫ t

0

B′
1(u)du− s(t) + s(0)

≤ Q2(0) + t‖λ2(t)−λ1(t)‖T +(s(0)−B1(0))− (s(t)−B1(t))

≤ |Q2(0)−Q1(0)|+ t‖λ2(t)−λ1(t)‖T + |B2(0)−B1(0)|, (EC.21)

where the second inequality holds because B1(t) ≤ s(t), the third inequality holds since B′
1(t) =

λ1(t) − µ(t)B1(t), and the last inequality holds since Q1(0) = 0, B2(0) = s(0) and B1(t) ≤ s(t).

Again, the desired conclusion follows by mathematical induction.

Finally, to show (iii), (EC.18), (EC.19), (EC.20), (EC.21) imply that

|X1(t)−X2(t)| ≤ |B1(t)−B2(t)|+ |Q1(t)−Q2(t)|

≤ 2t‖λ1 −λ2‖+2 |B1(0)−B2(0)|+ |Q1(0)−Q2(0)|

≤ 2(1∨ t)(‖λ1 −λ2‖T ∨ |X1(0)−X2(0)|),

where the third inequality holds because |X1(0)−X2(0)|= |B1(0)−B2(0)|+ |Q1(0)−Q2(0)| in all

regimes.

EC.3.3. Proof of Theorem 9.

Given λ ∈ Cp, we choose an increasing sequence {λk : k ≥ 1} with λk ∈Pmk ,nk
for each k ≥ 1 such

that ‖λk − λ‖T → 0 as k →∞. For each k ≥ 1, we can apply all the results above. By Theorem

8, we can define the pair (B,σ) in C2
p as the limit of the sequence {(Bk, σk) in C2

p with the

maximum/uniform norm. There is such a limit, because the sequence is necessarily Cauchy and the

space is a complete metric space. Given the limit, the convergence holds in the space by Theorem

8.

To show that the monotonicity extends, we start with λ1 ≤ λ2. We then construct sequences

{λi,k : k ≥ 1} for i = 1,2 with λ1,k ≤ λ2,k for each k and ‖λi,k − λi‖T → 0 as k → ∞. We apply

Theorem 7 for each k. Since the ordering is preserved in the limit, the conclusion of Theorem 7

holds for the limiting pair by Lebesgue monotone convergence. We use a similar argument to show

that the Lipschitz continuity properties in Theorem 8 extend as well: Starting with ‖λ1−λ2‖T = c,
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for any ǫ > 0, we construct sequences {λi,k : k ≥ 1} for i = 1,2 with ‖λ1,k − λ2,k‖ ≤ c + ǫ for each k

and ‖λi,k − λi‖T → 0 as k →∞ for i = 1,2. We then can apply Theorem 8 for each k ≥ 1, and get

the conclusion there with modification by ǫ. However, since ǫ is arbitrary, we get the preservation

of the Lipschitz property to the limit.

EC.4. one proof for §6.

Proof of Theorem 11. We recursively apply the monotone contraction operator Ψ in Theorem

10, starting with σ
(0)
j,i = 0, so that λ

(1)
1,i ≤ λ

(1)
2,i for all i, because λ

(1)
j,i = λ

(0)
j,i , j = 1,2 and the external

arrival rate functions have been assumed to be ordered: λ
(0)
1,i ≤ λ

(0)
2,i . By Theorem 7 applied to each

queue separately, using the assumed ordering B1,i(0) ≤ B2,i(0) for all i, we have first B(1)
1,i ≤ B(1)

2,i

and then σ
(1)
1,i ≤ σ

(1)
2,i . By (28), we then have λ

(2)
1,i ≤ λ

(2)
2,i . We then get the order holding for all n by

applying mathematical induction. However, λ
(n)
1,i → λ1,i as n →∞. Since the order is preserved in

the convergence, we deduce that λ1,i ≤ λ2,i for 1≤ i≤m. Finally, we can apply Theorem 7 to each

queue separately to get the remaining orderings.

EC.5. Remarks

Remark EC.1. (characterization of isolated points)

Definition 3 implies that t is an isolated point only if Q(t) = 0, B(t) = s(t). Moreover, if t is a

discontinuity point of ζ, then ζ(t− δ) < 0 and ζ(t) > 0 for some δ > 0; if t is a continuity point of

ζ, then ζ(t− δ) < 0, ζ(t) = 0 and ζ(t+ δ) < 0 for some δ > 0.

Remark EC.2. (an ODE for B in an underloaded interval)

In an underloaded interval, the total fluid content in service B(t) can also be characterized via

the ODE

B′(t) = λ(t)−µ(t)B(t), t≥ 0. (EC.22)

The formula in Proposition 1 provides the solution to the initial value problem determined by this

ODE with initial condition B(0).
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Remark EC.3. (applied significance of Pmn) We have provided a full algorithm when λ, s′, µ ∈

Pm,n. An algorithm for λ ∈ Cp can be developed by considering a sequence of successive approx-

imations in Pmn,n, but we see no motivation for doing so. We have introduced the space Pm,n of

piecewise polynomials as a device to establish mathematical results. In applications, it should suf-

fice to use any convenient representations of the functions λ and s, and assume that there are only

finitely many switches in any finite interval. While running the algorithm, that assumption can be

verified, and the model can be modified if too many switches occur. However, if we start from data,

then we could choose to let the functions be in Pm,n without loss of generality. Lemma 2 shows

that it is convenient to work in the space Pm,n, because we can obtain closed form expressions for

integrals. Moreover, if we want to bound the number of switches in advance, then we can bound

the parameters m and n, with the understanding that there is a tradeoff between the quality of fit

and the maximum number of switches.

EC.6. Simulation Verification for the Mt/M/s+GI Model

In this section we illustrate the single-queue algorithm for a relatively simple case, the Mt/M/s+GI

fluid queue model, in which only the arrival rate is time varying and only the abandonment cdf F

is non-exponential. We let the arrival rate function λ be sinusoidal, i.e.,

λ(t)≡ a+ b · sin(c · t), t≥ 0, (EC.23)

where we let b≡ 0.6a, c≡ 1 and a≡ s. By making the average input rate a coincide with the fixed

staffing level s, we ensure that the system will alternate between overloaded and underloaded. We

let the service rate be µ ≡ 1 and the abandonment rate θ ≡ 0.5; i.e., G(x) ≡ 1 − e−x for x ≥ 0.

Without loss of generality, for the fluid model we let s≡ 1.

For the general abandon-time cdf F , we considered two cases: Erlang-2 (E2) and

hyperexponential-2 (H2). We fix the mean at 1/θ. An E2 random variable is the sum of two i.i.d.

exponential random variables, so that there are no additional parameters. An H2 cdf is the mixture
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of two exponential cdf’s, and so has two additional parameters beyond its mean. An H2 pdf is of

the form

f(x) = p · θ1e
−θ1x +(1− p) · θ2e

−θ2x, x≥ 0,

We let p = 0.5(1−
√

0.6), θ1 = 2pθ, θ2 = 2(1− p)θ, which produces “balanced means” and squared

coefficient of variation (SCV, variance divided by the square of the mean) SCV ≡ c2 = 4.

We only show the results for E2 abandonment; the results for H2 are similar. The fluid perfor-

mance functions for E2 abandonment are shown in Figure EC.1 for t ∈ [0, T ] with T = 16. The

performance functions shown in Figure EC.1 are the boundary waiting time w(t), the fluid in

queue Q(t), the fluid in service B(t), the total fluid in the system X(t), the abandonment rate

α(t), and the rate fluid enters service (transportation rate) γ(t) ≡ b(t,0). We omit the departure

rate σ(t) = µB(t) because of the exponential service times.

In Figure EC.2 we compare the fluid approximations with results from a simulation experiment

for a very large-scale queueing system. The queueing model has a nonhomogeneous Poisson arrival

process with sinusoidal rate function as in (EC.23), with a = s = 2000, b = 0.6a = 1200. We compare

the fluid model predictions to a single sample path of the queueing system (one simulation run). In

Figure EC.2 the blue solid lines of the simulation estimations of single sample paths applied with

fluid scaling, and the red dashed lines are the fluid approximations. We conclude that the fluid

approximation is remarkably accurate as an approximation when the scale of the queueing model

is extremely large.

As discussed in Liu and Whitt (2010), the accuracy of the fluid approximations for large-scale

queueing systems can be explained by a many-server heavy-traffic limit. As discussed in §9 of Liu

and Whitt (2010), for smaller systems the queueing system has much greater stochastic fluctuations.

In those cases, the fluid model performance functions quite accurately describe the mean values of

the time-varying queue performance when the system experiences significant periods of overload;

e.g., see Figure 7 there.
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Figure EC.1 Performance for the Mt/M/s +E2 fluid model with sinusoidal arrival-rate function.
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Figure EC.2 A comparison of the Mt/M/s+E2 fluid model with a simulation of the large-scale queueing system.


