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Abstract

Continuing research by Jennings, Mandelbaum, Massey and Whitt (1996), we investigate methods to perform
time-dependent staffing for many-server queues. Our aim is to achieve time-stable performance in face of
general time-varying arrival rates. It turns out that it suffices to target a stable probability of delay. That
procedure tends to produce time-stable performance for several other operational measures. Motivated by
telephone call centers, we focus on many-server models with customer abandonment, especially the Markovian
M;/M /s, + M model, having an exponential time-to-abandon distribution{th¢&), an exponential service-

time distribution and a nonhomogeneous Poisson arrival process. We develop three different methods for
staffing, with decreasing generality and decreasing complexity: First, we develop a simulation-based iterative-
staffing algorithm (ISA), and conduct experiments showing that it is effective. The ISA is appealing because it
applies to very general models and is automatically validating: we directly see how well it works. Second, we
extend the square-root-staffing rule, proposed by Jennings et al., which is based on the associated infinite-server
model. The rule dictates that the staff level at tiniee s; = m; + 3./m;, wherem; is the offered load (mean
number of busy servers in the infinite-server model) and the constatiiects the service grade. We show that

the service gradg in the staffing formula can be represented as a function of the target delay probality

using approximations for the steady-state delay probability in the associated statiépafys + M model,

drawing on Garnett, Mandelbaum and Reiman (2002). Finally, for many-server queues with abandonment,
we show that simply staffing at the offered load itself (i.e., letting= m.) is remarkably effective in typical
operating regimes. Indeed, for practical examples with relatively short service times, it suffices;tclet

A(t) /1, where(t) is the arrival rate and/ . is the mean service time, as in a naive deterministic method.

Keywords: Contact centers; call centers; staffing; operator staffing; queues; non-stationary queues; queues
with time-dependent arrival rates; multi-server queues; infinite-server queues; capacity planning; queues with
abandonment.
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1 Introduction

1.1 Background on Services and Call Centers

Service systems such as banks, insurance companies and hospitals play an important role in our society. Ser-
vices employ about 60-80% of the work force in western economies, and their importance is sharply on the
rise, both within service and manufacturing companies. In our service-driven economy, it is estimated that over
70% of the business transactions are carried out over the phone. Most of these transactions are processed by
telephone call centers, which have become the preferred and prevalent means for companies to communicate
with their customers. Indeed, it is estimated that more than 3% of the U.S. work force is employed in call
centers—more than in agriculture! For an overview of call centers and models of them, readers are referred to
the recent review by Gans, Koole and Mandelbaum (2003).

The modern call center is a highly complex operation that fuses advanced technology and human beings. But
the economic and managerial significance of the latter clearly outweighs the former. More specifically, labor
costs (agents’ salaries, training, etc.) typically run as high as 70% of the total operating costs of a call center,
and attrition rates in call centers reach anywhere from 30% per year (considered low) to over 200% at times.
In such circumstances, perhaps the most important operational decision to be made is staffing: what is the
appropriate number of telephone agents that are to be accessible for serving calls. Over-staffing is wasteful,
while under-staffing leads to low service-levels and overworked agents.

1.2 The Staffing Problem

The staffing problem typically takes the following form: Under an existing operational reality, and given a
desired quality of service, we seek the least number of agents at each time that is required to meet a given
service-level constraint. This problem, which has received much attention over the years (see Chapter 4 in
Gans et. al.), is challenging both theoretically and practically. The challenges are easy to understand, because
the natural model for the staffing problem is a many-server queue with a time-varying arrival rate, which is
notoriously difficult to analyze. The practical importance of staffing is highlighted by considering a bank em-
ploying 10,000 telephone agents and catering to millions of customers per day; even small gains in operational
efficiency or service quality clearly can provide great benefit.

Figure 1 depicts a typical arrival-rate function to a telephone call center. Call volumes are low around midnight
(hour 0), starting to increase in the early hours of the morning, peaking at late morning, then dropping somewhat
around midday (12, lunch break), rising again afterwards, and then dropping thereafter to midnight levels. The
displayed arrival-rate function is an average of several similar days; the actual number of arrivals, in a given
hour on a given day, fluctuates randomly around this average. (The functional form in Eiigusgical; the
particular values for the arrival rates were adapted from Green, Kolesar and Soares (2001) in order to benchmark
our algorithm; see Sectich)

Staffing planners are thus faced with two sources of variabipitgdictable variability — time-variations of

the expected load — arstiochastic variability — random fluctuations around this time-dependent average. Most
available staffing algorithms are designed to cope only with stochastic variability; they avoid the predictable
variability in various ways. For example, when the service times are relatively short, as in many call centers
when service is provided by a telephone call, it is usually reasonable tqoasetaise stationary approximation
(PSA), i.e., to act as if the system at timerere in steady-state with the arrival rate occurring at that instant (or
during that half hour). With PSA, one performs a stationary or steady-state analysis with a stationary model
having parameters that vary by the time of day; see Green and Kolesar (1991) and Whitt (1991). The PSA is
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Figure 1:Hourly call volumes to a medium-size call center
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the leading term in thaniform-acceleratiorfUA) approximation; see Massey and Whitt (1998) and references
therein.

However, service times are not always short, even in call centers. If relatively lengthy interactions are not
uncommon, then PSA tends to be inappropriate. When service times are not so short, significant predictable
variability can cause PSA to produce poor performance. As a consequence, some parts of the day may be
over-staffed, while others are under-staffed.

In this paper we address the staffing problem vitth predictable and stochastic variability. Here is the
problem we aim to solve:

Given a daily performance goal, and faced with both predictable and stochastic variability, we seek to
find the minimal staffing levels that meet this performance goal stablyver the day.

In particular, we aim to find an appropriate time-dependent staffing functi@nfoarrival-rate function, where
“appropriate” means that we achieve time-stable performance. For given service-time distribution, we allow
arbitrary arrival-rate functions, i.e., arbitrary predictable variability. We aim to agree with PSA when it is
appropriate and do significantly better when it is not appropriate.

1.3 Our Point of Departure

Our point of departure is our (with Otis B. Jennings) previous paper: Jennings, Mandelbaum, Massey and Whitt
(1996). In that paper, we showed For thie/M /s, model that it is possible to achieve time-stable performance.
That observation strongly motivates the present study.

In that paper, we proposed ariinite-server approximation for many-server queues with time-varying arrival
rate, without customer abandonment, in particular ford¢G/s model, having a nonhomogeneous Poisson
arrival process with arrival-rate functiox(t) andindependent and identically distribut¢dD) service times
{S, : n > 1}, distributed as a random variabtewith a generakcumulative distribution functioifcdf) G
having mearE’[S] = 1/u. For theM, /G /s model, we suggested staffing according togheare-root-staffing
formula:

st =my + Bymy, 0<t<T, (1.1)
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where the constant is a measure of thgrade of serviceand the deterministic functiom; is the offered
load, i.e., the mean number of busy servers in the associdigd: /oo infinite-server model (with same arrival
process and service times).

The underlying motivation for this square root formula comes from the fact that the number of customers in the
M, /G infinite-server model hasRoisson distributiorfor all times0 < ¢ < T whenever the number in the
system at timeé = 0 has a similar distribution (being empty is a degenerate case of a Poisson distribution). The
mean and the variance are equal for a Poisson distribution. Therefore, the fagt ggquals thaneanfor the
“offered load process” (infinite server model) at timinplies that/m; equals thestandard deviatiorfor this

offered load process. Thus we are simply setting the number of sepvegsal to the mean plus some number

( of standard deviations of the offered load.

The important insight above is that théght” offered load above should be the time-dependent mean number

of busy servers in the associated infinite-server model. For the stationary model, the right offered load is known
to be \E[S]. The “obvious” direct time-dependent generalization i) E[S], which is the PSA offered load.
However, AE[S] is also the mean number of busy servers in the associated stationary infinite-server model. It
turns out that the mean number of busy servers in the infinite-server model is a better generalization of “offered
load” for most time-varying many-server models. (Indeed, it may be considered exactly the right definition for
the infinite-server model itself.)

It is also significant that, for thé/, /G /oo model, the time-dependent mean number of busy servershas
atractable expression Let L,(co) be the number of busy servers at timia the infinite-server model. Then
the explicit formula formn; is

my = F [Li(c0)] = / G(t—uANu)du=FE [/ts A(u) du} =E[\t—S.)] E[S], (1.2)

whereS, is a random variable with the associagtdtionary-excess cd{or equilibrium-residual-lifetime cdf)
G, associated with the service-time adf defined by

1 t
GetEPSegtE/l—Gu du, t>0; (1.3)
(t) = P( ) EiS] J, [ (u)]
see Theorem 1 of Eick et al. (1993a) and references therein. For more on the stationary-exGessespp.
424 and 431 of Ross (2003); = G. if and only if G is exponential.

¢From (a special case of) Theorem 10 in Eick et al. (1993a), wejgantify the difference between the
infinite-server offered loach, and the PSA offered loadl(¢) - E[S]. Letting (S.). be a random variable with
the twofold stationary-excess cgf.)., we have the formula

me— A(t)- B[S] = E[X (t = (S0)0)] - BIS] - EIS] = 5 B[N (t = (S00)] Bl (1.4)

¢From (L.4), it follows that the PSA offered load wilot be a good approximation of the infinite-server of-
fered load when the arrival rate varies rapidly in time (large derivatiye For a given mean service time,

they may also be far apart when the second moment of the serviceHiffié], (or variance) is large. The
second condition has implications for non-exponential distributions that are heavy tailed; see Whitt (2000) for
background.

Given that we use the square-root-staffing formulalid)(and that we can directly calculate the offered load

by (1.2), the remaining problem is to determine an appropriate grade of s¢tic€l.1). Toward that end, we

chose to make thaelay probability — the probability an arrival will have to wait before beginning service — the

target performance measure Our goal was to have the delay probability at every tinbe a targete. That

choice was by no means arbitrary. As proved in Halfin and Whitt (1981) and further discussed in Whitt (1992)
and Jennings et al. (1996), the delay probability is an ideal performance measure because it has a nondegenerate
many-server heavy-traffic limit. That means that the delay probability tends to have a meaningful interpretation,
independent of scale (the load and the number of servers). We discuss how to relate the grade ¢f service

the target delay probability later.



1.4 Our Contributions to the Staffing Problem

Our goal in this paper is to develop staffing algorithms for more complicated time-varying many-server mod-
els, such as many-server queues with abandonment. For example, we want to treat the much more realistic
M, /G /s + G model with non-exponential service times (the fig§tand non-exponential abandonments (the

+@). For call centers, our ultimate goal is to treat realistic multi-server systems with multiple call types and
skill-based routing (SBR). We do not consider SBR models here, but the methods here may extend to that
setting, especially when combined with the methods of Wallace and Whitt (2004), which use appropriate cross
training to reduce SBR staffing to single-group staffing.

1.4.1 A Simulation-Based Iterative Staffing Algorithm.

Our first contribution is a simulation-based Iterative-Staffing Algoriti®A) for many-server queues with
time-varying arrival rate. By being based on simulation, ISA has two important advantages: First, by using
simulation, we achievgenerality: We can apply the approach to a large class of models; we are not restricted
by having to have a model that is analytically tractable. We are able to include realistic features, not ordinarily
considered in analytical models. For example, we can carefully consider what happens to agents who are in
the middle of a call when their scheduled shift ends. Second, by using simulation, we aatiexratic
validation: In the process of performing the algorithm, we directly confirm that ISA achieves its goal; we
directly observe the performance of the system under the final staffing fudetio) < ¢ < T'}.

Following Jennings et. al. (1996), we assume that, in princgsig number of servers can be assigned at any

time. In our implementation, however, time is divided into short intervals (we take 0.1 service times), and we
keep the number of servers fixed over each of these small intervals. The service discipline is FCFS, and servers
follow an exhaustive service discipline: a server that finishes a shift in the middle of a service will complete
the service and sign out only when finished. (Our results prevail also for preemptive service disciplines under
which servers leave at end-of-shifts and their customers, if any, are moved to the front of the queue.)

Continuing to follow Jennings et al. (1996), we uke delay probability as our target performance measure,

but the same method could be applied to other performance measures. Specifically, given a target probability
of delay, we identify time-varying staffing levels under which the actual probability of delay remains approx-
imately equal to the given target at all times. Other performance measures, such as the average waiting time,
gueue-length tail delay-probabilities and the probability of abandonment, turn out to be relatively constant over
time as well.

For the main model we study, the Markoviafy /M /s, + M model, we not only implement and evaluate ISA,

but we also provide a proof of convergence. To do so, we must set aside the (important) issue of estimating the
time-dependent delay probability for any given staffing function by computer simulation, which is subject to
statistical error. That statistical error decreases as we increase the number of independent replications, so it can
be made arbitrarily small at the expense of computational effort, but for any given amount of computational
effort it is always present. However, if we assume that we actually know the true delay probabilities associated
with each staffing function, then we obtain monotone convergence to a limiting staffing function. That is
accomplished by applying sample-path stochastic-order notions, as in Whitt (1981).

1.4.2 An Extended Version of the Square-Root Staffing Formula.

While working with ISA, we discovered that the simulation-based solutions we were finding had astonishing
regularity. In particular, we found that global performance measures coincide with the performance measures
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of the associated stationary model. In particular, when we used ISA to staff the time-vafyjdd/s; + M
model, we found that the staffing could be related to the steady-state behavior of the associated stationary
M /M /s + M model.

That leads us to our second contribution: We extend the square-root staffing formula. In particular, we suggest
staffing according to thequare-root-staffing formulain (1.1), where the service grade= 3(«) is derived

from a theoreticabne-to-one relation betweerny and 3 for the corresponding stationary model In par-

ticular, we propose using(«), for which staffing levels ok = m + 8y/m would lead to the desired delay
probability « in the corresponding stationary model, whete= A/ is the stationary offered load. For the
M,;/M /s, + M model, we use explicit formulas relatirgto 5 obtained from the many-server heavy-traffic
limits in Garnett, Mandelbaum and Reiman (2002). We justify this simple analytic staffing formula by con-
ducting experiments for thé/; /M /s, + M model, but we propose the approximation more generally. The
effectiveness in any other context can be verified by applying the simulation-based ISA.

1.4.3 Simple Deterministic Approximations

Finally, we make yet one more contribution. To describe it, we remind readers of the three heavy-traffic
regimes for many-server queudguality-Driven(QD, lightly loaded) Efficiency-Driven(ED, heavily loaded)
andQuality-and-Efficiency-Drive(QED, normally loaded); see Garnett, Mandelbaum and Reiman (2002). In
our experiments for the many-server queue with abandonments we fourginipdy staffing according to

the offered load itselfis remarkably effective in the QED regime, i.e., staffing by lettiag= m; for the

M;/M /s, + M model works very well in the QED regime. Needless to say, abandonments play a crucial role
in this property. This is another example of the importance of including abandonments in the model, when
customers actually do abandon; see Garnett et al. (2002) for more discussion.

Theoretical justification for this heuristic can be found in Mandelbaum, Massey and Reiman (1998). In that
setting, we can apply the many-server heavy-traffic scaling td4he/ /s, + M model and obtain the follow-

ing result for a family of number-in-system stochastic proce$des|n > 0 } indexed byr, associated with
M;/M/s; + M queues. |97 = § andp = p, while

N =n-X and s} =n-my +\fn~5§1)+0(\/ﬁ). (1.5)
wherem; is the mean for thé/; /M /oo queue and so
L At — (1.6)
dtmt = At — Mt -y, .
we then have
lim P (L7(t) > s!) = P (L<1>(t) > sg”) , (1.7)
n—00

whereL®M) = { LW(¢) |t > 0 } is a one-dimensional diffusion.

Here is the implication: It says that, asymptotically, controlling the delay for this queue with abandonment is

a second ordestaffing effort (selecting;ftl)) whereas the leading order staffing level is satisfied by using the
offered load. Moreover, for the special case of the abandonment rate equaling the service rate, we can apply this
argument to rigorously obtain the square-root staffing formula used in Jennings et al. (1996) for the multiserver
queue without abandonment. This is also the one case where the diffl$ios Gaussian. In the Appendix

of this paper we show how these results are derived.

Even though staffing according to the offered load is a remarkably simple method, there remains substantial
sophistication, because we have to know that we should use the deterministic offered-load funciidhen
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the service times are relatively short (compared to the fluctuations in the arrival-rate function), we can use a
truly naive deterministic approximation: We can then simply staff according to the PSA offered load: we can
sets, = A(t)/u (which will coincide with the offered loady,, in that scenario). When we staff according to the
PSA offered load\(¢)/u, we are truly ignoring all stochastic variability; we are using only deterministic data
about the model: the deterministic arrival-rate functigf) and the deterministic mean service tifng:. Even

though the infinite-server offered load, is a deterministic function, it depends on the service-time distribution
beyond its mean, as is apparent froh}.

1.5 Summary of The Paper

In §2 we present examples illustrating the performance of our algorithm, and provide a theoretical motivation
for the derived results. 183 we describe our algorithm and give definitions of the performance measures that
we display. Then, ir84, we present additional examples: We start by revisiting the “challenging example” in
Jennings et al. (1996); we follow by expanding the analysis of the Erlang-A examplé #arwith different
patience parameters, emphasizing the stationary (time-stable) performance of our staffing algorithm. Then,
we analyze a realistic example (the one presented in Figuré contrast to Green et. al. (2001), we also
incorporate abandonment, which significantly and positively impacts staffing resul§s, time dynamics of

the iterative algorithm is discussed. §6 we discuss directions for future research. We provide additional
theoretical perspective for the square-root-staffing algorithm from a uniform-acceleration perspective in a final
appendix.

2 Examples and Motivation

We start with two examples demonstrating the performance of our algorithm: first, the time-varying Erlang-A
model (with abandonments) and, second, the corresponding time-varying Erlang-C model (without abandon-
ments).

2.1 The Time-Varying Erlang-A Model
2.1.1 A Sinusoidal Arrival-Rate Function

Consider a queueing system that is faced with a nhon-homogeneous Poisson arrival processnwihidal
arrival-rate function
ANt)=a+b-sin(ct), 0<t<T, (2.8)

wherea = 100, b = 20 andc = 1; i.e.,

A(t) =100+ 20 -sin(t), 0<t<T. (2.9)

Let the service times and the customer times to abandon (if they have not yet started service) come from
independent sequences of independent and identically distributed (1ID) exponential random variables having
mean 1. As can be seen from PSA, the arrival rate is sufficiently large, that Hlibservers are required,

so this example captures the many-server spirit of a call center. However, the sinusoidal form of the arrival-
rate function is clearly a mathematical abstraction, which has the essential property of producing significant
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fluctuations over time, i.e., significant predictable variability. This particular arrival-rate function is by no
means critical for our analysisur methods apply to an arbitrary arrival-rate function .

An important issue, however, is the rate of fluctuation in the arrival-rate function compared to the expected
service-time distribution. To be concrete, we will measure time in hours, and focug@4haur day, so that

T = 24. A cycle of the sinusoidal arrival-rate function i8.9) is 27/c; since we have set = 1, a cycle is

27 =~ 6.3 hours. Thus there will be abodtcycles during the day. That roughly matches the daily cycle in
Figure (L) for the six-hour period around 12:00 noon.

Since we let the mean service timeband have chosen to measure time in hours, the mean service time in this
example isl hour. That clearly is relatively long for most call centers, where the interactions are short telephone
calls. If we were to change the time units in order to rectify that, making the expected servidé tineutes,

then a cycle of the arrival-rate function would become alidubur, making for more rapid fluctuations in the
arrival rate than are normally encountered in call centers. Thus our example is more challenging than usually
encountered in call centers, but may be approached in evolving contact centers if many interactions do indeed
take an hour or more. (We will consider a practical example in SedtibhFrom this preliminary analysis, we
anticipate that the service times are sufficiently long in our example that the traditional PSA method is likely to
perform poorly here, just as in Jennings et al. (1996).

The arrival rate coincides with the PSA offered load, because the mean service time hefés (infinite-

server) offered load is given irlL(2). Since we have a sinusoidal arrival-rate function, we can apply Eick et

al. (1993b) to give an explicit formula for the offered-load, i.e., the mean number of busy servers in the
associated infinite-server system. Since the service-time distribution is exponential, we can apply formula (15)
of Eick et al. (1993b). For the sinusoidal arrival-rate function2rg), the offered load is

my=a+ [sin(ct) — ¢ - cos(ct)] = 100 + 10[sin(t) — cos(t)] . (2.10)

14 ¢2

The second formula ir2(10 is based on the specific parameters: 100, b = 20 andc = 1 from (2.9).

In order to put our model into perspective, in Figareve plot the offered loadh; in (2.10 for the sinusoidal
arrival-rate function in Z.8) for the parameters = 100 andb = 20, as in our example, but with four four
different values of the time-scaling parameter0.5, 1, 2 and20. Note that the offered loagh; is also a
periodic function with the same periddr/c as the arrival-rate functioi(t), but the size of the fluctuations
decrease. As increases, the modified offered load approaches the averageavalug)0. It is important to
understand the offered load, because it is a primary determinant of the required staffing, as we will see.

Our simulation-based iterated-staffing algorithm ISA generates staffing functions, for any given target delay
probability «.. In Figure3 we present three graphs, showing the generated staffing functions for three regimes
of operation:Quality-Driven(QD) - targeta = 0.1, Quality-and-Efficiency-DrivefQED) - targetoe = 0.5 and
Efficiency-Driven(ED) - targeta = 0.9. In each graph, we plot three curves: the arrival rgte (blue), the

offered loadm, ( ) and the staffing functios; (red).

Note that we start our system empty. This allows us to observe the behavior of the transient stage. In particular,
there is a rampup at the left side of the plot. Our methods respond appropriately to that rampup. That is
consistent with Section 7 of Jennings et al. (1996).

Also note that, in the QED regimex(= 0.5), the staffing function dictated by ISA falls right on top of the
offered load: In that QED case, it would have sufficed to simplyjet m;. We will see this phenomenon
repeated throughout the rest of this paper. That itself is quite stunning.



Figure 2: The offered loagh; for the sinusoidal arrival-rate function ig.@) with parameters = 100, b = 20
and four possible values aef 0.5, 1, 2 and20. The offered load is the mean number of busy servers in the
M;/M /oo model. The plotting is done at granulariiyl, so the plot fore = 20 looks a bit strange.
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2.1.2 Time-Stable Performance

We now show that ISA achieves time-stable performance. In Figure show the actual probability of delay
obtained by applying our algorithm with targetfor « = 0.1,0.2,...,0.9. These delay probabilities are
estimated by performing multipl&(00) independent replications with the final staffing function determined

by our algorithm. Under the staffing levels produced by our algorithm, the delay probabilities are remarkably
accurate and stable.

In addition to stabilizing the delay probability, other performance measures (e.g. utilization, tail probabilities
abandon probabilities, etc.) are found to be quite stable as well. Precise explanations and definitions of the
performance measures are given in Seclidh Below are summary results graphs for all targist

However, as the target delay probability increases toward heavy loading, the abandonment probability becomes
much less time-stable. We discuss this phenomenon further in Subs2éioalow. Other measures of con-
gestion such as average waiting time and average queue length were also found to be relatively stable, but like
the abandonment probabilities, these too become less time-stable under heavy loads.



Figure 4:Delay probability summary for various a’'s.
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Figure 5:Utilization summary for the Erlang-A example
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2.1.3 \Validating the Square-Root-Staffing Formula

Next we define aimplied service grade A function{3; : 0 < ¢ < T'} is defined by setting

B=2 LmTt, 0<t<T, (2.11)

wherem; is again the offered load irlL(2) and @.10. ands; is the staffing function obtained by the ISA algo-
rithm. Sinces; is obtained from the ISA algorithm, the functigh is itself obtained from the ISA algorithm.

It thus becomes interesting to see if the implied service grade is approximately constant as a function of time.
And, indeed, it is, as shown in Figuge

Figure9 is extremely important because it validates the square-root-staffing formula for this example. First,
Figure4 shows that ISA is able to produce the target delay probahilitgr a wide range otv. Then Figure

9 shows that, when this is done, the square-root-staffing formula holds empirically. In other words, we have
shown that we could have staffed directly by the square-root-staffing formula instead of by the ISA.
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Figure 6:Tail probability summary for the Erlang-A example
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Figure 7:Abandon probability summary for the Erlang-A example
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Figure 8:Congestion: (1) Targetae = 0.1 (2) Targeta = 0.5 (3) Targeta = 0.9
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2.1.4 RelatingGto «

However, one issues remains: In order to staff directly by the square-root staffing formula, we need to be able
to relate the grade of servigeto the target delay probability. Indeed, we want a function mappingnto 3.

We propose a simple answer: For the time-varying Erldngodel,use the associated stationary Erlangd

model, i.e., theM /M /s + M model. Moreover, we suggest using simple formulas obtained from the many-

10



Figure 9:Summary of Implied Service-grade3
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server heavy-traffic limit for the Erlang-model in Garnett et al. (2002). Tt@arnett function mappingg

into o is
9 h(B)
”\ﬂ )

where3 = 8+/0/u, with p the individual service rate ariithe individual abandonment rate (both here set
equal tol now) andh(z) = ¢(x)/(1 — ®(x)) is thehazard rateof the standard normal distribution, with
being theprobability density functiorfpdf) and® the cdf. Of course, we want a function mappingnto 5.
Thus, we use thiaverse of the Garnett function, which is well defined.

, —00 < 3 < o0 (2.12)

o=

We now look at additional simulation output, aimed at establishing the validity of this stationary-model ap-
proach of relatingy and 3. First, we compare the empirical distribution of the customer waiting times to the
theoretical distribution of those waiting times in the stationary Erldngrodel. Specifically, in Figuré0 we

plot theempirical conditional waiting time pdjiven wait, i.e. the distribution of the waiting time for those

who were in fact delayed, during the entire time-horizon. In doing so, we are looking at all the waiting times
experienced across the day. As before, we obtain statistically precise estimates by averaging over a large num-
ber of independent replications (here againo0). In this case, the empirical conditional distribution is based

on statistics gathered from the time of reaching steady until the end of the horizon.

In Figure 10 we compare the empirical conditional waiting-time distribution to many-server heavy-traffic ap-
proximations for the conditional waiting-time distribution in thi&tionary M /M /s + M queug drawing on
Garnett et al. (2002). Note that the approximation for the conditional waiting-time distribution in the stationary
gueues matches the performance of our time-varying model remarkably well.

We now go on to relate the empiricak, 5) pairs to the Garnett function ir2(12). We define the empirical
valuesa andg3 as simply the time-averages of the observed (time-stable) values displayed in the plots in Figures
4.and9. In Figurell, we plot the pairs ofa;, 3;) alongside the Garnett function. Needless to say, the agreement
is phenomenal!

We close this subsection by observing that other common approximations, such as the PSA or the SSA (the
simple stationary approximation, using the overall time-average arrival rate; see Jennings et al. (1996)) perform
poorly for this example. Demonstrations are omitted for lack of space, but such examples were already given
in Jennings et al. (1996).
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Figure 10:Waiting time given wait: (1) Target = 0.1 (2) Targeta = 0.5 (3) Targeta = 0.9

Figure 11:Algorithm-Generated Performance vs. the Garnett Function
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2.2 Theoretical Motivation: The Casef = u

In one special case, we can analyze the time-dependent Edlamodel just considered (i.e., tid; /M /s, + M
model) in considerable detail. That is the case we have just considered, in which the individual seryice rate
equals the individual abandonment rdte~or the rest of this subsection, kandu be fixed withd = p, but

here we do not set these equallto

2.2.1 Connections to Other Models

With that condition, it is easy to relate thd,/M/s; + M model to two other models that have been fully
analyzed previously: the corresponding time-dependent infinite-server model/(jtié /oo model with the

same arrival-rate function and service rate) and a corresponding time-dependent family of stationarylErlang-
models (theM /M /s + M model with the same service and abandonment rates, but with special arrival rate
and number of servers). We can thus do some theoretical analysis for the model just simulated in the previous
subsection.

To express the relations, 1ét, : ¢t > 0} be an arbitrary staffing function; lét, = L,(M,/M /s, + M) be the
number of customers in the systenat timet, let W be thevirtual waiting time at timet (until service or
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abandonment, whichever occurs first, i.e., the waiting time in queue that would be spent by an arrival at time
t); let P,(Ab) be thevirtual abandonment probability at timet (i.e., the probability of abandonment for an
arrival that would occur at timé). For simplicity, assume that all systems start empty in the distant past (at
time —o0). By having\(t) = 0 for ¢ < t;, we can start arrivals at any tinig.

The first elementary (important) observation is that, for any arrival-rate funEhan : ¢ > 0} and any staffing
function {s; : ¢ > 0}, the stochastic procedd.; : ¢ > 0} has the same distribution (finite-dimensional
distributions) in the two model&/; /M /s, + M andM,;/M /o, i.e.,

{Lo(My/M /s, + M) : £ > 0} & {Ly(My/M/00) - t > 0} . (2.13)

If we appropriately define the two models on the same sample space, giving both processes the same arrivals,
we can make the two equal with probability 1 as well.

The second elementary (important) observation is that, for both these models, the individual random variables
L; have the same distribution as the steady-state number in systeim the corresponding stationary model
with appropriate arrival rate and number of servers.

To state the first of these results, let the service-time random varsabéere an exponential distribution with
meanl /. First, for each,

Le(M/M/00) & Loo(M/M/c0), (2.14)

where the constant arrival rate in the station&fy)/ /oo model depends of in particular, the constant arrival
rate \; in the M /M /oo model is chosen to b&, = pm,, wherem, is the expected number in system in the

time-dependent infinite-server model in%). SinceS has an exponential distributiof, 4.

Theorem 1 of Eick et al. (1993a) states that, foritig' M /oo model with time-dependent arrival-rate function,
for eacht, L; has (exactly) a Poisson distribution with the meanin (1.2). On the other hand, in the stationary
M /M /oo model, Lo, has a Poisson distribution with mean= \/n. Hence, by letting the fixed arrival-rate
in the stationarny\/ /M /oo model be\, above, the limiting steady-state (stationary) number in systenalso
has a Poisson distribution with mean.

By essentially the same reasoning, for eackve can connect the distribution @f; to that in a stationary
Erlang-4 model:

Li(My/M/s; + M) L Loo(M/M/s+ M) (2.15)

where the constant staffing level in the station&fy) /s + M model is chosen to b& = s; and the constant
arrival rate is chosen to be above. ActuallyL., in the M /M /s + M model is independent f

2.2.2 The Delay Probability

The virtual waiting timeW,? and the virtual abandonment probabilify(Ab) in the M, /M /s, + M model

are considerably more complicated. Even though it is difficult to evaluate the full distributiét ofwe

can immediately evaluate the virtual delay probability, because it clearly depends only on what the customer
encounters upon arrival at timeHence, we have

ap = PW{(My/M/sy+ M) >0) = P(L(M/M/sy + M) > sq)

= P(Poisson(my) > s;) ~ P <N(0, 1) > St%t> = ¢° <3t\/_%”) , (2.16)
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where®(x) is again the standard normal cdf(z) = 1 — ®(xz) is the associatedomplementary cdindm
is the offered load in%.2). From @.16), we immediately obtain the square-root staffing ruleliri), where«
is the target delay probability artlis the associated target grade of service, withnd3 related according to

a=P(N(0,1) > 8) = d%(8) . (2.17)

As easily can be verified directly, the Garnett functief) in (2.12 reduces to simply©(3), as in €.17),
whenp = 6.

When aiming for a certain target delay probabilityat all times (which is equivalent to aiming for a target
grade of services at all times), approximatior2(16) dictates that we should choosgeaccording to {.1) and
(2.17). Since @.17) agrees withZ.12) in this case (withu = 6), we have provided theoretical support for the
square-root staffing formula, using the associated stationary model todedaits.

Since the only approximation ir2(16) is the normal approximation for the Poisson distribution, we can an-
ticipate that the approximation will perform extremely well unlessis very small. In particular, by this
argument, we havproved that we do indeed achiewsymptotically time-stable delay probability « in the
M;/M/s¢ + M model withy, = § asm¢ — oo when we staff according td.(1) and €.12). As a consequence,
we have given a theoretical explanation for the regularity observed in Figure

2.2.3 Approximations for the Waiting-Time Distribution

However, from Figure§ and 10, we see that the virtual abandonment probabiityAb) and the expected
virtual waiting time E[W}!] fluctuate much more than the delay probability. We will explain that greater fluctu-
ation.

We actually can mathematically analyze the time-dependent virtual waitingitithand the time-dependent
virtual abandonment probabiliti; (Ab). Here is an important initial observation: Conditional on the event that
W > 0, whose probability we have analyzed abolé! is distributed (exactly) as the first passage time of
the (Markovian) stochastic proce§s,, : u > t} from the initial valueL; encountered at timedown to the
staffing function{s,, : « > t}, provided that we ignore all future arrivals after timeln other words,Wtq is
distributed as the first passage time of the pure-death stochastic process with state-dependent gdath rate
for w > t down from the initial valuel; to the curve{s, : v > t}. (Of course W! = 0if L; < s;.) Asa
consequence, the distribution By and the value of’;(Ab) depend on only_; and the future staffing levels,
i.e.,{s, : u > t}. The time-dependent arrival-rate function contributes nothing further. It is easy to see that we
can establish stochastic bounds on the distributiofif the staffing level is monotone after tinte

We can go further if we make approximations: Even though exact relations are difficult to obtain, it is not
difficult to generate very good approximations for the case in which the number of servers tends to be large,
e.g., as in the specific example in the previous subsection. Thgnends to be very small, so that it is often
reasonable to assume that the staffing level remains constarindahe time shortly aftet. In other words, to
studyW, (M /M/s;+ M) and P;( Ab)(M; /M /s + M), we make the approximation, ~ s; for all u > ¢t. We

make this approximation, not because the staffing level should be nearly constantfafteliz, but because

we think we only need to consider timesslightly greater thamn. We are thinking of applications in which the
time-dependent arrival-rate function is continuous, and the staffing changes relatively slowly.

If the future-staffing-level approximation held as an equality, then we would obtain the following approxima-
tions as equalities:
Wi=WH M /M/s; + M) ~WL(M/M/s+ M) =WZL (2.18)
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and
P,(Ab) = P,(Ab; My /M /sy + M) =~ P (Ab; M/M /s + M) = Py (Ab) (2.19)

where the constant staffing level in the stationafy M/ /s + M model on the righthand sides is chosen to
be 5, = s; and the constant arrival rate is chosen toNpeabove. Hence, we proposg.{89 and .19 as
approximations.

Given approximations 18 and @.19), we can use established results for the statioddyy//s + M model,

e.g., as in Garnett et al. (2002) and Whitt (2004, 2005). For example, algorithms to compute the (exact)
distribution of W, are given there, including the corresponding conditional distributions obtained when we
condition on whether or not the customer eventually is served.

2.2.4 Asymptotic Time-Stability in the Many-Server Heavy-Traffic Limit

As in the literature for stationary models, e.g., Garnett et al. (2002), important insight can be gained by con-
sidering many-server heavy-traffic limits. That is achieved for blyy M /s; + M model, by considering a
sequence of models indexed hywhere the arrival-rate function is allowed to depend upoWVe can leave

the service rate and abandonment rate unchanged, indepenaefaraft). Thus, for eachn, we have arrival-

rate function),, = {\,(¢) : t > 0}. As in the stationary context, we want to let the arrival rate increase
asn — oo. However, now we need to carefully specify how the entire funcligrincreases. Since we are
staffing in response to the arrival rate, we do not need to make any direct assumptions about the staffing levels
s¢. We will assume that we staff according to the square-root-staffing formutawith a fixed target delay
probability «. We then want to determine when that yields asymptotically time-stable performance.

As an initial condition, we want to assume that(t) — oo asn — oo for eacht, but we will need more than
that. From the analysis so far, it is clear that we neged, — oo, wheremy,, is the time-dependent mean
number in then'™ M, /M /oo model. However, that actually is not enough to get asymptotic time-stability for
quantities such as the mean virtual waiting tifig?,!] and the virtual abandonment probabiliy( Ab).

To proceed, we exploit the approximations 18 and .19. From approximation4.19, we obtain the
associated approximation

E[W{] = E[WH(M;/M/s; + M)] ~ E[WZ(M/M/s + M)] (2.20)

where the constant staffing level in the stationafy)/ /s + M model on the righthand sides is chosen to be
3+ = s; and the constant arrival rate is chosen to be a8 (

Now we observe that previous heavy-traffic limits for the Erlahgiodel in the QED regime, Theorems 3 and
4 of Garnett et al. (2002), imply that

VI P(AB)(My/M /s + M) — 7 and /i BIW{ (M,/M/s,+ M)] = 3 (2.21)
asm; — oo, where
n = aE[N(0,1) = BIN(0,1) > 8] = a <§f£) - 1) >0 (2.22)

andf = p.

The important practical conclusion we deduce frahr2() is that we see thay/m;P;(Ab) and \/m;E[W/]
will be asymptotically constant (time-stable and nondegenerate). ascreases if we are in the QED regime.
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However, in general, consistent with Figureand 10, the performance measur&s(Ab) and E[W}}] them-
selves need not be asymptotically time-stable. In order for them to be asymptotically time-stable too, we need
to ensure that the mean function itself is asymptotically time-stable, which requires an extra condition.

We actual see the greatest departures from time-stabiliy(ofb) and E[W/] for the M, /M /s, + M model in
Figures7 and10when the target delay probability is large. In those cases, it is evident that the system actually
should be regarded as in the ED regime, not the QED regime. From Garnett et al. (2002) and Whitt (2004),
we can see the appropriate ED asymptotics, which also suggests that time-stability will not hold for the perfor-
mance measure; (Ab) and E[W/], staffing as we have done. Moreover, it suggests that we might consider

a different staffing method designed to achieve time-stable abandonment in the ED regime. In particular, ISA
extends directly by changing the target performance measure from the delay probability to the abandonment
probability. The performance of such alternative iterative-staffing algorithms is a topic for future research.

2.3 The Time-Varying Erlang-C Model

For comparison, we now show the performance of ISA for the same system described in Sectaty

without abandonment (infinite patience). As expected, the required staffing levels are higher than with aban-
donment, for all target delay probabilities. For example,do 0.5, the maximum staffing level becomes
about 120 instead of 115.

Figure 12:Staffing levels: (1) Targetae = 0.1 (2) Target« = 0.5 (3) Targeta = 0.9

2.3.1 Time-Stable Performance

As before, we achieve accurate time-stable delay probabilities when we apply the ISA.

The service gradg is stabilizing as well, only in much slower rate, as can be seen below fordésge

Without abandonment the system is more congested, but still congestion measures remain relatively stable.
That is just as we would expect, since the time-dependent Efdangpdel is precisely the system analyzed in

Jennings et al. (1996).

Figure17 shows that here the time until system reaches (dynamic) steady-state is much longer compared to a
system with abandonment. In fact, steady-state was not yet reached after 24 time-units in the case above.

2.3.2 \Validating the Square-Root-Staffing Formula

Just as for the time-varying Erlangimodel, we want to validate the square-root-staffing formula.ify) ( We
thus repeat the various experiments we did in Se@ian
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Figure 13:Delay probability summary for the Erlang-C example
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Figure 14:Implied service grade3 summary for the Erlang-C example
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Recall that, for thestationaryM /M /s queue, the conditional waiting-tim@V;, | W, > 0) is (exactly) expo-
nentially distributed. As seen in Figufe, the empirical conditional waiting-time distribution given wait, in

our time-varyingqueue and oveall customers, also fits the exponential distribution well . The mean of the
plotted exponential distribution was taken to be the overall average waiting time of those who were actually
delayed during0, 7).

Here, the relation betweenand is compared with thélalf-Whitt function from Halfin and Whitt (1981),
namely,

elay} = a=a(f) = .q)(ﬁ)}_l 00
P{delay} = a = a(8) [Hﬂ S5 0<s<x. (2.23)

where ¢ is again the pdf) associated with the standard normakicdfThe Half-Whitt function in 2.23 is
obtained from the Garnett function ig.(2 by lettingé — 0.

Just as we use the Garnett function to relate the target delay probabiiiythe grade of servicg in the
square-root-staffing formula iri. (1) for the M, /M /s, + M model, so we use the Half-Whitt function to relate
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Figure 15:Utilization summary for the Erlang-C example
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Figure 16:Tail probability summary for the Erlang-C example
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Figure 17:Target «=0.5: (1) Congestion (2) Waiting time given wait distribution
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a to g3 in the square-root-staffing formula ifh.() for the M, /M /s, model. And that essentially corresponds to
the refinement performed in Section 4 of Jennings et al. (1996). The results in Eijame again remarkable.
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Figure 18:Comparison of empirical results with the Halfin-Whitt approximation
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2.4 Benefits of Taking Account of Abandonment

The following graphs show the benefit of staffing a system taking account of abandonment (assuming that it
in fact occurs). When compared to the model without abandonment, abandonment in the model reduces the
required staff. We show the difference between staffing levels for the two models introduged amd§2.3,

in the three regimes of operatio@D, QED andED.

Figure 19:Staffing levels: (1)a = 0.1 (2)a« = 0.5 (3)a« = 0.9
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It is natural to quantify the savings of labor by the area between the curves. In this case, the savings in labor,
had one used = 1, is 46.5 time units wheax = 0.1, 113.3 whermr = 0.5, and 256.4 whemx = 0.9. It
may perhaps be better to quantify savings by looking at the savings of labor per shift. Dividing the saving
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in time-units by the number of time-units they are taken over, we come up with savings of about 2, 5 and 12
servers per shift, forr = 0.1, 0.5, 0.9 respectively. The labor savings increases &screases.

3 The Simulation-Based lterative-Staffing Algorithm

In this section we describe the simulation-based interactive-staffing algorithm (ISA). As indicated before, we
determine time-dependent staffing levels aiming to achieve a given constant probability of delay at all times. In
the process of applying the ISA, we directly confirm that our goal is being met. Indeed, the goal will necessarily
be met, to a specified tolerance, if the algorithm converges. We then can confirm that other performance
measures, such as server utilization, tail probabilities, average waits and abandonment probabilities, remain
stable as well.

3.1 ThelSA

For our implementation of the algorithm, we assume that we hawe a7 /s, + G = M;/GI /s, + GI model

with independent sequences of IID service times and IID times to abandon, which are independent of the arrival
process, having general distributions, and a nonhomogeneous Poisson arrival process, which is fully specified
by its arrival-rate functioq A(¢);0 < ¢ < T'}. (It will be evident that our approach extends to more general
models.) For application of our algorithm, assuming that we uséfh& /s, + G model, there are issues about

model fitting. For discussion about fitting non-homogeneous Poisson arrival processes, see Massey, Parker and
Whitt (1996).

To start, we fix an arrival-rate function, a service-time distribution, a time-to-abandon (patience) distribution
(when relevant) and a time-horizg, 7']. For any random quantity of interest, 1&t,(¢) denote the value at
time ¢ in then' iteration, fort € [0, T] (the given time horizon). Although our algorithm is time-continuous,
we make staffing changes only at discrete times. That is achieved by dividing the time-horizon into small
intervals of lengthA. In all experiments presented in this paper, we fise- 0.1. We then let the number of
servers be constant within each of these intervals.

For any specified staffing function, the system simulation can be performed in a conventional manner. We
generate a continuous-time sample path for the number in system by successively advancing the next generated
event. The candidate next events are of course arrivals, service completions, abandonments and ends of shifts
(the times at which the staffing function is allowed to change). For non-stationary Poisson arrival process, we
can generate arrival times by thinning a single Poisson process with a constaviteateeding the maximum

of the arrival-rate function\(¢) for all ¢, 0 < ¢ < T. Then an event in the Poisson process at tirfeepotential

arrival time) is in an actual arrival in the system with probability) /\*, independent of the history up to that

time; see Section 5.5 of Ross (1990). Alternatively, the times between successive arrivals can be generated as
independent events, according to probability distributions, determined by the last customer arrival time, and
adjusted if necessary at ends of shifts.

In this section, lek,, (¢) be the staffing level at timein iterationn for 0 < ¢ < T'. Let L,,(¢) denote the random

total number of customers in the system at timender this staffing function. We estimate the distribution of

L, (t) for eachn andt by performing multiple (5000) independent replications. We think of starting off with
infinitely many servers. Since this is a simulation, we choose a large finite number, ensuring that the probability
of delay (i.e., of having all servers busy upon arrival) is negligible fot.dHor the two examples in Section 2,

it suffices to letsy(¢) = 200 for all .

The algorithm iteratively performs the following steps, until convergence is obtained. Here, convergence means
that the staffing levels do not change much after an iteration. (Practically, they are allowed to change by some
thresholdr, which we take to bé.)
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3.1.1 The Steps of ISA

1. Given thei*t staffing function{s;(t) : 0 < ¢t < T}, evaluate the distribution of;(¢), for all ¢, using
simulation.

2. Foreach, 0 <t < T, lets;;1(t) be the least number of servers so that the delay-probability constraint is
met at timet; i.e., let
si+1(t) = argmin{c € N: P{L;(t) > ¢} < a}. (3.24)

3. If there is negligible change in the staffing from iteratidno iteration: + 1, then stop; i.e., if
Hsi-l—l(') — 31()”00 = max{\siﬂ(t) — Si(t)| :0 <t< T} <7 N (325)

then stop and let; ;1 () be the proposed staffing function. Otherwise, advance to the next iteration, i.e., replace
ibyi+1landgobacktostepl. (Welet=1.) =

3.1.2 Implementation and Convergence

For further discussion, leto denote the index of the last iteration of ISA, so tkat(¢) denotes the final
staffing level at timg and L (t) denotes the number in system at timeith that staffing function.. Then,
if the algorithm converges, it converges to a staffing functiQu(-) for which P{L(t) > s«(t)} =~ a,
0<t<T.

Our implementation of ISA was written in C++. For the special case of the Markdwvigid/ /s, + M model,

we can rigorously establish convergence of the algorithm, as we explain in Seclibat proof shows conver-

gence to a limit, but the limit does not necessarily meet the target delay probability; it is a best possible staffing.
Experience indicates that the algorithm consistently converges and does so relatively rapidly. The number of
iterations required depends on the parameters, especially therratid/u. If r = 1, corresponding to an
infinite-server queue as noted in Sectibf, then no more than two iterations are needed, since the distribution

of the number in system does not depend upon the number of servensdémarts froml, the number of
required iterations typically increases. For example, when10, the number of iterations can get as high as

6 — 12. Whenr is very small and the traffic intensity is very high, so that we are at the edge of stability, the
number of iterations can be very large. For more discussion, see SBction

3.2 Performance Measures

Throughout this paper we present several performance measures. Their method of estimation will now be
described. Most measures are time-varying. We define them for each time-intemelgraph their values as
function overt € [0,7]. Other measures are global. They are calculated either as total counts (e.g. fraction
abandoning durinf), T']), or via time-averages. We us&t= 24 in all our simulations.

For replicationk, the delay probability in interval tis estimated by the fraction of customers who are not
served immediately upon arrival, out of all arriving customers during tiv@e-interval. Namely, for thé*"
replication, the estimator is:

_>_; l{customeri_enteredqueueat_interval t} Qur(t)
>, 1{customeri_enteredsystemat intervalt} — §,(¢)

dug (t) (3.26)
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We obtain the overall estimatar(¢) by averaging over all replications. That was found to be essentially the
same as (identical to for our purposes) the ratio of the avera@g @f over all replications to the average of
Sk ().

For replicationk, the estimator of thaverage waiting timein interval tis defined in an analogous way by

) >, wil{customeri_enteredsystermat interval ¢ }
Wi =

= . 3.27
>, 1{customeri_enteredsystermat. interval ¢} (3.27)

wherew; is the total waiting time of customer Again we obtain the overall estimatd(¢) by averaging over
all replications.

Theaverage queue lengthn interval tis taken to be constant over the time-interval. The queue length is also
averaged over all replications. By thedl probability in interval twe mean specifically the probability that
queue size is greater than or equal to 5 (takinm be illustrative). Specifically, the indicatotg L (t) —
Seo(t) > b} are averaged over all replications.

For replicationk, the estimator of theerver utilization in interval tis the fraction of busy-servers during the
time-interval, accounting for servers who are busy only a fraction of the interval:

N Z§f1(t) bi
t) = ="——r 3.28
whereb; denotes the busy time of senidn intervalt. Again, we obtain the overall estimatdft) by averaging
over all replications.

4 Additional Examples

4.1 The Challenging Example

In this section, we consider the “challenging example” presented in Jennings et al. (1996). It is a time-varying
Erlang<C model (no abandonment), with exponential service times having mean 1 and a nonhomogenous Pois-
son arrival process with the sinusoidal arrival-rate functigf) = 30 + 20 - sin(5 - ¢). We want to see how

ISA performs on this same example. FiguBgsand21 show that ISA also achieves time-stable performance

for this example, for the full range of target delay probabilities, ranging fsdnto 0.9, just as before.

We now want to compare the empirical results, paralleling Figlitemnd18. We do so for this example below

in Figure22. Again the results are spectacular. In Figdgewe use the Half-Whitt function, just as in Figure

18. We also include the normal tail probability i&.(.7), because that is the direct normal approximation used

by Jennings et al. (1996), before they apply their refinement in their Section 4. That refinement is equivalent to
working directly with the Half-Whitt function, as we propose here.

4.2 TheM,/M/s; + M Model with More and Less Patient Customers

We now return to the time-varying Erlang-model (M,/M/s; + M) considered in Sectioi, except we
change the patience parameter, i.e., the individual abandonme#it Nk consider two new caseé:= 0.2;
then customers angery patient, since they are willing to wait, on average, five times the average service time;
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Figure 20:Delay probability summary for the Challenging example
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Figure 21:Implied service grade3 summary
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andé = 5.0; then customers anery impatient, since they are willing to wait, on average, only one-fifth of
the average service time.

In both cases, the target delay probability was achieved quite accurately and the serviggwaadsabilized,

just as in the previous graphs. We compare the staffing levels for these alternative environments, for the three
regimes QD& = 0.1), QED (o = 0.5), and ED ¢ = 0.9) in Figure23 below. We compare the time-dependent
abandonmen®;(Ab) in these two scenarios in Figurd.

We compare the empiricédy, 3) pairs produced by ISA to the Garnett function (2 for these two cases in
Figure25. We are no longer surprised to see that the fit is excellent.

From all our studies of ISA, we conclude that for the time-varying Erldanmodel we can always use the
square-root-staffing algorithm ii (1), obtaining the required service graddérom the target delay probability

« by using the inverse of the Garnett function 12, which reduces to the Half-Whitt function i2.23
when# = 0. To see how the Garnett functions look, we plot the Garnett function for several values of the ratio
r = 0/ in Figure26 below.
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Figure 22:Comparison of empirical results with the Halfin-wWhitt and Normal approximation
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Figure 23:Comparison of staffing levels forvery patient and very impatient environments
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4.3 Benefits of Taking Account of Abandonment Again

QED Staffing (a=0.5)

[— Artived —Offered Load —Slaing(6=02) — Staffing(6=51]

Following §2.4, we now expand our comparison of staffing levels for (im)patience distribution with parameters
f# = 0,1,5,10. Clearly, the required staffing level decrease® @screases, bringing additional savings. In
Figure 27 we show the comparison for delay probability = 0.5, which we consider to be a reasonable

operational target.

Here, the labor savings is: 113.3 time unitsflox 1, 270 time units fo¥ = 5, and 386 time units fof = 10.
The corresponding savings in workers per shift are about 5, 12 and 18 servérs; fars, 10, respectively.
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Figure 24:Abandon probability: (1) 6=5 (2)6=0.2
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Figure 25:Comparison of the empirical results with the Garnett approximation
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4.4 A Practical Example

In this section we consider the practical case that was first described in Higlioemake this example more
realistic than previous examples, we decrease the mean service time lfimmto6 minutes. That is achieved
by letting = 10. Corresponding to that, we I6t= 10, so that we havé = p as in Sectior?.1. Results are
shown below.

At first, we are struck by the observation that the algorithm is not as successful as before, because the target
delay probability is not achieved accurately at the beginning and at the end of the day. Moreover, not all
performance measures are stable over the entire day. However, this bad behavior is quite clearly due to the
extremely low arrival rates that prevail at the beginning and the end of the day. When the load is small, the
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Figure 26:The Halfin-Whitt/ Garnett functions
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Figure 27:Staffing under various (im)patience parameters
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addition or removal of a single server while greatly affect the delay probability. On the positive side, note that
there is a clear time-interval - from 7 to 17, in which performance measures are very stable, and when operating
under reasonable service grade (up to delay probability of 0.5), performance measures are varying in quite a
small range, that would look appealing to most system designers.
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Figure 28:Delay probability summary for the practical example
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Figure 29:Implied service grade3 summary for the practical example
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In Figures32, 33, 34 we describe the performance of ISA in the three regions: @B:(0.1), QED (@ = 0.5)

and ED @ = 0.9). There are several important observations to make here: First, note that in all cases the
(infinite-server) offered loadh, falls almost directly on top of the PSA offered loadt) /., showing that in

this case the square-root-staffing rulelf will perform the same using the infinite-server offered load and the
PSA offered load.

ISA does not differ much from PSA. However, for the time-varying Erlahgiodel, staffing using PSA is
actually not routine.

The three regimes of operation are clearly revealed by the average waiting time Qb ttegyime the average
waiting time is relatively negligible; in th@ED regime average waiting time is in seconds; and inEBeit

is in minutes. Figur&3 shows, once again, that the staffing falls right on top of the offered load in the QED
regime. Figure35 shows that the excellent matching between the Garnett function and the empirical results is
preserved also in this example.
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Figure 30:Abandon probability summary for the practical example
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Figure 31:Utilization summary for the practical example
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4.5 Non-Exponential Service Times

In addition to the time-varying Erlang-C and Erlang-A examples, we also ran experiments with different
service-time distributions, such as deterministic and log-normal. The ISA was successful in achieving the
desired target delay probability, and results showed time-stable performance, compatible with stationary the-
ory, similar to here. For the case of deterministic service times, theory was taken from Jelenkovic, Mandelbaum
and Momcilovic (2004).

5 Algorithm Dynamics

In this section we discuss the dynamics of the iterative-staffing algorithm faitiié/ /s, + M model. We first
relate an empirical observation about the way the algorithm converges to the limiting staffing fungtion
and then afterwards we give a theoretical explanation.
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Figure 32: Target a=0.1: (1) Staffing level, offered load and arrival function, (2) average queue and
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Figure 33: Target «=0.5: (1) Staffing level, offered load and arrival function, (2) average queue and
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Figure 34: Target «=0.9: (1) Staffing level, offered load and arrival function, (2) average queue and
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In particular, we observed that the way the staffing functions converge to the limit depends on the=rétip.
Whenever the (im)patience rate is less than the servicerratel(j, we encounteoscillating dynamicsof the
staffing level during the algorithm; whenever the (im)patience rate is greater than the servieexatg (ve
encountemonotone dynamicsof the staffing level during the algorithm.
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Figure 35:Comparison of empirical results with the Garnett approximation
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With monotone dynami¢svhen starting withso(¢) = oo, s,,(t) is monotone decreasing infor all ¢, i.e. the

following prevails:

Sn(t) < spm(t) forall m<n.

An example of the monotone dynamics is shown in Fidifievhere staffing levels are shown for the first three
iterations of the algorithm for the case of arrival functidft) = 100 + 20 - sin(t), service times exponential

having mean 1, and impatience times that are exponential having mean=9.10j.

Figure 36:Staffing levels in the1t, 27¢ and last iterations. =1, 6=10.
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In contrast, withoscillating dynamicss, (¢) is oscillating for all¢; i.e. there exist 2 subsequendes ()} 2,
and{s;(t)}72,,,1, such thatsy,, () | seo(t) andsz,1(t) T soo(t). Within the oscillating framework, there
is monotonicity. An example of the oscillating dynamics can be viewed in Figiireshere staffing levels are
shown for the first three iterations for the same case except there is no abandahménafdr = 0).

Figure 37:Staffing levels in the1t, 2"¢ and last iterations. u=1, 6=0
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For theM; /M /s, + M model, the algorithm dynamics can be explained by stochastic-order relations for the
time-varying birth-and-death proce§s; : ¢ > 0}. For all systems, the arrival process is the same. However,
the death rates depend systematically on the number of sesyeM/henr > 1 (r < 1), then the death

rates at time decrease (increase) asincreases. Hence, if we disregard statistical error, caused by having to
estimate the delay probabilities associated with each staffing function, we can actually prove that the algorithm
converges for thé/,/M /s, + M model. To do so, we use sample-path stochastic order, as in Whitt (1981).
We only need ordinary stochastic-order for each timbut in order to get that, we need to properly address
what happens before tinteas well.

Here is thekey stochastic-order propertyfor the My /M /s, + M model: Ifs;(¢) < so(t) forallt,0 <t < T,
andr > 1, then
{L1(t) :0 <t <T} <o {Lao(t): 0<t<T}, (5.30)

where<,,; denotessample-path stochastic orderi.e.,
Elf({Li(t): 0<t <TH] <o E[f ({L2(t) : 0 <t < T})] (5.31)

for all nondecreasing real-valued functiofien the space of sample paths. The ordering is reversed if instead
r <1.

The ordering of the death rates in the two birth-and-death processes makes it possible to achieve the sample-
path ordering. Indeed, that can be accomplished (the rel&ig6) can be rigorously justified) by constructing
special versions of the two stochastic processes on the same underlying probability space so that the sample
paths are ordered with probability 1. As discussed in Whitt (1981), and proved by Kamae, Krengel and O’Brien
(1978), that special construction is actually equivalent to the sample-path stochastic ordesiag)in (

The sample-path ordering obtained ensures that a departure occurs in the lower process whenever it occurs in
the upper process and the two sample paths are equal. As indicated above, the two processes are given identical
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arrival streams. Then we construct all departures (service completions or abandonments) from those of the
lower process at epochs when the two sample paths are equal. Suppose thattah&sample paths are
equal:L;(t) = Lao(t) = k. Then, at that, the death rates in the two birth and death processes are necessarily
ordered by (k) > d2(k). We only let departures occur in proc&when they occur in proceds so the two

sample paths can never cross over. When a departure occurs in preadsdoth sample paths in staktewe

let a departure also occur in proc&swith probability d2 (%) /d1(k), with no departure occurring in process
otherwise. This keeps the sample paths ordered w.p. 1 for Atlthe same time, the two stochastic processes
individually have the correct finite-dimensional distributions. The construction is just like the thinning of a
Poisson process used in the simulation of a nonhomogeneous Poisson process.

As a consequence of the sample-path stochastic order, we get ordinary stochastic order
Li(t) <q Lo(t) forall t, (5.32)

where now<,; denotes conventional stochastic order for real-valued random variables, just as in Chapter 1
of Ross (1996); also seeiMer and Stoyan (2002). We only need the more elementary stochastic order in
(5.32), but we use the more sophisticated sample-path stochastic ordeBinto get it. The stochastic order

is equivalent to the tail probabilities being ordered; i.8.39) is equivalent taP (L1 (t) > z) < P(La(t) > x)

for all z, which implies the ordering for the staffing functions at titnén particular, suppose that

P (La(t) =2 s2(1)) < a < P(La(t) = s2(t) — 1) . (5.33)

Since
P(L1(t) = s2(t)) < P (La(t) = s2(1)) < v, (5.34)

necessarily; (t) < so(t).

Case 1:r > 1. Forsyg(t) = oo, we necessarily start withy(¢) > s;(t) for all ¢, which produces first
Li(t) <g Lo(t) and thensq(t) < s1(t) for all t. Continuing, we geL,,(¢) stochastically decreasing inand
sn(t) decreasing im, again for allt. Since the staffing levels are integers, if we use only finitely many values
of ¢, as in our implementation, then we necessarily get convergence in finitely many steps.

Case 2:r < 1. Forsy(t) = oo, we again necessarily start with(¢) > s1(¢) for all t. That produces first

Li(t) >s Lo(t) and thensy(t) > so(t) > s1(t) for all ¢t. Afterwards, we getl;(t) > Lo(t) > Lo(t)
andso(t) > sa(t) > s3(t) > s1(t) for all t. Continuing, we getf., (t) stochastically increasing in, while
Lo,+1(t) stochastically decreasesqin for all ¢. Similarly, so,(¢) decreases in, while sq,11(t) increases in

n, for all t. We thus have convergence, to possibly oscillating limits. Since the staffing levels are integers, if
we use only finitely many values ofas in our implementation, then we necessarily get convergence in finitely
many steps.s

We also observed that thiarget delay probability « strongly influenced the dynamics. In particular, higher
values ofa cause larger oscillations in the oscillating case, and slower convergence to the limit in all cases.
This phenomenon is illustrated in Figurg8and39. The staffing levels in the first two iterations, which form

the range of the oscillating dynamics, are plotted for both target0.1 (Figure38) anda = —0.5 (Figure39)

for the case of arrival function(t) = 100 + 20 - sin(¢), service times are exponential having mean 1, and no
abandonment.

Finally, we also observedtane-dependent behavior in the convergencef s,,(t). We observed a greater gap
as time increased. For example, let

Iy =inf {j : s;(t) = s;(t) forall i>j}. (5.35)

We observed thaf,, > I;, for all 2 > ¢;. An illustration can be viewed in Figue0. This time-dependent
behavior is understandable, because the gap between two different staffing levels persists across time, so that
there is a gap in the death rates at eadHence, a$ gets larger, the two processes can get further apart. Thus

the gap can first decrease more at the left end of the time horizon. When it reaches the limit at the left, the gap
will still decrease more to the right.
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Figure 38:Range of staffing level for targeta=0.1
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Figure 39:Range of staffing level for targeta=0.5

Target Alpha=0.5
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Figure 40:Evolution of convergence during algorithm run-time
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6 Summary and Directions for Future Research

We have developed an algorithm (ISA) that generates staffing functions for which performance is stable in the
face of time-varying loads. The results have been found to be remarkably robust, covering the ED, QD and
QED operational regimes. Here are some natural “next-steps”:

1. As discussed in Sectidh?2, it remains to explore alternative staffing methods to achieve better time-stability
of abandonment probabilities and expected waiting times, especially under heavy loads.

2. A great advantage of ISA is its generality. However, it remains to explore the ISA for additional queueing
systems. We already have partial (successful) results for deterministic and log-normal service-time distribu-
tions. It remains to consider other service-time distributions for the same models; it remains to consider other
models. Some other models to analyze appear in Mandelbaum et al. (1998), e.g., queues with retrials and
priority classes.

3. We have seen that ISA usually converges quite quickly, but it remains to analyze convergence of the algorithm
more thoroughly. We have noted that the monotone and oscillating convergence, displayed in Section 7, can be
explained via stochastic-ordering, but that depends strongly ofilié//s; + M model structure. Even for

that model, some of the phenomena have not yet been adequately explained.

4. For one special case in Secti@r?, we have shown that our staffing methods are asymptotically correct

as the scale increases. It would be nice to do that much more generally. It is natural to do that within the
mathematical framework of service networks, as in Mandelbaum et. al.(1998). We would like to prove much
more generally that, under proper scaling, the actual time-dependent probability of delay indeed converges to
the specified target as scale increases.
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7 Appendix

In this appendix we present some additional material supplementing the theoretical motivation in Section 2.2.

7.1 A Uniform-Acceleration Perspective

We can create a rigorous framework for this square root rule by applying the asymptotic analysis of uniform
acceleration to multi-server queues with abandonment. The underlying intuition for optimal staffing is that for
large systems we staff exactly for the number of customers requesting service so as a first order effect, aban-
donment simply does not happen. Thus the associated fluid model should not be a function of any abandonment
parameters. The effects of abandonment appear as second order phenomena at best and are found in the asso-
ciated diffusion model. Moreover, we can show that for the special ca®e=ofi, our limiting diffusion gives

us exactly the square-root-staffing formula.

Let { L7 |n > 0 } by a family of multi-server queues with abandonment indexed) bywhere6” = 6 and
1" = p or the service and abandonment rates are independenbof

AN =n-X and s =n-s 47580 +o( 7). (7.36)

Unlike the uniform acceleration scalings that lead to the pointwise stationary approximation, this one is inspired
by the scalings of Halfin and Whitt. Here we are scaling up the arrival rate (representing “demand” for our call
center service) and the number of service agents (representing “supply” for our call center service) by the same
parameter,. By limit theorems developed in Mandelbaum, Massey and Reiman, we know that such a family
of processes have fluid and diffusion approximations as oco. We want to restrict ourselves to a special type

of growth behavior for the number of servers.

Theorem 1 Consider the family of multiserver queues with abandonment having the growth conditions for its
parameters as defined above. If we set

st =n-me i s+ o(y/i) (7.37)
where d
@mt = A\t — it - My, (7.38)
then
lim P (L7(t) > s)) = P (L<1>(t) > s§1>) , (7.39)
n—00

where the diffusio™®) = { LM (¢) |t > 0 } is the unique sample path solution to the integral equation
t
L@ = L0+ [ (- 62) - (6L) du
0

t t
—/ (00 EO ()" — - LV() ") du+ B (/ (M + - mu)du> (7.40)
0

0
and the proces$ B(t) |t > 0 } is standard Brownian motion.

Thus we can reduce the analysis of the probability of delay (approximately) to the analysis of a one-dimensional
diffusion L"), Notice that since\; and; are given, then so is1;. Thus server staffing for this model can
only be controlled by the selection sf'). Also notice that the diffusioi.(!) is independent of(*) as long as

0: = orsﬁl) > (0 for all timet > 0.

For the special case af = 6 we can give a complete analysis of the delay probabilities that gives the server
staffing heuristic of Jennings, Mandelbaum, Massey and Whitt.
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Corollary 2 If @ = pands] =n-m;+® (1 —a) - /77 my , Where

1 /OO _ 2/2
— e ¥ dr = a, (7.412)
V2T Je-1(1-a)
then we have
lim P (L7(t) > s}) = « (7.42)

n—0o0

forall ¢ > 0.

Unfortunately,L(!) in general isnota Gaussian process. This also means that the following set of differential
equations are not autonomous.

Corollary 3 The differential equation for the mean bf!) is

%E [LO®)] = (=0 (") =00 E[LO@] + e E[LO0)]. (7.43)

SinceL(M(t)* - L (t)~ = 0, the differential equation for the variance bf") equals

%Var [L(l)(t)] = —20;-Var {L(l)(t)Jr] — 2uy - Var {L(l)(t)_] (7.44)

=200+ ) - E [LO@F] - E[LO@7] + A+ g me

Proof of Theorem 1: Define the functiory,(-), where
@) =n-M—0-(n-z—s))" —p-(n-zns)). (7.45)
Now we have

) = n-X—0- (nz— )" —pg - ((nx) A sy)
= n-XN—n-0-x+ 0 — ) ((n-z)Ns}).

However
(o) As) = (n-a) A (nemu /i) + o))
= Locmey - (-2 +0(V1)) + Lgmmy - (- me =/ (s7) + o(y/i)
Flim - (- m =1 - 517+ 0(y1)
= (o nme) +7 () s = 68 Tz ) +0(viT)
combining these results gives us the asymptotic expansion
@) = n- (A =0 (@ —m)" —pe- (. Amy))
1 0= 1) (8 Tammy = (587 Tazmy ) + (V)
asn — oo.
It follows that £ = 5 - £\ +/7 - 9+ o(y/7 ), where

t(O)(x) =Nt = 0 (= my)" — g - (x Amy) (7.46)
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and

1@ = 0= ) - (530 Ly = (587)7 Lz ) - (7.47)
Now .
Aft( )(ZE’ y) = (et - /Lt) ’ (y ’ 1{x<mt} -y - 1{m:mt}) — 0 -y, (748)
hence we have
AF (mesy) = pe-y™ — 0y and £ (me) = (ue — 0)(st)) (7.49)

whereAg(z;y) = ¢'(z+)y™ — ¢'(z—)y~ is thenon-smooth derivativef any functiong that has left and right
derivatives.

Finally, we have

L) = L(l)(0)+/t (Afto) (mu,L ())+f(1)( )) du (7.50)

t
0

— LW(0) - /t(e (LD @) + (s0)7) = - (LD )™+ (s0)7)) du (7.50)

S

t
0

7.2 Case 160, = 1

We then have

LW () = LW(0) — / t f - LY (t)du + B ( / t(/\u SRS mu)du> . (7.52)
0 0

It follows that L) is a zero mean Gaussian procesd.(if' (0) = 0) and

d M M

£Var [L (t)} = —2uy - Var [L (t)} + A+ pg -y (7.53)
Moreover, ifmg = Var [L(V(0)], thenVar [L1)(¢)] = m, for all ¢ > 0.
7.3 Case20,=0

We then have

LO(t) = LW (0) + /0 i (IO + 60)) du + B ( /0 O+ mu)dU) . (7.54)

with
%E L] = pe- (E[LO0] + ()7 (7.55)

and
%Var [L@)(t)} — o, - (Var [L@)(t)—} +E [L<1>(t)+] E [LU)(t)—D YNt ome. (7.56)
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