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MANY-SERVER HEAVY-TRAFFIC LIMIT FOR QUEUES WITH
TIME-VARYING PARAMETERS1

BY YUNAN LIU AND WARD WHITT

North Carolina State University and Columbia University

A many-server heavy-traffic FCLT is proved for the Gt/M/st + GI
queueing model, having time-varying arrival rate and staffing, a general ar-
rival process satisfying a FCLT, exponential service times and customer aban-
donment according to a general probability distribution. The FCLT provides
theoretical support for the approximating deterministic fluid model the au-
thors analyzed in a previous paper and a refined Gaussian process approxima-
tion, using variance formulas given here. The model is assumed to alternate
between underloaded and overloaded intervals, with critical loading only at
the isolated switching points. The proof is based on a recursive analysis of
the system over these successive intervals, drawing heavily on previous re-
sults for infinite-server models. The FCLT requires careful treatment of the
initial conditions for each interval.

1. Introduction. This paper is a sequel to [12], in which we developed and
analyzed a deterministic fluid model approximating the Gt/GI/st + GI queue-
ing model, having a general arrival process with time-varying arrival rate (the ini-
tial Gt ), independent and identically distributed (i.i.d.) service times with a general
cumulative distribution function (c.d.f.) G (the first GI), a time-varying large num-
ber of servers (the st ) and customer abandonment from queue with i.i.d. patience
times with a general c.d.f. F (the final +GI). The fluid model was assumed to
alternate between intervals of underloading (UL) and overloading (OL). We con-
ducted simulation experiments showing that the fluid approximation is effective
for approximating individual sample paths of stochastic processes of very large
systems (e.g., with hundreds of servers) and the mean values of smaller systems
(e.g., with tens of servers, provided that these systems are not critically loaded or
too nearly so). See [2, 4, 6, 15, 18, 19] for background on methods to analyze the
performance of queues with time-varying arrival rates and their application.

The present paper establishes many-server heavy-traffic limits that provide
mathematical support for both the previous fluid approximation and a refined
Gaussian process approximation in the special case of exponential (M) service
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times. Based directly on the limit theorems here, we propose approximating the
time-varying number of the customers in system (including those in service and
those waiting in queue if any), Xn(t), by a Gaussian distribution for each t , in
particular,

Xn(t) ≈ nX(t) + √
nX̂(t)

d= N
(
nX(t), nσ 2

X̂
(t)

)
,(1.1)

where N(m,σ 2) denotes a Gaussian random variable with mean m and vari-
ance σ 2, X(t) is the deterministic fluid approximation proposed and analyzed pre-
viously in [12], and now supported by the functional weak laws of large numbers
(FWLLNs) in Theorems 4.1 and 5.1, while X̂(t) is a zero-mean Gaussian pro-
cess with variance σ 2

X̂
(t) ≡ Var(X̂(t)) obtained from the functional central limit

theorems (FCLTs) in Theorems 4.2, 4.3 and 5.1. Explicit formulas for the variance
function σ 2

X̂
(t) are given in Corollary 4.1 to go with the explicit expressions for the

fluid function X(t) determined previously in [12], and reviewed here in Section 3.
As in [12], we assume that the system alternates between UL intervals and OL

intervals, where the system loading is determined by the fluid model, which has
the same parameters; that is, the system is said to be UL (OL) if the fluid model is
UL (OL). Sufficient conditions for the fluid model to alternate between OL and UL
intervals were given in Section 3 of [11]. In the terminology of many-server heavy-
traffic limits [3], that means that the system alternates between quality-driven (QD)
UL regimes and efficiency-driven (ED) OL regimes. We assume that the system is
never critically loaded, that is, in the quality-and-efficiency-driven (QED) regime,
except at the isolated regime switching points. That allows us to apply previous re-
sults for infinite-server queues in [20] in our analysis of both UL and OL intervals.

Explicitly avoiding the QED regime runs counter to most of the extensive re-
search on many-server queues, for example, as in [3, 5, 7, 8, 22]. However, we
think the alternating UL and OL model can provide useful approximations be-
cause it provides mathematical simplification. This regime has engineering rele-
vance with time-varying arrivals because many systems are unable to dynamically
adjust staffing to respond adequately to time-varying arrival rates, and thus do ex-
perience periods of overloading. Hospital emergency rooms are examples.

The limits here extend previous limits for the Markovian Mt/M/st + M mod-
els with time-varying arrival rates and staffing in [15–17, 21]. To treat the model
with general patience distribution, we exploit limits for two-parameter stochastic
processes in infinite-server models in [20]; also see [10, 23]. Heavy-traffic limits
for the stationary G/M/s + GI model were established in [27], where references
on previous work can be found. A previous discrete-time many-server limit for
the Gt/GI/s + GI model with time-varying arrivals was established in [26]; in
contrast, here the limit is for a model with smooth parameters. In a sequel to this
paper, [13], we establish a FWLLN for the more general Gt/GI/st + GI model. It
remains to extend the FCLT to nonexponential service times.
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In [12] we saw that the analysis of the performance of the Gt/M/st + GI fluid
model depends critically on a careful analysis of the waiting time of the fluid at the
head of the line (that has been waiting in queue the longest). That fluid head-of-the-
line waiting time (HWT) w(t) was identified by carefully relating the new service
capacity becoming available due to service completion and changing capacity to
the flow into service from the queue. That led to an ordinary differential equation
(ODE) characterizing the deterministic HWT function w(t), proved in Theorem 3
of [12] and reviewed here in (3.6). Closely paralleling that ODE, we find that the
stochastic limit process for the FCLT-scaled HWT, Ŵ (t), is characterized by a
stochastic differential equation (SDE); see (4.9).

We primarily focus on the number in system Xn(t), as in (1.1), because that
process and the associated FCLT-scaled version [see (2.5) below] tends to be
better behaved than the number in queue, Qn(t), and the number in service,
Bn(t), and the associated FCLT-scaled versions of them. This is reflected by
the limit processes for the FCLT-scaled versions. For each t in the interior of
an OL interval, (Q̂(t), B̂(t)) = (X̂(t),0); for each t in the interior of an UL
interval, (Q̂(t), B̂(t)) = (0, X̂(t)); for each switching point t , (Q̂(t), B̂(t)) =
(X̂(t)+, X̂(t)−), where (x)+ ≡ max {x,0} and (x)− ≡ min {x,0}. Thus, in contrast
to X̂, which has continuous sample paths, the sample paths of Q̂ and B̂ are dis-
continuous and are typically neither right-continuous nor left-continuous at each
switching point.

Thus, even though limits can be obtained for FCLT-scaled versions of the num-
ber in queue, Qn(t), and the number in service, Bn(t), yielding approximations
such as Qn(t) ≈ nQ(t) + √

nQ̂(t), paralleling (1.1), we instead suggest approxi-
mating these processes by truncating the number in system Xn(t) with respect to
the time-varying service capacity sn(t); that is, we propose the alternative approx-
imations

Qn(t) = (
Xn(t) − sn(t)

)+ ≈ (
nX̄(t) + √

nX̂(t) − sn(t)
)+

,
(1.2)

Bn(t) = Xn(t) ∧ sn(t) ≈ (
nX̄(t) + √

nX̂(t)
) ∧ sn(t),

exploiting (1.1). This approximation is convenient because formulas are known for
the means and variances of such truncated Gaussian variables.

We study such refined engineering approximations based on the many-server
heavy-traffic limits established here, including (1.2), in a future paper [14]. How-
ever, immediate insight can be obtained by considering the special case of the
Mt/M/st + M model with abandonment rate θ equal to the service rate μ. As
discussed in Section 6 of [2], the number in system in this model is distributed
the same as in the associated Mt/M/∞ model, for which the number in system
at each time has a Poisson distribution. In this case, the approximation by (1.1)
is known to perform very well. In that context, clearly the approximations in (1.2)
perform well too, whereas even the direct approximation for the means, nQ(t) and
nB(t) do not perform well near critical loading.
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Here is how the rest of this paper is organized: in Section 2 we specify the
sequence of Gt/M/st +GI queueing models we consider and the associated scaled
stochastic processes for the FWLLN and the FCLT. In Section 3 we review the
Gt/M/st + GI fluid model, which arises as the limit in the FWLLN and provides
centering terms for the FCLT. In Section 4 we state the new results for each OL
interval, while in Section 5 we state the (easier) new results for each UL interval.
In Section 6 we prove the FWLLN and FCLT for OL intervals; in Section 7 we
prove two corollaries for OL intervals; finally, in Section 8 we prove the FWLLN
and FCLT for UL intervals. In order to confirm that the formulas for the variances
given in Corollary 4.1 are correct, thus providing practical confirmation for all
the results, we conduct simulation experiments of both large and small queueing
systems in Section 9. We conclude in Section 10 by discussing an extension with
extra

√
n terms in the arrival rates and staffing functions.

2. A sequence of Gt/M/st + GI models. In this paper we consider a se-
quence of Gt/M/st + GI queueing models indexed by n. Model n has a general
arrival process with time-varying arrival rate λn(t) ≡ nλ(t), i.i.d. exponential ser-
vice times with cumulative distribution function (c.d.f.) G(t) ≡ 1 − e−μt , a time-
varying number of servers sn(t) ≡ �ns(t)� [the least integer above ns(t)] and cus-
tomer abandonment from queue, where the patience times of successive customers
to enter queue are i.i.d. with general c.d.f. F , where we assume that F is differen-
tiable, with probability density function (p.d.f.) f with Fc(x) > 0 and f (x) > 0
for all x. Our scaling of the fixed functions λ and s induces the familiar many-
server heavy-traffic scaling; the functions λ and s are the arrival rate and staffing
level in the associated fluid model, assumed to be suitably smooth, as specified in
the next section. The arrival process, service times and patience times are mutu-
ally independent. New arrivals enter service immediately if there is a free server;
otherwise they join the queue, from which they enter service in order of arrival, if
they do not first abandon.

Let D ≡ D(I) be the usual space of right-continuous real-valued functions with
left limits on a subinterval I of R, endowed with the Skorohod J1 topology, which
for continuous limits reduces to uniform convergence over all compact subintervals
of I . Let ⇒ denote convergence in distribution [25]. Let Nn(t) count the number
of arrivals in [0, t]. We assume that the sequence of arrival processes {Nn} satisfies
a FCLT with time-transformed Brownian limit; that is,

N̂n(t) ≡ n−1/2(
Nn(t) − n�(t)

) ⇒ N̂(t) ≡ cλBλ

(
�(t)

)
in D(2.1)

as n → ∞, where Bλ is a standard Brownian motion (with the subscript λ indicat-
ing that it is associated with the arrival process), �(t) is the total arrival rate over
the interval [0, t], that is,

�(t) ≡
∫ t

0
λ(s) ds,(2.2)



382 Y. LIU AND W. WHITT

and c2
λ is an arrival-process variability parameter. A principal case is Nn being a

nonhomogeneous Poisson process for each n, in which case cλ = 1 in (2.1). Other
explicit arrival process models can be constructing from random or deterministic
time-changes of stationary processes (e.g., renewal processes) known to satisfy a
FCLT. For a rate-1 renewal process, c2

λ = σ 2
λ /m2

λ = σ 2
λ , where mλ = 1 is the mean

and σ 2
λ is the variance of an interrenewal time; see Section 7.3 of [25].

We will specify smoothness assumptions for the model data (λ, s,G,F ) in the
next section. These assumptions allow the staffing function s to decrease in OL
intervals. Thus, as discussed in Section 1 of [12], it is important to consider what
happens in the queueing system if the staffing must decrease when the service fa-
cility is full. Here we simply assume that the required number of customers are
forced out of the system whenever that happens, without having any future impact
on the system, that is, without altering the queue content or generating subse-
quent retrials. Since the service times are exponential, we need not pay attention
to which customers are forced to leave. However, in the next section we assume
that the staffing function is feasible for the fluid model (which can be achieved
since it is a deterministic system). We say a staffing function is feasible if no cus-
tomer is forced out of service (with unfinished business) when the staffing func-
tion decreases. Moreover, we make conditions ensuring that the staffing function is
asymptotically feasible for the sequence of stochastic models. Hence, any staffing
function infeasibility is asymptotically negligible.

Let Bn(t, y) [Qn(t, y)] denote the number of customers in service (queue) at
time t that have been so for time at most y. Let Bn(t) ≡ Bn(t,∞) [Qn(t) ≡
Qn(t,∞)], the total number of customers in service (queue). Let Xn(t) ≡ Bn(t)+
Qn(t), the total number of customers in the system. Let Wn(t) be the head-of-line
waiting time (HWT), that is, the elapsed waiting time for the customer at the head
of the line at time t (the customer who has been waiting the longest). Let Vn(t) be
the potential waiting time (PWT) at time t , that is, the virtual waiting time at time t

(the waiting time if there were a new arrival at time t) assuming that customer never
would abandon (but without actually altering any arrival’s abandonment behavior).
Let An(t) be the number of abandonments, and let Dn(t) be the number of depar-
tures (service completions) in the interval [0, t]. We can exploit flow conservation
to write

An(t) = Xn(0) + Nn(t) − Dn(t) − Xn(t), t ≥ 0.(2.3)

Let the associated FWLLN-scaled or fluid-scaled processes be

B̄n(t, y) ≡ n−1Bn(t, y), Q̄n(t, y) ≡ n−1Qn(t, y),

X̄n(t) ≡ n−1Xn(t), D̄n(t) ≡ n−1Dn(t),(2.4)

Ān(t) ≡ n−1An(t), t ≥ 0.
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The waiting times Wn(t) and Vn(t) are not scaled in the fluid limit. Let the associ-
ated FCLT-scaled processes be

B̂n(t, y) ≡ n−1/2(
Bn(t, y) − nB(t, y)

)
,

Q̂n(t, y) ≡ n−1/2(
Qn(t, y) − nQ(t, y)

)
,

X̂n(t) ≡ n−1/2(
Xn(t) − nX(t)

)
, D̂n(t) ≡ n−1/2(

Dn(t) − nD(t)
)
,(2.5)

Ân(t) ≡ n−1/2(
An(t) − nA(t)

)
, Ŵn(t, y) ≡ n1/2(

Wn(t) − w(t)
)
,

V̂n(t) ≡ n1/2(
Vn(t) − v(t)

)
,

where (B(t, y),Q(t, y),X(t),A(t),D(t),w(t), v(t)) is the vector of fluid model
performance functions, which will arise as the deterministic limit functions for the
associated FWLLN-scaled processes, already identified in [12].

Our objective is to (i) show that the FWLLN-scaled processes in (2.4) con-
verge in distribution to the previously studied deterministic fluid model quantities,
(ii) show that the associated FCLT-scaled processes in (2.5) converge in distribu-
tion to a nonstationary zero-mean Gaussian process and (iii) characterize the dy-
namics of this Gaussian process and identify its time-varying variance functions.

3. The associated deterministic fluid model. The associated deterministic
Gt/M/st + GI fluid model depends on the same model data as the Gt/M/st + GI
queueing model except for the arrival process. The fluid model depends on the
arrival process only through the arrival-rate function λ. Thus the fluid model nei-
ther captures the full distribution of the arrival processes nor the Brownian limit
in (2.1). [However, the limit in (2.1) does affect the FCLT.] The remaining func-
tions (λ, s,G,F ) specify an associated Gt/M/st + GI fluid model as studied in
[11, 12]. All components play an important role in its performance description,
including the c.d.f. F beyond its mean.

For the fluid model, G(x) is the proportion of any quantity of fluid that com-
pletes service by time x after it enters service, and F(x) is the proportion of any
quantity of fluid that abandons by time x after it enters the queue if it has not al-
ready entered service. We assume that the assumptions for the fluid model in [12]
are satisfied here. In [12] we uniquely characterize all the fluid performance func-
tions under the stated assumptions. We exploit that characterization here, so that
explains how all these assumptions are used. We conjecture that the limits here can
be extended by weakening the conditions, but we anticipate that will lead to more
general, but less tractable, limits in the FWLLN and FCLT, such as measure-valued
functions and stochastic processes, as in [7, 8].

Of special note is the smoothness assumption from [12]: we assume that the
functions �, s and F introduced above are differentiable with derivatives λ, ṡ and
f that are in the space Cpc, the subspace of D containing piecewise-continuous
functions, having only finitely many discontinuities in each bounded interval. For
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the FCLT in OL intervals, Theorem 4.2, we also assume that λ is differentiable as
well. In addition, we assume that Gc(x) ≡ 1−G(x) = e−μx , Fc(x) ≡ 1−F(x) >

0 for all x, λinf ≡ inf0≤u≤t λ(u) > 0 and sinf ≡ inf0≤u≤t s(u) > 0.
Consistently with [12], but contrary the terminology for fluid scaled processes

in (2.4), we will denote the fluid performance measures without a bar; thus B(t, y)

[Q(t, y)] denotes the fluid content in service (queue) at time t that has been so for
time at most y. These quantities have densities, that is,

B(t, y) =
∫ y

0
b(t, x) dx and Q(t, y) =

∫ y

0
q(t, x) dx.(3.1)

Since we have exponential service here, it suffices to focus on the total fluid content
in service B(t) ≡ B(t,∞). Let Q(t) ≡ Q(t,∞) and X(t) ≡ B(t)+Q(t). Let w(t)

be the head-of-line waiting time (HWT), called the boundary waiting time in [12];
let v(t) be the potential waiting time (PWT) of new fluid input at time t , both
defined essentially the same as Wn(t) and Vn(t) in the queueing model.

We assume that fluid model starts out underloaded with initial fluid content
X(0) = B(0), where necessarily B(0) ≤ s(0) and Q(0) = 0. Since the service-
time c.d.f. G is exponential, we make no assumption about the length of time that
initial fluid has been in service. We assume that the fluid model has only finitely
many switches between underloaded (UL) and overloaded (OL) intervals in any
bounded time interval; conditions for that property to hold are given in [11].

The OL and UL intervals are carefully defined in [12] (to which we refer for
details). In this paper, we impose the stronger assumption that the fluid model is
never critically loaded except at the finitely many switching points in any bounded
time interval. In particular, if [τ1, τ2] is a UL interval with switching times at its
endpoints, so that X(τi) = s(τi) for i = 1,2, then we require that X(t) < s(t) for
all t , τ1 < t < τ2. On the other hand, if [τ1, τ2] is a OL interval with switching
times at its endpoints, then we require that X(t) > s(t) for all t , τ1 < t < τ2.

The UL intervals are relatively elementary because then the fluid model is equiv-
alent to an associated infinite-capacity model. However, the OL intervals are more
complicated. First, as in [12], it is important to assume that the fluid staffing func-
tions s is feasible, that is, that its decreasing never forced fluid out of service. In
[12] we also show how to construct the minimum feasible staffing function greater
than or equal to any given staffing function.

Here we assume that the flow rate of fluid into service is strictly positive
throughout the OL interval [τ1, τ2]; that is, we assume that the rate fluid enters
service due to new service capacity becoming available satisfies

b(t,0) = s(t)μ + ṡ(t) ≥ binf > 0, τ1 ≤ t ≤ τ2.(3.2)

Together with the FWLLN, condition (3.2) implies that the probability the staffing
function sn(t) is feasible for the stochastic model throughout the interval [τ1, τ2]
converges to 1 as n → ∞.
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We now review the fluid performance functions during an OL interval. From
Section 6 of [12], we know that with GI service the fluid density in an overloaded
interval requires solving a fixed point equation, but with M service the service
content density during an OL interval is given explicitly by

b(t, x) = b(t − x,0)Gc(x)1{x≤t} + b(0, x − t)
Gc(x)

Gc(x − t)
1{x>t},(3.3)

where Gc(x) ≡ 1 − G(x) ≡ e−μx , b(t,0) = ṡ(t) + s(t)μ, the rate fluid enters ser-
vice at time t , and b(0, x) is the initial service content density, part of the initial
data.

In [12] the queue during an overloaded interval is analyzed by focusing on the
fluid content density q̃(t, x) assuming no flow into service. Paralleling (3.3), as-
suming an initially empty queue, it can be written explicitly as

q̃(t, x) = λ(t − x)F c(x)(3.4)

for x ≤ t , which is all we consider. By Corollary 2 of [12], the queue content
density itself is

q(t, x) = q̃(t, x)1{x≤w(t)} = λ(t − x)F c(x)1{x≤w(t)},(3.5)

so that q(t, x) is simply q̃(t, x) truncated in the second variable at its right bound-
ary, the HWT w(t).

By Theorem 3 of [12], the fluid HWT w is the unique solution to the ODE

ẇ(t) ≡ dw

dt
(t) = 1 − b(t,0)

q̃(t,w(t))
= 1 − ṡ(t) + s(t)μ

λ(t − w(t))F c(w(t))
,(3.6)

where b(t,0) = ṡ(t) + s(t)μ is the rate that fluid enters service. Our assumptions
imply that both the numerator and the denominator in the fraction in (3.6) are
strictly positive; thus −∞ < ẇ(t) < 1 for all t in the OL interval. The ODE in
(3.6) is equivalent to the integral equation

w(t) =
∫ t

0

(
1 − b(u,0)

q̃(u,w(u))

)
du, t ≥ 0.(3.7)

By Theorem 5 of [12], the fluid PWT v(t) is as the unique solution of the equa-
tion

v
(
t − w(t)

) = w(t) or, equivalently v(t) = w
(
t + v(t)

)
,(3.8)

which can be solved given the BWT w. Because of assumption (3.2), v is a contin-
uous function. Indeed, both w and v are differentiable except at only finitely many
points. From (3.8), we see that the derivatives are related by

v̇
(
t − w(t)

) = ẇ(t)

1 − ẇ(t)
or, equivalently v̇(t) = ẇ(t + v(t))

1 − ẇ(t + v(t))
,(3.9)

which is bounded because of condition (3.2).
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Since the service is exponential and the service facility is full in an OL inter-
val, the total fluid departure (service completion) in [0, t] is D(t) = S(t)μ, where
S(t) ≡ ∫ t

0 s(u) du. Finally during an OL interval, the fluid abandonment over [0, t]
is

A(t) =
∫ t

0
α(s) ds where α(s) =

∫ ∞
0

Q(s, x)hF (x) dx(3.10)

with hF (x) ≡ f (x)/F c(x), the hazard rate function associated with the c.d.f. F ,
which is finite for all x because f is an element of D and Fc(x) > 0 for all x.

4. Heavy-traffic limits during an overloaded interval. Recall that the sys-
tem is said to be OL or UL if the associated fluid model is OL or UL, which
depends on the model parameters. The definitions were given in Section 3. We es-
tablish the many-server heavy-traffic limits over successive UL and OL intervals,
using the limit at the right endpoint of the previous interval to provide the limit for
the initial conditions needed in the successive interval, for example, as in [9]. As in-
dicated in the last section, we assume that the fluid model is initially underloaded.
Thus there are UL intervals [τ2i , τ2i+1], i ≥ 0, and OL intervals [τ2i+1, τ2i+2],
i ≥ 0, with some finite number of these covering some overall finite time interval
of interest [0, T ]. We consider these intervals recursively, referring to each interval
in question as [0, τ ]. It should be shifted to the appropriate time.

For the first UL interval, we assume that we have a limit for the initial condi-
tions, in particular,

X̄n(0) ⇒ X(0) and X̂n(0) ⇒ X̂(0) in R as n → ∞,(4.1)

where X(0) is deterministic with X(0) ≤ s(0). For all subsequent intervals, UL
and OL, the limit in (4.1) will hold with X(0) = s(0) as a consequence of the limit
in the previous subinterval.

We first consider the more challenging case of an overloaded interval [0, τ ],
assuming limits for the initial values as in (4.1), with X(0) = s(0). We first state
the FWLLN. The proofs are given afterward in later sections. Unlike [12], here
we have assumed that the rate of the flow into service b(t,0) = s(t)μ + ṡ(t) >

binf(τ ) > 0, so that the fluid PWT v satisfying (3.8) is continuous. Let Dk denote
the k-fold product space of D with the associated product topology.

THEOREM 4.1 (FWLLN for each OL interval). Consider an OL interval [0, τ ]
with no critical loading except at the endpoints. Suppose that (4.1) holds with
X(0) = s(0). Then

(N̄n, D̄n, X̄n, Q̄n, B̄n, Ān,Wn,Vn) ⇒ (�,D,X,Q,B,A,w,v)(4.2)

in D
8([0, τ ]) as n → ∞, where the converging processes are defined in Section 2,

the limit (�,D,X,Q,B,A,w,v) is the vector of continuous deterministic fluid-
model functions defined in Section 3 and characterized in [12], having Q ≥ 0,
X = Q + s and B = s.
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We next state the associated FCLT establishing the Gaussian refinement to the
fluid approximation in an OL interval. As indicated in the introduction, we primar-
ily focus on the number in system, Xn(t). We express the limit for Xn(t) with the
general initial conditions in (4.1) in terms of an associated limit for the special case
in which all servers are busy, and the queue is empty. Let X∗

n(t) be the number in
system for the special initial condition in which all servers are busy and the queue
is empty at time 0, that is, X∗

n(0) = sn(0) = �n · s(0)�. Let the other processes
associated with this special initial condition be defined similarly. We now assume
that the arrival rate function λ is differentiable in order to work with the partial
derivative

q̃x(t, x) ≡ ∂q̃(t, x)

∂x
.(4.3)

Let B denote a standard (drift 0, diffusion coefficient 1) Brownian motion (BM).
[Recall that B(t) is already used to denote the fluid content in service.] Let e denote
the identify function in D, that is, e(t) = t .

THEOREM 4.2 (FCLT for each OL interval). Consider an OL interval [0, τ ]
with no critical loading except at the endpoints. Assume that the arrival rate func-
tion λ is differentiable and the patience p.d.f. f is continuous. Suppose that (4.1)
holds with X(0) = s(0). Then(

N̂∗
n , D̂∗

n, X̂∗
n, Q̂

∗
n, B̂

∗
n, Ŵ ∗

n , V̂ ∗
n , Â∗

n, X̂n

)
(4.4)

⇒ (
N̂∗, D̂∗, X̂∗, X̂∗,0e, Ŵ ∗, V̂ ∗, Â∗, X̂

)
in D

9([0, τ ]),
where the superscript ∗ denotes the special initial condition with all servers busy
and an empty queue, the converging processes are defined in Section 2, and the
limit process with the special initial condition, (N̂∗, D̂∗, X̂∗, X̂∗, Ŵ ∗, V̂ ∗, Â∗), is a
mean-zero Gaussian process having continuous sample paths. If X̂(0) is Gaussian
with mean 0, then X̂ is a mean-zero Gaussian process too. The limit processes are
N̂∗(t) ≡ cλBλ(�(t)) and D̂∗(t) ≡ Bs(D(t)), while

X̂(t) ≡ X̂∗(t) + X̂(0)F c
w(t), X̂∗(t) ≡

3∑
i=1

X̂∗
i (t),

F c
w(t) ≡ e− ∫ t

0 hF (w(u)) du, X̂∗
i (t) ≡

∫ t

0
Ki(t, u) dBi(u),

Ŵ ∗(t) ≡
3∑

i=1

Ŵ ∗
i (t), Ŵ ∗

i (t) ≡
∫ t

0
Ji(t, u) dBi(u),(4.5)

V̂ ∗(t) ≡ Ŵ ∗(t + v(t))

1 − ẇ(t + v(t))
,

Â∗(t) ≡ N̂∗(t) − D̂∗(t) − X̂∗(t), t ≥ 0,
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where hF (x) ≡ f (x)/F c(x) is the patience hazard rate, w(t) is the fluid HWT,
v(t) is the fluid PWT, B1 ≡ Bλ, B2 ≡ Bs and B3 ≡ Ba are independent (standard)
BMs,

H(t, u) ≡ exp
{∫ t

u
h(v) dv

}
,

h(t) ≡ b(t,0)q̃x(t,w(t))

q̃2(t,w(t))
= (

1 − ẇ(t)
) q̃x(t,w(t))

q̃(t,w(t))
(4.6)

= (
1 − ẇ(t)

)(−λ̇(t − w(t))

λ(t − w(t))
− hF

(
w(t)

))

and

Ji(t, u) ≡ Ii(u)H(t, u),

I1(u) ≡ Iλ(u) ≡ cλ

√
Fc(w(u))b(u,0)

q̃(u,w(u))
,

Ī1(u) ≡ cλF
c(w(u))b(u,0)

q̃(u,w(u))
,

(4.7)
K1(t, u) ≡ Kλ(t, u)

≡ cλF
c(t − u)

√
λ(u)1{t−w(t)≤u≤t}

+ q̃
(
t,w(t)

)√
λ(u)Ī1

(
L−1(u)

)
H

(
t,L−1(u)

)
1{0≤u≤t−w(t)},

I2(u) ≡ Is(u) ≡ −
√

b(u,0) − ṡ(u)

q̃(u,w(u))
,

K2(t, u) ≡ Ks(t, u) ≡ q̃
(
t,w(t)

)
Js(t, u)

= −√
b(t,0) − ṡ(t)H(t, u),

I3(u) ≡ Ia(u) ≡ −
√

F(w(u))b(u,0)

q̃(u,w(u))
,

(4.8)

Ī3(u) ≡ −
√

Fc(w(u))F (w(u))

q̃(u,w(u))
,

K3(t, u) ≡ Ka(t, u)

≡ −√
λ(u)F (t − u)F c(t − u)1{t−w(t)≤u≤t}

+ q̃
(
t,w(t)

)√
λ(u)Ī3

(
L−1(u)

)
H

(
t,L−1(u)

)
1{0≤u≤t−w(t)}

and L−1 is the inverse of the function L(t) = t − w(t). The limit process Ŵ ∗ is
also characterized as the unique solution to the SDE

dŴ ∗(t) = h(t)Ŵ ∗(t) dt + I (t) dB(t)(4.9)
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for B a BM, h(t) in (4.7) and

I (t)2 ≡
3∑

i=1

I 2
i (t)

(4.10)

= b(t,0) − ṡ(t) + [F(w(t)) + c2
λF

c(w(t))]b(t,0)

q̃2(t,w(t))
.

REMARK 4.1 (Additivity of variability). It is significant that the three sources
of randomness appear additively (independently) in the limit process (X̂∗, Ŵ ∗)
in (4.5). The arrival process variability is captured by (X̂∗

1, Ŵ ∗
1 ) and the BM B1 ≡

Bλ; the service-time variability is captured by (X̂∗
2, Ŵ ∗

2 ) and the BM B2 ≡ Bs ;
while the patience-time variability is captured by (X̂∗

3, Ŵ ∗
3 ) and the BM B3 ≡

Ba , where the three BMs are mutually independent. Moreover, the four separate
sources of randomness, including X̂(0) for the initial condition in (4.1), which is
independent of (B1,B2,B3), appear additively in the limit process X̂.

This nice separation of the components of the variability can be understood by
considering the two-parameter process Qn(t, y), which depicts the number of cus-
tomers in the queue at time t with elapsed patience time at most y in model n

during an OL interval. The arrivals influence this process at y = 0, the lower limit
of y, because new arrivals have elapsed patience time 0. Because of the FCFS ser-
vice discipline, the flow into service occurs from the upper limit of y, at y = Wn(t);
the customers enter from the head of the queue; that is, those who have waited the
longest enter first. Finally, the abandonment influences the process throughout the
entire region and is thus not primarily determined by the behavior at the extreme
endpoints. In particular, the abandonment rate for a customer with elapsed patience
time x is precisely the patience hazard rate hF (x) ≡ f (x)/F c(x), which operates
at time t for all x satisfying 0 < x < Wn(t) and thus 0 < x < w(t) in the fluid
limit.

Except for the process X̂n(t), representing the scaled number in system, Theo-
rem 4.2 states conclusions about the various processes for the special initial con-
dition, with all servers busy but no queue. From Theorem 4.2, we can deduce a
corresponding FCLT for the other processes with the general initial condition in
(4.1), provided that we exclude the interval endpoints. Recall that convergence to
a continuous limit in D

k((0, τ )) is equivalent to uniform convergence over each
compact subinterval [t1, t2] with 0 < t1 < t2 < τ .

THEOREM 4.3 [Limits for other processes under (4.1)]. Under the assump-
tions of Theorem 4.2, all the processes with the initial conditions in (4.1) converge
in the space D((0, τ )); in particular,

(X̂n, Q̂n, B̂n, Ŵn, V̂n, Ân) ⇒ (X̂, X̂,0e, Ŵ , V̂ , Â) in D
6((0, τ )),(4.11)
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where X̂ is given above in (4.5),

V̂ (t) ≡ V̂ ∗(t) + X̂(0)F c
w(t + v(t))

s(t + v(t))μ + ṡ(t + v(t))

= q̃(t + v(t), v(t))Ŵ ∗(t + v(t)) + X̂(0)F c
w(t + v(t))

s(t + v(t))μ + ṡ(t + v(t))
,

(4.12)

Ŵ (t) ≡ (
1 − ẇ(t)

)
V̂

(
t − v(t)

) = Ŵ ∗(t) + X̂(0)F c
w(t)

q̃(t,w(t))
,

Â(t) ≡ N̂∗(t) − D̂∗(t) − X̂(t) + X̂(0).

At the interval endpoints t = 0 and t = τ , there is the limit in R
4

(
X̂n(t), Q̂n(t), B̂n(t), V̂n(t)

) ⇒
(
X̂(t), X̂(t)+, X̂(t)−,

X̂(t)+

s(t)μ + ṡ(t)

)
.(4.13)

Consequently, for t an interval endpoint, if P(X̂(t) < 0) > 0, then there is no
FCLT for Q̂n and V̂n in D([0, τ )); if P(X̂(t) > 0) > 0, then there is no FCLT for
B̂n in D([0, τ )).

REMARK 4.2 (Switching points). We get limits like (4.13) above and (5.10) in
Theorem 5.1 at all switching points. However, unlike the limit process X̂(t) for the
scaled number in system, X̂n(t), which has continuous sample paths, the resulting
limit processes for the other scaled processes Q̂n(t), B̂n(t) and V̂n(t), obtained by
combining (4.11) and (4.13), will typically have sample paths that are neither left
continuous nor right continuous at the switching points. In particular, the failure to
have convergence at the left endpoint 0 in (4.11) occurs because, under the stated
condition, the limit process would need to have a discontinuity point at the left
endpoint, which is not allowed in the space D. If the switching point occurred at
time τ within a larger interval, then convergence could be obtained in the open
interval (0,∞) in the M1 topology, after redefining the limits at the switching
points, but not the J1 topology; see Chapter 12 of [25]. In any case, there are
limits at the switching points, but the limit process obtained for each t typically
has discontinuities at all switching points. However, this difficulty does not occur
for the scaled number in system X̂n(t); it has a continuous limit process, as given
in Theorem 4.2.

Practical engineering approximations can be based on the resulting Gaussian
approximations, for which we need the time-dependent variances, to go with
the time-varying means provided by the fluid limit. The key process is X̂, so
we are primarily interested in the variance Var(X̂(t)), denoted by σ 2

X̂
(t). Let

σ 2
X̂∗(t) ≡ Var(X̂∗(t)) and σ 2

X̂∗,Ŵ ∗(t) ≡ Cov(X̂∗(t), Ŵ ∗(t)), and similarly for the

other processes.
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COROLLARY 4.1 (Variances). Consider an OL interval [0, τ ] satisfying (4.1).
The variances and covariances are

σ 2
X̂
(t) = σ 2

X̂∗(t) + Var
(
X̂(0)

)(
Fc

w(t)
)2

,

σ 2
X̂∗(t) =

3∑
i=1

σ 2
X̂∗

i

(t) =
∫ t

0

3∑
i=1

Ki(t, u)2 du,

=
∫ t

t−w(t)
λ(s)F c(t − s)

(
C2

λF c(t − s) + F(t − s)
)
ds

+ q̃2(
t,w(t)

)
σ 2

Ŵ ∗(t),

σ 2
Ŵ ∗(t) =

3∑
i=1

σ 2
Ŵ ∗

i

(t) =
∫ t

0

3∑
i=1

Ji(t, u)2 du =
∫ t

0
H 2(t, u)I 2(u) du,

σ 2
V̂ ∗(t) =

σ 2
Ŵ ∗(t + v(t))

(1 − ẇ(t + v(t)))2 ,

σ 2
V̂
(t) = σ 2

V̂ ∗(t) + Var(X̂(0))(F c
w(t + v(t)))2

(s(t + v(t))μ + ṡ(t + v(t)))2 ,

σ 2
Ŵ

(t) = (
1 − ẇ(t)

)2
σ 2

V̂

(
t − v(t)

)

= σ 2
Ŵ ∗(t) + Var(X̂(0))(F c

w(t))2

q̃(t,w(t))2 ,

σ 2
X̂∗,Ŵ ∗(t) =

3∑
i=1

σ 2
X̂∗

i ,Ŵ ∗
i

(t) =
∫ t

0

3∑
i=1

Ji(t, u)Ki(t, u) du,

where Ki , Ji , H and I are given in (4.7) and Fc
w is given in (4.5).

5. Heavy-traffic limits during an underloaded interval. We now consider
the easier case of the UL intervals. As before, we assume convergence of the initial
values, as in (4.1). Clearly, X̄n(0) ≥ 0, so that necessarily X(0) ≥ 0. For the ini-
tial interval, we can have any nonnegative deterministic value for X(0), provided
that X(0) ≤ s(0). For all subsequent UL intervals, the limit over the previous OL
interval will force X(0) = s(0).

As before, we focus on Xn instead of Bn, because after the initial interval we can
have Xn(0) > sn(0), whereas we necessarily have Bn(0) ≤ sn(0). The important
observation here is that, under our assumption that there is no critically loading in
the fluid model except at the switching points, in each UL interval the processes
X̄n and X̂n are asymptotically equivalent to the associated processes X̄∞

n and X̂∞
n

in the associated Gt/M/∞ infinite-server model with the same arrival process,
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service times and initial conditions, X∞
n (0) ≡ Xn(0). Thus we can apply many-

server heavy-traffic (MSHT) limits established for that model in [20]; also see
[1, 10, 23]. (Previous references suffice here; the full force of [20] is only needed
to treat the more general Gt/GI/∞ model associated with OL intervals.)

For the infinite-server model, we can separate the new arrivals from the cus-
tomers initially in the system at time 0. Since there are infinitely many servers,
these customers do not interact when they enter service. Moreover, by the Brown-
ian limit in FCLT in (2.1), the arrivals after any time t are asymptotically indepen-
dent of the arrivals before that time t . To treat the new arrivals, we can assume that
the system starts empty. We use a subscript e to denote quantities associated with
the system starting empty, and we use the subscript z to denote quantities associ-
ated with the initial content at time zero. Let ‖ · ‖a,b denote the uniform norm over
the interval [a, b], with ‖ · ‖b also denoting the case in which a = 0.

THEOREM 5.1 (FWLLN and FCLT for UL interval). Consider a UL interval
[0, τ ] under condition (4.1), allowing no critical loading except at the interval
endpoints. Then

X̄n ⇒ X ≡ Xe + Xz and X̂n ⇒ X̂ ≡ X̂e + X̂z in D
([0, τ ])(5.1)

as n → ∞, where

Xe(t) =
∫ t

0
Gc(t − s)λ(s) ds and Xz(t) ≡ X(0)Gc(t), t ≥ 0,(5.2)

and X̂e and X̂z are independent stochastic processes, with X̂e being a mean-zero
Gaussian diffusion process satisfying the (SDE)

dX̂e(t) = −μX̂e(t) dt + cλ dBλ

(
�(t)

) − dBs

(
μ

∫ t

0
Xe(u)du

)

(5.3)
d= −μX̂e(t) dt +

√
c2
λλ(t) + μXe(t) dB(t),

where Bλ, Bs and B are independent standard BMs and X̂(0) ≡ 0. The limit pro-
cess associated with the initial conditions is

X̂z(t) ≡ X̂(0)Gc(t) + √
X(0)B0(

Gc(t)
)
,(5.4)

where B0 is a standard Brownian bridge independent of X̂(0) and the BMs in (5.3).
Equivalently, the limit process X̂ satisfies the single SDE

dX̂(t) = −μX̂(t) dt + cλ dBλ

(
�(t)

) − dBs

(
μ

∫ t

0
X(u)du

)

(5.5)
d= −μX̂(t) dt +

√
c2
λλ(t) + μX(t) dB(t),

where X̂(0) is given in (4.1).
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If X̂(0) is a mean-zero Gaussian random variable, then X̂z and X̂ are mean-zero
Gaussian processes with σ 2

X(t) ≡ Var(X̂(t)) = σ 2
e (t) + σ 2

z (t),

σ 2
e (t) ≡ Var

(
X̂e(t)

)
(5.6)

= (
c2
λ − 1

) ∫ t

0

(
Gc(t − s)

)2
λ(s) ds +

∫ t

0
Gc(t − s)λ(s) ds

and

σ 2
z (t) ≡ Var

(
X̂z(t)

) = X(0)G(t)Gc(t) + Var
(
X̂(0)

)(
Gc(t)

)2
.(5.7)

In addition, ‖B̄n − X̄n‖τ ⇒ 0, so that

(X̄n, B̄n, Q̄n) ⇒ (X,X,0e) in D
3([0, τ ]) as n → ∞,(5.8)

while, restricted to the open interval (0, τ ),

(X̂n, B̂n, Q̂n) ⇒ (X̂, X̂,0e) in D
3((0, τ )).(5.9)

At the interval endpoints t = 0 and t = τ ,
(
X̂n(t), B̂n(t), Q̂n(t)

) ⇒ (
X̂(t), X̂(t)−, X̂(t)+

)
in R

3.(5.10)

Consequently, the limit process X̂(t) for the scaled number in system X̂n(t) has
continuous sample paths, whereas the limit processes for the scaled number in
queue and in service, Q̂n(t) and B̂n(t), typically have sample paths that are neither
left continuous nor right continuous at the switching points. Thus, if X(0) = s(0)

and P(X̂(0) < 0) > 0, then there is no FCLT for Q̂n in D([0, τ )); if X(0) = s(0)

and P(X̂(0) > 0) > 0, then there is no FCLT for B̂n in D([0, τ )).

The remainder of this paper is concerned with proving all the stated results.

6. Proofs of Theorems 4.1 and 4.2 for overloaded intervals. The proof of
Theorems 4.1 and 4.2 is rather long, so we start by giving a brief overview. As in
Theorem 4.2, we focus on the number in system, Xn(t). To do so, it is convenient to
first consider the number in system during the OL interval starting with all servers
busy and an empty queue. Hence, we will initially consider the OL interval under
this special initial condition. We will then establish the limit for Xn(t) with general
initial conditions in Section 6.8. We do not use the notation with the superscript ∗
until Section 6.8.

In Section 6.1 we show that any idleness right after time 0 is asymptotically
negligible, implying that the departure process is asymptotically equivalent to a
nonhomogeneous Poisson process with the rate s(t)μ. In Section 6.2 we state pre-
liminary results for the queue-length process ignoring all flow into service; these
results follow directly from the infinite-server results in [20]. In Section 6.3 we
establish important representations for the queue-length process during the OL
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intervals, allowing flow into service. In Section 6.4 we show that many-server
heavy-traffic limits for the queue-length process follow from corresponding limits
for the HOL waiting times. In Section 6.5 we establish an important representa-
tion for the HOL waiting times. In Sections 6.6 and 6.7, respectively, we exploit
the results above to prove the FWLLN and the FCLT, still under the special initial
condition. Finally, in Section 6.8 we prove that corresponding limits hold for the
general initial condition in (4.1).

6.1. Arrivals and departures with the special initial condition. We start by
considering the special initial condition with all servers busy and an empty queue.
Since we are in an OL interval with �(t) > D(t) for all t , 0 < t < τ , with the
initial net input rate to service λ(0) − s(0)μ − ṡ(0) > 0 and the abandonment
hazard rate bounded above, even though some servers could become idle shortly
after time 0, all servers become busy and remain busy throughout an interval
[t1,n, t2] for 0 < t1,n = O(1/

√
n) < t2 < τ . Thus there are at most O(

√
n) empty

servers for a period of only O(1/
√

n). Thus, the total service completion pro-
cess differs from the nonhomogeneous Poisson process with rate nD(t) by only
O(

√
n)×O(1/

√
n) = O(1) as n → ∞. Similar reasoning also applies at the right

endpoint τ . Hence, we can conclude that the departure (service completion) pro-
cess satisfies a joint FWLLN with the arrival process of the form

(
N̄n(t), D̄n(t)

) ⇒ (
�(t),D(t)

)
in D

2([0, τ ])(6.1)

and a corresponding joint FCLT,
(
N̂n(t), D̂n(t)

) ⇒ (
N̂(t), D̂(t)

)
in D2([0, τ ])

(6.2)
where N̂(t) ≡ cλBλ

(
�(t)

)
and D̂(t) ≡ Bs

(
D(t)

)
, t ≥ 0,

with Bλ and Bs being two independent BMs.
As a consequence of the results above, we determine (relatively trivial) limits

for the number in service, in particular,

B̄n ⇒ s and B̂n ⇒ 0e in D
([0, τ ]) as n → ∞.(6.3)

As a consequence, we deduce for the number in queue that∥∥X̄n − (Q̄n + s)
∥∥
τ ⇒ 0 and ‖X̂n − Q̂n‖τ ⇒ 0 as n → ∞.(6.4)

Hence, to establish limits for X̄n and X̂n in D([0, τ ]), it suffices to focus on Q̄n

and Q̂n, which is what we do in the following subsections.

6.2. The queue length ignoring flow into service. To study the fluid model in
overloaded intervals, in [12] we introduced the fluid function q̃(t, x), which is the
fluid content density in queue, disregarding the flow into service, that is, under
the condition that the flow into service is turned off. It is convenient to do the
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same in order to develop stochastic refinements. Let Q̃n(t, y) be the two-parameter
stochastic process giving the number in queue in model n at time t that have been
so for at most time y, under the condition that the flow into service is turned off.
Until Section 6.8, we have the special initial conditions with all servers busy and
an empty queue.

When we turn off all flow into service, the number in service in the Gt/M/st +
GI queueing model with our special initial condition is asymptotically equiva-
lent to the number in the associated Gt/GI/∞ queueing model, starting empty,
where the abandonment c.d.f. F plays the usual role of the service-time c.d.f. in
the infinite-server model. Hence, we consider the stochastic process Q̃n(t, y) in
the queueing model, disregarding flow into service. Thus, we can apply the FCLT
for the Gt/GI/∞ queueing model established by [20].

We exploit the representation of Q̃n(t, y) from [20]. Let 1A(t) be the indicator
function of the set A, that is, 1A(t) = 1 if t ∈ A and 0 otherwise. First, we can
write

Q̃n(t, y) =
Nn(t)∑

i=Nn((t−y)−)+1

1
(
τn
i + ηi > t

)
, t ≥ 0,0 ≤ y ≤ t,(6.5)

where τn
i is the ith arrival time, ηi is the ith patience time (the patience time

of the arrival at τn
i ) and Nn(t) is the arrival counting process in model n. The

representation in (6.5) is valid because the first Nn((t − y)−) arrivals will have
come before time t . (The limit process will have continuous sample paths, so that
the consequence of an arrival exactly at time t is asymptotically negligible.) Hence,
the sum in (6.5) counts all arrivals in the interval [t − y, t] who will not have
abandoned by time t .

Following [10], the next step in [20] is to obtain an alternative representation
exploiting the sequential empirical process associated with the successive patience
times,

K̄n(t, y) ≡ 1

n

�nt�∑
i=1

1(ηi ≤ y), t ≥ 0, y ≥ 0.(6.6)

In particular, representation (6.5) is equivalent to the alternative representation

Q̃n(t, y) ≡ n

∫ t

t−y

∫ ∞
0

1(x + s > t) dK̄n

(
N̄n(s), x

)
(6.7)

for t ≥ 0 and 0 ≤ y ≤ t . Representation (6.7) allows us to exploit the limits
K̄n(t, x) ⇒ tF (x) and

K̂n(t, x) ≡ √
n
(
K̄n(t, x) − F(x)

) ⇒ K̂(t, x) ≡ U
(
t,F (x)

)
(6.8)

in D([0,∞),D([0,1],R)), where the limit K̂ is a deterministic transformation of
the standard Kiefer process U(t, x).
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From Lemma 2.1 of [20], we obtain the alternative representation

Q̃n(t, y) ≡ Q̃n,1(t, y) + Q̃n,2(t, y) + Q̃n,3(t, y),

Q̃n,1(t, y) ≡ √
n

∫ t

t−y
F c(t − s) dN̂n(s),

(6.9)

Q̃n,2(t, y) ≡ √
n

∫ t

t−y

∫ ∞
0

1(x + s > t) dR̂n(s, x),

Q̃n,3(t, y) ≡ n

∫ t

t−y
F c(t − s)λ(s) ds,

where, just as in (2.16) of [20],

R̂n(t, y) ≡ √
nK̄n

(
N̄n(t), y

) − N̂n(t)F (y) − √
n�(t)F (y)(6.10)

with K̄n(t, y) being the sequential empirical process in (6.6).
Thus, from [20] and (6.2), it follows that(

Ẑn,1(t, y), Ẑn,2(t, y)
) ≡ n−1/2(

Q̃n,1(t, y), Q̃n,2(t, y)
)

(6.11)
⇒ (

Ẑ1(t, y), Ẑ1(t, y)
)

in D
2([0, τ ],D([0,∞),R

))
,

jointly with the limit in (6.2), where

Ẑ1(t, y) ≡
∫ t

t−y
F c(t − s) dBλ

(
�(s)

)
,

(6.12)

Ẑ2(t, y) ≡
∫ t

t−y

∫ t

0
1(x + s > t) dR(s, x)

with Bλ being a BM and

R(t, y) ≡K
(
�(t), y

)
,(6.13)

where K(t, y) ≡ U(t,F (y)) and U(t, x) is the standard Kiefer process, with
(K,R) independent of Bλ. As a consequence, by the continuous mapping theo-
rem with addition,

Ẑn ≡ Ẑn,1 + Ẑn,2 ⇒ Ẑ1 + Ẑ2 in D
([0, τ ],D([0,∞),R

))
(6.14)

for Ẑi in (6.12).
From (6.12) and (6.13), we see that the limit process Ẑ1 in (6.11) depends on the

randomness in the arrival process through the BM Bλ, while the limit process Ẑ2
in (6.11) depends on the randomness in the patience times through R, and thus the
Kiefer process K, associated with the abandonment times. Since flow into service
has not yet been considered, the BM Bs does not appear yet. We will exploit this
established convergence in (6.11) in order to establish our desired FWLLN and
FCLT.

6.3. Representation of the queue-length process. We now obtain a representa-
tion of the queue-length process Qn(t) in this overloaded interval, where now we
are allowing the usual flow into service. We do so by modifying the representation
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for Q̃n(t, y) constructed above. In particular, paralleling (6.5), for t > 0, we obtain
the representation

Qn(t) = Q̃n

(
t,Wn(t)

) =
Nn(t)∑

i=Nn((t−Wn(t))−)+1

1
(
τn
i + ηi > t

)
, t > 0.(6.15)

We could also obtain a corresponding representation for the two-parameter pro-
cess Qn(t, y), as in (6.5), but here we focus on the one-parameter processes. The
FCFS service discipline is crucial for obtaining representation (6.15); it ensures
that customers enter service from the head of the line. Representation (6.15) does
not tell the whole story, however, because the HOL waiting time Wn(t) remains to
be determined. Moreover, among the first Nn((t − Wn(t))−) arrivals, (6.15) does
not show which entered service and which abandoned.

Nevertheless, paralleling (6.9) above, we obtain the alternative representation

Qn(t) ≡ Qn,1(t) + Qn,2(t) + Qn,3(t),

Qn,1(t) ≡ √
n

∫ t

t−Wn(t)
F c(t − s) dN̂n(s),

(6.16)

Qn,2(t) ≡ √
n

∫ t

t−Wn(t)

∫ ∞
0

1(x + s > t) dR̂n(s, x),

Qn,3(t) ≡ n

∫ t

t−Wn(t)
F c(t − s)λ(s) ds, t > 0,

where R̂n is given in (6.10).

6.4. Limits for Q̂n given limits for Ŵn. Given limits Wn ⇒ w and Ŵn ⇒ Ŵ

in D([0, τ ]) for Ŵn in (2.5), where w is the differentiable fluid HWT satisfying the
ODE in (3.6) and Ŵ has continuous sample paths, which we will establish below,
we can obtain limits for Q̄n and Q̂n in D([0, τ ]) directly from the representation
in (6.16) and the limits in (6.11) by applying the continuous mapping theorem. In
particular,

Q̄n,i(t) ≡ n−1Qn,i(t) ⇒ (0e)(t) for i = 1,2,
(6.17)

Q̄n,3(t) ≡ n−1Qn,3(t) ⇒ Q3(t) ≡
∫ t

t−w(t)
λ(s)F c(t − s) ds

in D([0, τ ]) and

Q̂n,1(t) ≡ n−1/2Qn,1(t)

⇒ Q̂1(t) ≡ Cλ

∫ t

t−w(t)
F c(t − s) dB̃λ

(
�(s)

)
(6.18)

≡ Cλ

∫ t

t−w(t)
F c(t − s)

√
λ(s) dBλ(s),
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Q̂n,2(t) ≡ n−1/2Qn,2(t)

⇒ Q̂2(t) ≡
∫ t

t−w(t)

∫ t

0
1(x + s > t) dR(s, x)

(6.19)
d= −

∫ t

t−w(t)

√
F(t − s)F c(t − s) dB̃a

(
�(s)

)

d= −
∫ t

t−w(t)

√
F(t − s)F c(t − s)λ(s) dBa(s),

Q̂n,3(t) ≡ n−1/2(
Qn,3(t) − nQ(t)

) ⇒ Q̂3(t) ≡ q
(
t,w(t)

)
Ŵ (t),

Q̂n(t) ≡ Q̂n,1(t) + Q̂n,2(t) + Q̂n,3(t)(6.20)

⇒ Q̂(t) ≡ Q̂1(t) + Q̂2(t) + Q̂3(t) in D((0, τ )),

where the three limit processes in the last line are independent. This is not entirely
obvious because Q̂3 involves Ŵ , which in turn involves the two BMs Bλ and Ba

appearing in Q̂1 and Q̂2. However, a close observation reveals that Q̂1 and Q̂2

involve the two BMs B̃λ and B̃a from time �(t − w(t)) to time �(t), according
to the representations in (6.18) and (6.19); on the other hand, we will see from
(6.65) of Section 6.7.2 that Ŵ involves B̃λ and B̃a from time �(0) = 0 to time
�(t − w(t)), which thus concludes the independence. After we establish the limit
for Ŵ , we can appropriately group the terms and separate these three independent
BMs. The representation in Theorem 4.2 will thus follow.

We now justify the convergence just stated above. We start with the FWLLN.
The separate FWLLNs for Nn, Zn,i and Wn obtained from (6.1), (6.11) and by
assumption to deterministic limits imply the joint FWLLN. Since we divide by n,
the terms Q̄n,1 and Q̄n,2 obtained from (6.20) and X̄n(0)+ become asymptotically
negligible. Using the assumed FWLLN for Wn(t), we can apply the continuous
mapping theorem with the composition map, specifically Theorem 2.4 of [24],
which extends continuity properties for composition maps to the two-parameter
setting, to the second (y) coordinate of Q̃n,3(t, y) to obtain Q̄n,3 ⇒ Q in Theo-
rem 4.1, which implies that Q̄n ⇒ Q.

We now turn to the FCLT refinement. Given the FCLT jointly for Nn, Zn,i and
Wn obtained from (6.2), (6.11), again we can apply the continuous mapping the-
orem with the composition map in Theorem 2.4 of [24], applied to the second
(y) coordinate of Ẑn,i(t, y) in (6.11) to obtain the desired conclusions for Q̂n,i(t),
for i = 1,2. Note that we only need the FWLLN for Wn(t) for this step; we do
not need the more involved Theorem 2.5 of [24]. From this step, we obtain the
convergence of the vector processes, that is,

(N̂n, D̂n, Ẑn,1, Ẑn,2, Ŵn, Q̂n,1, Q̂n,2) ⇒ (N̂, D̂, Ẑ1, Ẑ2, Ŵ , Q̂1, Q̂2).(6.21)
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Next, we treat Q̂n,3 in (6.20) by noting that

Q̂n,3(t) = √
n

(∫ t

t−Wn(t)
F c(t − s)λ(s) ds −

∫ t

t−w(t)
F c(t − s)λ(s) ds

)

(6.22)

= √
n

(∫ t−w(t)

t−Wn(t)
F c(t − s)λ(s) ds

)
,

so that we can exploit the continuity of the integrand q̃(t, t − s) = Fc(t − s)λ(s)

to deduce that

sup
0≤t≤τ

{∣∣Q̂n,3(t) − Ŵn(t)q̃
(
t,w(t)

)∣∣} = o
(‖Ŵn‖τ

)
as n → ∞,(6.23)

so that Q̂n,3 ⇒ Q̂3 in D([0, τ ]) jointly with the limit in (6.21) for Q̂3(t) ≡
q̃(t,w(t))Ŵ (t) if Ŵn ⇒ Ŵ in D([0, τ ]). Given that joint convergence, we can
apply the continuous mapping theorem with addition to obtain the limit Q̂n ⇒ Q̂

jointly with the other processes, as stated in the final line of (6.20).

6.5. Representation of the HOL waiting times Wn(t). It thus remains only to
treat the waiting times. Paralleling the proof of Theorem 3 of [12], we treat the
HWT process Wn(t) by equating two different expressions for the number of cus-
tomers to enter service in an interval [t, t + ε], where ε is a small positive num-
ber. Let En(t) be the number of customers to enter service in the interval [0, t].
On the one hand, since the fluid model is overloaded with �(t) > D(t) for all t ,
0 < t < τ , the number of customers to enter service is asymptotically equivalent
to the new capacity made available by departures and changes in the staffing; that
is, as n → ∞,

sup
0≤t≤τ

{∣∣En(t) − (
Dn(t) + ⌈

ns(t)
⌉ − ⌈

ns(0)
⌉)∣∣} = o(

√
n).(6.24)

Let Ēn(t) ≡ En(t)/n and Ên(t) ≡ √
n(Ēn(t) − E(t)) be the associated FWLLN

and FCLT scaled processes, where E(t) ≡ D(t) + s(t) − s(0). It follows from
(6.24) and the FCLT for Dn in (6.2) that

Ēn(t) ⇒ E(t) and Ên ⇒ Ê in D as n → ∞,(6.25)

where

Ê(t) = D̂(t) = Bs

(
D(t)

)
, t ≥ 0,(6.26)

as in (6.2).
On the other hand, the flow into service most come from customers leaving

the queue. Because the service discipline is FCFS, that flow must come from the
customers who have been in service the longest. We can again use representation
(6.15) to represent the flow into service over an interval. Let En(t, ε) ≡ En(t +ε)−
En(t) and similarly for the other processes. As in the proof of Theorem 3 of [12], if
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we make the interval short enough, then the abandonments will be asymptotically
negligible. Thus, paralleling equation (28) in [12] for the fluid model, from (6.15)
we obtain

En(t, ε) = In(t, ε) − AI
n(t, ε)

(6.27)

where In(t, ε) ≡
Nn(t+ε−Wn(t+ε))∑

i=Nn((t−Wn(t))−)+1

1
(
τn
i + ηi > t

);

that is, In(t, ε) is the number of customers removed from the right boundary of the
queue in the time interval [t, t + ε], and AI

n(t, ε) is the number of those In(t, ε)

customers that actually abandon. Note that Wn(t + ε) ≤ Wn(t) + ε because the
waiting time of each customer that remains in queue increases at rate 1. Hence the
upper limit of summation in (6.27) always is greater than or equal to the lower
limit of summation there.

We now want to show that AI
n(t, ε) is appropriately asymptotically negligible

relative to In(t, ε). For that purpose, observe that

0 ≤ AI
n(t, ε) ≤ Jn(t, ε) ≡

Nn(t+ε−Wn(t+ε))∑
i=Nn((t−Wn(t))−)+1

1
(
t < τn

i + ηi ≤ t + ε
);(6.28)

that is, Jn(t, ε) is the number of customers in the system at time t , but not at time
t + ε, who would abandon before time t + ε if they do not enter service first in the
interval [t, t + ε]. The remaining In(t, ε) − Jn(t, ε) customers necessarily enter
service in the interval [t, t + ε] because they would not abandon before time t + ε.

We now show that the bound Jn(t, ε) in (6.28) is asymptotically negligible rel-
ative to In(t, ε) as ε ↓ 0, uniformly in n and t , so that we can ignore AI

n(t, ε) by
choosing ε suitably small. We prove that by bounding Jn(t, ε) above. First, we
observe that 0 ≤ τn

i ≤ τ for the arrival times τn
i under consideration. Thus

Jn(t, ε) ≤ In(t, ε) sup
{
P

(
t ≤ τn

i + ηi ≤ t + ε|t ≤ τn
i + ηi

)}
,(6.29)

where

sup
{
P

(
t ≤ τn

i + ηi ≤ t + ε|t ≤ τn
i + ηi

)}
(6.30)

≤ sup
0≤t≤τ

{
Fc(t) − Fc(t + ε)

} ≤ ‖f ‖τ ε + o(ε) as ε ↓ 0,

where ‖f ‖τ < ∞ because the c.d.f. F has the density f , which has been assumed
to be in Cpc ⊆ D. To summarize,

AI
n(t, ε) ≤ Jn(t, ε) ≤ KεIn(t, ε)(6.31)

for some constant K (depending on the c.d.f. F and τ ) for all ε suitably small,
uniformly in n and t .
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We can characterize the asymptotic behavior of the HWT process Wn(t) by
equating the two expressions for En(t, ε) from (6.24) and (6.27). Here we act as if
the system is always overloaded, and thus use the infinite-server model representa-
tion; as in (6.24), the error in this step is asymptotically negligible. Now, reasoning
as in (6.5)–(6.9), we obtain an alternative representation for In(t, ε) in (6.27). In
particular,

In(t, ε) = n

∫ t+ε−Wn(t+ε)

t−Wn(t)

∫ ∞
0

1(s + x > t) dK̄n

(
N̄n(s), x

)
,(6.32)

where K̄n(t, x) again is the sequential empirical process in (6.6), and then

In(t, ε) = In,1(t, ε) + In,2(t, ε) + In,3(t, ε),(6.33)

where

In,1(t, ε) = √
n

∫ t+ε−Wn(t+ε)

t−Wn(t)
F c(t − s) dN̂n(s),

In,2(t, ε) = √
n

∫ t+ε−Wn(t+ε)

t−Wn(t)

∫ ∞
0

1(s + x > t) dR̂n(s, x),(6.34)

In,3(t, ε) = n

∫ t+ε−Wn(t+ε)

t−Wn(t)
F c(t − s)λ(s) ds,

where R̂n is from (6.10).

6.6. Proof of Theorem 4.1: The FWLLN. We now prove the FWLLN, still un-
der our special initial conditions imposed in Section 6.1. We have (N̄n, D̄n, Z̄n) ⇒
(�,D, Q̃) in D([0, τ ])2 × D([0, τ ],D([0,1],R)) for N̄n(t) ≡ n−1Nn(t) and
D̄n(t) ≡ n−1Dn(t) in (2.4) and Z̄n(t, y) ≡ n−1Q̃n(t, y) in (6.5)–(6.11), where
(�,D, Q̃) are the components of the fluid model in Section 3, based on the FCLTs
in (2.1), (6.2) and (6.11). As shown above, we also obtain the FWLLN for Q̄n once
we obtain the FWLLN for Wn.

We now prove the FWLLN for Wn; that is, Wn ⇒ w. We prove the FWLLN for
Wn by applying the compactness approach, as in Section 11.6 of [25]. In particu-
lar, we show that the sequence {Wn} is C-tight in D([0, τ ]) and then characterize
the limit of every converging subsequence. The C-tightness means that it satis-
fies the criteria for tightness in the subspace C, as in Theorem 11.6.3 of [25]. The
C-tightness implies that every subsequence has a further converging subsequence
with all limits having continuous sample paths w.p.1. We demonstrate full conver-
gence by showing that all the convergent subsequences have the same limit.

6.6.1. Tightness of {Wn}. First, the sequence {Wn} is bounded, because
Wn(t) ≥ 0 and Wn(t) increases at most at rate 1. The OL interval under question
falls within a larger finite interval [0, τ ∗]. Since the system has been assumed to
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start empty in the initial UL interval, a crude bound is Wn(t) ≤ τ ∗. Within the cur-
rent OL interval, we also can show that Wn(0) ⇒ 0, so that lim supn→∞ Wn(t) ≤ τ .

Next, the modulus of continuity is bounded above because Wn(t +δ)−Wn(t) ≤
δ. It remains to bound Wn(t + δ) − Wn(t) below uniformly in t . For that purpose,
we work with the representation for Wn in Section 6.5. Let Īn,j ≡ n−1In,j for
In,j in (6.34). We first observe that n−1In,1 ⇒ 0e and n−1In,2 ⇒ 0e in D([0, τ ]),
so that ‖Īn − Īn,3‖τ ⇒ 0. However, by (6.25), we already know that Ēn ⇒ E

for E(t) ≡ D(t) + s(t) − s(0). Hence, we have Īn,3(t, δ) − ĀI
n(t, δ) ⇒ E(t, δ)

in D([0, τ ]) for Īn,3 in (6.34) and ĀI
n(t, δ) in (6.27). However, by (6.31), we can

henceforth ignore ĀI
n(t, δ).

By the assumptions for λ and F in Section 3, the integrand of In,3 in (6.34) is
bounded below by c ≡ Fc(τ )λinf(τ ) > 0. Hence, we have the inequality

Īn,3(t, δ)

c
≥ Wn(t) − Wn(t + δ) + δ,(6.35)

so that we can write

Wn(t) − Wn(t + δ) ≤ Īn,3(t, δ)

c
− δ ≤ Ēn(t, δ)

c
,(6.36)

and then combine the relations above to obtain

lim sup
n→∞

{
Wn(t) − Wn(t + δ)

} ≤ D(t, δ) + s(t, δ)

c
≡ Cδ(6.37)

for some constant C. Hence, the sequence {Wn(t) : 0 ≤ t ≤ τ } is C-tight. In addi-
tion, the limit of any subsequence must be Lipschitz continuous. Along the way,
we have also shown that the sequences {Īn,3(t)}, {Īn(t)} and {ĀI

n(t)} are tight as
well.

6.6.2. Limit of convergent subsequences of {Wn}. Since tightness implies that
every subsequence has a convergent subsequence, we complete the proof of the
FWLLN for Wn(t) by showing that every convergent subsequence of {Wn} con-
verges to w in D. It suffices to show that any limit of a convergent subsequence
must satisfy the ODE in (3.6) w.p.1 or, equivalently, the integral representation in
(3.7), because w has been characterized as the unique solution to those equations.

First, by (6.24) and (6.25), we know that

Ēn(t, ε) ⇒ E(t, ε) =
∫ t+ε

t
b(s,0) ds(6.38)

in D as n → ∞. Moreover, as ε → 0, the limit in (6.38) approaches b(t,0) =
s(t)μ + ṡ(t).

We also consider the flow out of the queue in (6.27). Recall that Īn(t, ε) is
asymptotically equivalent to Īn,3(t, ε) in (6.34). By the assumed convergence of
Wn ⇒ W and the continuous mapping theorem applied to Īn,3(t, ε), we have

Īn(t, ε) ⇒ I (t, ε) ≡
∫ t+ε−W(t+ε)

t−W(t)
F c(t − s)λ(s) ds in D

([0, τ ]);(6.39)
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that is, the limit I (t, ε) is determined once we know the limit W . From (6.38) and
(6.39), we also have

ĀI
n(t, ε) = Ēn(t, ε) − Īn(t, ε) ⇒ AI (t, ε) ≡ E(t, ε) − I (t, ε).(6.40)

Thus both limits I (t, ε) and AI (t, ε) are determined given the limit W .
In summary, we have the limits related by

E(t, ε) = I (t, ε) + AI (t, ε)
(6.41)

=
∫ t+ε−W(t+ε)

t−W(t)
F c(t − s)λ(s) ds + AI (t, ε).

Again we can apply (6.31) to deduce that AI (t, ε) is negligible relative to I (t, ε)

for all suitably small ε, so that we can disregard AI (t, ε) in (6.41). Hence, com-
bining (6.38), (6.41) and (6.31), we obtain

E(t, ε) = b(t,0)ε + o(ε) = Fc(t − W(t)
)
λ
(
W(t)

)(
1 − Ẇ (t)

) + o(ε)(6.42)

as ε ↓ 0 for almost all t and almost all sample paths of the limiting stochastic
process W . In other words, the proof of Theorem 3 of [12] can be applied to
W to show that W satisfies the ODE (3.6) w.p.1, that is, that Theorem 3 of [12]
holds for W w.p.1. Since there exists a unique solution to that ODE, we must have
P(W = w) = 1. Since this same conclusion holds for all limits of convergent sub-
sequences, we conclude that indeed Wn ⇒ w, as claimed. Along the way, since we
must have W = w, we determine the fluid limits I (t, ε) and AI (t, ε) as well; they
are the limits above with W(t) replaced by w(t). We thus have two representations
for E(t) ≡ E(0, t),

E(t) = D(t) + s(t) − s(0) =
∫ t−w(t)

0
Fc(t − s)λ(s)

(
1 − ẇ(s)

)
ds.(6.43)

6.6.3. The FWLLN for Vn(t). By the definitions of the HWT and PWT, we
necessarily have the PWT Vn satisfying the equation

Vn

(
t − Wn(t)

) = Wn(t) + O(1/n) or, equivalently
(6.44)

Vn(t) = Wn

(
t + Vn(t) + O(1/n)

) + O(1/n),

given Wn(t). Note that these equations relating the PWT and HWT for the stochas-
tic queueing systems are slightly different from those for the deterministic fluid
models as in (3.8). The first equation in (6.44) holds since the PWT at t − Wn(t)

equals the HWT at t plus the remaining time until the first busy server becomes
available, which is O(1/n) since there are O(n) servers. The second equation in
(6.44) holds simply by applying a change of variable in the first equation.

We already have established the FWLLN for Wn(t), yielding Wn ⇒ w, where
w is a continuous function. Moreover, w has left and right derivatives everywhere,
which are bounded.
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We now exploit Theorems 3–6 of [12] establishing key properties of the HWT
and PWT fluid functions w and v. The additional property (3.2) here implies that
there exists a constant γ > 0 such that ẇ(t) < 1 − γ , 0 ≤ t ≤ τ . By Theorems 5
and 6 of [12], v is continuous, where v is the unique solution to the corresponding
fluid equations, for example, as in (3.8). Hence, from the construction of v in the
proof of Theorem 5 of [12] and (3.9), we deduce, first, for the given fluid functions
(w, v) and any other (w1, v1) that ‖v1 − v‖τ < ‖w1 − w‖τ /γ . Hence, we deduce
that

‖Vn − v‖τ < ‖Wn − w‖τ /γO(1/n).(6.45)

Since, ‖Wn − w‖τ ⇒ 0, also ‖Vn − v‖τ ⇒ 0. Hence, the proof of the FWLLN is
complete.

6.7. Proof of Theorem 4.2: The FCLT. We now turn to the proof of the FCLT,
still under our special initial conditions imposed in Section 6.1. From Section 6.4,
we know that, for the queue length Qn(t) and the number in system Xn(t), it suf-
fices to prove convergence of the scaled waiting times Ŵn. Just as for the FWLLN,
we do this in two steps. We first prove tightness and then we characterize the limit
of all convergent subsequences.

6.7.1. Tightness of the sequence {Ŵn}. We start by proving C-tightness of
the sequence {Ŵn} ≡ {√n(Wn(t) − w(t))}. We do a proof by contradiction. First,
suppose that {Ŵn} is not stochastically bounded; that is, for all real numbers M > 0
no matter how large and for all ε > 0 no matter how small, there exists n such that
P(‖Ŵn‖τ > M) > ε. However, from Sections 6.5 and 6.6.2, including (6.43), we
know that ‖Ên − În‖τ ⇒ 0, where

În(t) ≡ √
n

∫ t−Wn(t)

t−w(t)
F c(t − s)λ(s)

(
1 − ẇ(s)

)
ds.(6.46)

Hence, there exists n for all M > 0, no matter how large and for all ε > 0 no matter
how small, such that

P
(‖Ên‖τ ≥ c‖Ŵn‖τ ≥ cM

)
> ε,(6.47)

where c is the strictly positive infimum of the integrand in (6.46) (because λ(t) >

λinf > 0, w(t) < 1 and w is uniformly continuous on the interval [0, τ ]). However,
this would contradict the established convergence Ên ⇒ Ê in (6.25) and (6.26).
Hence the sequence {Ŵn} must actually be stochastically bounded.

Second, even though the sequence {Ŵn} is stochastically bounded, it is possible
that the modulus of {Ŵn} is not asymptotically negligible, as in (11.6.4) of [25].
Thus, suppose that there exists ε > 0 and δ > 0 such that

P
(
ω

Ŵn
(δ) > ε

)
> δ(6.48)
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for all δ > 0, no matter how small, and some n, no matter how large, where

ωx(δ) ≡ sup
0≤t<t1<t2≤t+δ≤τ

{∣∣x(t2) − x(t1)
∣∣}.(6.49)

Consider a subsequence of n for which this is true. Then there must exist a se-
quence {(δn, tn)} where 0 ≤ tn < τ and δn ↓ 0 as n → ∞ such that P(|Ŵn(tn +
δn) − Ŵn(tn)| > γ ) > ε for all n. Since, 0 ≤ tn ≤ τ for all n, there exists a conver-
gent subsequence of {tn}. So it suffices to assume that tn → t as n → ∞.

We now work with In,3 in (6.34), using the fluid limits I and AI determined in
Section 6.6.2, that is,

I (t, δ) =
∫ t+δ−w(t+δ)

t−w(t)
F c(t − s)λ(s) ds and AI (t) = E(t) − I (t).(6.50)

Thus, by the continuity of q̃ , the
√

n-scaled process satisfies

În,3(tn, δn)

= √
n

(∫ tn+δn−Wn(tn+δn)

tn−Wn(tn)
q̃(t, t − s) ds −

∫ tn+δn−w(tn+δn)

tn−w(tn)
q̃(t, t − s) ds

)

= √
n

(∫ tn+δn−Wn(tn+δn)

tn+δn−w(tn+δn)
q̃(t, t − s) ds −

∫ tn−w(tn)

tn−W(tn)
q̃(t, t − s) ds

)
(6.51)

= q̃
(
tn + δn,w(tn + δn)

)
Ŵn(tn + δn) − q̃

(
tn,w(tn)

)
Ŵn(tn) + o(1)

= q̃
(
t,w(t)

)(
Ŵn(tn + δn) − Ŵn(tn)

) + o(1) as n → ∞,

so that

lim sup
n→∞

∣∣În,3(tn, δn)
∣∣ ≥ q̃

(
t,w(t)

)
lim sup
n→∞

∣∣Ŵn(tn + δn) − Ŵn(tn)
∣∣.(6.52)

Since limits have been established for the sequences În,1 and În,2, (6.52) implies
that, for some γ ′ > 0,

lim sup
n→∞

P
(∣∣În(tn, δn)

∣∣ > γ ′)
(6.53)

≥ lim sup
n→∞

P
(∣∣Ŵn(tn + δn) − Ŵn(tn)

∣∣ > γ
)
> 0.

However, together with (6.31), which implies that |ÂI
n(t, ε)| ≤ Kε|În(t, ε)| for

some constant K for all ε suitably small, uniformly in n and t , the limit in (6.60)
implies that we cannot have Ên ⇒ Ê as indicated in (6.25), which is a contradic-
tion. Hence, the modulus property for the sequence {Ŵn} in (6.48) must actually
not hold. Thus, we have shown that the sequence {Ŵn} must in fact be tight.
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6.7.2. Characterizing the limit Ŵ . We now characterize the limit of any con-
vergent subsequence of the sequence {Ŵn}. Without changing the notation, sup-
pose that Ŵn ⇒ Ŵ through some subsequence. Of course, we also have Wn ⇒ w

along this subsequence and all the other fluid limits. We thus want to characterize
the distribution of Ŵ . To do so, we again exploit the representation of the flow into
service, writing

En(t) =
�t/ε�∑
i=1

En

(
(i − 1)ε, ε

) + En,r(t, ε),(6.54)

where En,r(t, ε) is the final remainder term associated with a final partial in-
terval and En(t, ε) = In(t, ε) − AI

n(t, ε) as in (6.27) with In(t, ε) = In,1(t, ε) +
In,2(t, ε) + In,3(t, ε) as in (6.33) and (6.34). Since we have established that
Ên(t) ⇒ Ê(t) in D([0, τ ]), as stated in (6.25) and (6.26), we can ignore the final
remainder term in (6.54). The C-tightness following from the convergence implies
that the scaled remainder term is asymptotically negligible.

For any t > 0 (which applies to i ≥ 1), let the
√

n-scaled processes over the
intervals [t, t + ε] be

În,j (t, ε) ≡ n−1/2(
In,j (t, ε) − nIj (t, ε)

)
,(6.55)

where Ij (t, ε) has been determined, and similarly for the other processes. In Sec-
tion 6.6.1 we observed that I1 = I2 = 0e.

By (6.34), the FWLLN for Wn and the FCLT for Ẑn,1 in (6.11),

În,1(t, ε) ≡ 1√
n
In,1(t, ε)

(6.56)

⇒ Î1(t, ε) ≡ cλ

∫ t+ε−w(t+ε)

t−w(t)
F c(t − s) dB̃λ

(
�(s)

)
,

where Bλ is the BM associated with the arrival process, and c2
λ is its variability

parameter, as in (2.1).
Similarly, by (6.34), the FWLLN for Wn and the FCLT for Ẑn,2 in (6.11),

În,2(t, ε) ≡ 1√
n
In,2(t, ε)

⇒ Î2(t, ε) ≡
∫ t+ε−w(t+ε)

t−w(t)

∫ ∞
0

1(s + x > t) dR(s, x)(6.57)

d= −
∫ t+ε−w(t+ε)

t−w(t)

√
F(t − s)F c(t − s) dB̃a

(
�(s)

)
,

where Ba(·) is a BM associated with the patience times.
For In,3 in (6.34), we first write

În,3(t, ε) ≡ n−1/2(
In,3(t, ε) − nI3(t, ε)

)
(6.58)
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for I3 previously determined, that is,

I3(t, ε) ≡
∫ t+ε−w(t+ε)

t−w(t)
F c(t − s)λ(s) ds.(6.59)

Then, exploiting the assumed convergence Ŵn ⇒ Ŵ along the subsequence, we
obtain

În,3(t, ε)

= 1√
n

(
n

∫ t+ε−Wn(t+ε)

t−Wn(t)
q̃(t, t − s) ds − n

∫ t+ε−w(t+ε)

t−w(t)
q̃(t, t − s) ds

)

= √
n

(∫ t−w(t)

t−Wn(t)
q̃(t, t − s) ds +

∫ t+ε−Wn(t+ε)

t+ε−w(t+ε)
q̃(t, t − s) ds

)

(6.60)
= q̃

(
t,w(t)

)√
n
(
Wn(t) − w(t)

)
− q

(
t,w(t + ε) − ε

)√
n
(
Wn(t + ε) − w(t + ε)

) + o(1)

⇒ Î3(t, ε) ≡ q̃
(
t,w(t)

)
Ŵ (t) − q̃

(
t,w(t + ε) − ε

)
Ŵ (t + ε)

as n → ∞. Exploiting (6.31), we see that ÂI
n is asymptotically negligible com-

pared to În,s . Hence, we have established the convergence
(
Ŵn, Ên(t, ε), În(t, ε)

) ⇒ (
Ŵ , Ê(t, ε), Î (t, ε)

)
(6.61)

in D([0, τ ]) ×D
3([t, t + ε]), where

Ê(t, ε) = Î1(t, ε) + Î2(t, ε) + Î3(t, ε)
(
1 + o(ε)

)
(6.62)

with all the limits having been identified explicitly. Substituting the established
limits into (6.62), we obtain

Bs

(
D(t + ε)

) −Bs

(
D(t)

)

=
∫ t+ε−w(t+ε)

t−w(t)
F c(t − s) d

(
cλB̃λ

(
�(s)

))
(6.63)

−
∫ t+ε−w(t+ε)

t−w(t)

√
F(t − s)F c(t − s) dB̃a

(
�(s)

)

+ q̃
(
t,w(t)

)
Ŵ (t) − q̃

(
t,w(t + ε) − ε

)
Ŵ (t + ε) + o(ε) as ε ↓ 0.

Moreover, for each ε > 0, we have the corresponding limit for the sum Ên(t) in
(6.54). As ε ↓ 0, this sum converges in mean square to the stochastic integral as-
sociated with a stochastic differential equation (SDE) determined by (6.63). Thus,
the distribution of Ŵ is determined by this SDE. The SDE is well defined because
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all but the term Ŵ (t + ε) − ˆW(t) involve BM terms, which produce known dif-
ferential terms. In particular, using informal differential notation, we see that, as
ε ↓ 0,

Ê(t, ε) → dB̃s

(
D(t)

)
,

Î1(t, ε) → dÎ1(t) ≡ cλF
c(w(t)

)
dB̃λ(�

(
t − w(t)

)
,

Î2(t, ε) → dÎ2(t) ≡ −
√

F
(
w(t)

)
Fc

(
w(t)

)
dB̃a(�

(
t − w(t)

)
,

Î3(t, ε) → dÎ3(t) ≡ −q̃
(
t,w(t)

)
dŴ(t) + (

1 − ẇ(t)
)
q̃x

(
t,w(t)

)
dtŴ (t),

where we exploit the assumed differentiability of the arrival rate function λ and

q̃(t,w(t)) − q̃(t,w(t + ε) − ε)

ε

=
(

q̃(t,w(t)) − q̃(t, ε + w(t + ε))

w(t) + ε − w(t + ε)

)(
w(t) + ε − w(t + ε)

ε

)

→ q̃x

(
t,w(t)

)[
1 − ẇ(t)

]
as ε → 0

in the treatment of Î3(t, ε).
Putting the dŴ (t) term on the left, and thus expressing it in terms of all others,

we get the SDE

dŴ (t) = h(t)Ŵ (t) dt −
(

1

q(t,w(t))

)
dB̃s

(
D(t)

)

−
(√

F(w(t))F c(w(t))

q(t,w(t))

)
dB̃a

(
�

(
t − w(t)

))

+ Fc(w(t))cλ

q(t,w(t))
dB̃λ

(
�

(
t − w(t)

))
(6.64)

= h(t)Ŵ (t) dt + Is(t) dBs(t) + Ia(t) dBa(t) + Iλ(t) dBλ(t)

= h(t)Ŵ (t) dt + I (t) dB(t)

as in (4.9), where h(t), I1 ≡ Iλ, I2 ≡ Is and Is ≡ Ia are given in (4.7) and I is
given in (4.10). while B1 ≡ Bλ, B2 ≡ Bs and B3 ≡ Ba are all independent standard
BMs.

We claim that the SDE in (6.64) and (4.9) has the analytic solution

Ŵ (t) = Ŵ (0)H(t,0) +
∫ t

0

(
− 1

q(u,w(u))

)
H(t, u) dB̃s

(
D(u)

)

+
∫ t

0

(
−

√
F(w(u))F c(w(u))

q(u,w(u))

)
H(t, u) dB̃a

(
�

(
u − w(u)

))
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+
∫ t

0

Fc(w(u))cλ

q(u,w(u))
H(t, u) dB̃λ

(
�

(
u − w(u)

))
(6.65)

d= Ŵ (0)H(t,0) +
∫ t

0
H(t, u)I (u) dB(u)(6.66)

d= Ŵ0(t) + Ŵλ(t) + Ŵs(t) + Ŵa(t),

where Ŵ0 = 0e, Ŵ1 ≡ Ŵλ, Ŵ2 ≡ Ŵs and Ŵ3 ≡ Ŵa are independent processes, as
given in Theorem 4.2.

We verify (6.66) from (4.9) using Itô’s formula. Let f (x, t) ≡ xe− ∫ t
0 h(v) dv , we

have by Itô’s formula that

df
(
Ŵ (t), t

) = e− ∫ t
0 h(v) dv dŴ (t) − h(t)e− ∫ t

0 h(v) dvŴ (t) dt,

= e− ∫ t
0 h(v) dvI (t) dB(t).

Integrating both sides yields

e− ∫ t
0 h(v) dvŴ (t) = Ŵ (0) +

∫ t

0
e− ∫ u

0 h(v) dvI (u) dB(u),

from which (6.66) follows by multiplying through by H(t,0) ≡ e
∫ t

0 h(v) dv .

6.7.3. FCLT for other processes. So far, we have established the FCLT for
the HWT process Wn(t), still under the special initial condition starting with all
servers busy and an empty queue. We now use this result to establish limits for the
other processes, under this same initial condition.

The queue length and the number in system. We now obtain the limit for Q̂n and
X̂n from (6.20) and (6.4), incorporating the limit for Ŵn into Q̂n,3, using the limit
Ŵn ⇒ Ŵ just established. We obtain the expression in Theorem 4.2 by putting the
contributions from the arrival process, service times and patience times into their
respective terms. We have thus established the FWLLN in Theorem 4.1 and the
FCLT in Theorem 4.2 under the special initial condition, in which all servers are
busy, and the queue is empty at time 0, the beginning of the OL interval.

The potential waiting time. We start with the fluid equation v(t) = w(t + v(t))

in (3.8) and the corresponding equation for the queueing models, Vn(t) = Wn(t +
Vn(t)+O(1/n))+O(1/n), as in (6.44). Let �Vn(t) ≡ Vn(t)−v(t) and �Wn(t) ≡
Wn(t) − w(t). We exploit the differentiability of w(t) with ẇ(t) < 1 − ε for some
ε > 0, the differentiability of ẇ [because we assumed that λ is differentiable in
order to have q̃x(t, x) well defined] and Taylor’s theorem to write

�Vn(t) = �Wn

(
t + Vn(t) + O(1/n)

) + w
(
t + Vn(t)

) − w
(
t + v(t)

) + O(1/n)

= �Wn

(
t + Vn(t) + O(1/n)

) + ẇ
(
t + v(t)

)
�Vn(t)(6.67)

+ ẅ
(
t + v(t)

)(�Vn(t))
2

2
+ o

((
�Vn(t)

)2) + O(1/n).
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We exploit the FCLT for Wn(t), the FWLLN for Vn(t) and the continuous mapping
theorem to get

√
n�Wn(t + Vn(t)) = Ŵn(t + Vn(t)) ⇒ Ŵ (t + v(t)) in D([0, τ ]).

From (6.45), we see that there exists γ > 0 such that

‖�Vn‖τ ≤ ‖�Wn‖τ

γ
+ O(1/

√
n) = O(1/

√
n) as n → ∞.(6.68)

We can then apply (6.68) with the two-term expansion in (6.67) to get

sup
0≤t≤τ

{∣∣∣∣V̂n(t) − Ŵn(t + v(t))

1 − ẇ(t + v(t))

∣∣∣∣
}

= √
nO

((‖�Vn‖τ

)2) = O(1/
√

n),(6.69)

proving that

V̂n(t) ⇒ V̂ (t) ≡ Ŵ (t + v(t))

1 − ẇ(t + v(t))
in D

([0, τ ])(6.70)

as claimed.

The abandonment process An(t). We obtain the limits for Ān and Ân in (4.2) and
(4.4) directly from the flow conservation representation in (2.3) and the established
limits above. We see that Ān ⇒ A in D and Ân ⇒ Â in D, jointly with the other
processes, for Â in (4.5).

6.8. Treating the initial conditions in (4.1). It now remains to extend the
FWLLN and the FCLT for the number in system in an OL interval to the gen-
eral initial condition given in (4.1). As in the statement of Theorem 4.2, let Xn(t)

be the number in system during the OL interval with the initial condition (4.1), and
let X∗

n(t) be the number in system during the OL interval starting with all servers
busy and an empty queue, for which we have proved the FWLLN and FCLT in the
preceding subsections.

We assume that the two processes Xn(t) and X∗
n(t) are defined on the same

probability space, having the same arrival process, service times and abandonment
times, with the service times and abandonment times assigned in order of cus-
tomers entering service and the queue, respectively. These processes differ by the
initial conditions Xn(0) − sn(0), for which the scaled versions have been assumed
to converge in (4.1). However, we need to carefully consider the consequence of
this difference at time 0 as time evolves within the interval [0, τ ].

We establish the desired limits for Xn(t) by showing that∥∥X̄n − X̄∗
n

∥∥
τ ⇒ 0 and

∥∥X̂n − (
X̂∗

n + X̂n(0)F c
w(t)

)∥∥
τ ⇒ 0(6.71)

in D([0, τ ]) as n → ∞, where X̂n(0) is independent of X̂∗
n and Fc

w(t) is given in
(4.5) with w(t) being the HWT in the fluid model and hF (x) ≡ f (x)/F c(x) being
the hazard rate function of the patience c.d.f. F , which is positive and bounded
by previous assumptions on F . As a consequence of the first limit in (6.71), the
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fluid limit appearing in the centering terms of the scaled processes X̂∗
n and X̂n are

identical.
We now proceed to justify (6.71). Since the customers enter service in a FCFS

order, the excess customers at time 0 soon enter service. However, the excess still
remains because new customers arrive and join the queue to replace those that
entered service. An important insight is the observation that the remaining excess
can always be considered among those customers that have been in the system for
the longest time among all waiting customers.

Since the abandonment hazard rate is bounded above, the abandonment rate is
controlled. Since the fluid model is in an OL interval with �(t) > D(t) for all
t > 0, with the initial net input rate to service λ(0)− s(0)μ− ṡ(0) > 0, the servers
become all busy and remain so afterwards in an interval [t1,n, t2] for 0 < t1,n =
O(1/

√
n) < t2 < τ . Thus there are at most O(

√
n) empty servers for a period of

only O(1/
√

n). Hence, the difference between X∗
n(t) and Xn(t) is asymptotically

only the initial difference adjusted by abandonments over the interval [0, t]. In
particular, we have∥∥Xn − (

X∗
n + U+

n − U−
n

)∥∥
τ = O(1) as n → ∞,(6.72)

where

U+
n (t) ≡ (

Xn(0) − sn(0)
)+ − Ai,n,+(t),

(6.73)
U−

n (t) ≡ −(
Xn(0) − sn(0)

)− − Ai,n,−(t)

with (x)− ≡ min {x,0}, Ai,n,+(t) being the number of abandonments from the
initial positive excess number of customers, (Xn(0) − sn(0))+ > 0, given that it
is positive, while Ai,n,−(t) is the number of abandonments from the positive dif-
ference −(Xn(0) − sn(0))−, resulting from a initial negative excess number of
customers, (Xn(0) − sn(0))− < 0, given that it is indeed negative. Fortunately, the
limiting behavior of Ai,n,+(t) and Ai,n,−(t) are essentially the same, so that we
need not treat the positive part and the negative part differently.

We are now ready to prove the FWLLN. Since 0 ≤ (Xn(0) − sn(0))+ −
Ai,n,+(t) ≤ (Xn(0)−sn(0))+ = O(

√
n) and 0 ≤ −(Xn(0)−sn(0))−−Ai,n,−(t) ≤

−(Xn(0) − sn(0))− = O(
√

n), we deduce that ‖X̄n − X̄∗
n‖τ ⇒ 0 as n → ∞.

Hence, we have completed proof of the FWLLN X̄n ⇒ X in D([0, τ ]). The rest of
Theorem 4.1 follows for the general initial conditions X̄n(0) ⇒ X(0) as well.

We now turn to the FCLT. We will show that ‖X̂n − (X̂∗
n + X̂n(0)F c

w(·))‖τ ⇒ 0
in D([0, τ ]), as in (6.71). For that, we need to carefully examine the processes
Ai,n,+(t) and Ai,n,−(t), recording the number of abandonments from the deviation
Xn(0) − sn(0). Suppose that Xn(0) − sn(0) > 0, so that we focus on Ai,n,+(t).
Since the abandonments Ai,n,+(t) always come from the waiting customers that
have been in the system the longest, which means at the right boundary of the
queue length process, which asymptotically is at w(t), the abandonment making
up Ai,n,+(t) occurs asymptotically at rate hF (w(u)) at time u through all time.
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Of course, specific abandonments are random. Nevertheless, because the size
of the deficiency is order O(

√
n) and we scale by dividing by

√
n when we

scale for the FCLT, the impact actually becomes deterministic, by the FWLLN (or
Glivenko–Cantelli theorem). In particular, the FCLT-scaled version of the process
U+

n (t) in (6.73) is asymptotically equivalent to the process

Û+
n (t) ≡ n−1/2

(Xn(0)−sn(0))+∑
i=1

1{ξi>t}, t ≥ 0,(6.74)

where {ξi} is a sequence of i.i.d. random variables, each having a distribution with
hazard rate hF (w(u)) at time u. We only have asymptotic equivalence, because
the abandonment rate at time u is actually hF (Wn(u)) in system n. However, we
have ‖Wn − w‖τ ⇒ 0. Hence, for any ε > 0, we can bound the abandonment rate
above by h

u,ε
F (w(u)) and below by h

l,ε
F (w(u)), where

h
u,ε
F

(
w(u)

) ≡ sup
−ε≤s≤ε

{
hF

(
w(u) + s

)}
and

(6.75)
h

l,ε
F

(
w(u)

) ≡ inf−ε≤s≤ε

{
hF

(
w(u) + s

)}
.

By exploiting these bounds and the continuity of f , we see that we do indeed
asymptotically have the representation in (6.74).

Combining (4.1), (6.74) and the Glivenko–Cantelli theorem, we can conclude
that

Û+
n (t) ⇒ X̂(0)+Fc

w(t) in D
([0, τ ])(6.76)

as n → ∞. Essentially the same reasoning applies to Ai,n,−(t). Combining these
two limits, we obtain

∥∥X̂n − (
X̂∗

n + X̂n(0)F c
w(·))∥∥τ ⇒ 0.

Hence we have justified (6.71).

7. Proofs of Theorem 4.3 and Corollary 4.1.

7.1. Proof of Theorem 4.3. We have just proved that X̂n ⇒ X̂ for the general
initial condition in (4.1). We now establish the remaining limits in (4.11) for the
other related processes with initial condition (4.1).

7.1.1. The processes Q̂n and B̂n. Since P(Xn(t) > sn(t), t1 ≤ t ≤ t2) → 1 as
n → ∞ for all t1 and t2 with 0 < t1 < t2 < τ , we necessarily have ‖B̂n‖t1,t2 =
‖X̂n − Q̂n‖t1,t2 ⇒ 0 as n → ∞, so that (X̂n, Q̂n, B̂n) ⇒ (X̂, X̂,0e) as claimed in
D([t1, t2]) for each t1 and t2 with 0 < t1 < t2 < τ , which is equivalent to conver-
gence in D((0, τ )).
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However, the situation is different at the interval endpoints. In particular, there
is truncation at time 0 for the processes Q̂n and B̂n. We cannot extend the limit to
the interval [0, τ ], or even [0, τ ), closed on the left, because the limit process could
have a discontinuity at 0, which would be ruled out in the definition of the space D.
Indeed, because of the definition of the queue length as Qn(t) ≡ (Xn(t) − sn(0))+
and the number in service as Bn(t) ≡ Xn(t) ∧ sn(0), it is immediate that

(
Q̂n(0), B̂n(0)

) ⇒ (
X̂(0)+, X̂(0)−

)
in R

2 as n → ∞.(7.1)

These limits are of course not mean-zero random variables.
As a consequence, of (7.1), if P(X̂(0) < 0) > 0, then there can be no FCLT

for Q̂n in D([0, τ )) because Q̂ would require a discontinuity at time 0 to reflect
the initial truncation of Xn(0) to get Qn(0); If P(X̂(0) > 0) > 0, then there is no
FCLT for B̂n in D([0, τ )) because B̂ would require a discontinuity at time 0 to
reflect the initial truncation of Xn(0) to get Bn(0).

7.1.2. The abandonment process An(t). We obtain the limits for Ān and Ân in
(4.2) and (4.11) directly from representation (2.3) and the established limits above.
We see that Ān ⇒ A in D as n → ∞ and

sup
0≤t≤T

{∣∣Ân(t) − (
N̂∗

n (t) − D̂∗
n(t) − (

X̂n(t)
) − X̂n(0)

)∣∣} ⇒ 0,(7.2)

so that Ân ⇒ Â in D, jointly with the other processes, for Â in (4.12).

7.1.3. The waiting times with the general initial conditions. We will start by
considering the PWT Vn(t). We first consider time 0 for the FCLT-scaled process.
Note that the PWT Vn(0) and the FCLT-scaled version V̂n(0) are 0 if Xn(0) ≤ 0,
but not otherwise. Hence, the general initial conditions in (4.1) alters the limit V̂ at
time 0. Since service times are exponential, service completion occurs initially at
rate (sn(0) ∧ Xn(0))μ, where (sn(0) ∧ Xn(0))/n ⇒ s(0). In addition, new service
capacity initially becomes available asymptotically at rate nṡ(0). Hence, the scaled
PWT at time 0 is asymptotically equivalent to

√
nṼn(0) ≡ n−1/2

(Xn(0)−sn(0))+∑
i=1

ζi,(7.3)

where {ζi} is a sequence of i.i.d. exponential random variables, each with rate
s(0)μ + ṡ(0) > 0. Hence, by the LLN,

V̂n(0) = √
nVn(0) ⇒ X̂(0)+

s(0)μ + ṡ(0)
in R as n → ∞.(7.4)

We have a different situation for t > 0, because the number in system becomes
positive, of order O(n) for t > 0. Since P(Xn(t) > sn(t), t1 ≤ t ≤ t2) ⇒ 1 for
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any t1 and t2 with 0 < t1 < t2 < τ , now the service completion rate is asymptot-
ically sn(t)μ at time n, for all t in [t1, t2] above. As in (6.73), we consider the
remaining number from the initial difference, separating the positive and nega-
tive values. Now, paralleling (6.74), we have V̂n(t) asymptotically equivalent to
V̂ ∗

n (t) + √
nṼn(t), where Ṽn(t) = Ṽ +

n (t) − Ṽ −
n (t) with

√
nṼ +

n (t) ≡ n−1/2
U+

n (t+V ∗
n (t))∑

i=1

ζi,(7.5)

where U+
n (t) is defined in (6.73) and {ζi} is a sequence of i.i.d. exponential random

variables, each with rate s(t + v(t))μ + ṡ(t + v(t)), and similarly for
√

nṼ −
n (t).

As a consequence, by the FWLLN,

√
nṼ +

n (t) ⇒ X̂(0)+Fc
w(t + v(t))

s(t + v(t))μ + ṡ(t + v(t))
in D((0, τ )).(7.6)

Combining this result with the corresponding result for
√

nṼ −
n (t), we have

V̂n(t) ⇒ V̂ (t) ≡ V̂ ∗(t) + X̂(0)F c
w(t + v(t))

s(t + v(t))μ + ṡ(t + v(t))
in D((0, τ ))

= Ŵ ∗(t + v(t))

1 − ẇ(t + v(t))
+ X̂(0)F c

w(t + v(t))

s(t + v(t))μ + ṡ(t + v(t))
(7.7)

= q̃(t + v(t),w(t + v(t)))Ŵ ∗(t + v(t)) + X̂(0)F c
w(t + v(t))

s(t + v(t))μ + ṡ(t + v(t))
,

where V̂ ∗ has been determined already in Section 6.7.3, Fc
w(t) is defined in (4.5)

and b(t,0) = s(t)μ + ṡ(t) > 0 by assumption in Section 3. The final formula in
(7.7) is equivalent to the stated formula in (4.12) because w(t + v(t)) = v(t) by
(3.8).

We next use the equation Wn(t) = Vn(t − Wn(t)) + O(1/n) to develop a limit
for Wn(t). Reasoning as in (6.70), we get Ŵn ⇒ Ŵ in D((0, τ )) with

Ŵ (t) = (
1 − ẇ(t)

)
V̂

(
t − v(t)

)
(7.8)

for V̂ in (7.7), from which the formulas given in (4.12) follow directly.

7.2. Proof of Corollary 4.1: The variance formulas. We obtain the compli-
cated variance formulas for σ 2

Ŵ ∗
i

(t) and σ 2
X̂∗

i

(t) by applying the usual Itô isometry

for Brownian stochastic integrals, using the representation in (4.5). The remaining
variance formulas are elementary.
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8. Proof of Theorem 5.1 for underloaded intervals. In this section we prove
Theorem 5.1.

PROOF OF THEOREM 5.1. As indicated, this mostly is a direct application of
the infinite-server FWLLN and FCLT in [20]. This is true for Xn because∥∥X̄n − X̄∞

n

∥∥
τ ⇒ 0 and

∥∥X̂n − X̂∞
n

∥∥
τ ⇒ 0,(8.1)

where X∞
n (t) is the associated Gt/M/∞ model with the identical arrival process,

the identical sequence of service times for successive customers entering service
and the identical initial conditions, that is, X∞

n (0) ≡ Xn(0). Thus we can apply
many-server heavy-traffic (MSHT) limits established for that model in [20]; also
see [1, 10, 23]. (Previous references suffice here; the full force of [20] is only
needed to treat the more general Gt/GI/∞ model associated with OL intervals;
see Section 4.)

However, to prove (8.1), we need to carefully consider what happens in the
neighborhood of each interval endpoint. There is no trouble in between be-
cause there is no critical loading except at the interval endpoints. That im-
plies that the net flow out, Dn(t) − Nn(t) − n(s(t) − s(0)), is positive of order
O(n) over any interval [t1, t2] for 0 < t1 < t2 < τ , no matter how small. Thus,
P(supt1≤s≤t2

{Xn(s) − sn(s)} < 0) → 1 as n → ∞ for 0 < t1 < t2 < τ .
However, it is possible that Xn(0) > sn(0) and/or Xn(τ) > sn(τ ). Consider the

left endpoint. If Xn(0) > sn(0), then the systems Xn and X∞
n are not stochastically

identical over [0, t] for t > 0. We do have X∞
n (0) = Xn(0) by definition, but if

Xn(0) > sn(0), then Xn(0)− sn(0) customers are waiting in queue instead of being
served. However, asymptotically, the difference at time 0 is

√
nX̂(0)+ = O(

√
n).

Only this portion of the initial number of customers will receive different treat-
ment.

Since δ(t) ≡ s(t) − X(t) is differentiable with derivative δ̇(0) > 0, the initial
difference of order O(

√
n) will dissipated over a time interval of order O(1/

√
n).

The constant departure rates (by service versus abandonment) of these O(
√

n)

customers will differ during that short time interval. Thus, ‖Xn −X∞
n ‖t is of order

O(
√

n) × O(1/
√

n) = O(1) as n → ∞. Hence, this difference is asymptotically
negligible after scaling. To support this conclusion, note that the hazard rate of
the abandonment is bounded above, implying that only a negligible number of
customers in the queue will abandon in the initial interval of length O(1/

√
n).

Essentially the same argument applies at the right endpoint τ . Thus, we do in-
deed have ‖X̄n − X̄∞

n ‖τ ⇒ 0 and ‖X̂n − X̂∞
n ‖τ ⇒ 0, as claimed in (8.1). Then

the results for the Gt/M/∞ model follow from [20]. A key step there is to treat
the new arrivals differently from the customers initially in the system. The cus-
tomers initially in the system are treated in Section 5 of [20]; they lead to the limit
processes Xz and X̂z.

However, truncation at the endpoints 0 and τ do alter the processes Bn and Qn

more significantly. Since we can have X̄n(0) �= s(0), and/or X̄n(τ ) �= s(τ ) for all n,
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there can be truncation at the times 0 and τ . Thus we can have B̄n(0) = s(0) �=
X̄n(0) and/or B̄n(τ ) = s(τ ) �= X̄n(τ ). However, there is no problem for the fluid
limits. Since X̄(0) ≤ s(0) and X̂n(0) ⇒ X̂(0), necessarily ‖X̄n(0) − B̄n(0)‖ =
O(1/

√
n) = o(1), so that (5.8) follows from Theorem 11.4.7 of [25]. The same

reasoning can be applied at the right endpoint τ .
In contrast, the truncation affects the FCLTs for Q̂n and B̂n when X(0) = sn(0)

Since P(Xn(t) < sn(t),0 < t1 ≤ t ≤ t2 < τ) → 1 as n → ∞, we necessarily have
‖Q̂n‖t1,t2 = ‖X̂n − B̂n‖t1,t2 ⇒ 0 as n → ∞, so that (X̂n, B̂n, Q̂n) ⇒ (X̂, X̂,0e) as
claimed. We cannot extend the limit to the closed interval [0, τ ] because the limit
process could have a discontinuity at 0, which would be ruled out. If P(X̂(0) <

0) > 0, then there can be no FCLT for Q̂n in D([0, τ )) because Q̂ would require
a discontinuity at time 0 to reflect the initial truncation of Xn(0) to get Qn(0);
If P(X̂(0) > 0) > 0, then there is no FCLT for B̂n in D([0, τ )) because B̂ would
require a discontinuity at time 0 to reflect the initial truncation of Xn(0) to get
Bn(0). There also could be further truncation at the right endpoint τ , so we only
state the limit for (B̂n, Q̂n) in D([0, τ )). �

Extending Theorem 5.1 to the more general Gt/GI/st + GI model is more dif-
ficult, because the limit for X̄z,n involving the initial customers would be more
complicated because it would depend on the ages of all the service times in pro-
cess. We have exploited the exponential assumption to avoid that difficulty.

9. Comparison with simulation: An Mt/M/st + H2 example. To provide
practical confirmation of the theorems proved in earlier sections, we now report
the results of a simulation experiment. We consider an Mt/M/s + H2 queueing
model with a sinusoidal arrival rate function that makes the system alternate be-
tween OL and UL intervals. Specifically, the model parameters are: arrival rate
function λn(t) = nλ(t), λ(t) = 1 + 0.6 sin(t), mean service time 1/μ = 1, mean
patience 1/θ = 2 and a fixed number of servers sn(t) = ns, s = 1. We let the
service distribution be exponential and the patience distribution be a two-phase
hyperexponential (H2) with probability density function (p.d.f.)

f (x) = p · θ1e
−θ1x + (1 − p) · θ2e

−θ2x, x ≥ 0,

with parameters p = 0.5(1 − √
0.6), θ1 = 2pθ and θ2 = 2(1 − p)θ , which pro-

duces squared coefficient of variation (variance divided by the square of the mean)
c2 = 4.

To verify accuracy of the formulas, we estimate the mean and variance of the
scaled queueing processes for very large n, in particular, for n = 2000. We obtain
these estimates from 500 independent replications of a simulation of the queueing
system. Figure 1 shows plots of several key performance functions for the lim-
iting fluid and diffusion processes for 0 ≤ t ≤ T ≡ 16, starting out empty (see
dashed lines): (i) fluid head-of-line and the potential waiting times w(t) and v(t),
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FIG. 1. Comparison of the limiting means (fluid limits) and variances of the Gaussian limits to
simulation estimates of the corresponding scaled queueing processes for the Mt/M/s + H2 model
starting empty for the case n = 2000 based on 500 independent replications: (i) the boundary and
potential waiting times, w(t) and v(t), (ii) the variances of the two waiting times, (iii) mean num-
ber in queue, Q(t), (iv) the variance of the number in queue, (v) mean number in service, B(t),
(vi) variance of number in service and (vii) variance of the total number in the system, X(t).

(ii) variance of the diffusion waiting times σ 2
Ŵ

(t) and σ 2
V̂
(t), (iii) fluid number of

customers in queue, in service Q(t) and B(t), (iv) variance of the diffusion number
of customers in queue, in service, and in the system σ 2

Q̂
(t), σ 2

B̂
(t), and σ 2

X̂
(t).

We compare these performance functions for the limit processes to estimates
of them for the corresponding scaled queueing processes. In Figure 1 we also
plot the corresponding performance functions under the LLN and CLT scaling
(see solid lines): (i) mean of the LLN-scaled head-of-line and the potential wait-
ing times E[W̄n(t)] and E[V̄n(t)], (ii) variance of the CLT-scaled waiting times
Var(Ŵn(t)) and Var(V̂n(t)), (iii) mean of the LLN-scaled number of customers in
queue and in service E[Q̄n(t)] and E[B̄n(t)], (iv) variance of the CLT-scaled num-
ber of customers in queue, in service, and in the system Var(Q̂n(t)), Var(B̂n(t))
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FIG. 2. Comparison of the limiting means (fluid limits) and variances of the Gaussian limits to
simulation estimates of the corresponding scaled queueing processes for the Mt/M/s + H2 model
starting empty for the case n = 100 based on 2000 independent replications: (i) the boundary and
potential waiting times, w(t) and v(t), (ii) the variances of the two waiting times, (iii) mean num-
ber in queue, Q(t), (iv) the variance of the number in queue, (v) mean number in service, B(t),
(vi) variance of number in service and (vii) variance of the total number in the system, X(t).

and Var(X̂n(t)). Figure 1 shows that the simulation estimates for the Mt/M/s+H2

queueing model agree closely with the fluid and diffusion performance.
This experiment provides an engineering verification for the limit theorems (as

n → ∞). The approximation is not nearly as good when n is small, for example,
when n = 100, as shown in Figure 2. The approximation still performs well in
the interior of UL and OL intervals but relatively poorly in the neighborhood of
the switching points (the real variances are continuous functions while the approx-
imating formulas are jump functions). Furthermore, we find the approximation
becomes even worse for smaller systems, for example, when n = 20. Thus, we
develop and study refined engineering approximations, drawing on (1.2), in [14].
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10. Refined scaling with additional O(
√

n) terms. For refined approxima-
tions and controls, we may want to generalize the sequence of Gt/M/st + GI
queueing models specified in Section 2 by considering arrival rates λn(t) ≡
nλ(t) + √

nλg(t) and staffing functions sn(t) ≡ �ns(t) + √
nsg(t)�, having ex-

tra
√

n terms, where λg(t) and sg(t) are additional smooth deterministic functions
(with subscript g for Gaussian scale). We now briefly indicate how the results
above extend to this case.

First, the limit processes in the FCLT for the arrival process and the departure
process in (2.1) and (6.2) should have the respective extra terms

�g(t) ≡
∫ t

0
λg(s) ds and Dg(t) ≡ μ

∫ t

0
sg(s) ds.(10.1)

These changes lead to deterministic modifications of other expressions.
For each OL interval, we add the term Z1,g(t, y) ≡ ∫ t

t−y F c(t − s)λg(s) ds to

Ẑ1(t, y) in (6.12); we add the term Q1,g(t) ≡ ∫ t
t−w(t) F

c(t − s)λg(s) ds to Q̂1(t)

in Section 6.4; we add the tem Dg(t) to D̂(t) in (6.26); and we add the term

I1,g(t, ε) ≡ ∫ t+ε−w(t+ε)
t−w(t) F c(t − s)λg(s) ds to Î1(t, ε) in (6.56).

Those changes lead to changes in the critical SDE for the limit process Ŵ (t)

developed in Section 6.7.2. Extra terms Dg(t + ε) − Dg(t) appear on the left and∫ t+ε−w(t+ε)
t−w(t) F c(t − s)λg(s) ds on the right in (6.63), which in turn contribute a

term −z(t) dt to the right-hand side of the SDE in (6.64) and (4.9), where

z(t) ≡ sg(t)μ + λg(t − w(t)) + ṡg(t)

q(t,w(t))
.(10.2)

This leads to an extra deterministic term Wg(t) ≡ − ∫ t
0 H(t, u)z(u) du on the right-

hand side of the expression for Ŵ (t) given in (6.66), which is Ŵ ∗(t) in Theo-
rem 4.2.

From (6.18) and (6.20), we see that those changes above lead to the addition
of Q1,g(t) above to X̂∗

1(t) and the addition of q(t,w(t))Wg(t) to X̂∗
3(t) in Theo-

rem 4.2.
There are corresponding changes for each UL interval. Due to the revised arrival

and departure FCLTs, the term u(t) dt is added to the right-hand side of the SDE
in (5.3), where u(t) ≡ λg(t).

The changes above lead to modifications of the limits in the FCLTs, but not
the FWLLNs. The limit processes are still Gaussian processes. These determin-
istic changes alter the mean values of the Gaussian limits, but do not affect the
variances.
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