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Abstract. An efficient algorithm is developed to calculate the periodic steady-state distri-
bution and moments of the remaining workload Wy at time yc within a cycle of length c,
0 ≤ y < 1, in a single-server queue with a periodic arrival-rate function. The algorithm
applies exactly to the GIt/GI/1 model, where the arrival process is a time-transformation
of a renewal process. A new representation of Wy makes it possible to apply amodification
of the classic rare-event simulation for the stationary GI/GI/1 model exploiting impor-
tance sampling using an exponential change of measure. We establish bounds between the
periodic workload and the stationary workload with the average arrival rate that enable
us to prove that the relative error in estimates of P(Wy > b) is uniformly bounded in b.
With the aid of a recent heavy-traffic limit theorem, the algorithm also applies to compute
the periodic steady-state distribution of (i) reflected periodic Brownian motion (RPBM) by
considering appropriately scaled GIt/GI/1 models and (ii) a large class of general Gt/G/1
queues by approximating by GIt/GI/1 models with the same heavy-traffic limit. Simula-
tion examples demonstrate the accuracy and efficiency of the algorithm for both GIt/GI/1
queues and RPBM.

Funding: The authors acknowledge NSF [Grants CMMI 1265070 and 1634133] for research support.
Supplemental Material: The online supplement is available at https://doi.org/10.1287/ĳoc.2017.0766.

Keywords: periodic queues • ruin probabilities • rare-event simulation • exponential change of measure • heavy traffic •
reflected periodic Brownian motion

1. Introduction
For the steady-state performance of the stationary
GI/GI/1 single-server queue with unlimited waiting
room and service in order of arrival, we have effective
algorithms, e.g., Abate et al. (1993), Asmussen (2003).
We also have exact formulas in special cases and use-
ful general approximation formulas in heavy traffic,
e.g., Asmussen (2003), Whitt (2002). For the periodic
steady-state performance of associated periodic single-
server queues, having periodic arrival-rate functions,
there is much less available. There is supporting theory
in Harrison and Lemoine (1977), Lemoine (1981, 1989),
Rolski (1981, 1989). On the algorithm side, there is a
recent contribution on perfect sampling in Xiong et al.
(2015). Of particular note is the paper on the periodic
Mt/GI/1 queue by Asmussen and Rolski (1994) that
provides a theoretical basis for a rare-event simulation
algorithm (although no algorithm is discussed there);
also see Asmussen and Albrecher (2010, Section VII.6)
andMorales (2004). The goal therewas to calculate ruin
probabilities, but those are known to be equivalent to
waiting-time and workload tail probabilities. A heavy-
traffic limit for the periodic Gt/G/1 queue, was also
recently established by Whitt (2014), which shows that
the basic processes can be approximated by reflected

periodic Brownian motion (RPBM), but so far there are
no algorithms or simple formulas for RPBM.

In this paper, we provide an effective algorithm
to calculate the periodic steady-state distribution and
moments of the remaining workload Wy at time yc
within a cycle of length c, 0 ≤ y < 1, in a single-server
queue with a periodic arrival-rate function. The algo-
rithm applies exactly to the Mt/GI/1 model, where
the arrival process is a nonhomogeneous Poisson pro-
cess (NHPP), and any GIt/GI/1 model, where the
arrival process is a time transformation of an equi-
librium renewal process. A new representation of Wy
(in (2)) makes it possible to apply a modification of
the classic rare-event simulation for the stationary
GI/GI/1 model exploiting importance sampling using
an exponential change of measure, as in Asmussen
(2003, Chap. XIII) and Asmussen and Glynn (2007,
Chap. VI). We show that the algorithm is effective for
estimating the mean and variance as well as small tail
probabilities.

The main example is the periodic Mt/GI/1 queue,
but our results go well beyond the periodic Mt/GI/1
queue. By also treating the more general GIt/GI/1
queue, we are able to apply the algorithm to compute
the steady-state distribution of the limiting RPBM in
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Whitt (2014). To cover the full range of parameters of
the RPBM, we need the generalization to GIt/GI/1.
(In particular, this enables us to calculate the peri-
odic steady-state distribution of the limiting RPBM for
the GIt/GI/1 model in (51) and (55) for any variabil-
ity parameter cx .) As we will explain in Section 6.4,
the algorithm for the GIt/GI/1 model can serve as a
basis for an approximation algorithm for more gen-
eral Gt/G/1 models, but we do not report simulation
results for that extension here.

We report results from extensive simulation exper-
iments for GIt/GI/1 models to demonstrate the effec-
tiveness of the algorithm. Both the convergence to
RPBM and the effectiveness of the algorithm for RPBM
are demonstrated by displaying the results for a range
of traffic intensities ρ approaching 1. This unity in
the numerical results requires the nonstandard heavy-
traffic scaling in Whitt (2014) that we review in Sec-
tion 6. (In particular, the deterministic arrival-rate func-
tion is scaled as well as space and time; see (41).)
The unity in the numerical results provided by the
heavy-traffic scaling is in the same spirit as the scal-
ing in the numerical results in Abate and Whitt (1998),
Choudhury et al. (1997).

1.1. Using Bounds to Connect to Familiar
Rare-Event Simulation Methods

We are able to apply the familiar rare-event simulation
for the GI/GI/1 model to the periodic GIt/GI/1 model
because we can make strong connections between the
given periodic GIt/GI/1 model and the associated
GI/GI/1 model with the constant average arrival rate.
In fact, this connection is largely achieved directly by
construction, because we represent the periodic arrival
counting process A as a deterministic time transforma-
tion of an underlying rate-1 counting process N by

A(t)≡N(Λ(t)), where Λ(t)≡
∫ t

0
λ(s) ds , t ≥ 0, (1)

where λ is the arrival-rate function, assumed to be
positive, and ≡ denotes equality by definition. This is
a common representation when N is a rate-1 Poisson
process; then A is an NHPP. For the Gt/G/1 model,
N is understood to be a rate-1 stationary point pro-
cess. Hence, for the GIt/GI/1 model, N is an equi-
librium renewal process with time between renewals
having mean 1, which is a renewal process except the
first interrenewal time has the equilibrium distribu-
tion. The representation in (1) also has been used for
processes N more general than NHPP’s byMassey and
Whitt (1994), Gerhardt and Nelson (2009), Nelson and
Gerhardt (2011), He et al. (2016), Ma and Whitt (2015),
Whitt (2015), and Whitt and Zhao (2016).
Given that we use representation (1), we show that it

is possible to uniformly bound the difference between

the cumulative arrival-rate function Λ and the associ-
ated linear cumulative arrival-rate function λ̄e of the
stationary model, where λ̄ is the average arrival rate
and e is the identity function, e(t) ≡ t, t ≥ 0. Conse-
quently, we are able to bound the difference between
the steady-state workloads W in the stationary G/G/1
model and Wy in the periodic Gt/G/1 model.

1.2. A Convenient Representation for
Estimation Efficiency

We exploit the arrival process construction in (1) to
obtain a convenient representation of the stationary
workload Wy in terms of the underlying stationary pro-
cess N ≡ {N(t): t ≥ 0} in (1) and the associated sequence
of service times V ≡ {Vk : k ≥ 1} via

Wy
d
� sup

s≥0

{N(s)∑
k�1

Vk − Λ̃−1
y (s)

}
, 0 ≤ y < 1, (2)

where
Λ̃y(t) ≡Λ(yc) −Λ(yc − t), t ≥ 0 (3)

is the reverse-time cumulative arrival-rate function start-
ing at time yc within the periodic cycle [0, c], 0 ≤
y < 1, and Λ̃−1

y is its inverse function, which is well
defined because Λ̃y(t) is continuous and strictly in-
creasing. Representation (2) evidently was first intro-
duced in (16) of Lemoine (1981) for the special case
of an NHPP arrival process. It helps by separating the
stochastic and deterministic variability.

From the representation in (2), it is evident that from
each sample path of the underlying stochastic process
(N,V), we can generate a realization of Wy in (2) for
each y, 0 ≤ y < 1, by just changing the determinis-
tic function Λ̃−1

y . Moreover, from the rare-event con-
struction in Section 4, we can simultaneously obtain an
estimate of P(Wy > b) for all b in the bounded inter-
val [0, b0] while applying the estimation for the sin-
gle value b0. Thus, we can essentially obtain estimates
for all performance parameter pairs (y , b) ∈ [0, 1) × [0, b0]
while doing the estimation for only one pair. This effi-
ciency is very useful to conduct simulation studies to
expose the way that P(Wy > b) and the other perfor-
mance measures depend on (y , b).

1.3. Stylized Sinusoidal Examples
We illustrate the rare-event simulation by showing sim-
ulation results for GIt/GI/1 queues with sinusoidal
arrival-rate function

λ(t) ≡ λ̄(1+ β sin (γt)), t ≥ 0, (4)

where β, 0 < β < 1, is the relative amplitude and the
cycle length is c � 2π/γ. We let the mean service time
be µ−1 � 1, so that the average arrival rate is the traffic
intensity, i.e., λ̄ � ρ. With this scaling, we see that
there is the fundamental model parameter triple (ρ, β, γ)
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or, equivalently, (ρ, β, c). The associated cumulative
arrival-rate function is

Λ(t)� ρ
(
t + (β/γ)(1− cos (γt))

)
, t ≥ 0, (5)

and the associated reverse-time cumulative arrival-rate
function defined in (3) is

Λ̃y(t)� ρ(t + (β/γ)
(
cos (γ(yc − t)) − cos (γyc))

)
,

t ≥ 0. (6)

Weonly consider the case ρ < 1,underwhichaproper
steady-state exists under regularity conditions (which
wedonot discuss here). Behavior differs for short cycles
and long cycles. There are two important cases for the
relative amplitude: (i) 0 < β < ρ−1 − 1 and (ii) ρ−1 − 1 ≤
β ≤ 1. In the first case, we have ρ(t) < 1 for all t, where
ρ(t) ≡ λ(t) is the instantaneous traffic intensity, but in
the second case we have intervals with ρ(t) ≥ 1, where
significant congestion can build up. If there is a long
cycle aswell, the systemmay be better understood from
fluid and diffusion limits, as in Choudhury et al. (1997).
(Tables 8 and 9 illustrate the significant performance
difference for themean E[Wy].)

1.4. Organization of the Paper
We start in Section 2 by reviewing the reverse-time
representation of the workload process, which leads
to representation (2). In Section 3 we establish the
bounds and associated asymptotic and approximations
connecting the periodic model to the associated sta-
tionary model with the average arrival rate. In Sec-
tion 4 we develop the simulation algorithm for the
GIt/GI/1 model and establish theoretical results on its
efficiency. We also discuss the computational complex-
ity and running times. In Section 5 we present sim-
ulation examples. In Section 6 we review and extend
the heavy-traffic FCLT in Whitt (2014, Theorem 3.2),
which explains the scaling that unifies our numerical
results in the simulation experiments. In Section 6.4 we
discuss the approximation for general periodic Gt/G/1
models. In Section 7 we draw conclusions. We present
additional material in the online supplement of Ma
and Whitt (2016), including approximations for the
important asymptotic decay rate and more simulation
examples.

2. Reverse-Time Representation of the
Workload Process

We consider the standard single-server queue with
unlimited waiting space where customers are served
in order of arrival. Let {(Uk ,Vk)} be a sequence of
orderedpairs of interarrival times and service times. (In
Sections 2 and 3wedonot need to impose any GI condi-
tions.) Let an arrival counting process be defined on the
positive halfline by A(t) ≡max {k ≥ 1: U1 + · · ·+Uk ≤ t}
for t ≥ U1 and A(t) ≡ 0 for 0 ≤ t < U1, and let the total

input ofwork over the interval [0, t] be the random sum

Y(t) ≡
A(t)∑
k�1

Vk , t ≥ 0. (7)

Then we can apply the reflection map to the net input
process Y(t)− t to represent the workload (the remain-
ing work in service time) at time t, starting empty at
time 0, as

W(t) � Y(t) − t − inf {Y(s) − s: 0 ≤ s ≤ t}
� sup {Y(t) −Y(s) − (t − s): 0 ≤ s ≤ t}, t ≥ 0.

We now convert this standard representation to a
simple supremum by using a reverse-time construc-
tion, as in Loynes (1962) and Sigman (1995, Chap. 6).
This is achieved by letting the interarrival times and
service times be ordered in reverse time going back-
wards from time 0. Then Ã(t) counts the number of
arrivals and Ỹ(t) is the total input over the interval
[−t , 0] for t ≥ 0. With this reverse-time construction
(interpretation), we can write

W(t)� sup {Ỹ(s) − s: 0 ≤ s ≤ t}, t ≥ 0, (8)

and we have W(t) increasing to W(∞) ≡W with prob-
ability 1 (w.p.1) as t ↑∞. In a stable stationary setting,
under regularity conditions, we have P(W <∞)� 1; see
Sigman (1995, Section 6.3).

We now consider the periodic arrival-rate func-
tion λ(t) with cycle length c, average arrival rate
λ̄ � ρ < 1 and bounds 0 < λL ≤ λ(t) ≤ λU < ∞ for
0 ≤ t ≤ c. As in (1), we can construct the arrival pro-
cess A by transforming a general rate-1 stationary pro-
cess N by the cumulative arrival-rate function. We let
the service times Vk be a general stationary sequence
with E[Vk]� 1.
We now exploit (8) in our more specific periodic

Gt/G/1 context. The workload at time yc in the system
starting empty at time yc − t can be represented as

Wy(t)� sup
0≤s≤t
{Ỹy(s) − s}

d
� sup

0≤s≤t

{N(Λ̃y (s))∑
k�1

Vk − s
}

� sup
0≤s≤Λ̃y (t)

{ N(s)∑
k�1

Vk − Λ̃−1
y (s)

}
, (9)

where Ỹy is the reverse-time total input of work starting at
time yc within the cycle of length c, Λ̃y(t) is the reverse-
time cumulative arrival-rate function in (3), and Λ̃−1

y is
its inverse function, which are defined in terms of the
cumulative arrival-rate functionΛ(t) in (1). The second
line equality in distribution holds when N is a station-
ary point process, which is a point processwith station-
ary increments and a constant rate. In the GIt/GI/1 set-
ting, N is an equilibrium renewal process and thus this
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regularity condition is satisfied. Note that in this spe-
cific setting, Vk ’s are i.i.d. with distribution V , but U1
has equilibrium distribution Ue , which may be differ-
ent from the i.i.d. distributions of Uk , k ≥ 2 in (9). Just
as W(t) ↑W w.p.1 as t →∞, so Wy(t) ↑Wy w.p.1 as
t→∞, for Wy in (2).
Even though (9) is valid for all t, we think of the

system starting empty at times −kc, for k ≥ 0, so that
we let yc − t � −kc or, equivalently, we stipulate that
t � c(k + y), 0 ≤ y < 1, and consider successive val-
ues of k and let k → ∞ to get (2). That makes (9)
valid to describe the distribution of W(c(k + y)) for all
k ≥ 0.We think that (9) and (2) are new representations,
but they can be related to various special cases in the
literature.

3. Bounds and Approximations for
General Periodic Gt/G/1 Queues

We first bound the periodic system above and below
by modifications of the corresponding stationary sys-
tem with an arrival process that has the average arrival
rate. Then we establish limits and introduce approxi-
mations. In doing so, we extend results in Asmussen
and Rolski (1994).

3.1. Basic Bounds
We now compare the periodic steady-state work-
loadWy in (2) and theassociated stationaryworkloadW
defined as in (2) with ρ−1s replacing Λ̃−1

y (s):

W d
� sup

s≥0

{N(s)∑
k�1

Vk − ρ−1s
}
. (10)

Note that in both (2) and (10), N is understood to be a
stationary point process. In particular, for the GIt/GI/1
model, N is an equilibrium renewal process with the
first interrenewal time having the equilibrium distri-
bution, therefore W is the stationary workload in the
associated GI/GI/1 model, which may differ from the
stationary waiting time in the same model. We now
show that we can bound Wy above and below by a
constant difference from the stationary workload W by
rewriting (2) as

Wy � sup
s≥0

{N(s)∑
k�1

Vk − ρ−1s − (Λ̃−1
y (s) − ρ−1s)

}
. (11)

From (11), we immediately obtain the following
lemma.
Lemma 1 (Upper and Lower Bounds onWy). ForWy in (2)
and W in (10),

W−
y ≡W − ζ−y ≤Wy ≤W − ζ+y ≡W+

y (12)

where
ζ−y ≡ sup

0≤s≤ρc
{Λ̃−1

y (s) − ρ−1s} ≥ 0 and

ζ+y ≡ inf
0≤s≤ρc

{Λ̃−1
y (s) − ρ−1s} ≤ 0.

(13)

Note that the supremum and infimum in (13) are
over the interval [0, ρc]. Because the average arrival
rate is ρ, Λ̃y(c)�Λ(c)� ρc and thus Λ̃−1

y (ρc)� c. Given
thatΛ is continuous and strictly increasing, we can use
properties of the inverse function as in Whitt (2002,
Section 13.6) to determine an alternative representation
of the bounds in terms of the reverse-time cumula-
tive arrival-rate function Λ̃y . We emphasize that these
bounds depend on y.

Lemma 2 (Alternative Representation of the Bounds). The
constants ζ−y and ζ+y can also be expressed as

ζ−y �−ρ−1 inf
0≤s≤c
{Λ̃y(s) − ρs} ≥ 0 and

ζ+y �−ρ−1 sup
0≤s≤c
{Λ̃y(s) − ρs} ≤ 0. (14)

Proof. We use basic properties of inverse functions, as
in Whitt (2002, Section 13.6). First, note that, for any
homeomorphism φ on the interval [0, c],

sup
0≤s≤c
{φ(s) − s} � sup

0≤s≤c
{φ(φ−1(s)) −φ−1(s)}

� sup
0≤s≤c
{s −φ−1(s)}

�− inf
0≤s≤c
{φ−1(s) − s}. (15)

To treat ζ−y in (13), we apply (15) to Λ̃−1
y after rescaling

time to get

sup
0≤s≤ρc

{Λ̃−1
y (s) − ρ−1s} � sup

0≤u≤c
{Λ̃−1

y (ρu) − u}

�− inf
0≤u≤c

{ρ−1Λ̃y(u) − u}

�−ρ−1 inf
0≤s≤c
{Λ̃y(s) − ρs}. (16)

In (16), the first equality is by making the change
of variables u � ρ−1s; the second equality is by (15)
plus Lemma 13.6.6 of Whitt (2002), i.e., (Λ̃−1

y ◦ ρe)−1 �

(ρ−1e ◦ Λ̃y) � ρ−1Λ̃y ; the third equality is obtained by
multiplying and dividing by ρ. �

We now combine the one-sided extrema into an
expression for the absolute value.

Corollary 1 (Single Bound).As a consequence of Lemmas 1
and 2,

|Wy −W | ≤ ζ≡max {ζ−y ,−ζ+y }�ρ−1‖Λ̃y −ρe‖c
≡ρ−1 sup

0≤s≤c
{|Λ̃y(s)−ρs |}<∞. (17)
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Corollary 2 (Bounds in the Sinusoidal Case). For the sinu-
soidal case in (4), the bounds can be expressed explicitly as

ζ−y �
β(cos(γc y)+1)

γ
and ζ+y �

β(cos(γc y)−1)
γ

. (18)

Proof. By (6),

Λ̃y(t) − ρt � (ρβ/γ)(cos(γ(c y − t)) − cos(γc y)),
t ≥ 0, (19)

from which (18) follows by choosing t to make
cos(γ(c y − t))�±1. �

3.2. Tail Asymptotics for the Periodic
Gt/G/1 Model

For many models, it is possible to obtain an approxi-
mation for W of the form

P(W > b) ≈Ae−θ
∗b , b ≥ 0, (20)

based on the limit

lim
b→∞

eθ
∗bP(W > b)� A. (21)

For the GI/GI/1 model, the limit (21) is discussed
in Asmussen (2003, Section XIII), where the random
variable Xk ≡ Vk − Tk is required to have a nonlattice
distribution. However, the limit (21) also has been
established for much more general models, allowing
dependence among the interarrival times and service
times; see Abate et al. (1994), Choudhury et al. (1996)
and references therein. If indeed, the limit (21) holds
forW , thenwe easily get corresponding bounds forWy .
We remark that logarithmic asymptotics from Glynn

and Whitt (1994) support the weaker approximation

P(Wy > b) ≈ P(W > b) ≈ e−θ
∗b , b ≥ 0. (22)

The following corollary draws implications from
the limit (20), from the bounds we have established,
assuming that the limit (20) is valid.
Corollary 3 (Tail-Limit Bounds). If eθ∗bP(W > b) → A as
b→∞ for some θ∗ > 0, then

lim sup
b→∞

eθ
∗bP(Wy > b) ≤ lim

b→∞
eθ
∗bP(W > b + ζ+y )

� A+

y ≡Ae−ζ
+
yθ
∗ and

lim inf
b→∞

eθ
∗bP(Wy > b) ≥ lim

b→∞
eθ
∗bP(W > b + ζ−y )

� A−y ≡Ae−ζ
−
yθ
∗
.

(23)

as b→∞. If eθ∗bP(Wy > b)→Ay as b→∞, then

A−y ≤ Ay ≤ A+

y and A−y ≤ A ≤ A+

y . (24)

For the GI/GI/1 model, we have the Cramer-Lund-
berg inequality for W in Asmussen (2003, Theo-
rem XIII.5.1), yielding P(W > b) ≤ e−θ∗b for all b.
Corollary 4 (Periodic Cramer-Lundberg Bound). For the
periodic GIt/GI/1 model,

P(Wy > b) ≤ e−θ
∗(b+ζ+y ) , for all b > 0.

4. Simulation Methodology for the
GIt/GI/1 Model

We now apply the representation in (2) and the bounds
in Section 3 to obtain an effective rare-event simu-
lation method for the periodic GIt/GI/1 queueing
model. Our approach is to first generate exponen-
tially tilted interarrival times and service times until
a process involving them hits a given level b and
then to calculate an estimate of tail probability using
these generated values for each simulation replica-
tion. Hence, the algorithm is primarily deterministic
calculations. We obtain estimates of statistical preci-
sion by performing a large number of independent
replications.

4.1. Exponential Tilting for the GI/GI/1 Model
We apply the familiar rare-event simulation method
for the stationary GI/GI/1 model using importance
sampling with an exponential change of measure, as
in Asmussen (2003, Section XIII) and Asmussen and
Glynn (2007, Sections V and VI). For the discrete-
time waiting times in the GI/GI/1 model based on
{(ρ−1Uk ,Vk)}, where {Uk} and {Vk} are independent
sequences of i.i.d. nonnegative mean-1 random vari-
ables, the key random variables are Xk(ρ)≡Vk−ρ−1Uk .
We assume that Uk , Vk and thus Xk(ρ) have finite
moment generating functions (mgf’s) mU(θ), mV(θ),
and mX(θ) ≡mX(ρ)(θ), e.g., mV(θ) ≡E[eθVk ], and prob-
ability density functions (PDFs) fU , fV and fX≡ fX(ρ).
As usual, we define the twisted PDFs fX, θ(x) �
eθx fX(x)/mX(θ) and for our simulation use the “opti-
mal value” θ∗ such that mX(θ∗)�1. That optimal tilting
parameter coincides with the asymptotic decay rate θ∗
in Corollary 3.

There are several simplifications that facilitate im-
plementation. First, as in Asmussen (2003, Example
XIII.1.4), we can construct the tilted PDF fX, θ(x) by
constructing associated tilted PDF’s of fU and fV , in
particular, because Xk(ρ) ≡Vk − ρ−1Uk , it suffices to let
fV, θ(x)� eθx fV(x)/mV(θ) and

f−U/ρ, θ(x)�
eθx f−U/ρ(x)
m−U/ρ(θ)

or
e−θy/ρρ fU(y)
mU(−θ/ρ)

(25)

with the second expression obtained after making a
change of variables, so that mX(θ) � mV(θ)mU(−θ/ρ).
We thus obtain the i.i.d. tilted random variables with
PDF fX, θ∗(x) by simulating independent sequences of
i.i.d. random variables with the PDFs fV, θ∗(x) and
f−U/ρ, θ∗(x).
Second, for all our examples, we consider common

distributions that produce twisted PDFs having the
same form as the original PDFs; it is only necessary
to change the parameters. In particular, this property
holds for the M, H2, Ek , and M + D distributions that
we propose to exploit in Section 6.4. In particular, if V is
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a rate-µ exponential (M) random variable with PDF
fV(x)� µe−µx , then fV, θ(x) is again an exponential ran-
dom variable with parameter µ − θ, where we are
required to have µ > θ > 0. Moreover, for the M/M/1
queue with arrival rate λ and service rate µ, the associ-
ated optimal tilted parameters are λθ∗ � µ and µθ∗ � λ;
i.e., the optimal tilting just switches the arrival and ser-
vice rates; see Asmussen (2003, Example XIII.1.5).
If V has an H2 PDF fV(x) � pµ1e−µ1x + (1− p)µ2e−µ2x ,

having parameter triple (p , µ1 , µ2), then fV, θ(x) again
has an H2 distribution, but with a new parameter triple
(pθ , µ1, θ , µ2, θ), where µ j, θ � µ j − θ and

pθ �
pµ1/(µ1 − θ)

[pµ1/(µ1 − θ)]+ [(1− p)µ2/(µ2 − θ)]
.

We remark that the twisted H2 PDF does not inherit
the balanced-means property of the original H2 PDF
and has a different squared coefficient of variation
(scv, variance divided by the square of the mean), but
still c2 > 1.

We now turn to the PDFs with scv c2 < 1. First,
a twisted Ek distribution is again Ek . More generally
(because Ek is a special gamma distribution), if V has a
gamma PDF fV(x;α, µ)� µαxα−1e−µx/Γ(α), then fV, θ(x)
has a gamma PDF with parameter pair (αθ , µθ) �
(α, µ − θ); see Asmussen and Glynn (2007, Sec-
tion V.1.b). Finally, if V is an M + D distribution with
parameter pair (d , µ), then the twisted distribution is
an M +D distribution with parameter pair (d , µ− θ).
Consequently, we can generate the tilted random

variables in the standard way given underlying uni-
form random variables; e.g., we can apply the func-
tion h(x) � − log (1− x)/µ to a vector of uniform ran-
dom variables to obtain the corresponding vector of
exponential random variable with mean 1/µ. For each
H2 random variable we can use two uniforms, one to
select the exponential component and the other to gen-
erate the appropriate exponential; i.e., a random vari-
able X with the H2 distribution having parameter triple
(p , µ1 , µ2) can be expressed in terms of the pair of i.i.d.
uniforms (Z1 ,Z2) as

X �−((1/µ1)1{Z1≤p} + (1/µ2)1{Z1>p}) log (Z2), (26)

where 1A is the indicator variable with 1A � 1 on the
event A.

4.2. Rare-Event Simulation for Stationary Waiting
Time in GI/GI/1 Model

Let W ∗ denote the steady-state discrete-time wait-
ing time, which coincides with the steady-state
continuous-time workload W in the GI/GI/1 model
for Poisson arrivals, but not otherwise. The heavy-
traffic limits coincide, as can be seen from Whitt (2002,
Theorem 9.3.4).
The standard simulation for rare-event probability of

large waiting times in the GI/GI/1 model is achieved

by performing the change of measure using the tilted
interarrival times and service times, as indicated in Sec-
tion 4.1, where the tilting parameter θ∗ coincides with
the asymptotic decay rate in Section 3.2, as described in
Asmussen (2003, Chap. XIII) and Asmussen and Glynn
(2007, Section VI.2a).

To implement the simulation, we generate the ran-
dom variables Uk and Vk from their tilted distributions
with θ∗. We estimate the tail probability of station-
ary waiting time P(W ∗ > b) by its representation as
P(τS

b < ∞), where τS
b is the first hitting time of Sn at

level b, with Sn ≡
∑n

k�1 Xk(ρ). The tail probability can
be expressed in terms of the stopped sum SτS

b
using

the underlying probabilitymeasure Pθ∗ . Note that SτS
b
�

b + Y(b), where Y(b) is the overshoot of b by {Sn}, all
under Pθ∗ . Under the new probability measure Pθ∗ , Sn
hits b with probability 1, so we only need to esti-
mate the likelihood ratio. Thus the tail probability of
the GI/GI/1 steady-state waiting time W ∗ can be ex-
pressed as

P(W ∗ > b)� P(τS
b <∞)� Eθ∗[I{τS

b <∞}LτS
b
(θ∗)]

� Eθ∗[LτS
b
(θ∗)]� Eθ∗[mX(θ∗)τ

S
b e
−θ∗S

τS
b ]

� Eθ∗[e
−θ∗S

τS
b ]� e−θ

∗bEθ∗[e−θ
∗YS(b)], (27)

where LτS
b
(θ∗) is the likelihood ratio of {Xk(ρ)}1≤k≤τS

b
with respect to Pθ∗ . The second moment of this esti-
mator is Eθ∗[LτS

b
(θ∗)2] � Eθ∗[e−2θ∗S

τS
b ]. Asmussen (2003,

Theorem XIII.7.1) shows that the rare-event estima-
tor of P(W > b) has relative error that is uniformly
bounded in b as b→∞. (The proof of Theorem XIII.7.1
relies on Theorems XIII.5.1–3 (Asmussen 2003); the
PDF assumption implies that X has a nonlattice distri-
bution.)

4.3. Rare-Event Simulation for Stationary
Workload in GI/GI/1 Model

We are interested in the rare-event probability of large
stationary workload W as in (10), where arrival pro-
cess N is an equilibrium renewal process, because this
is the process that we used to develop bounds of Wy
in Section 3. The classical exponential tilting method
applies to simulating the rare-event probability of sta-
tionary waiting time W ∗ as reviewed in Section 4.2.
The stationary waiting time is as in (10) with N being
the renewal process without the exceptional first inter-
renewal time. To apply this exponential tilting method
to stationary workload W , we need to make a slight
modification of the previous algorithm.
Now the equilibrium renewal process N has the

exceptional first interarrival time and a constant rate ρ.
We still use the usual partial sum process Sn ≡∑n

k�1(Vk − ρ−1Uk), where Vk are still i.i.d with distribu-
tion V , but U1 has the equilibrium distribution of Ue
and Uk , k ≥ 2 are i.i.d with distribution U. We do
the same tilting for all Xk(ρ)’s still using Pθ∗ , with
dPθ∗(x) � [eθ

∗x/mX(θ∗)]dP(x). Note that θ∗ is solved
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from mXk
(θ∗)�1, where k ≥ 2 andwhen k �1, this equa-

tion may not hold. Now the likelihood ratio becomes

LτS
b
(θ∗)

� mX1
(θ∗) ×mX2

(θ∗) × · · · ×mX
τS

b

(θ∗)/(eθ(X1+X2+···+X
τS

b
))

� mX1
(θ∗)e−θS

τS
b ,

where the second line follows because mXk
(θ∗)� 1.

Then we need to add a constant multiplier mX1
(θ∗)

to Equation (27):

P(W > b)� P(τS
b <∞)

� Eθ∗[LτS
b
(θ∗)]

� Eθ∗[mX1
(θ∗)mX(θ∗)τ

S
b−1e

−θ∗S
τS

b ]

� Eθ∗[mX1
(θ∗)e−θ

∗S
τS

b ]
� mX1

(θ∗)e−θ∗bEθ∗[e−θ
∗YS(b)]. (28)

Note that (28) is also different from (27) in that the first
X1(ρ) in the partial sum SτS

b
may have a different distri-

bution from {Xk(ρ), k ≥ 2}. The exact form of mX1
(θ∗)

is as follows:

mX1
(θ∗)� E{exp{θ∗V − θ∗ρ−1Ue}}

� E{exp{−θ∗ρ−1Ue}}/E{exp{−θ∗ρ−1U}},

where the second line still follows from mXk
(θ∗)� 1 and

thus E{exp{θ∗V}} � 1/E{exp{−θ∗ρ−1U}}.
Given that the estimator in (27) has bounded relative

error as b goes to infinity, the estimator in (28) has
bounded relative error as b goes to infinity as well.
This is because when b is large, the first X1 does not
influence the distribution of the overshoot YS(b) and
thus YS(b) has the same distribution under Pθ∗ in both
estimators.
Table 1 shows simulation estimates for the workload

tail probabilities P(W > b) and the associated waiting-
time tail probabilities P(W ∗ > b) using the algorithms
in Sections 4.3 and 4.2 respectively. In both cases, we
refer to the estimates as P(W > b) ≡ p̂ �Ae−θ∗b , where θ∗
is common to both. We use a very small ρ � 0.1 here
so that workload and waiting time probabilities are
very different. These numerical results match the exact
values of p̂ and A calculated from Asmussen (2003,
Theorem X.5.1).

4.4. Applying the Bounds to Treat
the Periodic Case

From (2), we see that any positive b must be hit for the
first time at an arrival time. Thus, we have the alterna-
tive discrete-time representation:

Wy � sup
n≥0

{ n∑
k�1

Vk − Λ̃−1
y (N−1(n))

}
� sup

n≥0

{ n∑
k�1

Vk − Λ̃−1
y

( n∑
k�1

Uk

)}
, (29)

Table 1. Comparison of the Steady-State Workload and
Waiting-Time Tail Probabilities for b � 4, 20 in the Stationary
H2/M/1 Queue with ρ � 0.1

Waiting Waiting
Workload time Workload time

ρ 0.1 0.1 0.1 0.1
θ∗ 0.8690 0.8690 0.8690 0.8690
Exact A 0.1 0.1310 0.1 0.1310
Exact p 0.003093 0.004050 2.83E−09 3.70E−09
b 4 4 20 20
p̂ 0.003104 0.004055 2.84E−09 3.69E−09
e−θ∗b 0.0309 0.0309 2.83E−08 2.83E−08
A 0.1004 0.1311 0.1004 0.1305
s.e. 2.73E−05 3.55E−05 2.49E−11 3.25E−11
%95 CI lb 0.003050 0.003985 2.79E−09 3.63E−09
%95 CI ub 0.003157 0.004125 2.89E−09 3.76E−09
r.e. 0.008788 0.008765 0.008771 0.008792

Note. The exact values are calculated from Theorem X.5.1 of
Asmussen (2003).

where Uk is the kth interarrival time in the equilibrium
renewal process N , i.e., U1 assumes the equilibrium
distribution Ue while {Uk , k ≥ 2} are i.i.d. with distri-
bution U.

For the periodic GIt/GI/1 model with λ̄ � ρ, we
can apply a variant of the exponential change of mea-
sure for the waiting times in the GI/GI/1 model in
Section 4.1. We use the underlying measure Pθ∗ deter-
mined for GI/GI/1. We use the usual partial sum pro-
cess Sn ≡

∑n
k�1 Xk(ρ) for GI/GI/1 and the associated

process

Rn ≡
n∑

k�1
Vk − Λ̃−1

y

( n∑
k�1

Uk

)
. (30)

We estimate the tail probability P(Wy > b) by its rep-
resentation as P(τR

b <∞), where τR
b is the first hitting

time of Rn at level b. Under the new probability mea-
sure, Rn hits b with probability 1, so we only need
to estimate the likelihood ratio. We still twist Xk(ρ) �
Vk − ρ−1Uk in the same way, which is equivalent to
twisting Vk and ρ−1Uk separately, as discussed in Sec-
tion 4.1. Then the likelihood ratio for {Xk(ρ): 1 ≤ k ≤ n}
is the same as before, i.e., Ln(θ)� mX1

(θ)mX(θ)(n−1)e−Sn .
Consequently, we obtain the following representation:

P(Wy > b)� P(τR
b <∞)� Eθ∗[LτR

b
(θ∗)]

� Eθ∗[mX1
(θ∗)mX(θ∗)(τ

R
b −1)e

−θ∗S
τR

b ]
� mX1

(θ∗)Eθ∗[e
−θ∗S

τR
b ]. (31)

Still note that the first X1(ρ) in the partial sum SτR
b
has

a different distribution from {Xk , k ≥ 2}.
At first glance, (31) does not look so useful, because

the random sum SτR
b

involves the hitting time τR
b

for {Rn} instead of {Sn}, but we can shift the focus
to RτR

b
becausewe can bound the difference between SτR

b
and RτR

b
.
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Lemma 3 (Bound on Difference of Random Sums).Under
the previous assumptions,

|SτR
b
−RτR

b
| ≤ ζ ≡max {|ζ+y |, ζ−y }, (32)

where ζ+y and ζ−y are the one-sided bounds in (13) and (14).
In addition, τS

b−ζ ≤ τR
b ≤ τS

b+ζ.

Proof. The bound in (32) follows immediately from
(13) and (14), because

|Rn −Sn |�
����( n∑

k�1
Vk − Λ̃−1

y

n∑
k�1

Uk

)
−

( n∑
k�1

Vk −
n∑

k�1
ρ−1Uk

)����
≤ ζ≡max {|ζ+y |, ζ−y } (33)

for all n ≥ 1, where ζ+y and ζ−y are the one-sided bounds
in (13) and (14). �

Lemma 3 allows us to focus on RτR
b
, where τR

b is the
hitting time for {Rn}. To do so, we impose an additional
regularity condition. The regularity condition requires
the excess service-time distribution in probability mea-
sure Pθ∗ be bounded above in stochastic order by a
proper cumultative distribution function (CDF), i.e.,

Pθ∗(V > t + x | V > t) ≡ Pθ∗(V > t + x)
Pθ∗(V > t) ≤ Gc(x),

for all t ≥ 0, (34)

where Gc(x) ≡ 1− G(x) → 0 as x→∞. For example, it
suffices for the service time to be bounded. It also suf-
fices for the service-time distribution to have an expo-
nential tail, which holds if there is a constant η > 0
such that

eηxPθ∗(V > x)→ L, 0 < L <∞, as x→∞. (35)

If (35) holds, then

eη(t+x)Pθ∗(V > t + x)
eηtPθ∗(V > t) → 1, as t→∞, (36)

so that (34) holds asymptotically with Gc(x) ≡ e−ηx . It
holds over any bounded interval because the ratio is
continuous and bounded, given (35). Of course, condi-
tion (34) would not hold if xpPθ∗(V > x)→ L as x→∞
for 0 < L <∞ and p > 0.

Theorem 1 (Bounded Relative Error). The rare-event sim-
ulation algorithm for the tail probability P(Wy > b) in the
periodic GIt/GI/1 queue is unbiased and, if the service-time
distribution satisfies condition (34), then the rare-event sim-
ulation algorithm produces relative error that is uniformly
bounded in b, just as for the stationary GI/GI/1 model,
provided that the conditions for the rare-event simulation in
the GI/GI/1 model are imposed so that the estimates are
unbiased with bounded relative error.

Proof. The unbiasedness follows from (31). Lemma 3
allows us to focus on RτR

b
. The remaining result par-

allels Theorem XIII.7.1 in Asmussen (2003) for the
GI/GI/1 model, which draws on Theorems XIII.5.1–3.
Just as SτS

b
� b +YS(b), where YS(b) is the overshoot of b

upon first passage to b in the random walk {Sn}, so is
RτR

b
� b +YR(b), where YR(b) is the overshoot of b upon

first passage to b in the sequence {Rn}. The results for
the stationary case are based on the well-developed
theory for that overshoot, which depend on the ran-
domwalk structure. In contrast, less is known for {Rn}.
However, we do see from (29) that the overshoot can
be regarded as an excess-distribution of the last ser-
vice time. Thus, under the extra condition (34), we can
again apply the proof in Asmussen (2003), using

e−kθ∗b ≥ Eθ∗[e
−kθ∗R

τR
b ] ≥ e−kθ∗bEθ∗[e−kθ∗YR(b)] ≥ ce−kθ∗b

for 0< c < 1, where c �E[e−kθ∗Z], P(Z > x)�Gc(x), x ≥ 0,
and k is a positive integer. �

4.5. The Mean and Variance
We now show how tail-integral representations of the
mean and higher moments on (Feller 1971, p. 150) can
be exploited to obtain corresponding rare-event simu-
lations of these related quantities. Recall that, for any
nonnegative random variable X, the mean can be ex-
pressed as

E[X]�
∫ ∞

0
P(X > t) dt , (37)

while the corresponding representation of the pth
moment for any p > 1 is

E[Xp]�
∫ ∞

0
ptp−1P(X > t) dt . (38)

To obtain a finite algorithm, it is natural to approx-
imate the integrals for the mean and the second
moment by finite sums plus a tail approximation, i.e.,

E[Wy] ≈
n∑

k�0
(P(Wy > kδ)δ)+

P(Wy > nδ)
θ∗

E[W2
y] ≈

n∑
k�0
(2P(Wy > kδ)kδ)

+ 2P(Wy > nδ)
(

nδ
θ∗

+
1
(θ∗)2

)
. (39)

In each case, the second term is based on applying
the tail integral formula over [nδ,∞)with the approxi-
mation

P(Wy > nδ+ x) ≈ P(Wy > nδ)e−θ∗x (40)

and integrating.
To understand how to choose the discretization

parameter δ in (39), suppose that P(W > t) � ae−θ∗ t .
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In that case, the infinite sum for the mean can be ex-
pressed as

∞∑
k�0

aδe−θ
∗kδ

�
a
θ∗

(
1+ θ∗ δ2 +O(δ2)

)
as δ ↓ 0,

so that the relative error for themean is θ∗(δ/2)+O(δ2).
Similarly, the corresponding calculation for the second
moment indicates an asymptotic relative error propor-
tional to θ∗δ. The subsequent truncation approxima-
tions involving n imposes no additional error, pro-
vided that the tail is exponential, which is likely to hold
in view of Section 3.2. Thus, the truncation is good pro-
vided that approximation (40) is good, which can be
checked with the algorithm.
In closing, we remark that because θ∗(ρ) tends to

be of order 1 − ρ as ρ ↑ 1, as explained in Ma and
Whitt (2016, Section 2.2), we can maintain fixed rela-
tive error in the discretization if we let δ be inversely
proportional to 1− ρ or θ∗(ρ) as ρ ↑ 1. That can be use-
ful because otherwise the computational complexity
increases as ρ increases, as we show in the next sec-
tions. We illustrate letting δ increase with increasing ρ
in Table 10.

4.6. The Algorithm
This exponential tilting algorithm to estimate tail prob-
abilities P(Wy > b) in the GIt/GI/1 queue is based
on Equation (31) with the following steps. (We elabo-
rate on Steps 4 and 5 in Ma and Whitt 2016.) Without
loss of generality, we assume service rate is µ � 1 and
thus λ̄ � ρ.

Step 1. Beforewe conduct the simulation, we first con-
struct a table of the inverse cumulative arrival-rate function
ρΛ̃−1

y , i.e., the inverse of the reverse-time cumulative
arrival-rate function Λ̃y in (3) scaled by ρ, for each time
yc in the cycle to be considered. For that purpose, we
use Algorithm 1 in Ma and Whitt (2015). That algo-
rithm constructs an approximation Jy to the inverse
function ρΛ̃−1

y for one cycle from the interval [0, c] to
the interval [0, c]. This table is the same for a fixed y no
matter what value ρ takes, which will be used for effi-
ciently calculating Λ̃−1

y later. The computational com-
plexity has shown to be of order O(c/ε), where c is the
length of a cycle of the periodic arrival-rate function
and ε is an allowed error tolerance.

Step 2. Again, before we conduct the simulation, we
determine the required number of partial sums needed in
each replication, which we denote by ns . Note that
we need this step because MATLAB is much faster in
vector operations than in loops. However, if another
software is used to implement this algorithm, we can
skip this step and generate exponentially twisted ser-
vice times and interarrival times one by one in a loop
until the hitting time τR

b is reached. Given the largest b
under consideration, we estimate the expected number

by ms ≡ b/Eθ∗[Vk−ρ−1Uk] by approximating the sumby
Brownian motion which is asymptotically correct as b
gets large, e.g., byWhitt (2002, Section 5.7.5). If we use a
Brownian motion approximation for the random walk,
then we can get that the approximate mean and vari-
ance by applying Theorems 5.7.13 and 5.7.9 of Whitt
(2002). For the canonical Brownian motion in Theorem
5.7.13, the variance of the first passage time is equal
to the mean, but in general the ratio of the variance to
the mean is proportional to the scv c2

X ≡Var(X)/E[X]2.
Hence, we use ns � max{C, Lms}, where C is a mini-
mumnumber like 100 and L is a safety-factormultiplier
to account for the stochastic variability, which might
be taken to be simply 10, but could be constructed
more carefully. The largest value of b will depend on
the case. If we want to treat multiple cases at once for
simulation efficiency, we need to determine the largest
required value of ns . If ms is large, then it is natural to
use ns �ms +5

√
c2

X ms instead of ns �10ms , because then
5
√

c2
X ms is about 5 standard deviations, which should

be sufficient, and beneficial if 5
√

c2
X ms � (L− 1)ms .

Step 3. As the first part of the actual stochastic simu-
lation, for each replication we now generate the required
random vectors of tilted interarrival times and service times;
For each replication, generate Ṽ ≡ (V1 , . . . ,Vn) and
ρ−1Ũ ≡ (ρ−1U1 , . . . , ρ

−1Un)where n � ns from Step 2, Vk
are i.i.d. random variables from Fθ∗V , the exponentially
tilted distribution of Vk with parameter θ∗ and ρ−1Uk
i.i.d. from F−θ∗

ρ−1U , the exponentially tilted distribution
of ρ−1Uk with parameter −θ∗. The distributions of Vk
and Uk under the tilted probability measure Pθ∗ were
discussed in Section 4.1.

Step 4. Using vector operations, we calculate the asso-
ciated vectors of partial sums and transformed partial sums.
Use Algorithm 2 in Ma and Whitt (2015) to calculate
the time-transformed arrival times.

Step 5. Use (31) to calculate the tail probability
P(Wy > b). If ns is not large enough to reach hitting
times τR

b , we repeat Step 3 to generate additional vec-
tors of Ṽ and ρ−1Ũ and repeat Step 4 to calculate
additional partial sums and transformed partial sums.
We treat the cases of the tail probability for a single
value of b differently from multiple values of b, as
required whenwe estimate moments. For multiple val-
ues of b, we use one loop to find all stopping times at
each element of the vector b.

Step 6. We run the algorithm for N i.i.d. replications.
Estimate P(Wy > b), EWy and EW2

y by the sample aver-
ages over the N replications. We estimate the associ-
ated confidence intervals in the usual way, using the
Gaussian distribution if N is large enough and the
Student-t distribution otherwise. �

In conclusion, we point out that there is flexibility
in the order of the steps previously specified. We can
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reuse random variables if we generate the random vec-
tors in an early step. We can avoid storage problems if
we perform calculations for each replication separately.
As usual, there is a tradeoff in storage requirements
and computation efficiency.

4.7. Computational Complexity and Running Times
We implemented the algorithm using matlab on a
desktop computer. All examples were for the sinu-
soidal arrival-rate function λ in (4) with associated
reverse-time cumulative arrival-rate function Λ̃y in (6).
Because we usedmatlab, it was important to use vector
calculations in Step 3 to avoid loops.
We now specify the computational complexity of the

algorithm previously mentioned. Given the inverse
function table for Λ̃−1

y computed in advance using
the algorithm in Ma and Whitt (2015), the remaining
algorithm has an approximate linear computational
complexity of O(b/Eθ∗[Vk − ρ−1Uk]), Specifically for
the Mt/M/1 model, the computational complexity is
O(bρ/(1 − ρ)), being directly proportional to b and
inversely proportional to 1− ρ. This can be made pre-
cise as b ↑∞ or as ρ ↑ 1, and presumably in some joint
limit as b/(1 − ρ) ↑, but we do not do that here. For b
large or for ρ large, we can perform asymptotics to
make the following approximations valid.
The hitting time τb of the randomwalk Sn as defined

in (30) has expectation E(τb) � b/(Eθ∗(Vk − ρ−1Uk)) by
approximating Sn by a Brownian motion, for b that is
very large compared to the step size of the random
walk. Now consider the hitting time τb of Rn as defined
in (30). Since the average arrival rate λ̄� ρ, the expected
value of this hitting time is approximately the same as
that for Sn .
When both Vk and ρ−1Uk are exponential random

variableswith rates 1 and ρ respectively, under the new
measure θ∗, they are still exponential with rates ρ and 1
respectively. Thus b/Eθ∗(Vk − ρ−1Uk) � b/(1/ρ− 1) �
bρ/(1− ρ).
It can be advantageous to estimate the tail probabili-

ties P(Wy > b) for multiple values of b simultaneously.
This can be done for each b by keeping track of the pas-
sage times for themwhile considering the largest value
of b. This is very useful when we want to plot the CDF
or its PDF, or when we want to calculate the mean.

We nowdescribe our experiments with running times
on a desktop computer. Before conducting the simula-
tion, we did step 1, constructing the table of the inverse
function ρΛ̃−1

y in one cycle, which takes computational
time of O(c/ε)�O(1/(γε)) byMa andWhitt (2015, The-
orem 3.1), where c is the cycle length of the arrival rate
function, γ is the parameter in the sinusoidal arrival-
rate function and ε is the error boundwe choose for the
inverse function table. The longest cycle we consider
has γ�0.00025 (for (42)with ρ�0.99), or c �25,120. For
ε � 10−4, it took 0.08 seconds to form the table needed
for a single value of y.

In each replication, we can quickly determine the
required length of the random variable vector, gener-
ate the vectors of random variables, and calculate the
partial sums, which are Steps 2–4. The most time is
required for Step 5, searching for the stopping time for
one b, or for all stopping times for a long vector of b.
When we do the search for one b, the computational
time is O(b/(Eθ∗[Vk−ρ−1Uk]), which is the approximate
expected stopping time. When we do this for a long
vector of b, we use a big loop which takes time linear in
the maximum stopping time and the length of vector b,
i.e., O(max(b)/(Eθ∗[Vk−ρ−1Uk]+ length(b)). Specifically,
for the Mt/M/1 queue, the computational times are
O(bρ/(1−ρ) and O(max(b)ρ/(1−ρ)+ length(b)) respec-
tively. For example, in Mt/M/1 queue, when ρ � 0.8,
we choose max(b)� log(1,000)/θ∗ � log(1,000)/(1− ρ),
δ � 0.0002/(1 − ρ), then maximum stopping time
O(max(b)ρ/(1 − ρ)) is negligible compared to the
length of the vector b. The first part of time increases
as ρ increases while the second part does not depend
on ρ as both the largest b and δ are inversely pro-
portional to (1 − ρ). In this case, when we did 40,000
replications, the run time was 127 seconds on the desk-
top to find all stopping times, whereas it took about
10 seconds to find one stopping time for the largest b.

5. Simulation Examples
We now give examples to illustrate the new simu-
lation algorithm. All our examples are for the sinu-
soidal arrival-rate function in (4) with parameter triple
(λ̄, β, γ). More results appear in the online supplement.

5.1. Estimating the Tail Probabilities P(Wy > b)
We start by illustrating the efficiency of the rare-event
simulation estimator of the tail probability P(Wy > b),
which gets exponentially small as b increases, and thus
is prohibitively hard to estimate accurately by direct
simulation. Table 2 shows that the relative errors of
simulation estimates of P(Wy > b) for the Mt/M/1
model in several cases are approximately independent
of b. That property held in all models considered.
In particular, Table 2 shows estimates of p̂ ≡

P(Wy > b) ≡ Ay e−θ∗b and the components Ay and e−θ∗b

for the special case y � 0.0 based on 5,000 i.i.d. repli-
cations. Table 2 also shows estimates of the standard
error (s.e.) of p̂, the upper and lower bounds of the 95%
confidence interval (CI), and the relative error (r.e.),
which is the s.e. divided by the estimate of the mean.
For Table 2, we used the arrival-rate function (4) with
λ̄� 1, and E[V1]� 0.8, so that ρ� 0.8. We let β� 0.2 and
consider three values of γ: 10, 1 and 0.1, making cycle
lengths of 0.628, 6.28 and 62.8. The rapid fluctuation
with γ � 10 makes the arrival process very similar to a
homogeneous Poisson process, because the cumulative
arrival-rate function approaches a linear function; see
Jacod and Shiryaev (1987, Theorem VIII.4.10), Ethier
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Table 2. Estimates of p̂ ≡ P(Wy > b) ≡Ay e−θ∗b in the Mt/M/1 Model with Sinusoidal
Arrival-Rate Function in (4) as a Function of γ and b for: ρ � 0.8, λ̄ � 1, µ � 1.25, and β � 0.2
Based on 5,000 Replications

b p̂ exp(−θ∗b) A0(b) s.e. 95% CI (lb) (ub) r.e.

γ � 10 10 0.0654 0.0821 0.797 1.87E−04 0.0651 0.0658 0.00286
20 0.00537 0.00674 0.797 1.55E−05 0.00534 0.00540 0.00289
40 3.61E−05 4.54E−05 0.795 1.05E−07 3.59E−05 3.63E−05 0.00290
80 1.64E−09 2.06E−09 0.796 4.82E−12 1.63E−09 1.65E−09 0.00294

γ � 1 10 0.0628 0.0821 0.765 1.87E−04 0.0624 0.0632 0.00298
20 0.00516 0.00674 0.766 1.51E−05 0.00513 0.00519 0.00292
40 3.49E−05 4.54E−05 0.769 1.00E−07 3.47E−05 3.51E−05 0.00287
80 1.58E−09 2.06E−09 0.767 4.65E−12 1.57E−09 1.59E−09 0.00294

γ � 0.1 10 0.0413 0.0821 0.503 2.33E−04 0.0409 0.0418 0.00565
20 0.00360 0.00674 0.535 1.98E−05 0.00356 0.00364 0.00550
40 2.50E−05 4.54E−05 0.551 1.37E−07 2.47E−05 2.53E−05 0.00548
80 1.12E−09 2.06E−09 0.545 6.20E−12 1.11E−09 1.14E−09 0.00552

and Kurtz (1986, Problem 1, p. 360), and Whitt (2016).
We also simulated the M/M/1 model with β � 0 to
verify simulation correctness.
Table 2 shows that the rare-event simulation is effec-

tive for estimating P(W0 > b), because the relative error
is approximately independent of b for each γ, ranging
from about 0.0029 for γ � 10 to about 0.0055 for γ � 0.1.

5.2. Unified Numerical Results via
Heavy-Traffic Scaling

We produce unified numerical results by exploiting
heavy-traffic scaling. In particular, we scale the arrival
rate function so that the performance measures have
heavy-traffic limits as ρ ↑ 1, which we explain in Sec-
tion 6. In the special case of (4), we consider an arrival-
rate function scaled by the overall traffic intensity ρ,
specifically,

λρ(t)� ρ+ (1− ρ)ρβ sin(γ(1− ρ)2t), t ≥ 0, (41)

so that the cycle length in model ρ is cρ� c∗(1−ρ)−2 �

2π/(γ(1 − ρ)2). After scaling, the cycle length is
c∗�2π/γ.
When we consider the periodic steady-state work-

load, we include spatial scaling by 1−ρ. Hence, to have
asymptotically convergent models, we should choose
parameter four-tuples (λ̄ρ , βρ , γρ , bρ) indexed by ρ,
where

(λ̄ρ , βρ , γρ , bρ)�
(
ρ, (1− ρ)β, (1− ρ)2γ, (1− ρ)−1b

)
, (42)

where (β, γ, b) is a feasible base triple of positive con-
stants with β < 1. (We must constrain βρ ≤ 1 so that
λρ(t) ≥ 0 for all t.) Hence, we have the ρ-dependent
constraint ρb � (1−ρ)β ≤ 1. There is no problem if β ≤ 1,
but we may want to consider β > 1. In that case, βρ
is only well defined for ρ ≥ 1 − (1/β). For example, if
β � 5.0, then we require that ρ ≥ 0.8.

Example 1 (Using Mt/M/1 to Estimate the Performance
of RPBM).

To illustrate how we can apply simulations of the
Mt/M/1 model with increasing traffic intensities, let
the base parameter triple be (β, γ, b) � (1.0, 2.5, 4.0).
Then the parameter 4-tuple for ρ � 0.8 is

(λ̄ρ , βρ , γρ , bρ)� (0.8, (1− 0.8)β, (1− 0.8)2γ, (1− 0.8)−1b)
� (0.8, 0.2, 0.1, 20.0). (43)

The associated parameter 4-tuple for ρ � 0.9 is (0.90,
0.10, 0.025, 40.00).
Let W be the steady-state workload in the stationary

M/M/1 model with the same scaling, which has an
exponential distribution except for an atom 1− ρ at the
origin. Table 3 shows estimates of the ratio P(Wy > bρ)/
P(W > bρ) for 5 different values of 1− ρ, where we suc-
cessively divide 1 − ρ by 2, and 8 different values of
the position y within the cycle in the Mt/M/1 model
with sinusoidal arrival-rate function in (41) with the
parameter 4-tuple in (42) using the base parameter
triple (β, γ, b) � (1.0, 2.5, 4.0). (The parameter 4-tuples
for ρ � 0.8 and ρ � 0.9 are previously shown.)

Table 3 shows that, for each fixed y, all estimates as
a function of ρ serve as reasonable practical approxi-
mations for the others as well as for the RPBM limit
developed in Section 6. The convergence in Table 3 is
summarized by showing the average difference, aver-
age absolute difference and root mean square error
(rmse) of the entry with the corresponding estimate
for ρ � 0.99 in the final column, taken over 40 evenly
spaced values of y in the interval [0, 1).

5.3. Hyperexponential Examples
We now present results from simulation experiments
with nonexponential service times and interarrival
times in the base process N . In particular, weworkwith
hyprexponential (H2) examples.

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

16
0.

39
.2

1.
16

1]
 o

n 
27

 N
ov

em
be

r 
20

17
, a

t 1
7:

24
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Ma and Whitt: Periodic Queues
82 INFORMS Journal on Computing, 2018, vol. 30, no. 1, pp. 71–89, ©2017 INFORMS

Table 3. Comparison of the Ratios P(Wy > bρ)/P(W > bρ), Where W Is for the Stationary Model, for 5
Different Values of 1− ρ and 8 Different Values of the Position y Within the Cycle in the Mt/M/1 Model
with Sinusoidal Arrival-Rate Function in (41) with the Parameter 4-Tuple in (42) Using the Base Parameter
Triple (β, γ, b)� (1.0, 2.5, 4.0)

y 1− ρ � 0.16 1− ρ � 0.08 1− ρ � 0.04 1− ρ � 0.02 1− ρ � 0.01

0.000 0.96364 0.96523 0.96424 0.96357 0.96344
0.125 0.97619 0.97686 0.97504 0.97493 0.97482
0.250 1.00456 1.00450 1.00255 1.00251 1.00305
0.375 1.03278 1.03264 1.03035 1.03152 1.03152
0.500 1.04565 1.04470 1.04278 1.04346 1.04405
0.625 1.03213 1.03096 1.03230 1.03150 1.03204
0.750 1.00225 1.00404 1.00425 1.00277 1.00241
0.875 0.97371 0.97696 0.97629 0.97457 0.97545
Avg. diff 0.00037 0.00112 0.00015 −0.00019
Avg. abs. dif 0.00099 0.00121 0.00081 0.00039
Rmse 0.00116 0.00134 0.00096 0.00049

Tables 4–6 show estimates of P(Wy > b) for the
Mt/M/1, Mt/H2/1 and (H2)t/M/1 models, respec-
tively. All three tables show results for y � 0.0 and
y � 0.5 as a function of 1−ρ with base parameter triple
(β, γ, b)� (1, 2.5, 4) in (42) based on 40,000 replications.
The mean service time is fixed at µ−1 � 1, so that λ̄ � ρ
in all cases. The scv of the H2 CDF is always c2 � 2.
The scaling in (42) is performed as a function of ρ to
produce nearly stable results in each row.
We start by showing the estimate of the tail prob-

ability p̂ ≡ P(Wy > b) ≡ Ay e−θ∗b . Then we show the

Table 4. Simulation Estimates of p̂ ≡ P(Wy > b) ≡Ay e−θ∗b in the Mt/M/1 Model for y � 0.0 and y � 0.5 as a
Function of 1− ρ with Base Parameter Triple (β, γ, b)� (1, 2.5, 4) in (42) Based on 40,000 Replications

1− ρ 0.16 0.08 0.04 0.02 0.01

p̂ for y � 0.0 0.011053 0.012192 0.012814 0.013122 0.013263
e−θ∗b 0.0183 0.0183 0.0183 0.0183 0.0183
Ay 0.604 0.666 0.700 0.716 0.724
A−y LB in (23) 0.377 0.413 0.431 0.440 0.445
A+

y UB in (23) 0.840 0.920 0.960 0.980 0.990
s.e. 1.75E−05 1.69E−05 1.71E−05 1.73E−05 1.74E−05
95% CI (lb) 0.01102 0.01216 0.01278 0.01309 0.01323
(ub) 0.01109 0.01223 0.01285 0.01316 0.01330
r.e. 0.001582 0.001387 0.001333 0.001319 0.001313

P(Wy > b)/P(W > b) 0.71845 0.72356 0.72879 0.73103 0.73144
Diff w.r.t. last column 0.01298 0.00788 0.00264 0.00041 0.00000
Abs diff 0.01298 0.00788 0.00264 0.00041 0.00000

p̂ for y � 0.5 0.025888 0.028396 0.029551 0.030110 0.030430
e−θ∗b 0.0183 0.0183 0.0183 0.0183 0.0183
Ay 1.413 1.550 1.613 1.644 1.661
A−y LB in (23) 0.840 0.920 0.960 0.980 0.990
A+

y UB in (23) 1.869 2.047 2.137 2.181 2.203
s.e. 3.87E−05 3.74E−05 3.80E−05 3.86E−05 3.89E−05
95% CI (lb) 0.02581 0.02832 0.02948 0.03003 0.03035
(ub) 0.02596 0.02847 0.02963 0.03019 0.03051
r.e. 0.001496 0.001318 0.001286 0.001281 0.001279

P(Wy > b)/P(W > b) 1.68266 1.68517 1.68068 1.67751 1.67821
Diff w.r.t. last column −0.00445 −0.00696 −0.00247 0.00071 0.00000
Abs diff 0.00445 0.00696 0.00247 0.00071 0.00000

corresponding estimates for the components e−θ∗b and
Ay ≡ eθ∗b p̂. We then show the lower and upper bounds
in (23) of Corollary 3. We then show the s.e., the associ-
ated 95% CI bounds (lb and ub), and the r.e. In all cases
the relative error is less than 0.0015 or 0.15%.

For the two cases y � 0.0 and y � 0.5, we also dis-
play estimates of scaled tail probabilities, P(Wy > b)/
P(W > b),whereP(W > b) is the correspondingestimate
for the stationary model. We do this because we seek
estimates that are more stable as functions of 1− ρ, and
thus support approximations for the limitingRPBM tail
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Table 5. Simulation Estimates of p̂ ≡ P(Wy > b) ≡Ay e−θ∗b in the Mt/H2/1 Model for y � 0.0 and y � 0.5 as
a Function of 1− ρ with Base Parameter Triple (β, γ, b)� (1, 2.5, 4) in (42) Based on 40,000 Replications

1− ρ 0.16 0.08 0.04 0.02 0.01
θ∗(ρ) 0.101 0.0519 0.0263 0.0132 0.00664

p̂ for y � 0.0 0.050594 0.052946 0.054024 0.054544 0.054904
e−θ∗b 0.0807 0.0747 0.0720 0.0707 0.0701
Ay 0.627 0.708 0.750 0.771 0.783
A−y LB in (23) 0.477 0.532 0.560 0.573 0.580
A+

y UB in (23) 0.789 0.894 0.947 0.974 0.987
s.e. 7.49E−05 5.64E−05 5.13E−05 5.03E−05 5.01E−05
95% CI (lb) 0.05045 0.05284 0.05392 0.05445 0.05481
(ub) 0.05074 0.05306 0.05412 0.05464 0.05500
r.e. 0.001480 0.001065 0.000950 0.000923 0.000913

P(Wy > b)/P(W > b) 0.79534 0.79246 0.79200 0.79200 0.79377
Diff w.r.t. last column −0.00158 0.00131 0.00177 0.00177 0.00000
Abs diff 0.00158 0.00131 0.00177 0.00177 0.00000

Ay/ρ 0.74662 0.76999 0.78125 0.78680 0.79107
Diff w.r.t. last column 0.04445 0.02108 0.00982 0.00427 0.00000
Abs diff 0.04445 0.02108 0.00982 0.00427 0.00000

p̂ for y � 0.5 0.086646 0.092721 0.095707 0.096711 0.097186
e−θ∗b 0.0807 0.0747 0.0720 0.0707 0.0701
Ay 1.074 1.241 1.329 1.367 1.386
A−y LB in (23) 0.789 0.894 0.947 0.974 0.987
A+

y UB in (23) 1.305 1.502 1.603 1.654 1.679
s.e. 1.25E−04 9.42E−05 8.49E−05 8.28E−05 8.28E−05
95% CI (lb) 0.08640 0.09254 0.09554 0.09655 0.09702
(ub) 0.08689 0.09291 0.09587 0.09687 0.09735
r.e. 0.001442 0.001016 0.000887 0.000856 0.000852

P(Wy > b)/P(W > b) 1.36208 1.38777 1.40307 1.40428 1.40505
Diff w.r.t. last column 0.04297 0.01728 0.00198 0.00077 0.00000
Abs diff 0.04297 0.01728 0.00198 0.00077 0.00000

Ay/ρ 1.27865 1.34842 1.38403 1.39507 1.40028
Diff w.r.t. last column 0.12163 0.05186 0.01625 0.00521 0.00000
Abs diff 0.12163 0.05186 0.01625 0.00521 0.00000

probability, which is the scaled limit as ρ ↑ 1. In Tables 5
and 6 for the Mt/H2/1 and (H2)t/M/1 models we also
showthealternative ratiosP(Wy > b)/ρ;wedonot show
that for Mt/M/1 in Table 4 because the ratios are pro-
portional, because P(W > b) � ρe−θ∗b for M/M/1 and
θ∗(ρ) � 1− ρ. Tables 5 and 6 show that greater stability
is achievedwith the ratio P(Wy > b)/P(W > b).
Tables 4–6 strongly support the heavy-traffic limit in

Theorem 2, establishing convergence to RPBM as ρ ↑ 1.
The stability of the scaled quantities is especially clear
through the ratios P(Wy > b)/P(W > b). For the ratios
at the bottom of the tables, we also show the difference
and absolute difference of the value with value in the
final column of the table.
A close examination of Tables 5 and 6 show that

there is a consistent sign in the differences in the
second-to-last row, being positive for the Mt/H2/1 in
Table 5 and negative for the (H2)t/M/1 model Table 6.
These consistent signs in Tables 5 and 6 suggest that the
two cases Mt/H2/1 and (H2)t/M/1 serve as one-sided
bounds on RPBM. We provide strong theoretical sup-
port for this idea in Ma and Whitt (2016, Theorem 1,
Corollary 1). Those results show that the one-sided

bounds apply exactly to the asymptotic decay rates θ∗,
which is the dominant part of the actual tail probabil-
ity. For the cases considered in Table 6, it is natural to
wonder if the refinement of the rare-event algorithm for
the first nonexponential interarrival time makes much
difference.We show that it does not for these caseswith
higher ρ (seeMa andWhitt 2016, Section 4.6).

Tables 4–6 show that the bounds A−y and A+

y in (23)
are not too close, and thus not good approximations for
the actual Ay . Experiments show that the average of the
two bounds is not a consistently good approximation
for Ay either.
Simulation results over a wide range of y show that

P(Wy > b) consistently increases from a minimum at
y � 0 to a maximum at y � 0.5 and then decreases to
back to the minimum at y � 1, with The values for y �

1/4 and y �3/4 being approximately equal to P(W > b).
It remains to establish theoretical supporting results.

5.4. Estimating the Moments of Wy
We now apply the extension of the algorithm in Sec-
tion 4.5 to estimate the first two moments of Wy ,
reporting the estimated mean and standard deviation.
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Table 6. Simulation Estimates of p̂ ≡ P(Wy > b) ≡Ay e−θ∗b in the (H2)t/M/1 Model for y � 0.0 and y � 0.5
as a Function of 1− ρ with Base Parameter Triple (β, γ, b)� (1, 2.5, 4) in (42) Based on 40,000 Replications

1− ρ 0.16 0.08 0.04 0.02 0.01
θ∗(ρ) 0.113 0.0548 0.0270 0.0134 0.00669

p̂ for y � 0 0.038876 0.046701 0.050799 0.053020 0.053985
e−θ∗b 0.0593 0.0645 0.0670 0.0682 0.0689
Ay 0.655 0.724 0.758 0.777 0.784
Ay LB 0.477 0.532 0.559 0.573 0.580
Ay UB 0.840 0.920 0.960 0.980 0.990
s.e. 4.36E−05 4.56E−05 4.73E−05 4.88E−05 4.95E−05
95% CI (lb) 0.03879 0.04661 0.05071 0.05292 0.05389
(ub) 0.03896 0.04679 0.05089 0.05312 0.05408
r.e. 0.001123 0.000976 0.000932 0.000920 0.000917
P(Ay > b)/P(A > b) 0.78051 0.78763 0.78988 0.79280 0.79187
Diff 0.01136 0.00424 0.00199 −0.00093 0.00000
Abs diff 0.01136 0.00424 0.00199 0.00093 0.00000
Ay/ρ 0.78015 0.78747 0.78988 0.79279 0.79186
Diff 0.01171 0.00439 0.00198 −0.00094 0.00000
Abs diff 0.01171 0.00439 0.00198 0.00094 0.00000

p̂ for y � 0.5 0.071241 0.084111 0.090923 0.094201 0.096045
e−θ∗b 0.0593 0.0645 0.0670 0.0682 0.0689
Ay 1.201 1.305 1.357 1.380 1.395
Ay LB 0.840 0.920 0.960 0.980 0.990
Ay UB 1.477 1.592 1.648 1.677 1.691
s.e. 7.61E−05 7.71E−05 7.93E−05 8.13E−05 8.21E−05
95% CI (lb) 0.07109 0.08396 0.09077 0.09404 0.09588
(ub) 0.07139 0.08426 0.09108 0.09436 0.09621
r.e. 0.001068 0.000917 0.000873 0.000863 0.000855
P(Ay > b)/P(A > b) 1.43030 1.41856 1.41378 1.40857 1.40881
Diff −0.02149 −0.00975 −0.00497 0.00024 0.00000
Abs diff 0.02149 0.00975 0.00497 0.00024 0.00000
Ay/ρ 1.42963 1.41826 1.41378 1.40856 1.40878
Diff −0.02085 −0.00948 −0.00500 0.00023 0.00000
Abs diff 0.02085 0.00948 0.00500 0.00023 0.00000

In Table 7 we first show preliminary results for the
stationary M/M/1 model, so that we can judge the
algorithm against known exact results. For ease of com-
parison, we show the corresponding known exact val-
ues for P(W > 0), E[W], E[W2], and SD(W). The first
section of Table 7 with three rows shows the algo-
rithm parameters. The final seven rows of Table 7 are
included to show alternatives ways of scaling aimed at
achieving stable values across all values of 1−ρ. In this
case, knowing that W has an exponential distribution
except for an atom of mass 1 − ρ at the origin, we are
not surprised to see that the final two rows provide the
best scaling. We will use those rows in the following
tables for time-varying arrival-rate functions.
Tables 8 and 9 show corresponding estimates of

the time varying mean E[Wy] and standard deviation
SD(Wy) for the special case of y � 0.5 for associated
Mt/M/1 model with arrival-rate function in (4) for
base parameter pairs (β, γ)� (1, 2.5) and (β, γ)� (4, 2.5)
using the scaling convention in (42). Both have cycle
length 2π/γ, which equals 6.28/0.1 � 62.8 for ρ � 0.8.
The higher relative amplitude in Table 9 leads to much

larger mean values at y � 0.5, which tends to produce
the largest values in the cycle. As can be seen in the
online supplement, much lower values occur for y � 0,
which tends to produce the least values.

Finally, Table 10 shows estimates of the time vary-
ing mean E[Wy] and standard deviation SD(Wy) for
the special case of y � 0.5 for associated (H2)t/M/1
model with arrival-rate function in (4) for base param-
eter pairs (β, γ) � (1, 2.5), but here we let δ increase
as 1− ρ decreases. Table 10 shows that the precision
remains good for all ρ. (For the cases considered in
Table 10, the refinement of the rare-event algorithm
for the first nonexponential interarrival time does not
make too much difference, but it matters more than for
Table 6, as shown in Ma and Whitt 2016, Section 4.6.)

6. The Supporting Heavy-Traffic FCLT for
Periodic Queues

To explain the unified numerical results in Section 5,
we now review and extend the heavy-traffic (HT) func-
tional central limit theorem (FCLT) for periodic Gt/G/1
queues in Whitt (2014, Theorem 3.2). An extension of

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

16
0.

39
.2

1.
16

1]
 o

n 
27

 N
ov

em
be

r 
20

17
, a

t 1
7:

24
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Ma and Whitt: Periodic Queues
INFORMS Journal on Computing, 2018, vol. 30, no. 1, pp. 71–89, ©2017 INFORMS 85

Table 7. Estimated Mean E[W] and Standard Deviation SD(W) as a Function of 1− ρ for Five Cases of the Stationary M/M/1
Queue: µ � 1, λ̄ � ρ

1− ρ 0.16 0.08 0.04 0.02 0.01

ns in (39) 40,000 40,000 40,000 40,000 40,000
δ in (39) 0.001 0.001 0.001 0.001 0.001
Largest b 41 86 173 345 691

P(W > 0) 0.8396 0.9201 0.9601 0.9799 0.9900
Exact 0.8400 0.9200 0.9600 0.9800 0.9900
s.e. of P(W > 0) 6.86E−04 3.71E−04 1.93E−04 9.73E−05 4.98E−05
%95 CI of P(W > 0) [0.8383, 0.8410] [0.919, 0.921] [0.9598, 0.9605] [0.9797, 0.9801] [0.9899, 0.9901]
E[W] 5.249 11.499 23.999 49.000 99.000
Exact 5.250 11.500 24.000 49.000 99.000
s.e. of E[W] 1.59E−03 1.27E−03 9.51E−04 6.93E−04 4.94E−04
%95 CI of E[W] [5.246, 5.252] [11.497, 11.502] [23.997, 24.001] [48.999, 49.001] [98.999, 99.001]
E[W |W > 0] 6.251 12.497 24.995 50.003 100.005
%95 CI of E[W |W > 0] [6.238,6.265] [12.485, 12.510] [24.983, 25.007] [49.992, 50.014] [99.994, 100.015]
E[W2] 65.624 287.494 1,199.982 4,899.957 19,800.03
Exact 65.625 287.500 1,200.000 4,900.000 19,800.00
s.e. of E[W2] 1.50E−02 2.33E−02 3.40E−02 4.92E−02 7.04E−02
%95 CI of E[W2] [65.595, 65.654] [287.449, 287.540] [1199.92, 1200.05] [4899.86, 4900.05] [19,799.89, 19,800.17]
SD[W] 6.170 12.460 24.981 49.990 99.995
Exact 6.1695 12.450 24.980 49.990 99.995

P(W > 0)/ρ 0.9995 1.0002 1.0001 0.9999 1.0000
Exact 1.0000 1.0000 1.0000 1.0000 1.0000
(1− ρ)E[W] 0.8398 0.9200 0.9600 0.9800 0.9900
(1− ρ)SD[W] 0.9873 0.9968 0.9992 0.9998 0.9999
(1− ρ)E[W]/ρ 0.9998 0.9999 0.9999 1.0000 1.0000
(1− ρ)SD[W]/ρ 0.8293 0.9171 0.9593 0.9798 0.9899
(1− ρ)E[W |W > 0] 1.0002 0.9998 0.9998 1.0001 1.0000
(1− ρ)SD[W |W > 0] 1.0002 1.0000 1.0000 1.0000 1.0000

the HT FCLT in Whitt (2014) is needed because that
HT FCLT is stated for the scaled arrival process and the
scaled queue-length process, but not the scaled work-
load process that we consider here. A similar argument
applies to the workload process, jointly with the other
processes, but it is more natural to apply Whitt (2002,
Theorem 9.3.4) than Iglehart andWhitt (1970), because

Table 8. Estimated Mean E[Wy] and Standard Deviation SD(Wy) as a Function of 1− ρ for Five Cases of the Mt/M/1 Queue
at y � 0.5: µ � 1, λ̄ � ρ and Base Parameter Pair (β, γ)� (1, 2.5)

1− ρ 0.16 0.08 0.04 0.02 0.01

ns in (39) 40,000 40,000 40,000 40,000 40,000
δ in (39) 0.001 0.001 0.001 0.001 0.001
Largest b 41 86 173 345 691

P(Wy > 0) 0.8801 0.9411 0.9714 0.9851 0.9930
s.e. of P(Wy > 0) 9.85E−04 6.54E−04 4.51E−04 2.92E−04 2.19E−04
%95 CI of P(Wy > 0) [0.8782, 0.8820] [0.9399, 0.9424] [0.9705, 0.9723] [0.9845, 0.9856] [0.9926, 0.9934]
E[Wy] 6.839 14.927 31.194 63.667 128.411
Std of E[Wy] 6.42E−03 1.20E−02 2.36E−02 4.69E−02 9.30E−02
%95 CI of E[Wy] [6.827, 6.852] [14.903, 14.950] [31.147, 31.240] [63.575, 63.759] [128.228, 128.593]
E[Wy |Wy > 0] 7.771 15.860 32.113 64.632 129.315
%95 CI of E[Wy |Wy > 0] [7.740, 7.803] [15.814, 15.907] [32.036, 32.189] [64.501, 64.763] [129.075, 129.554]
E[W2

y ] 97.057 427.685 1,795.344 7,344.665 29,673.77
Std of E[W2

y ] 7.81E−02 0.302 1.207 4.829 19.314
%95 CI of E[W2

y ] [96.90, 97.21] [427.09, 428.28] [1793.0, 1797.7] [7335.2, 7354.13] [29,636, 29,712]
SD[Wy] 7.091 14.314 28.676 57.369 114.824

P(Wy > 0)/ρ 1.0478 1.0230 1.0119 1.0052 1.0030
(1− ρ)E[Wy |Wy > 0] 1.2434 1.2688 1.2845 1.2926 1.2931
(1− ρ)SD[Wy |Wy > 0] 1.1301 1.1395 1.1433 1.1452 1.1472

the workload process is defined there in Section 9.2
essentially the same way as the workload is defined in
Section 2.

The innovative part of Whitt (2014) is the new HT
scaling in (41) to capture the impact of the periodicity
in an interesting and revealing way, as demonstrated
by the tables in Section 5. As shown in Whitt (2014),
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Table 9. Estimated Mean E[Wy] and Standard Deviation SD(Wy) as a Function of 1− ρ for Five Cases of the Mt/M/1 Queue
at y � 0.5: µ � 1, λ̄ � ρ and Base Parameter Pair (β, γ)� (4, 2.5) Having Larger Relative Amplitude

1− ρ 0.16 0.08 0.04 0.02 0.01

ns in (39) 40,000 40,000 40,000 40,000 40,000
δ in (39) 0.001 0.001 0.001 0.001 0.001
Largest b 41 86 173 345 691

P(Wy > 0) 0.9728 0.9883 0.9967 0.9965 0.9993
s.e. of P(Wy > 0) 3.61E−03 2.69E−03 2.05E−03 1.16E−03 8.52E−04
%95 CI of P(Wy > 0) [0.9657, 0.9799] [0.9831, 0.9936] [0.9927, 1.0000] [0.9943, 0.9988] [0.9976, 1.0000]
E[Wy] 15.148 33.583 70.677 145.183 294.222
Std of E[Wy] 5.58E−02 1.13E−01 2.27E−01 4.59E−01 9.15E−01
%95 CI E[Wy] [15.04, 15.26] [33.36, 33.81] [70.23, 71.12] [144.3, 146.1] [292.4, 296.0]
E[Wy |Wy > 0] 15.572 33.980 70.909 145.690 294.437
%95 CI of E[Wy |Wy > 0] [15.35, 15.80] [33.58, 34.39] [70.2, 71.6] [144.5, 147.0] [292.4, 296.7]
E[W2

y ] 331.868 1,528.127 6,547.951 27,092.17 110,239.9
Std of E[W2

y ] 1.023 4.263 17.227 69.632 0.785
%95 CI of E[W2

y ] [329.9, 333.9] [1519.8, 1536.5] [6514, 6582] [26,955, 27,228] [109,691, 110,787]
SD[Wy] 10.119 20.007 39.405 77.551 153.861

P(Wy > 0)/ρ 1.1581 1.0743 1.0383 1.0169 1.0094
(1− ρ)E[Wy |Wy > 0] 2.4915 2.7184 2.8364 2.9138 2.9444
(1− ρ)SD[Wy |Wy > 0] 1.5892 1.5830 1.5704 1.5442 1.5371

Table 10. Estimated Mean E[Wy] and Standard Deviation SD(Wy) as a Function of 1− ρ for Five Cases of the (H2)t/M/1
Queue at y � 0.5: µ � 1, λ̄ � ρ and Base Parameter Pair (β, γ)� (1, 2.5)

1− ρ 0.16 0.08 0.04 0.02 0.01
θ∗(ρ) 0.113 0.0548 0.0270 0.0134 0.00669

ns 40,000 40,000 40,000 40,000 40,000
δ 0.001 0.002 0.004 0.008 0.016
Largest b 41 86 173 345 691

P(Wy > 0) 0.8721 0.9382 0.9691 0.9853 0.9923
s.e. of P(Wy > 0) 7.36E−04 4.81E−04 3.18E−04 2.34E−04 1.51E−04
%95 CI of P(Wy > 0) [0.8707, 0.8736] [0.9373, 0.9391] [0.9685, 0.9697] [0.9848, 0.9857] [0.9920, 0.9926]
E[Wy] 9.125 20.501 43.720 88.613 179.456
Std of E[Wy] 5.56E−03 1.05E−02 2.07E−02 4.07E−02 8.18E−02
%95 CI of E[Wy] [9.114, 9.135] [20.480, 20.521] [43.162, 43.243] [88.533, 88.693] [179.296, 179.616]
E[Wy |Wy > 0] 10.462 21.851 45.114 89.937 180.845
%95 CI of E[Wy |Wy > 0] [10.432, 10.492] [21.807, 21.895] [44.510, 44.651] [89.814, 90.060] [180.630, 181.061]
E[W2

y ] 175.380 814.768 3,489.720 14,425.330 58,633.918
Std of E[W2

y ] 8.65E−02 0.350 1.424 5.703 23.026
%95 CI of E[W2

y ] [175.210, 175.549] [814.081, 815.455] [3,486.928, 3,492.511] [14,414, 14,436] [58,588, 58,679]
SD[Wy] 9.598 19.862 40.289 81.074 162.571

P(Wy > 0)/ρ 1.0383 1.0198 1.0095 1.0054 1.0023
(1− ρ)E[Wy] 1.4599 1.6401 1.7488 1.7723 1.7946
(1− ρ)SD[Wy] 1.5357 1.5889 1.6116 1.6215 1.6257
(1− ρ)E[Wy]/ρ 1.7380 1.7827 1.8216 1.8084 1.8127
(1− ρ)SD[Wy]/ρ 1.2900 1.4618 1.5471 1.5891 1.6095
(1− ρ)E[Wy |Wy > 0] 1.6739 1.7481 1.8045 1.7987 1.8085
(1− ρ)SD[Wy |Wy > 0] 1.5316 1.5818 1.5828 1.6189 1.6243

the periodicity has no impact on the heavy-traffic
limit if this additional scaling is not included. (That
elementary observationwasmade earlier by Falin 1989;
themain contribution ofWhitt 2014 is the new scaling.)

6.1. The Heavy-Traffic FCLT
We assume that the rate-1 arrival and service pro-
cesses N and V specified in Section 2 are independent

and each satisfies a FCLT. To state the result, let N̂n and
Ŝv

n be the scaled processes defined by

N̂n(t) ≡ n−1/2[N(nt) − nt] and

Ŝv
n(t) ≡ n−1/2

[ bntc∑
i�1

Vk − nt
]
, t ≥ 0,

(44)

with ≡ denoting equality in distribution and bxc de-
noting the greatest integer less than or equal to x.
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We assume that

N̂n⇒ caBa and Ŝv
n⇒ cs Bs in D as n→∞, (45)

where D is the usual function space of right-contin-
uous real-valued functions on [0,∞) with left lim-
its and ⇒ denotes convergence in distribution, as in
Whitt (2002), while Ba and Bs are independent stan-
dard (mean 0, variance 1) Brownian motion processes
(BMs). The assumed independence implies joint con-
vergence in (45) by Whitt (2002, Theorem 11.4.4).
We emphasize that GI assumptions are not needed,

but that is an important special case. If the service
times Vk are i.i.d. mean-1 random variables with vari-
ance = scv c2

s , then the limit in (45) holds with service
variability parameter cs . Similarly, if the base arrival
process is a renewal process or an equilibrium renewal
process with times between renewals having mean 1
and variance = scv c2

a , then the limit in (45) holds with
arrival variability parameter ca . (SeeNieuwenhuis 1989
for theoretical support in the case of an equilibrium
renewal process.)
Whitt (2002, Theorem 9.3.4) refers to the conditions

of Theorem 9.3.3, which requires a joint FCLT for the
partial sums of the arrival and service processes, not-
ably (3.9) on p. 295. That convergence follows from the
FCLTs we assumed for N and V in (45) . In particular,
the assumed FCLT for N implies the associated FCLT
for the partial sums of the interarrival times by Whitt
(2002, Theorem 7.3.2, Corollary 7.3.1).
We create a model for each ρ, 0 < ρ < 1, by defining

the arrival-rate function

λρ(t) ≡ ρ+ (1− ρ)λd((1− ρ)2t), t ≥ 0, (46)

where λd is a periodic function with period c∗

satisfying

λ̄d ≡
1
c∗

∫ c∗

0
λd(s) ds ≡ 0. (47)

As a regularity condition, we also require that the func-
tion λd be an element of D. As a consequence of (46)
and (47), the average arrival rate is λ̄ρ � ρ, 0 < ρ < 1.
Hence, (41) is a special case of (46); see Section 6.3.
We can also work with cumulative functions and let

the cumulative arrival-rate function in model ρ be

Λρ(t) ≡ ρt + (1− ρ)−1Λd((1− ρ)2t), t ≥ 0, (48)

where
Λd(t) ≡

∫ t

0
λd(s) ds , (49)

for λd again being the periodic function in (47). From
(48)–(49), we see that the associated arrival-rate func-
tion obtained by differentiation in (48) is (46).
The time scaling in (46) and (48) implies that the

period inmodel ρwitharrival-rate functionλρ(t) in (46)

is cρ � c∗(1− ρ)−2, where c∗ is the period of λd(t) in (47).
Thus the period cρ in model ρ is growingwith ρ.

Now let Aρ(t) ≡ N(Λρ(t)) be the arrival process,
using the cumulative arrival-rate function Λρ in (48)
in place of Λ in (1). Let Qρ(t) and Wρ(t) be the asso-
ciated queue length process and workload process in
the Gt/G/1 model with arrival process Aρ(t) in (46)
and service times from the fixed service process V ,
constructed as in Whitt (2002, Section 9.2). Then let
associated scaled arrival, queue length and workload
processes be defined by

Âρ(t) ≡ (1− ρ)[Aρ((1− ρ)−2t) − (1− ρ)−2t],
Q̂ρ(t) ≡ (1− ρ)Qρ((1− ρ)−2t), and
Ŵρ(t) ≡ (1− ρ)Wρ((1− ρ)−2t), t ≥ 0.

(50)

The scaled processes in (50) and the HT limit all have
cycle length c∗.
The following heavy-traffic FCLT states that Âρ con-

verges to periodic Brownian motion (PBM), while Q̂ρ

and Ŵρ converge to a common reflected periodic
Brownianmotion (RPBM). To explain, let e be the iden-
tity function with e(t) � t, t ≥ 0. By a PBM, we mean a
process cB +Λ− e ≡ {cB(t)+Λd(t) − t: t ≥ 0}, where B
is a BM and Λd is of the form (49), so that the pro-
cess has periodic deterministic drift λd(t) − 1. Let ψ be
the usual one-dimensional reflection map as in Whitt
(2002, pp. 87, 290 and 439). Given that cB +Λ − e is a
PBM, ψ(cB +Λ− e) is a RPBM. To state the HT FCLT,
let‘Dk be the k-fold product space of D with itself and
let d

� denote equality in distribution.

Theorem 2 (Heavy-Traffic Limit Extending Whitt 2014). If,
in addition to the definitions and assumptions in (44)–(50),
the system starts empty at time 0, then

(Âρ , Q̂ρ , Ŵρ) ⇒ (Xa ,Z,Z), in D3 as ρ ↑ 1, (51)

where

Xa ≡ caBa +Λd − e , X ≡Xa − cs Bs and
Z ≡ ψ(X), (52)

with Ba and Bs being independent BMs, Λd in (49) and ca
and cs being the variability parameters in (45), so that X d

�

cxB, where cx ≡
√

c2
a + c2

s and B is a BM.

The joint limit for (Âρ , Q̂ρ) is established in Whitt
(2014, Theorem 3.2) that in turn follows quite directly
from Iglehart and Whitt (1970). (We remark that there
is a typographical error in the translation term on the
first line of (13) in the proof of Theorem 3.2 of Whitt
2014; it should be −(1− ρ)−2t as in Equation (11) there
instead of −(1 − ρ)−2ρt.) To treat the workload, we
apply Whitt (2002, Theorem 9.3.4), which implies that
the limit for Ŵρ is the same as for the limit for Q̂ρ.
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Unfortunately, the periodic feature makes the RPBM
complicated, so that it remains to derive explicit
expressions for its transient and periodic steady-state
distributions. The present paper contributes by devel-
oping an effective algorithm to calculate the periodic
steady-state distribution.

6.2. Approximations for the Periodic
Steady State Workload

Our algorithm for the periodic steady-state distribu-
tion of RPBM calculates the periodic steady-state dis-
tribution of the scaled workload process in a GIt/GI/1
queue for suitably large ρ and uses Theorem 2 for justi-
fication. While that approach is intuitively reasonable,
there are steps that remain to be justified. Proper justi-
fication requires an additional limit interchange argu-
ment, which has been done in some contexts, e.g., see
Budhiraja and Lee (2009), but here is left for a topic of
future research.
Hence, we assume that those steps are justified. In

particular, we assume that the workload process and
the limiting RPBM have proper periodic steady-state
distributions for each ρ and that there is convergence
in distribution of the scaled periodic steady state work-
load to the periodic steady state of RPBM as ρ ↑ 1.
In particular, in addition to the limit Ŵρ⇒ Z in D as
ρ ↑ 1 established in Theorem 2, we assume that

Wρ((k + y)cρ) ⇒ Wρ,y(∞), in � as k→∞, (53)

where P(Wρ,y(∞)<∞)� 1 for all ρ and y, 0< ρ < 1 and
0 ≤ y < 1, or, equivalently,

Ŵρ((k + y)c∗) ⇒ Ŵρ,y(∞), in � as k→∞, (54)

where P(Ŵρ,y(∞)<∞)� 1 for all ρ and y, 0< ρ < 1 and
0 ≤ y < 1, and

Z((k + y)c∗) ⇒ Zy(∞), in � as k→∞, (55)

where P(Zy(∞) <∞)� 1 for all y, 0 ≤ y < 1. With these
assumptions, our algorithm applies to RPBM using the
approximation

P(Zy(∞) > x) ≈ P(Ŵρ, y(∞) > x), (56)

where ρ is chosen to be suitably large.

6.3. Application to the Sinusoidal
Arrival-Rate Function

For the sinusoidal example in (4), we let

λd(t) ≡ λ̄β sin (γt), t ≥ 0 (57)

for λd(t) in (47), so that the cycle length is c∗ � 2π/γ.
With (57) and λ̄ ≡ ρ, (46) becomes (41), so that the cycle
length in model ρ is cρ � c∗(1 − ρ)−2 � 2π/(γ(1 − ρ)2).
When we consider the periodic steady-state workload,

the time scaling is gone but we still have the spatial
scaling. When the traffic intensity is ρ, we multiply by
1− ρ; i.e., we have

Ŵρ, y(∞)� (1− ρ)Wρ, y(∞). (58)

Hence, to have asymptotically convergent models, we
should choose parameter four-tuples (λ̄ρ , βρ , γρ , bρ)
indexed by ρ as indicated in (42).

6.4. Approximations for the Periodic Gt/G/1 Model
To apply the heavy-traffic FCLT to generate approxima-
tions for the performance of the periodic steady-state
workload in a general periodic Gt/G/1 model (with-
out i.i.d. assumptions), we assume that the assump-
tions in Section 6.1 are satisfied so that Theorem 2 is
valid. We then approximate the model by a GIt/GI/1
model which has the same HT FCLT limit process.
In other words, we approximate the underlying rate-1
arrival counting process N by a renewal process with
i.i.d. mean-1 times between renewals having scv c2

a ,
where ca is the arrival process variability parameter in
the assumed FCLT (45). Similarly, we approximate the
sequence of mean-1 service times {Vk} by a sequence
of mean-1 i.i.d. random variables with a scv equal
to c2

s , where cs is the service variability parameter in
the assumed FCLT (45). Both approximations are exact
for GI.

To construct the specific GI arrival and service pro-
cesses, we follow the approximation scheme in Whitt
(1982, Section 3). We apply the same method for the
interarrival times Uk of N as we do to the service
times Vk , so we only discuss the service times. If c2

s ≈ 1,
then we use a mean-1 exponential (M) distribution; if
c2

s > 1, then we use a mean-1 hyperexponential (H2)
distribution with PDF fV(x) � p1µ1e−µ1x + p2µ2e−µ2x ,
with p1 + p2 � 1, having parameter triple (p1 , µ1 , µ2).
To reduce the parameters to two (themean and scv), we
assume balanced means, i.e., p1/µ1 � p2/µ2, as in Whitt
(1982, (3.7)). If c2

s < 1 and if c2
s ≈ 1/k for some integer k,

thenwe use amean-1 Erlang (Ek) distribution (sum of k
i.i.d. exponential variables), otherwise if c2

s < 1, thenwe
use the D + M distribution, i.e., a sum of a determin-
istic constant (D) and an exponential (M) distribution
with rate µ, which has PDF fV(x) � µe−µ(x−d), x ≥ d, as
in Whitt (1982, (3.11) and (3.12)).

7. Conclusions
We have developed a new algorithm to calculate
the distribution of the periodic steady-state remain-
ing workload Wy , at time yc within a periodic cycle
of length c, 0 ≤ y < 1, in a general GIt/GI/1 single-
server queue with periodic arrival-rate function. The
key model assumption is the representation in (1) of
the arrival process as a time-transformation of a rate-1
process. The algorithm is based on the representation
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of Wy in (2) derived in Sections 1.1 and 2. In Section 4
we developed an algorithm for computing the exact tail
probabilities P(Wy > b) in the GIt/GI/1 model based
on the established rare-event simulation algorithm for
the associated stationary GI/GI/1 model. That connec-
tion is supported by the close relation between the two
models, established in Section 3.
We also have shown that the algorithm can be

applied together with the heavy-traffic FCLT in Whitt
(2014) reviewed in Section 6 to also calculate the peri-
odic steady-state distribution andmoments of reflected
periodic Brownian motion (RPBM). In addition, the
algorithm can be applied to approximate the tail prob-
abilities in themore general Gt/G/1 model by choosing
special parameters (the squared coefficients of varia-
tion (scv) of interrenewal times) in the GIt/GI/1 model
to insure that the two systems obey the same heavy-
traffic FCLT.
We have verified the effectiveness of the algorithm

for GIt/GI/1 queues and RPBM by conducted exten-
sive simulation experiments for the GIt/GI/1 model
with sinusoidal arrival rate in Section 1.3 and a range
of traffic intensities. Some of these are reported in Ma
and Whitt (2016, Section 5, the online supplement). It
remains to investigate the algorithm for Gt/G/1 queues
more general than GIt/GI/1.
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