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model with time-varying arrival rates, customer abandonment from queue and random feedback with
additional feedback delay in an infinite-server or finite-server queue. To provide a flexible model that can
be readily fit to system data, the model has Bernoulli routing, where the feedback probabilities, service-
time, patience-time and feedback-delay distributions all are general and may depend on the visit number.
Simulation experiments confirm that the new MOL approximations are effective. A many-server heavy-
traffic FWLLN shows that the performance targets are achieved asymptotically as the scale increases.
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1. Introduction

This paper is part of an ongoing effort to develop effective
methods to set staffing levels (the time-dependent number of
servers) in service systems with time-varying arrival rates in or-
der to stabilize performance at designated targets; see Green,
Kolesar, and Whitt (2007) for a review and Stolletz (2008),
Defraeye and van Nieuwenhuyse (2013), Liu and Whitt (2014),
Yom-Tov and Mandelbaum (2014) and He, Liu, and Whitt (2016) for
recent related work. We continue to focus on service systems that
can be modeled as many-server queues with customer abandon-
ment from queue and non-exponential distributions, but here in
addition we consider Bernoulli feedback with additional delay af-
ter completing service.

A queue with delayed feedback after completing service is a
special queueing network, about which there is an enormous lit-
erature, but our concern is with the time-dependent performance
of a non-stationary non-Markov model, which is well beyond exact
analysis. We do assume that the arrival process is a nonhomoge-
neous Poisson process (NHPP), but the service-time, patience-time
and delay-before-return distributions all can be non-exponential
and can change upon successive feedbacks. At first glance, it would
seem that previous methods do not apply to the generalization
with multiple delayed feedbacks having changing parameters. Our
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main innovation is to propose an approximation involving a series
of infinite-server models. Instead of the natural two-queue model
for a single delayed feedback shown on the left in Fig. 1, with an
orbit queue for the customers experiencing extra delay in addition
to the usual queue, we propose the five-queue series model on the
right, which also has separate queues for the customers waiting
and in service upon first visit and upon second visit, as well as
for those customers being delayed in between the two visits; we
elaborate on the model below.

Previous work has shown that a time-varying arrival-rate func-
tion and a non-exponential service-time distribution can have a
significant impact on performance; see Eick, Massey, and Whitt
(1993) for discussion of the basic M;/GI/occ infinite-server special
case. Figs. 1 and 2 of Jennings, Mandelbaum, Massey, and Whitt
(1996) dramatically show the poor performance that can occur if
we use stationary methods to set staffing levels, either using the
overall average arrival rate or using the pointwise-stationary ap-
proximation (PSA), which uses a stationary model in a nonstation-
ary way, letting the arrival rate in the stationary model at time ¢t
be the actual arrival rate A(t) at time t. As reviewed in Green et al.
(2007), the PSA can be effective with relative short service times,
but tends to fail badly with longer service times. The additional
delayed feedback adds to the challenge because it can significantly
alter the time-varying demand, not only in magnitude but also in
timing. For example, the delayed feedback can amplify or damp the
peak demand and shift it in time.

The literature exposes two common reasons for feedback
after completing service: First, de Vericourt and Zhou (2005)
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Fig. 1. The (M:/{GlI, GI}/s; + {GI, GI}) + (GI/o0) model with delayed customer feedback and its Delayed Infinite-Server (DIS) approximation. The approximating offered load

is m(t) = my (t) + my(t) = E[B1 (t)] + E[B> (1)].

focus on call center customers that may return later because
the initial service was unsatisfactory. Second, Yom-Tov and
Mandelbaum (2014) focus on the treatment of patients by a doc-
tor in a hospital that may naturally occur in stages, starting with
an initial screening and continuing later after tests have been or-
dered and completed. Our paper is closely related to Yom-Tov and
Mandelbaum (2014), where a modified-offered-load (MOL) approx-
imation was proposed to help set staffing levels at a queue with
time-varying arrival rates and Markovian feedback after a delay in
an infinite-server (IS) queue. They showed that the MOL approxi-
mation has great potential for improved performance analysis in
healthcare, where the service times tend to be relatively long, so
that PSA does not apply.

Motivated by these applications, we consider a feedback model
that has appealing flexibility. In particular, instead of the Marko-
vian routing with fixed feedback probability p and one fixed
service-time distribution considered in Yom-Tov and Mandelbaum
(2014), we consider history-dependent Bernoulli routing, where
there may be any number of visits and the feedback probability
p and the service-time distribution and the subsequent delay dis-
tribution (before returning for a new service) all may vary with
the visit number. We focus on the common important case of at
most one feedback, which seems to be a more realistic model than
Markovian routing, which produces a geometric random number
of feedbacks. It is significant that the approach here also extends
directly to any finite number of feedbacks; we demonstrate by also
considering examples with two feedback opportunities. Our meth-
ods also extend directly to time-dependent feedback probabilities,
but we do not examine that here. (The justification is that a time-
dependent independent thinning of an NHPP is again an NHPP; see
Sections 2.3 and 2.4 of Ross (1996).)

We also allow customer abandonment, which often tends to be
more realistic for many service systems, as observed by Garnett,
Mandelbaum, and Reiman (2002). The patience-time distributions
are also allowed to be non-exponential and depend on the visit
number. Just as in Yom-Tov and Mandelbaum (2014), we use the
general offered-load (OL) method with the MOL refinement, as
reviewed in Jennings et al. (1996), Green et al. (2007), Liu and
Whitt (2012c) and Whitt (2013). There are difference between the
MOL methods designed to stabilize the delay probability and the
abandonment probability, as discussed in Liu and Whitt (2012c),
but the main contribution here beyond Yom-Tov and Mandelbaum
(2014) is the new method for computing the time-varying of-
fered load. Because the offered load is the primary determinant of

performance, the performance impact from more faithfully repre-
senting the service and feedback process in a time-varying setting
can be great.

To analyze this new feedback model with customer abandon-
ment, we draw on Liu and Whitt (2012c) in which we developed a
delayed-infinite-server (DIS) offered-load approximation and a new
DIS-MOL (DIS-modified-offered-load) algorithm to determine time-
dependent staffing levels in order to stabilize expected delays and
abandonment probabilities at specified quality of service (QoS) tar-
gets in a many-server queue with time-varying arrival rates. The
model in Liu and Whitt (2012¢) was M;/Gl/s; + GI model, having
arrivals according to an NHPP with arrival rate function A(t), in-
dependent and identically distributed (i.i.d.) service times with a
general distribution (the first GI), a time-varying number of servers
(the s, to be determined), i.i.d. patience times with a general dis-
tribution (times to abandon from queue, the final +GI), unlimited
waiting space and the first-come first-served (FCES) service disci-
pline. We included non-exponential service and patience distribu-
tions as well as time-varying arrivals because they commonly oc-
cur; e.g. see Armony et al. (2015) and Brown et al. (2005).

We refer to the base model with a single feedback considered
here as (M;/{GI, GI}/s; + {GI, GI}) + (GI/<0). The main queue has
the two service-time cdf's G; and patience cdf's F;, depending on
the visit number, while the orbit queue has a single service-time
cdf H, with all waiting customers entering service in a FCFS order.
We develop approximations for the number of customers waiting
before service and in service upon each visit and the number of
customers in orbit. When we refer to the number of customers in
the system or the waiting time, we do not include the orbit queue.

We also consider the associated (M;/{GI, GI}/s; + {GI, GI}) +
(GI/st + GI) model in which the orbit queue has finite capacity; in
that case, it also has a staffing function and a patience distribution.
The goal is to stabilize expected potential waiting times (the vir-
tual waiting time before starting service on any visit of an arrival
with infinite patience) at a fixed value w for all time and i =1, 2.
Since these models are special kinds of two-class queueing models,
we also consider the more elementary Ziz=1 (M¢/GI + GI)/s; two-
class queue, in which the two classes arrive according to two in-
dependent NHPPs with arrival rate functions A()(t) and their own
service-time cdf's G; and patience cdfs F;, i =1, 2, but there is a
single service facility with a time-varying number of servers s(t),
again to be determined.

The approximating DIS model for the
{GI,GI}) + (GI/oo) feedback queue has five

(M /{GI, GI} /st +
IS queues in
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series, as shown in Fig. 1. (If there are k possible feedbacks, then
the DIS model has 2 + 3k IS queues in series; see Section 6.1 for
the case k =2.) We show that the simple DIS algorithm (staffing
directly to the DIS offered load) is effective for all three models
with low QoS targets. To provide theoretical support, we prove a
new functional weak law of large numbers (FWLLN) showing that
any positive waiting-time target w is achieved asymptotically as
the scale (arrival rate and number of servers) increases.

However, as in Liu and Whitt (2012c), the DIS algorithm is in-
effective for high-QoS (low waiting-time) targets. We develop a
new DIS-MOL approximation for that case and conduct simula-
tion experiments to show that it is effective. (The DIS-MOL ap-
proximation is also asymptotically correct as the scale increases.)
Given previous MOL approximations, ideally the MOL approxima-
tion for the main case would involve a stationary (M/{GI, GI}/s +
{GI, GI}) + (GI/oo) feedback queue to apply at each time t. Since
no steady-state performance results exist for such a complex sta-
tionary model, we develop an aggregate single-class stationary
M/GI/s + GI model. With this new aggregate approximating sta-
tionary model, we are able to apply the algorithm for the steady-
state performance from Whitt (2005) just as in Liu and Whitt
(2012c). Fortunately, simulation experiments confirm that this ag-
gregation approach is effective.

The rest of this paper is organized as follows: We start in
Section 2 by giving explicit expressions for all the key perfor-
mance functions of the new (M;/{GI, Gl}/s; + {GI., GI}) + (GI/o0)
queue with Bernoulli feedback and an IS orbit queue, with fixed
delay target w. In the online appendix we also give explicit formu-
las in structured special cases when the arrival-rate function is si-
nusoidal. In Section 3 we state the supporting many-server heavy-
traffic FWLLN showing that the DIS approximation asymptotically
stabilizes the expected delay as the scale increases. We defer the
proof to the online appendix. In Section 4 we develop the new DIS-
MOL approximation. In Section 5 we show the results of simula-
tion experiments to support the approximations. In Section 6 we
show that the good results also hold for (i) the more elemen-
tary Ziz=] (M¢/GI + GI)/s; two-class queue, (ii) the more compli-
cated (M;/{GI, GI}/s; + {GI, GI}) + (Gl/s; + GI) queue with Bernoulli
feedback and a (Gl/s; + GI) finite-capacity orbit queue and (iii) the
generalization of the base model allowing two feedback opportuni-
ties. Finally, in Section 7 we draw conclusions. Additional support-
ing material appears in the online appendix (Liu & Whitt, 2015).

2. The delayed-infinite-server (DIS) approximation

We now develop the DIS approximation for the
(M¢/{GI, GI}/s¢ + {GI, GI}) + (GI/0) model with FCFS service,
which has Bernoulli feedback with probability p for each new
customer completing service; otherwise the customer departs.
Customers arrive according to an external NHPP arrival process
with arrival rate function A. The original (feedback) arrivals have
i.i.d. service times and patience times distributed as generic
random variables S; with cdf G; and A; with cdf F; (S, with cdf
G, and A, with cdf F,), respectively. Customers that are fed back
encounter i.i.d. delays distributed as the generic random variable
U with cdf H. The arrival-rate function of the fed-back customers
is Ar. This feedback model is depicted on the left in Fig. 1.

2.1. The approximating five-queue DIS model

The approximating DIS model, depicted on the right in Fig. 1,
has five IS queues in series, the first two for the external arrivals,
in queue and in service, the third for the IS orbit queue (which is
directly an IS queue) and the last two for the fed-back customers,
in queue and in service. Since all arrivals to a queue are forced to

remain in the waiting room a constant time w unless they aban-
don in this approximating model, the service times in the first and
fourth IS queues (representing the waiting room) are distributed
as Ty =A; Aw and T, = A, A w, respectively. The service times in
the second and fifth IS queues (representing the service facility)
are distributed as S; and S,, and the service times in the third IS
queue (representing the orbit queue) are distributed as U. The per-
formance functions for the five IS queues are then calculated recur-
sively using Eick et al. (1993). Theorem 1 of Eick et al. (1993) im-
plies that the departure process from the M;/GI/co IS queue is itself
an NHPP with an explicitly specified rate function. It is also well
know that an independent thinning of an NHPP is again an NHPP.
Thus all five IS queues are M;/GI[oo models.

In the DIS approximation for the (M;/{GI, GI}/s¢ + {GI, GI}) +
(GI/oo) model, we let Q;(t) and B;(t) be the number of customers
in waiting room i and in service facility i at time t, i=1,2. We
let O(t) be the number of customers in the orbit room at time t.
The approximating offered load (OL) function, which of course is a
function of the waiting time target w, is
m(t) = my(t) + my(t) = E[By (t)] + E[B2(£)]. (M
As before, all flows are Poisson processes, with rate functions as
depicted in Fig. 1. The abandonment rates from the two waiting
rooms (IS queues 1 and 4) are &;(t); The rates into service from
the waiting rooms (IS queues 2 and 5) are f;(t); the departure rate
of original customers from the service facility (both fed-back and
not) is o {(t); the departure rates from the system of original cus-
tomers and fed-back customers are (1 — p)o(t) and o,(t); and the
feedback rate (leaving the service facility and entering the orbit IS
queue) is po(t).

2.2. The DIS performance functions

In this section we display the performance functions for
the DIS approximation of the (M;/{GI, GI}/s; + {GI, GI}) + (GI/o0)
model. All these performance functions are crucial in provid-
ing time-varying staffing functions and predicting system perfor-
mance under these staffing policies. The next theorem generalizes
Theorem 1 in Liu and Whitt (2012¢) and follows directly from Eick
et al. (1993). (Also see Massey and Whitt (1993).)

For a non-negative random variable X with finite mean E[X]
and cdf Fy, let X, denote a random variable with the associated
stationary-excess cdf (or residual-lifetime cdf) Fg, defined by

FEX) =PX. <x) = ﬁfo F()dy. x>0,

where F(y) =1—F(y). The moments of X, can be easily ex-
pressed in terms of the moments of X via

E[Xk+1
(k+ 1)E[X]
Let 1¢ be the indicator variable, which is equal to 1 if event C oc-
curs and is equal to 0 otherwise.

E[Xs] =

Theorem 1 (performance functions starting from the infinite
past). Consider the DIS approximation for the (M;/{GI,GI}/s; +
{GI, GI}) + (GI/o) model specified in Section 2, starting empty in the
distant past with specified delay target (parameter) w > 0. The total
numbers of customers in the waiting rooms, service facilities, and in
the orbit at time t, Q;(t), B;(t) and O(t) are independent Poisson ran-
dom variables with means

EQ: ()] = E[ [ e dx} — E[(t — Ty )JEIT .

E[B; ()] = F; (W)E [ /t :1 AX) dx]

= R (W)E[A(t —w — S1.0)E[S1],
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t
E[0(D)] = PE[/tU 01(X) dxi| = pE[o1(t — Ue) JE[U].

t
EIQ:(0)] = E[ [ e dx} — E[r(t ~ T, E[Ta]

t—w

E[By(t)] = é(w)E[ /

-w-S5,

Ar(x) dx]

= B(WE[Ae(t —w = S) [E[S],

where T; = A; Aw. Thus, X(t), the total number of customers in the
system at time t is a Poisson random variable with a mean E[Qq(t)] +
E[Qy(t)] + E[B;(t)] + E[By(t)]. The processes counting the numbers of
customers abandoning from waiting room 1 and 2 are independent
Poisson processes with rate functions &;(t), where

£1(t) = /me — %) dFy (%) = E[A(E = T) 17, ]

£(t) = /OW Je (t = %) dBy () = E[Ae (€ = To) 11, -

The processes counting the numbers of customers entering service fa-
cility 1 and 2 are independent Poisson processes with rate functions
B1(t) and B,(t), where

Bi(®) = A —w)RW) and Br(6) = Ar(t —W)BW).

The departure processes (counting the number of customers complet-
ing service) from service facility 1 and 2 are independent Poisson pro-
cesses with rate (1 — p) oy (t) and o,(t), where

o1 (t) = B (w) ffk(t—w—x) 4G, (x) = B W)E[L(E —w — S1)].

o2(t) = B(w) /0 T e (E—w—2x) Gy (%) = B(WE[Ar (t—w—5))].

The process counting the numbers of customers entering the second
waiting room is a Poisson process with rate function Ag, where

Jr(t) = p/om o1(t — %) dH(x) = (1 — p)E[o (¢ — )],

When the arrival rate is constant, i.e., A(t) = A, the steady-state
performance functions can be easily obtained using simple calcu-
lations for a five-queue IS network, which in particular simplifies
to five IS queues in series; see the online appendix (Liu & Whitt,
2015). As discussed in Eick et al. (1993), Massey and Whitt (1993),
Liu and Whitt (2012c), simple linear and quadratic approximations
derived from Taylor series for general arrival-rate functions can
be convenient. These approximations show simple time lags and
space shifts; see the online appendix.

In applications, a typical objective is to design a staffing func-
tion for a specified planning period [0, T] (e.g., T = 24 for a day). To
treat that case, we let A(t) = 0 for t < 0 into Theorem 1 and obtain
the following concrete formulas for the performance measures. We
let x* = max(x, 0).

Corollary 1 (performance functions of the initially empty DIS
model). Consider the initially empty DIS approximation for the
(Mg /{GI, GI}/s¢ + {GI, GI}) + (GI/o0) model with delay target w > 0.
All results in Theorem 1 hold with rate functions

tAw —
sl<t>=f0 (= X)dF (). Br(6) = At — W) - Fr(W) 1oy,

t—w)*

_ (
o1 (t) = F (w) /0 A(t—w — X)dGy (x).
(t—w)*
A () = /0 poi (¢ — y)dH()

3 W pt-w-y
— PR (w) /O fo A(E—w— X~ y)dGy (x)dH ().

(t—w)TArw
£ () = /O ar(t — 2)dF(2)

_ (t-W)TAw pt—w-z pt—w—y—z
g —p)Fl(W)/O /0 /0 N
x (t—w—x—y—w)dG; (x)dH(y)dE(2),

Ba(t) = Ar, (t = WIBW) - 1122w

_ _ (t=2w) " pt—2w—y
— pFy (W)Fz(W)/ f A(t—2w—x—y)dG; () dH ().
0 0
(t-2w)*
o3 (t) = /O Ba(t — 2)dG, (2)

_ _ (t=2w)*  pt=2w-z pt-2w-y-z
= pRwh [ [ A
x (t =2w—x—y —2)dG;(x)dH(y)dG,(2),

and mean number of customers in these five IS queues

[

w - _ (t-w)*
E[Qi ()] = /0 At —0F dx,  E[Bi(6)] = F(w) /0 )

x (t —w—x)G; (x)dx,

(t—w)* _
E[O(t)] = /0 po (t — x)H(x)dx

(t—w)* pt—w-—y

— pF(w) [0 A(E—w— X — y)dGy (A Y)dy.

0
(t—w)*Aw

E[Qy(0)] = /0 wr (t — 2B (2)dz.

_ (t—-w)*Aw  pt—w—z pt—w-y-z
~ phi(w) [ [ —
0 0 0

x (t—=w—x—y—2)dG, (x)dH(y)E(z)dz,

_ (t=2w)* _
E[By(6)] = Fy(w) fo A (t—w - 2)Gy(2)dz

_ _ (t-=2w)t pt-2w-z pt-2w-y-z
= pF(w)k(w) /0 /0 /0 A
x (t —2w—x—y —2)dG; (x)dH (y) G (2)dz.

The total number of busy servers (or number of customers
in service) at time t is B(t) = B;(t) + By (t). As in Liu and Whitt
(2012c), we let m(t) = E[B(t)] = E[B;(t)] + E[B,(t)] be the DIS OL
function.

In the appendix we give explicit formulas for the case of sinu-
soidal arrival rate functions, which are often used to create stylized
models. In the longer online appendix we also consider a slightly
generalized scheme. Suppose the system is not empty at the be-
ginning of the day (at time 0) and the initial number of waiting
customers in the system along with their elapsed waiting times
are observed (not random). For instance, there are n customers
waiting in a single line at time 0 and their elapsed waiting times
are 0 <w; <wy <--- <wy. The goal is to design an appropriate
staffing function s(t) for 0 < t < T such that the average cus-
tomer waiting times can be stabilized during [0, T] (e.g., T =8 or
T = 24). A typical example is the Manhattan DMV office. On a reg-
ular morning, by the opening of the office (8:00 am), which may
have a line of waiting customers outside the door. This variant is
also analyzed in the appendix.

3. Asymptotic effectiveness as the scale increases

In this section we state the many-server heavy-traffic FWLLN
for the (G¢/{GI,Gl}/s; +{GI, GI}) + (GI/oo) model with Bernoulli
feedback after a random delay in an IS orbit queue, implying that
the DIS staffing algorithm is effective in stabilizing the expected

Please cite this article as: Y. Liu, W. Whitt, Stabilizing performance in a service system with time-varying arrivals and customer feedback,
European Journal of Operational Research (2016), http://dx.doi.org/10.1016/j.ejor.2016.07.018



http://dx.doi.org/10.1016/j.ejor.2016.07.018

JID: EOR

[m5G;August 20, 2016;17:21]

Y. Liu, W. Whitt/European Journal of Operational Research 000 (2016) 1-14 5

waiting times for all customers at a fixed positive value w asymp-
totically as the scale increases. (In the rest of this paper we restrict
attention to M; arrivals. The greater generality provides a basis for
extensions. See He et al. (2016) for a discussion of G; arrivals.) The
associated abandonment probability targets o; = F(w) for i=1,2,
where i = 1 corresponds to external arrivals and i = 2 corresponds
to feedback after completing service, are then achieved asymptoti-
cally as well.

Paralleling Liu and Whitt (2012b, 2012c), the FWLLN involves a
sequence of (G;/{GI, GI}/s; + {GI, GI}) + (GI/o0) models indexed by
n and the limit corresponds to the associated fluid model studied
directly in Liu and Whitt (2012a). As before, we let the service and
patience distributions G;, F;, H be independent of n. The cdf's G;,
F; and H are differentiable, with positive finite probability density
functions (pdf’s) g;, f; and h.

In Liu and Whitt (2012c) we assumed that the arrival pro-
cess Np(t) was NHPP, but greater generality is allowed by Liu and
Whitt (2012a, 2012b). In order to simplify the proof, we make the
DIS staffing simply be proportional to the scale parameter n. We
achieve that by letting the arrival rate in model n be a scaled ver-
sion of a fixed arrival rate function. As in Liu and Whitt (2012c),
that works directly if we assume that the external arrival process
is an NHPP, but to allow greater generality we assume a specific
process representation.

We now assume that the queue has a base external arrival
counting process that can be expressed as

NO @) =ND(A()), t=0, (2)

where A(t) is a differentiable cumulative rate function with
t

At) = / A(s)ds (3)
0

where A(t) is specified as part of the model data. and N =
(N®)(): t > 0} is a rate-1 stationary point process satisfying a
FWLLN, i.e.,

n'N®(t) =t in D as n— oo, (4)

where = denotes convergence in distribution in the function space
D with the topology of uniform convergence over bounded subin-
tervals of the domain [0, oo) as in Whitt (2002).

In that framework, we then define the external arrival process
in model n by letting

NE () = NP (nA (), t =0, (5)

which gives it cumulative arrival rate function A,(t) =nA(t), a
simple multiple of the base arrival rate function. On account of this
construction and assumption (4), we deduce that N,ge) also obeys
the FWLLN

NO () =n"'N®(nt) = A(t) in D as n— oo. (6)

We remark that the limit is the cumulative external arrival rate
function of the fluid model in Liu and Whitt (2012a).

Since the external arrival rate has been constructed by simple
scaling, the associated DIS staffing can be constructed by simple
scaling as well; see Section 4 of Liu and Whitt (2012a). Hence,
in model n, we can use a time-varying number of servers sy(t) =
[ns(t)] (the least integer above ns(t)), which we assume is set by
the DIS staffing algorithm, which is a scaled version of the staffing
in the associated fluid model with cumulative arrival rate A, al-
ready specified in Theorem 1, in particular,

s(t) =m(t) = my(t) = my(t) = E[B1 ()] + E[B2 (D)]. (7)

We define the following performance functions for the nth model:
Let Ny(t) be the total number of (external plus internal) arrivals
in the interval [0, t]; let Q,Sl) (t) be the number of customers of

type i waiting in queue at time t; let Wn(i) (t) be the correspond-
ing potential waiting time, i.e., the virtual waiting time at time ¢ if
there were an arrival at time t of type i, assuming that arrival had
unlimited patience; let A,({)(t) be the number of type i customers
that have abandoned from queue in the interval [0, t]; let A,ﬁi) (t,u)
be the number of type-i customers among arrivals to the queue in
[0, t] that have abandoned in the interval [0, t + u]; let D,ﬁ')(t) be
the number of type-i customers to complete service in the interval
[0, t]; let D,(11’2>(t) be the number of type-1 customers to complete
service that have been fed back in the interval [0, t]; let D,(f)(t) be
the number of type-2 customers to arrive back at the queue in the
interval [0, t]. Define associated FWLLN-scaled processes: by letting
Na(t) = n~'Np(t), and similarly for the other processes except the
process W,.f’)(t) is not scaled.

Theorem 2 (asymptotic effectiveness). Consider a sequence of
(G¢/{GI, GI}/s¢ + {GI, GI}) + (GI/o0) models indexed by n with the ex-
ternal arrival processes in (5) and the many-server heavy-traffic scal-
ing specified above. Suppose that these systems start empty at time 0,
the regularity conditions in Liu and Whitt (2012a, 2012b) are satis-
fied (including the finite positive densities) and E[Siz] < oo for all i.
Then, with any expected waiting time target w > 0 and associated
abandonment-probability targets o; = F(w) > 0, i =1, 2, use the DIS
staffing sp(t) = [ns(t)], where

s(t) =m(t) = my(t) + my(t) = E[B1 ()] + E[B2 (D], (8)

as given in Theorem 1. Then the expected delays and abandonment
probabilities are stabilized at their targets w and o«; for i=1,2
asymptotically as n — oo. Moreover, for any time b with w < b < oo,

sup {10 (t) —E[QV (]|} = 0,

O<t<b

sup {|AY () —AD ()]} =0, EW ()] —-w, and
O<t<b

sup  {JAV(t t +u) —AD(t, u)]} = 0,

0<t<b;, wj<u<b;

sup {IW,"(t) —wl} = 0,
O<t<b

t>0, 9)

as n — oo, where (with Ay = A and Ay = Ag)

HQO O] = EQO€ 0] = [ -0 v

A () = /0 C£.(s) dsEi () = fo Yt —x)fi()dx and

ADt u) = Ai(Doy, Uu>w,. (10)

We give the proof in the appendix. Essentially the same ar-
gument yields corresponding FWLLNs for the Zi2=1 (M;/GI + GI) /st
two-class queue and the (M;/{GI, GI}/s; + {GI, GI}) + (GI/s¢ + GI)
model when the orbit queue has finite capacity.

We remark that the DIS-MOL algorithm also can be shown to
be asymptotically correct as the scale increases in the setting of
Theorem 2, but that result is misleading, because the FWLLN in
Theorem 2 expresses a MSHT limit in the ED regime, where the
waiting-time target w and abandonment probabilities «; are held
fixed while the scale increases. It remains to establish a MSHT limit
in the QED regime where instead the probability of delay is held
fixed as the scale increases.

4. The refined DIS-MOL approximation

Just as in Liu and Whitt (2012c), simulation experiments to be
discussed in Section 5 show that the DIS approximation is effec-
tive under low-QoS (high-waiting-time) targets, but is ineffective
under the common high-QoS (low-waiting-time) targets. Thus, we
develop a refined DIS-MOL staffing algorithm here. Paralleling the
DIS-MOL approximation in Liu and Whitt (2012c), we let the DIS-
MOL staffing be the time-varying number of servers needed in the
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stationary M/GI/s + GI model with time-varying total arrival rate
Amoi(t), regarded as constant at each time t, depending on the of-
fered loads m;(t), and associated parameters according to

m;(t)

2
)"mol(t) = Z)‘mol,i(t) and )"mol,i(t) = m’

i=1
where m;(t) = E[B;(t)] for each i. We enforce the additivity in
(11) and the additivity m(t) = mq(t) + my(t).

We now elaborate on our reasoning. As in Liu and Whitt
(2012c), the idea behind (11) is to exploit the basic offered load
relation for the stationary model, which corresponds to Little’s
law applied to the service facility, i.e., m = AE[S]. However, the
arrival rate should be adjusted for abandonment. Hence, if A is
the external arrival rate, not adjusted for abandonment, then m =
A(1 —@)E[S] and A =m/(1 — «)E[S]. However, now we have two
classes of customers with different parameters, so we have m; =
Ai(1 — o;)E[S;] for each i, which leads to X; = m;/(1 — o;)E[S;] for
each i. The total arrival rate is the sum of these two arrival rates.
When we substitute m;(t) for m;, we obtain our DIS-MOL arrival
rates (11) to use in the stationary M/GI/s + GI model.

The MOL arrival rate in (11) generalizes the relatively simple
formula Ay (t) = my (t)/(1 — «)E[S] for a single queue in Liu and
Whitt (2012c¢). Formula (11) reduces to that when F, =F for all i,
so that o; =, and G; =G for all i, so that E[S;] = E[S] for all i.
Given the MOL arrival rate function in (11), we apply the approx-
imations for the performance in the stationary M/GI/s + GI model
from Whitt (2005), just as in Liu and Whitt (2012c), except we use
w as the target for the expected waiting time.

(11)

4.1. Constructing the aggregate stationary model

We have just constructed the aggregate DIS-MOL arrival rate in
(11). In order to produce a stationary M/GI/s + GI model for each
time t, it now remains to define appropriate aggregate service-time
and patience cdf's G, and Fp,,; to be used in the stationary model
at time t. We let these be defined as appropriate averages. In par-
ticular, we let

)”mol.l (t)Fl + )‘mol,z (t)FZ

Fmol(t): X l(t) (_12)
so that

_ )‘mol,l (t)(l - al) + )\mol,Z(t)(‘1 - 0!2)
1- amol(t) = )\.mol(t) (13)
and
Gl (1) = (1 -0y ))\-mol,l )G+ (1 - aZ))"mol,Z(t)Gz. (14)

(1 — Qmol (t)))\mol (t)
Let Spoi(t) and Ay, (t) be generic random variables with the cdf's
Gmot and Fy,, at time t. From (14), we have

1 — 1) Aot 1 (DE[S1] 4+ (1 = 002) Aot 2 (£ E[S2]

(1 = ot (8)) Aot ()

Since these definitions are averages, we meet the obvious consis-
tency condition that G, (t) = G if Gy =G, =G and F,y(t) =F if
F=F=F.

ESm (6] = & (15)

Proposition 1 (additivity). With these definitions, we maintain the
important MOL additivity assuming that

mmol(t) = (] _amol(t)))‘mol(t)E[smol(t)L (16)
Then
Mypop (t) . (1 — Ol (t)))"mol (t)E[Smol (t)]

= (1 =a)hno 1 (OE[S1]+ (1 = @2) Aot 2 (OE[S2] = m(t). (17)

Proof. We start with (16) and then apply the definition of
E[Smoi(t)] in (15) to get the second line. We then apply (11). O

4.2. Computing the DIS-MOL staffing function

For each time ¢, we apply the constant arrival rate in (11), aban-
donment cdf in (12) and service-time cdf in (14) in order to obtain
a stationary M/GI/s + GI model, which of course depends on t. We
numerically select the staffing level s,,,(t) to be the smallest value
for which the expected steady-state potential waiting time (virtual
waiting time for a customer, if that customer had unlimited pa-
tience) is less than the target w.

To do so, we exploit the approximating state-dependent Marko-
vian M/M/s + M(n) model for the stationary M/GI/s + GI queue, de-
veloped in Whitt (2005). With that model, we first compute the
steady-state distribution 7; = P(Q(cc0) = 1), i > 0, for the M/M/s +
M(n) queue, as indicated in Section 7 of Whitt (2005). We next
compute the expected steady-state potential waiting time by con-
ditioning on the total number of customers in the queue. As a
function of the number of servers s, we write

EW (o)) = Y A (eo)lQeeo) =il = 3 L
i=s is koo “H T %
(18)

where p is the reciprocal of the mean service time in (15) and J;
is the state-dependent abandonment rate in (3.4) of Whitt (2005).
The goal here is to find an s, (t) such that s, (t) = min{s >
0, E[W;s(c0)] < w} for each stationary (M/GI/s + GI); model.

In closing this section, we also remark that we could also be
staffing at time t to satisfy the new abandonment target o, (t)
given in (13), i.e, we could choose the minimum number of
servers so that the steady-state probability of abandonment is be-
low o/;0/(t). This is so because if the potential waiting time is in-
deed w for an arrival, then the probability that this arrival will
abandon is approximately Fq (£, W) = o0 (€).

5. Comparison with simulations

We now use simulation experiments to show the effectiveness
of the approximations.

5.1. The base model

Our base model is the (M;/{GI, GI}/s; + {GI, GI}) + (GI/o0)
model with Bernoulli feedback after a random delay in an IS orbit
queue. (We consider other models in Section 6 and the appendix.)
Just as in Feldman, Mandelbaum, Massey, and Whitt (2008), Liu
and Whitt (2012c), for our base case we let the system start empty
and we use a sinusoidal arrival rate function with average offered
load for new arrivals of approximately 100, so that the staffing
would fluctuate around 100 for the external arrivals alone. (We
also consider cases with smaller arrival rates in the appendix.) In
particular, we use the arrival rate function

A(t) = A(1 +rsin(t)) = 100(1 +rsin(t)), t >0, (19)

for relative amplitudes r, denoted by M(r); here we let r=0.2.
We let the feedback probability be p=0.2, but we let the
mean service times for the original and fed-back customers be
pui' =E[S1]=1 and u,' =E[S;] =5, respectively, so that the
offered loads of the two kinds of customers are roughly equal.
In the appendix we obtain similar results for the corresponding
model with p=0.5 and /‘“51 = E[S;] = 2, which has more similar
mean service times.

We let the three service-time distributions be hyperexponen-
tial (Hp) with squared coefficient of variation (scv, variance divided
by the square of the mean) c? =4, with balanced means, as on
p. 137 of Whitt (1982); we thus write Hp(m, 4) with specified
mean m. We let the patience times of the original and fed-back
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Fig. 2. Performance functions in the (M;(0.2)/{Hy(1,4),H;(5.4)}/s; + {M(2), M(1)}) + (0.2, Hy(1,4)/oc) model with the sinusoidal arrival rate in (19) for A =100 and r =
0.2, Bernoulli feedback with probability p= 0.2 and an IS orbit queue: four cases of high waiting-time (low QoS) targets (w = 0.10, 0.20, 0.30 and 0.40) and simple DIS

staffing.

customers be exponential, but with different means, denoted by
M(m). In particular, we consider the (M;(r)/H,(1,4),Hy(5,4)/s: +
M(2),M(1)) + (p, Hy(1,4)/o0) model with r = p = 0.2. All service-
time distributions are H,, while all patience distributions are M,
but the means vary, so that the complex refined DIS-MOL formu-
las in Section 4 associated with the aggregate model are needed,
and are tested in these experiments. We also consider correspond-
ing models with non-exponential patience cdfs in the and larger
values of r in the appendix. The same stable performance is seen

for r = 0.5, but some degradation in performance is seen where
the staffing decreases for r = 0.8.

5.2. Results from the simulation experiment

We simulated the model above starting empty over the time
interval [0, 20]. We estimated the performance functions by tak-
ing averages from 2000 independent replications. (Additional de-
tails are given in the online appendix.)
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Fig. 3. Performance functions in the (M;(0.2)/{H,(1,4),Hy(5,4)}/s; + {M(2), M(1)}) + (0.2, H;(1,4)/oc) model with the sinusoidal arrival rate in (19) for A = 100 and r =
0.2, Bernoulli feedback with probability p=0.2 and an IS orbit queue: four cases of low waiting-time (high QoS) targets (w = 0.01, 0.02, 0.03 and 0.04) and DIS-MOL

staffing.

Figs. 2 and 3 show the results of the simulation experiment
for high and low waiting-time targets. In Fig. 2 the waiting-
time targets are w = 0.10, 0.20, 0.30, 0.40, so that the simple DIS
staffing is used, while in Fig. 3 the waiting-time targets are w =
0.01,0.02,0.03,0.04, ten times smaller, so that the refined DIS-
MOL staffing is used. The performance functions are averages
based on 2000 independent replications.

Consistent with Liu and Whitt (2012c) and the FWLLN in
Section 3, with the higher waiting-time targets in Fig. 2 we see
very smooth and accurate plots of the expected waiting times and

abandonment probabilities, which are the performance functions
to be stabilized, but strongly fluctuating expected queue lengths
and delay probabilities, which agree closely with the formulas in
Section 2. With the higher waiting-time targets, there is higher
abandonment probability, so that the maximum staffing is about
160 instead of about 100+ 100 = 200 in Fig. 3 with the lower
waiting-time targets. There is greater variability with the lower
waiting-time targets.

Fig. 3 shows that, consistent with experience in Feldman et al.
(2008) and Liu and Whitt (2012c¢), all performance functions tend
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m, = 0.6 and patience means m; = 2.0 and m, = 1.0: four cases of identical high waiting-time (low QoS) targets (w = 0.10, 0.20, 0.30 and 0.40) and simple DIS staffing at
both queues.

to be stabilized simultaneously with the lower waiting-time tar-
gets, after an initial startup effect due to starting empty. The de-
lay probability starts at 1 because the stabilizing staffing algorithm
does not start staffing until time w > 0. That feature ensures that
all arrivals wait exactly w in the limiting fluid model (see Section
10 of Liu & Whitt (2012a)), but it would probably not be used in
applications.

5.3. Square root staffing

We emphasize that the DIS OL m(t) given explicitly in
Section 2 is the key quantity being computed. The DIS OL quan-
tifies the essential demand, combining the impact of the random
service times with the time-varying arrival rate, both of which are
complicated by the feedback. The relatively complicated DIS-MOL
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both queues.

staffing, which requires an algorithm for computing an approxima-
tion for the steady-state performance in the stationary M/GI/s + GI
model, is of course also important in identifying the exact staffing
level required to stabilize the expected potential waiting times at
the target w. However, except for the specific QoS parameter S, the
same goal could be achieved by applying the simple square root
staffing (SRS) formula

s(t) =m(t) + By/m(t), (20)

with this DIS OL m(t). Without the DIS-MOL step, we could just
search for the appropriate constant 8 to use in the SRS formula.
The DIS OL already succeeds in eliminating the dependence on
time.

As in Feldman et al. (2008), we demonstrate the importance of
the DIS OL in the present context by plotting the implied empirical
Qos,

SpismoL (t) — m(t)
v/ m(t)

for the example considered in Fig. 3. Fig. 4 shows that the DIS-MOL
staffing is indeed equivalent to SRS staffing for an appropriate QoS
parameter S, which is given on the y axis on the left, as a function

Bois—mor(t) = (21)

of the target w on the right. We present similar empirical QoS plots
for other examples in the online appendix.

The DIS OL is appropriate for smaller models as well, but then
the actual staffing and the resulting performance are complicated
because the discretization becomes very important. However, the
DIS OL remains an important first step to identify the effective
time-dependent demand.

6. Other models

In this section we discuss the other two models mentioned
in the introduction. We first discuss the Ziz=1 (M¢/GI + GI)/s; two-
class queue, in which the two classes arrive according to two in-
dependent NHPPs. We then discuss the (M;/{GlI, GI}/s; + {GI, GI}) +
(Gl/s¢ + GI) feedback model in which the orbit queue has finite ca-
pacity. Afterwards, we discuss the model with two feedback oppor-
tunities. More examples are discussed in the online appendix.

6.1. Two-class queue

In this section we consider the associated Ziz:](M[/GH— GI) /st
two-class queue, in particular, the Z,»zzl(Mt/Hz(miA) + M(m;)/s¢
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and 0.40) and simple DIS staffing at both queues.

model with H,(m, 4) service-time cdf’s for both classes with m; =
1.0 and my = 0.6 and M(m) patience cdf's for both classes with
m; = 2.0 and m, = 1.0. We let the arrival processes be indepen-
dent NHPPs, but with different sinusoidal arrival-rate functions, in
particular,

A1(t) = 100(1 +0.2sin(t)), and

Ay (t) = 60(1+0.2sin(0.8t + 2)). (22)

The analysis of this model is more elementary. First, there is no
orbit queue. We get the DIS OL by simply applying the DIS ap-
proximation to the two classes separately. That yields the per-class
OL's m;(t) = E[B;(t)] for i=1,2 and then we add to get the to-
tal OL: m(t) = mq(t) + my(t). Given this overall DIS OL, we apply
the same refined DIS-MOL approximation in Section 4. The results
of simulation experiments for high and low waiting-time targets,
based on 2000 independent replications, are shown in Figs. 5 and
6. The results are good, just as in Section 5.

6.2. A finite-capacity orbit queue

In this section we consider the associated (M;/{GI, GI}/s; +
{GI, GI}) + (Gl/st + GI) model with Bernoulli feedback after a
random delay in a finite-capacity orbit queue. We use the

same waiting-time targets to set the staffing levels in the or-
bit queue and the main queue. In particular, we consider the
(M (r)/H2(1,4), Hy(10/6, 4) /s +M(2), M(1))+(p. Ha (1, 4) /s¢-+M(1))
model with r=0.2 and p =0.6. Just as in Section 5, all service-
time distributions are H,, while all patience distributions are M,
but the means vary, so that the complex refined DIS-MOL formu-
las in Section 4 associated with the aggregate model are needed.
Figs. 7 and 8 show the results of the simulation experiment for
high and low waiting-time targets, respectively, again based on
2000 independent replications, each starting empty.

6.3. Two feedback opportunities

In this section we consider a modification of the base model
in which there are two feedback opportunities. Each customer that
has been fed back once returns again with probability p, after an-
other delay in an IS orbit queue with cdf H,. Upon return, these
customers have service cdf G; and patience cdf F;. The new DIS
model has eight IS queues in series, as depicted in Fig. 9.

Since there are now three customer classes, characterized by
their class-dependent service-time and patience-time distributions,
we easily generalize results in Theorem 1 to include the formulas
for class 3. We have
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Fig. 8. Performance functions in the (M;(0.2)/{H,(1,4), H,(10/6,4)}/s; + {M(2), M(1)}) + (0.6, H,(1, 4)/s; + M(1)) model with the sinusoidal arrival rate in (19) for A =100
and r = 0.2, Bernoulli feedback with probability p = 0.6 and an IS orbit queue: four cases of low waiting-time (high QoS) targets (w = 0.01, 0.02, 0.03 and 0.04) and DIS-MOL
staffing.

A 2 (1) PRy
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Fig. 9. The DIS approximation for the (M;/{GI, GI, GI}/s; + {GI, GI, GI}) + (GI/oo) + (GI/oc) model with two delayed customer feedback opportunities. Here there are two IS
orbit queues. The approximating offered load is m(t) = my (t) + my(t) + ms(t) = E[B1(t)] + E[B2(t)] + E[B3(t)].
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t
E[0,(D)] = PzE|:/tU 03(%) dx] =p2 E[o2(t-Us,) |E[U3].

t
E[@s(D)] = E|:/[T Afp2(X) dXi| = E[Ap2(t — T3) [E[T3].

t—w

ms () = E[B3(t)] = é(w)E[ /t

—-w-S3

)\fF,Z(X) dX:|
= B(W)E[Ap2(t —w — S3.)]E[S3],
Ara(t) = p /0 02 (t — X) dHy (%) = (1 p2)E[ 0 (¢t — U)],

where T3 = A3 Aw, and As, S3 and U, follow cdfs F;, G3 and Hs.
Regarding the DIS-MOL approximation, we generalize (11)-(14)
to

3
Amor(t) = Z)Vmol.i(t)s where A (t) = (1_1110‘[7(;;5[51
i=1 i i
i=1,2,3,
Y Aotk (DF Yk Aol (8) (1)
Frot (t) = T (T—apmu(t) = o (©) ,
6 (t) = ket (1= @) a2 (G

(l — Ol (t)))"mol (t)

Figures of simulation experiments in the online appendix verify
the effectiveness of our DIS and DIS-MOL approaches just as in
Figs. 2 and 3. We remark that this analysis can generalize to the
case of any finite number of feedbacks.

7. Conclusions

In this paper we have extended the two-queue approximating
Delayed-Infinite-Server (DIS) model for the M;/Gl/s; + GI model in
Liu and Whitt (2012c¢) to the corresponding five-queue approximat-
ing DIS model depicted in Fig. 1 for the (M;/{GI, GI}/s; + {GI, GI}) +
(GI/oo) model with Bernoulli feedback after a random delay in an
infinite-server orbit queue and a corresponding six-queue approxi-
mating DIS model for the corresponding model with a (GI/s; + GI)
finite-capacity orbit queue. These models present attractive al-
ternatives to the Erlang-R model in Yom-Tov and Mandelbaum
(2014) because the fed-back customers can have different service-
time and patience cdf’s. The same approach extends to any finite
number of feedbacks; the case of two feedbacks is discussed in
Section 6.3 and the online appendix. The approach applies to sys-
tems with or without customer abandonment. Without customer
abandonment, the offered load is mg(t) for @ = 0; then we would
use a delay-probability target, as in Feldman et al. (2008), Jennings
et al. (1996) and Yom-Tov and Mandelbaum (2014).

Theorem 1 here and Theorem 1 of the online appendix give
explicit expressions for all DIS performance functions in general
and with sinusoidal arrival rate functions. Moreover, we have pre-
sented results of simulation experiments showing that the DIS of-
fered load (OL) itself provides staffing that successfully stabilizes
abandonment probabilities and expected waiting times with low
QoS targets. Theorem 2 establishes a FWLLN showing that the DIS
staffing achieves its performance goals asymptotically as the scale
increases.

In Section 4 we have also developed a new aggregate approx-
imating single-class Delayed-Infinite-Server Modified-Offered-Load
(DIS-MOL) approximation to set staffing levels with low waiting-
time (high QoS) targets. We showed that we can use either the ag-
gregate abandonment probability target or the waiting-time target,
but the waiting-time target tends to produce a faster algorithm,
in part because the abandonment probability target F,, (w;t) is a
time-dependent function. We have presented results of simulation

experiments in Sections 5 and 6 showing that the new DIS and
DIS-MOL staffing algorithms are effective across a wide range of
QoS targets.

The queue with Bernoulli feedback after an additional delay in a
finite-capacity orbit queue is a special case of a network of many-
server queues with feedback. Our excellent results in this case in-
dicate that the methods should apply to more general networks of
queues, including multiple queues and customer classes, with var-
ious forms of routing, including models with retrials from blocked
arrivals as in the large literature reported in Artalejo (2010), but
such more general models remain to be examined carefully.
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