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ABSTRACT

We establish heavy-traffic limits for “nearly deterministic”
queues, such as the G/D/n many-server queue. Waiting
times before starting service in the G/D/n queue are equiva-
lent to waiting times in an associated G /D/1 model, where
the G, denotes “cyclic thinning” of order n, indicating that
the original (possibly general) point process of arrivals is
thinned to contain only every n'® point. We thus focus
on the G, /D/1 model and the generalization to G /Gr/1,
where “cyclic thinning” is applied to both the arrival and
service processes. As n — oo, the G,,/G,/1 models ap-
proach the deterministic D/D/1 model. The classical ex-
ample is the Erlang E,/E,/1 queue, where cyclic thinning
of order n is applied to both the interarrival times and the
service times, starting from a “base” M/M /1 model. We es-
tablish different limits in two cases: (i) when (1—py)\/n — 8
as n — oo and (ii) (1 — pn)n — B as n — oo, where p, is
the traffic intensity in model n, and 0 < 8 < co. The nearly
deterministic feature leads to interesting nonstandard scal-
ing. We also establish revealing heavy-traffic limits for the
stationary waiting times and other performance measures in
the G, /Gr/1 queues, by letting p, 1 1 as n — oo.
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1. INTRODUCTION

A primary cause of congestion in a queueing system is
stochastic fluctuations in the arrival times and the service
times. We say that a queueing system is nearly deterministic
if these stochastic fluctuations are low. At customary loads,
the congestion in a nearly deterministic queueing system will
be negligible. However, if the system is nearly deterministic,
then it is natural to operate the system at higher loads. In
this research we explore the interplay between low variabil-
ity and high loads. In particular, we establish heavy-traffic
(HT) limits for some nearly deterministic queueing models.

We consider single-server models (indexed by n) which ap-
proach the D/D/1 queue as n — co.

A classic example is the FIFO GI/D /n multiserver queue
when n is large. It is well known that waiting times (before
starting service) in this model can be identified with wait-
ing times in the corresponding FIFO GI,,/D/1 model, where
the G, means that the arrival process is the renewal pro-
cess whose interarrival times are distributed as the sum of n
interarrival times from the original renewal arrival process;
a “cyclic thinning” of the original arrival process; e.g., see
Theorem 4.6.1 of [9]. (Due to the deterministic service, cus-
tomers to a FIFO GI/D/n queue depart in the same order
they arrive, and so without loss of generality, the customers
can be assigned to the servers in a cyclic order; each of the
servers thus becomes a FIFO GI,,/D/1 queue.) The GI,, in-
terarrival times become nearly deterministic as n increases
by virtue of the law of large numbers. In applications, a
Poisson arrival process is often a realistic assumption. The
reduction of M/D/n to E,/D/1 for the waiting times is of-
ten mentioned in textbooks. Otherwise, the renewal process
assumption is not so realistic. Thus, it is important that
both the reduction of the GI/D/n model to the GI,/D/1
model and our HT limits hold for more general “G” arrival
processes (e.g., such as a general point process that satis-
fies a functional central limit theorem (FCLT)). There are
no algorithms available to compute the steady-state waiting
time distribution or even only its mean in the new G,/D/1
model. Thus, the simple approximations stemming from the
HT limits we establish can be very useful.

Motivated by the GI,,/D/1 example, we consider the wait-
ing time process in FIFO single-server queues with a G, /G, /1
structure, where cyclic thinning is applied to both the inter-
arrival times and the service times. Our results cover the
two models D/G, /1 and G,,/D/1 as special cases because
of the way we do the cyclic thinning: When working with
partial sums of interarrival times or service times, we let
the new sequence of G, partial sums {Sp, : k > 1} be
defined in terms of the sequence of original G partial sums
{S1,k : k > 1} by letting Sy x = S1,kn/n, k > 1; i.e., we scale
the index k in the original partial sums Si , by n because
we add n consecutive times, but we also divide by n in order
to keep the mean fixed in the identically distributed case. It
is easy to see that D,, = D with this construction.

If the traffic intensity p, in the G, /G /1 model (assumed
well defined) is held fixed at a stable value or, more generally,
satisfies p, — p < 1 as n — oo, then the G, /G, /1 model
approaches the purely deterministic D/D/1 model, and the
stationary waiting time becomes asymptotically negligible.



However, we let p, T 1 as n — oo. We thus obtain an inter-
esting double limit, in which the models approach D/D/1,
while the traffic intensity increases. On the one hand, con-
gestion should decrease, because the models are becoming
less variable, approaching D/D/1. On the other hand, the
congestion should increase because we let p, T 1. We let p,
approach 1 at an appropriate rate so that we get revealing
nondegenerate limits.

For the multiserver G/D /n model mentioned at the out-
set, the double limit coincides with the familiar many-server
HT limit, in which we let the traffic intensities p,, approach
1 as the number of servers, n, increases [2]. In fact, HT
limits were already established for stationary performance
measures in [3] in the so-called Halfin-Whitt or quality-and-
efficiency-driven (QED) regime, in which

(1—pn)vn— B as 0< <o (1)

We establish stochastic-process HT limits in this case, but
we also establish stochastic-process limits when

0< B <oo0. (2)

n — oo,

(L=pn)n—pB as n— oo,

as n — oo. Let Wy, be the waiting time of arrival %k in
the Gn/Gn/1 queue, where the superscript ¢ indicates that
cyclic thinning of order n is applied to a base G/G/1 model.
In case (1) we obtain a limit for the spatially-scaled waiting
times /nWy; 1; in case (2) we obtain a stochastic-process
limit for the temporally-scaled waiting times Wy, .., [6].

The asymptotically-deterministic feature is critical for these
limits. For example, the HT limits for the G, /GI/1 model
as n — oo with fixed service-time distribution are signifi-
cantly different in the two cases: (i) when the GI service-
time distribution is D and (ii) when the service-time dis-
tribution is not D (and we do not perform the cyclic thin-
ning on the service times, replacing GI by GI,). When the
service-time distribution is not deterministic, the G, /GI/1
model is not asymptotically deterministic as n — oco. As
a consequence, the HT limit agrees with the conventional
one for the corresponding D/GI/1 model, with the usual
scaling, obtained by simply replacing the interarrival-time
distribution in the G, process by a deterministic interar-
rival times with the same mean. In contrast, that is not the
case with the nearly deterministic Gr/D/1 model.

In many ways, the HT behavior of the G, /G, /1 models
as n — oo is different from the conventional HT behavior of
the GI/GI/1 model, discussed in Chapters 5 and 9 of [11].
Unlike the conventional HT theory for the GI/GI/1 model,
for the G,,/Gr /1 models there need not be any spatial scal-
ing. In the conventional HT limit, the queue-length and
waiting time processes have the same asymptotic behavior;
both processes behave like reflected Brownian motion, after
the same scaling. In contrast, for the G,/Gr/1 models, the
waiting-time and queue-length processes look very different.

To illustrate these differences, we now plot sample paths
of the waiting times (before starting service) of successive
arrivals and the continuous-time queue-length process from
one simulation run of the E190/D/1 queue with traffic in-
tensity p = 0.99 and unit service times. Figure 1 shows
the waiting times at arrival epochs and the continuous-time
queue length process, starting empty, in the final subinterval
of length 200 ending at t = 5 x 10* from a single run over
the time interval [0,5 x 10%].

First, all values of both processes over the full time in-
terval of length 50,000 fall in the interval [0, 5] without any
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Figure 1: Simulation plots of the waiting times at
arrival epochs and queue lengths at arbitrary times
in the F100/D/1 model with p = 0.99, starting empty,
for a time interval of length 200 ending at ¢ = 50, 000.

spatial scaling. The waiting times are comparable to the
unit service times, e.g., the average waiting time is about
0.5. Second the waiting-time plots look continuous, like a
plot of reflected Brownian motion, which we will show is in-
deed its HT limit. In contrast, the queue-length process is
integer-valued, making frequent jumps of size 1. Evidently
its limiting behavior is more complicated. We explain these
plots in this work [6].

We also consider heavy-traffic limits for the stationary
distributions of waiting times under the 2 previous condi-
tions, (1)and (2) [7]. We first address a foundational issue.
We show that stationary waiting times are well defined by
placing the G,,/Gr/1 model in a stationary framework [5].
To do so, we show that stationarity and ergodicity assumed
for a point process are inherited by the new point process
created by cyclic thinning. We establish limits for station-
ary point processes modified by cyclic thinning. We show
that counting processes created by cyclic thinning do not
have the same relatively simple asymptotic behavior as the
associated partial sums. (The continuous mapping theorem
with the inverse map discussed in §13 of [11] does not apply
in the usual way.)

Within the stationary framework for the G, /Gr /1 model,
the waiting times W} ;. converge to stationary waiting times
W, o as k — oo for each n. We can apply the stochastic-
process HT limits to generate approximations for those sta-
tionary waiting times by considering the iterated limit in
which first n — oo and then k£ — co. We provide conditions
under which the limit interchange is valid. In particular, we
provide conditions under which /nWy ., and Wy ., con-
verge in distribution to proper limits as n — oo in cases
(1) and (2), respectively, and identify the limits with the
iterated limits already established.

Special cases of the two limits for stationary waiting times
were established previously. First, in Example 3.1 of [1],
exploiting the known Laplace transform of the stationary
waiting time, the authors showed in case (2) that Wy . =
WS, as n — oo, where = denotes convergence in distribu-
tion and W is an exponential random variable, when the
Gn/Grn/1 model is E,/E,/1, i.e., when the base model is
M/M/1. Second, in [3] the authors showed in case (1) that
VIWE o = WS as n — oo, where WS, is the maximum
of a Gaussian random walk with negative drift, when the
Grn/Grn/1 model is GI,/D/1. In [3] the authors actually



Ey/Ek/1 queue with mean service time 1 and pr =1 — (1/k)

k=10 k=10 k=10" k=10
P(W > 0) exact 0.7102  0.9036 0.9688 0.9900
approx case (1) 0.6279  0.8666 0.9561 0.9843
approx case (2) 1.0000 1.0000  1.0000  1.0000
E[W[W > 0] exact | L0564 1.0175  1.0055  1.0018
approx case (1) 1.216  1.0265 1.0189  1.0076
approx case (2) 1.000 1.0000 1.0000 1.0000
E[W] exact 0.7484 0.9195 0.97417 0.99018
approx case (1) 0.7635 0.9201  0.9742  0.99018
approx case (2) 1.0000 1.0000  1.0000  1.00000

Table 1: A comparison of the approximations for
three steady-state performance measures in the two
cases of heavy-traffic scaling with exact numerical
values computed using the numerical algorithm, for
Erlang models as the Erlang order increases.

considered the G/D/n model, but they analyzed it by ex-
ploiting the fact that the waiting times are the same as in
the associated GI,/D/1 model. Our results are extensions
of those two results. We obtain some results for stationary
waiting times for general G, /Gr /1 models, but most of our
results are for the special case GI,,/GI,/1 in which the base
model is GI/GI/1.

The two different scalings in (1) and (2) indicate that
high-order cyclic thinning produces some interesting behav-
ior. To a large extent, this phenomenon can be explained
by the fact that two parts of the distribution of Wy, ., tend
to have different asymptotic behavior. Paralleling the rel-
atively well understood many-server queue; e.g., [10], the
delay probability P(W ., > 0) and the conditional delay
distribution P(W,; o > t|Wy o > 0) behave differently. In
case (1), the delay probability P(Wy o, > 0) has a nonde-
generate limit o (with 0 < a < 1) as n — oo, without
scaling, while Wy o = 0, i.e., P(Wy; oo > t|Wy o > 0) = 0
as n — oo for each ¢ > 0. On the other hand, in case (2),
P(WS o > 0) — 1, a degenerate limit, while P(W, o, >
t|Wy 0 > 0) has a nondegenerate limit as n — oo for each
t. This is a unifying theme throughout this research.

Since we have two candidate approximations for the sta-
tionary waiting time distribution provided by the HT limits
in the two cases (1) and (2), it is interesting to see how
they compare to exact values. Hence we made comparisons
with exact numerical results [1] and simulation estimates for
Ei/E;/1 high-order Erlang models.

For example, Table 1 compares the approximations for the
Ey/Ek/1 model with pr =1 — (1/k) to the exact numerical
results in Table 1 of [1], for k = 107 for four values of j. The
scaling here is naturally in case (2), because (1 — px)k =1
for all k, but we considered both cases (1) and (2). In case
(1) we evaluated approximations for the delay probability
and the mean using matlab. In case (2) the approximations
for the delay probability and the mean wait are both 1.

Even though the scaling puts these examples naturally
in the domain of case (2), we find that the approximations
based on case (1) consistently perform better than the ap-
proximations based on case (2). Case (2) becomes com-
petitive and even preferred to case (1) when we focus on
the expected conditional delay, given that the wait is posi-
tive E[W|W > 0]. When we look at the conditional mean
E[W|W > 0], we find that each approximation works bet-

ter when we expect it to. Overall, these approximations are
remarkably effective, given the huge error in the mean using
a simple M /M /1 approximation. For example, for k = 100,
the M/M/1 approximation yields P(W > 0) = 0.99 and
E[W]=99. The M/M/1 approximation for the mean is off
by a factor of 99.

We close this abstract by briefly mentioning two other
connections. First, on account of the D service, the associ-
ated G/D/n + GI queueing model with customer abandon-
ment (the +GI) has interesting periodic behavior when it is
overloaded (p > 1) [4].

Second, another source of motivation came from [8], wherein
the authors studied a basic (r, ¢) inventory model, in which
the demand forms a Poisson process at rate A and the lead
times are i.i.d. distributed as L. Every ¢'" demand from
the Poisson process triggers an order requiring time L to
arrive. Thus there is a E;/GI /oo queue in the background.
They were interested in the joint effect upon performance of
Var(L) and the lot size q. Because the model is intractable,
they use a HT approximation, first considering deterministic
lead times. In [6] we show that our analysis adds insight.
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