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Abstract

In order to obtain Markov heavy-traffic approximations for infinite-server queues with general

non-exponential service-time distributions and general arrival processes, possibly with time-varying

arrival rates, we establish heavy-traffic limits for two-parameter stochastic processes. We consider

the random variables Qe(t, y) and Qr(t, y) representing the number of customers in the system

at time t that have elapsed service times less than or equal to time y, or residual service times

strictly greater than y. We also consider W r(t, y) representing the total amount of work in service

time remaining to be done at time t+ y for customers in the system at time t. The two-parameter

stochastic-process limits in the space D([0,∞),D) of D-valued functions in D draw on, and extend,

previous heavy-traffic limits by Glynn and Whitt (1991), where the case of discrete service-time

distributions was treated, and Krichagina and Puhalskii (1997), where it was shown that the vari-

ability of service times is captured by the Kiefer process with second argument set equal to the

service-time c.d.f.

Keywords: infinite-server queues, heavy-traffic limits for queues, Markov approximations, two-

parameter processes, measure-valued processes, time-varying arrivals, martingales, functional cen-

tral limit theorems, invariance principles, Kiefer process.

1 Introduction

One reason heavy-traffic limits for queueing systems are useful is that they show that non-

Markov stochastic processes describing system performance can be approximated by Markov stochas-
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tic processes under heavy loads. For a Markov process, it suffices to know the present state of that

stochastic process in order to determine the distribution of the stochastic process at future times;

we need no additional information from the past. With Markov approximations, that remains

true approximately. In applications, the Markov property shows that the proper state has been

identified and shows what needs to be measured in order to understand system performance.

The classic example is the conventional heavy-traffic limit for the GI/GI/s queue, having s

servers, unlimited waiting room, and independent and identically distributed (i.i.d.) service times

independent of a renewal arrival process. The standard description of system state is the number

of customers in the system at time t, which we will call the queue length and denote by Q(t).

With non-exponential interarrival and service times, the stochastic process {Q(t) : t ≥ 0} is not

Markov. Then the future evolution at any time depends on the elapsed interarrival time and

the elapsed service times of all customers being served. However, the conventional heavy-traffic

limit, in which the traffic intensity approaches the critical value 1 from below while the number of

servers remains fixed, shows that the queue-length process {Q(t) : t ≥ 0} is approximately equal

to a Markov process, in particular, reflected Brownian motion, under heavy loads [20, 21, 49]. In

fact, the interarrival times and service times need not come from independent sequences of i.i.d.

random variables. Instead, it suffices to have the associated partial sums, or equivalently, the

associated counting processes satisfy a FCLT. Moreover, the Markov property of the limit extends

to conventional heavy-traffic limits for networks of queues [17].

The situation is very different for many-server heavy-traffic limits when the service-time distri-

bution is non-exponential, either with s = ∞ or s → ∞. In this paper, we will consider the case

in which s = ∞, i.e., the G/GI/∞ model with i.i.d. service times independent of a general arrival

process, where heavy traffic is achieved by letting λ → ∞, while the service-time distribution is

held fixed. However, the problem is relevant more generally with many servers, where s → ∞ as

λ→ ∞ with s−λ = O(
√
λ), as in [16]. For infinite-server models, we index the stochastic processes

by the arrival rate λ. We are interested in the infinite-server model both for its own sake and as

an approximation for many-server queues. In fact, heavy-traffic limits for infinite-server models

can play a role in characterizing the heavy-traffic limits for corresponding many-server models, as

shown by Reed [40, 41] and [35, 39].

With infinitely many exponential servers, we again obtain Markov diffusion limits, as first shown

by Iglehart [18] for the M/M/∞ model; see [37] for a review. A systematic way to extend the limit

to general arrival processes is given in §7.3 of [37]. However, with non-exponential service times, the

established heavy-traffic limit for Q(t) is not Markov. As first shown by Borovkov [3], and further

2



discussed in [19, 48, 31, 14, 27], the limit process is Gaussian, which implies that the distribution

of Q(t) itself is approximately normal, but the limiting Gaussian stochastic process is non-Markov,

unless the service times are exponential (plus a minor additional case, [13, 27]).

We consider a stochastic process characterizing the system state for which the associated heavy-

traffic limit process is Markov. We do so in two ways: First, we consider the two-parameter

stochastic process {Qe(t, y) : t ≥ 0, y ≥ 0}, where Qe(t, y) represents the number of customers

in the system at time t with elapsed service times less than or equal to time y. We do not pay

attention to specific customers or servers but only count the total numbers. The random quantity

Qe(t, y) is an observable quantity given the system history up to time t. We recommend that the

stochastic process {Qe(t, y) : t ≥ 0, y ≥ 0} be used in models and measured in practice. Ways to

exploit such ages for control are discussed in [9].

So far, we have used elapsed service times, because they are directly observable. We can equally

well work with residual service times, and consider the process Qr(t, y) counting the number of

customers in the system at time t with residual service times strictly greater than y. With i.i.d.

service times having c.d.f. F , we can go from one formulation to the other. If the elapsed service

time is y, then the residual service time has distribution Fy(x) ≡ F (x+ y)/F c(y) for x ≥ 0, where

F c(y) ≡ 1 − F (y). If the service times are learned when service begins, then both Qr(t, y) and

Qe(t, y) are directly observable. Otherwise, elapsed service times correspond to what we observe,

while residual service times represent the future load, whose distribution we may want to describe.

We regard {Qe(t, ·) : t ≥ 0} and {Qr(t, ·) : t ≥ 0} as function-valued stochastic processes,

in particular, random elements of the function space DD; see §2.3. Since the functions Qe(t, y)

(Qr(t, y)) are nondecreasing (nonincreasing) in y, we can also regardQe(t, ·) andQr(t, ·) as measure-

valued processes, but we will work in the framework DD.

For theM/GI/∞ model, it is easy to see that the stochastic process {Qe(t, ·) : t ≥ 0} is a Markov

process; [10, 34] (where references to earlier work are given). The key idea, expressed in the proof

of Theorem 1 of [10], is a Poisson-random-measure representation. For the more general GI/GI/∞
model, having a non-Poisson renewal arrival process, the stochastic process {Qe(t, ·) : t ≥ 0} is

in general not Markov from that perspective, because the future evolution also depends on the

elapsed interarrival time. The Markov property is violated more severely when the arrival process

is not renewal. However, just as for the G/GI/s model discussed above, the heavy-traffic limit

for the arrival process typically does have independent increments, so this non-Markovian aspect

disappears in the heavy-traffic limit. In the limit, Qe(t, y) for the G/GI/∞ model is asymptotically

equivalent to what it would be in the corresponding M/GI/∞ model, except for a constant factor
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c2a to account for the different variance; see Theorem 4.2 and Corollaries 4.1 and 4.2.

Proof Strategy. Our proof builds on previous work by Glynn and Whitt [14] and Krichagina

and Puhalskii [27]. First, a restricted form of the desired two-parameter stochastic-process limit

was already established in Theorem 3 of [14] for the case of service-time distributions with finite

support. That result is only stated in D for arbitrary fixed second parameter y, but it can be

extended quite easily to the function space DD. Since distributions with finite support are dense

in the space of all probability distributions, one might consider the matter settled. However, much

depends on the precise assumptions made about the service-time distribution. The goal should be

to treat general service-time distributions without any extra conditions. We should not need to

assume that any moments are finite or that the cdf is continuous or absolutely continuous.

One important feature of [27] is that they treat completely general service-time distributions.

However, they do not state limits for two-parameter queueing processes. It might seem that it should

be a routine extension to do so, but we show that is not so, because a candidate limit process is not

a random element of the space DD for discontinuous service-time c.d.f.’s, as we explain in Remark

3.3. Fortunately, however, the argument in [27] can be extended to the two-parameter case if we

restrict attention to continuous service-time c.d.f.’s, which we do.

A key idea in [14] is to treat service-time distributions with finite support by representing

them as finite mixtures of deterministic service-time c.d.f.’s, and then split the arrival process

into corresponding arrival processes associated with each deterministic service time; see §3 of [14],

especially, Proposition 3.1. That step relies on the FCLT for split counting processes, as in §9.5 of

[49]. The mixture argument extends quite directly to treat arbitrary discrete distributions. It also

extends to arbitrary distributions if we can treat continuous service-time c.d.f.’s, but the proof in

[14] does not seem to extend naturally to continuous service-time c.d.f.’s.

Hence, for the final case of a continuous service-time c.d.f., we draw heavily on [27]. Our limits

for continuous service-time c.d.f.’s are extensions of theirs, obtained using the same function space

and the same martingale arguments. The proof in [27] already took a two-parameter approach and,

following Louchard [31], showed that it is fruitful to view the service times through the associated

sequential empirical process (in (2.3) below). They showed that a scaled version of the sequential

empirical process converges to the two-parameter standard Kiefer process, with the service time

c.d.f. in the second argument (see (2.6) below). This convergence was established in the space DD;

see §2.3.
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Other Related Literature. As noted in [27], the relevance of the two-parameter Kiefer process

for the infinite-server queue was first observed by Louchard [31]. The results here were briefly

outlined in §6.4 in our survey [37]. (The first drafts of this paper were written at that time.)

Related fluid limits for measure-valued processes have since been obtained in [24, 23, 54]. However,

the first fluid limit for two-parameter processes for this model evidently was the fluid limit in §6
of [50] for the discrete-time version of that more general Gt(n)/GI/s + GI model, having both

time-dependent and state-dependent arrivals. Decreusefond and Moyal [8] established a FCLT for

the M/GI/∞ model. In contemporaneous work, Reed and Talreja [42] extend the result in [8] to

the G/GI/∞ model and show that the limit process Q̂e can be regarded as an infinite-dimensional

(distribution-valued) OU process, thus proving that the limit process {Q̂e(t, ·) : t ≥ 0} is a Markov

process. In these other papers, like [14], there are extra regularity conditions on the service-time

c.d.f. Moreover, the alternative spaces admit fewer continuous functions.

Organization of this paper. We start with preliminaries in §2. In §3 we state our main results,

focusing only on new arrivals (ignoring any customers initially in the system). In §4 we characterize

the limit processes. In §5 we treat the initial conditions, and treat all customers in the system.

In §6 we prove the main theorem: Theorem 3.2, focusing on the case of continuous service-time

distribution. In §6.1 we prove the continuity of the representation of some key processes in the

space DD. In §6.2 we continue the proof by establishing tightness of the key processes. In §6.3
we complete the proof by establishing convergence of the finite-dimensional distributions. There

is also a longer version of the present paper [38] available from the authors’ web sites. It has a

longer introduction; it shows how known results for the special case of exponential service times can

be derived from our formulas; it presents supporting technical details, including basic facts about

the Brownian sheet, the Kiefer process, two-parameter stochastic integrals, tightness criteria in the

space DD and some detailed calculations.

2 Preliminaries

2.1 Initial Conditions and Assumptions

It is convenient to treat the congestion experienced by customers initially in the system separately

from the congestion experienced by new arrivals, because they usually can be regarded as being

asymptotically independent. Thus we first focus only on new arrivals and then later treat the initial

conditions in §5.
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Assumptions for the Arrival Processes. We consider a sequence of G/GI/∞ queues indexed

by n, where the arrival rate is increasing in n. For the nth system, let An(t) be the number of

arrivals by time t and τn
i the time of the ith arrival.

We assume that the sequence of arrival processes satisfy a FCLT, specified below. All single-

parameter continuous-time stochastic processes are assumed to be random elements of the function

space D ≡ D([0,∞),R) with the usual Skorohod J1 topology [2, 49]. Convergence xn → x as

n → ∞ in the J1 topology is equivalent to uniform convergence on compact subsets (u.o.c.) when

the limit function x is continuous. Throughout, we will have a bar, as in Ān(t), to denote the law

of large number (LLN) scaling (as in (2.2) below) and a hat, as in Ân(t), to denote the central limit

theorem (CLT) scaling (as in (2.1) below).

Assumption 1: FCLT. There exist: (i) a continuous nondecreasing deterministic real-valued

function ā on [0,∞) with ā(0) = 0 and (ii) a stochastic process Â in D with continuous sample

paths, such that

Ân(t) ≡ n−1/2(An(t) − nā(t)) ⇒ Â(t) as n→ ∞ in D. (2.1)

As an immediate consequence of Assumption 1, we have an associated functional weak law of

large numbers (FWLLN)

Ān(t) ≡ An(t)

n
⇒ ā(t) as n→ ∞ in D. (2.2)

In order to obtain a limiting Markov process we will also assume that the limiting stochastic process

Â has independent increments, but we will obtain limits more generally.

The Standard Case. The standard case in Assumption 1 has special ā and Â. For the FWLLN

limit, the standard case is ā(t) = λt, t ≥ 0 for some positive constant λ, which corresponds to an

arrival rate of λn ≡ λn in the nth system, but our more general form allows for time-varying arrival

rates as in [10, 34, 33].

For the FCLT limit Â, the standard case is BM. That occurs when the arrival processes are

scaled versions of a common renewal process with interarrival times having mean λ−1 and SCV c2a.

Then Â(t) =
√

λc2aBa(t), where Ba is a standard BM. Of course, the convergence to BM in (2.1)

holds much more generally, e.g., see Chapter 4 of [49]. Except for the SCV c2a, in the standard case

Assumption 1 makes the arrival process asymptotically equivalent to a Poisson process. Thus, in

the standard case, the limiting results will be identical to the limit for the M/GI/∞ model when
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c2a = 1, and very similar for c2a 6= 1. Actually, there is an important structural difference when

c2a 6= 1, which we discuss in §4.

Assumptions for the Service Times and the Empirical Process.

Assumption 2: a sequence of i.i.d. random variables. We assume that the service times

of new arrivals come from a sequence of i.i.d. nonnegative random variables {ηi : i ≥ 1} with a

general c.d.f. F , independent of n and the arrival processes.

As in [27], it is significant that our queue-length heavy-traffic limits over finite time intervals

do not require more assumptions about the service-time c.d.f. F . It need not have a finite mean.

However, for subsequent results we will need to assume in addition that F has a finite mean µ−1

and even a finite second moment with SCV c2s.

Krichagina and Puhalskii [27] observed that it is fruitful to view the service times through the

two-parameter sequential empirical process

K̄n(t, x) ≡ 1

n

⌊nt⌋
∑

i=1

1(ηi ≤ x), t ≥ 0, x ≥ 0, (2.3)

which is directly expressed in the LLN scaling. Here 1(A) is the indicator function. Since the

service times are i.i.d. (without any imposed moment conditions), we have a FWLLN for K̄n itself

and a FCLT for the scaled process

K̂n(t, x) ≡ √
n(K̄n(t, x) − E[K̄n(t, x)]) =

1√
n

⌊nt⌋
∑

i=1

(1(ηi ≤ x) − F (x)), (2.4)

for t ≥ 0 and x ≥ 0.

These stochastic-process limits are based on corresponding limits in the case of random variables

uniformly distributed on [0, 1]. Let Ûn(t, x) denote the stochastic process K̂n(t, x) when ηi is

uniformly distributed on [0, 1], so that F (x) = x, 0 ≤ x ≤ 1. Extending previous results by Bickel

and Wichura [1], Krichagina and Puhalskii [27] showed that

Ûn(t, x) ⇒ U(t, x) in D([0,∞),D([0, 1],R)) as n→ ∞, (2.5)

where U(t, x) is the standard Kiefer process; see Csörgö and Révész [7], Gaenssler and Stute [12],

and van der Vaart and Wellner [46]. In particular, U(t, x) = W (t, x) − xW (t, 1), where W (t, x) is

a two-parameter BM (Brownian sheet), so that U(·, x) is a BM for each fixed x, while U(t, ·) is a

Brownian bridge for each fixed t. The Brownian bridge B0 can be defined in terms of a standard

BM B by B0(t) ≡ B(t) − tB(1), 0 ≤ t ≤ 1; it corresponds to BM conditional on having B(1) = 0.
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It is significant that K̂n can be expressed as a simple composition of Ûn with the c.d.f. F in

the second component. We thus have

K̂n(t, x) = Ûn(t, F (x)) ⇒ K̂(t, x) ≡ U(t, F (x)) in D([0,∞),D([0,∞),R)), (2.6)

as n→ ∞ without imposing any conditions upon F , because F is not dependent on n. Moreover, the

convergence is with respect to a stronger topology on DD ≡ D([0,∞),D([0,∞),R)); convergence

is uniform over sets of the form [0, T ] × [0,∞); we have uniformity over [0,∞) in the second

argument. That will turn out to be important when we treat the remaining-workload process. As

a consequence of the FCLT in (2.6), we immediately obtain the associated FWLLN

K̄n(t, x) ⇒ k̄(t, x) ≡ tF (x) in DD as n→ ∞, (2.7)

where again there is uniformity in x over [0,∞).

2.2 Prelimit Processes

Let Qe
n(t, y) represent the number of customers in the nth queueing system at time t that have

elapsed service times less than or equal to y; let Qr
n(t, y) represent the corresponding number that

have residual service times strictly greater than y. Let Qt
n(t) represent the total number (the

superscript t) of customers in the nth queueing system at time t. Clearly, Qt
n(t) = Qe

n(t, t) =

Qr
n(t, 0), and

Qr
n(t, y) = Qe

n(t+ y, t+ y) −Qe
n(t+ y, y) = Qt

n(t+ y) −Qe
n(t+ y, y),

Qe
n(t, y) = Qr

n(t, 0) −Qr
n(t− y, y) = Qt

n(t) −Qr
n(t− y, y). (2.8)

From (2.8), it is evident that we can construct all three processes Qe
n, Qr

n and Qt
n from either Qe

n

or Qr
n. Observe that Qr

n and Qe
n can be expressed as

Qr
n(t, y) =

An(t)
∑

i=1

1(τn
i + ηi > t+ y), t ≥ 0, y ≥ 0, (2.9)

Qe
n(t, y) =

An(t)
∑

i=An(t−y)

1(τn
i + ηi > t), t ≥ 0, 0 ≤ y ≤ t.

From (2.9), we see the connection to the sequential empirical process K̄n in (2.3). Indeed, the

key observation (following [27]) is that we can rewrite the random sums in (2.9) as integrals with

respect to the random field K̄n by

Qr
n(t, y) = n

∫ t

0

∫ ∞

0
1(s+ x > t+ y)dK̄n(Ān(s), x), t, y ≥ 0, (2.10)

Qe
n(t, y) = n

∫ t

t−y

∫ t

0
1(s + x > t)dK̄n(Ān(s), x), t ≥ 0, 0 ≤ y ≤ t,
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for K̄n in (2.3). These two-dimensional integrals in (2.10) are two-dimensional Stieltjes integrals.

In the present context, the integrals in (2.10) are understood to be (defined as) the random sums

in (2.9).

Lemma 2.1 (representation of Qr
n and Qe

n) The processes Qr
n and Qe

n defined in (2.9) and (2.10)

can be represented as

Qr
n(t, y) = n

∫ t

0
F c(t+ y − s) dā(s) +

√
n(X̂r

n,1(t, y) + X̂r
n,2(t, y)), t, y ≥ 0, (2.11)

Qe
n(t, y) = n

∫ t

t−y
F c(t− s) dā(s) +

√
n(X̂e

n,1(t, y) + X̂e
n,2(t, y)), t ≥ 0, 0 ≤ y ≤ t, (2.12)

where

X̂r
n,1(t, y) ≡

∫ t

0
F c(t+ y − s) dÂn(s), X̂e

n,1(t, y) ≡
∫ t

t−y
F c(t− s) dÂn(s), (2.13)

X̂r
n,2(t, y) ≡

∫ t

0

∫ ∞

0
1(s+ x > t+ y) dR̂n(s, x) = −

∫ t

0

∫ ∞

0
1(s + x ≤ t+ y) dR̂n(s, x), (2.14)

X̂e
n,2(t, y) ≡

∫ t

t−y

∫ t

0
1(s+ x > t) dR̂n(s, x) = −

∫ t

t−y

∫ t

0
1(s+ x ≤ t) dR̂n(s, x), (2.15)

R̂n(t, y) ≡ K̂n(Ān(t), y) =
1√
n

An(t)
∑

i=1

(1(ηi ≤ y) − F (y)) (2.16)

=
√
nK̄n(Ān(t), y) − Ân(t)F (y) −√

nā(t)F (y),

with the integrals in (2.13), (2.14) and (2.15) all defined as Stieltjes integrals for functions of bounded

variation as integrators.

Proof. Apply (2.4) to get the first relation in (2.16). (Right away, from (2.6), we see that

R̂n(t, x) ⇒ K̂(ā(t), x).) Use (2.4) and (2.3) to get the rest of (2.16) and

K̄n(Ān(t), x) =
1

n

An(t)
∑

i=1

1(ηi ≤ x)

=
1√
n

[ 1√
n

An(t)
∑

i=1

(1(ηi ≤ x) − F (x))
]

+
1√
n

√
n(Ān(t) − ā(t))F (x) + ā(t)F (x)

=
1√
n
R̂n(t, x) +

1√
n
Ân(t)F (x) + ā(t)F (x). (2.17)

Combine (2.10) and (2.17) to get (2.11). The alternative representation for X̂n,2(t, y) holds because

K̂n(t,∞) = 0 and thus R̂n(t,∞) = 0 for all t.
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We will also consider several related processes. Let F e
n(t, ·) and F r

n(t, ·) represent the empirical

age distribution and the empirical residual distribution at time t in the nth system, respectively,

i.e.,

F e
n(t, y) ≡ Qe

n(t, y)/Qt
n(t), t ≥ 0, 0 ≤ y ≤ t, (2.18)

and

F r,c
n (t, y) ≡ 1 − F r

n(t, y) ≡ Qr
n(t, y)/Qt

n(t), t ≥ 0, y ≥ 0. (2.19)

For each n and t, F e
n(t, ·) and F r

n(t, ·) are proper c.d.f.’s. Let Dn(t) count the number of departures

in the interval [0, t]; clearly, Dn(t) ≡ An(t) −Qt
n(t) for t ≥ 0.

We will also consider several processes characterizing the workload in total service time. For

these limits, we will assume that we are in the standard case for the arrival process and impose

extra moment conditions on the service-time c.d.f. F . The total input of work over [0, t] is

In(t) ≡
An(t)
∑

i=1

ηi, t ≥ 0. (2.20)

The amount of the workload to have arrived by time t that will be remaining after time t+ y is

W r
n(t, y) ≡

∫ ∞

y
Qr

n(t, x) dx, t ≥ 0, y ≥ 0. (2.21)

Then the total (remaining) workload at time t is W t
n(t) ≡ W r

n(t, 0). Finally, the total amount of

completed service work by time t is Cn(t) ≡ In(t) −W t
n(t).

2.3 The Space DD

Our limits for two-parameter processes will be in the space DD, which we regard as a subset of

D([0,∞),D([0,∞),R)), where D ≡ D([0,∞), S), for a separable metric space S, is the space of

all right-continuous S-valued functions with left limits in (0,∞); see [2, 49] for background. We

will be considering the subset of functions x(t, y) which have finite limits as the second argument

y → ∞. For example, we have Qe
n(t, y) = Qe

n(t, t) for all y > t and Qr
n(t, y) → 0 as y → ∞. We will

be using the standard Skorohod [43] J1 topology on all D spaces, but since all limit processes will

have continuous sample paths, convergence in our space DD is equivalent to uniform convergence

over subsets of the form [0, T ] × [0,∞). (We already observed that we have such stronger uniform

convergence over that non-compact set for K̂n to the Kiefer process in (2.5).) We refer to [45] for

the convergence preservation of various functions in DD.

For two-parameter processes, one might consider using generalizations of the spaces of two-

parameter real-valued functions considered by Straf [44] and Neuhaus [36], but those spaces require
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limits to exist at each point in the domain (subset of R
2) through all paths lying in each of the

four quadrants centered at that point. That works fine for the sequential empirical process Kn,

but not for Qr
n(t, y). For example, suppose that the first two arrivals occur at times 1 and 3, and

that the arrival at time 1 has a service time of 2. Then limits do not exist along all paths in the

southeast and northwest quadrants at the point (t, y) = (2, 1), because there are discontinuities

along a negative 45o line running through that point. The value shifts from 0 to 1 at that line.

However, there is no difficulty in the larger space DD.

2.4 The Service-Time Distribution as a Mixture

The general service-time c.d.f. F has at most countably many discontinuity points. Let pd (pc) be

the total probability mass at the discontinuity (continuity) points, i.e., pd ≡∑x≥0 ∆F (x) ≤ 1 and

pc = 1 − pd ≤ 1, where ∆F (x) ≡ F (x) − F (x−). To focus on the interesting case, suppose that

0 < pd < 1. We order the discontinuity points by the size of their probability mass in decreasing

order (using the natural order in case of ties); i.e., let {x̄1, x̄2, ...} be such that ∆F (x̄i) ≥ ∆F (x̄i+1).

Define two proper c.d.f.’s Fc and Fd for a continuous random variable ηc and a discrete random

variable ηd, respectively, by

Fc(x) ≡ P (ηc ≤ x) ≡ 1

pc

(

F (x) −
∑

y≤x

∆F (y)
)

, x ≥ 0,

and

Fd(x) ≡
∑

j:x̄j≤x

P (ηd = x̄j), and pd,i ≡ P (ηd = x̄i) ≡
∆F (x̄i)

pd
, x ≥ 0.

Note that F can be represented as the mixture F = pcFc + pdFd.

Let Ac
n(t), Ad

n(t) and Ad
n,i(t) count the number of arrivals by time t with continuous service

time, with a discrete service time, and with a deterministic service time x̄i, i = 1, 2, ..., respectively.

Clearly, Ad
n(t) =

∑∞
i=1A

d
n,i(t) and An(t) = Ad

n(t)+Ac
n(t) for t ≥ 0. Define the LLN-scaled processes

Āc
n ≡ n−1Ac

n, Ād
n ≡ n−1Ad

n, and Ād
n,i ≡ n−1Ad

n,i.

Under Assumptions 1 and 2, for a general service-time c.d.f., we can decompose the system into

two subsystems, one with arrivals processes Ac
n and service-time distribution Fc and the other with

arrival processes Ad
n and discrete service times {x̄i : i ≥ 1} with distribution Fd. We will adopt the

method in [27] to analyze the first subsystem in the space DD, then the method in [14] to analyze

the second subsystem, and then we put them together to obtain the limits for the whole system.
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3 Main Results

In this section, we state the main results of this paper: the FWLLN and FCLT for the scaled

processes associated with Qr
n and W r

n, along with the closely related processes. We give the proofs

in §6. Define the LLN-scaled processes Q̄r
n ≡ {Q̄r

n(t, y), t ≥ 0, y ≥ 0} by

Q̄r
n(t, y) ≡ Qr

n(t, y)

n
, (3.1)

and similarly for the processes Q̄e
n, Q̄t

n, D̄n, W̄ r
n , W̄ t

n, Īn and C̄n. Define the LLN-scaled processes

F̄ e
n ≡ {F̄ e

n(t, y), t ≥ 0, 0 ≤ y ≤ t} and F̄ r,c
n ≡ {F̄ r,c

n (t, y), t ≥ 0, y ≥ 0} by

F̄ e
n(t, y) ≡ Q̄e

n(t, y)/Q̄t
n(t) and F̄ r,c

n (t, y) ≡ Q̄r
n(t, y)/Q̄t

n(t), (3.2)

where F̄ e
n(t, y) and F̄ r,c

n (t, y) are defined to be 0 if Q̄t
n(t) = 0 for some t. By Lemma 2.1,

Q̄r
n(t, y) =

∫ t

0
F c(t+ y − s)dā(s) +

1√
n

(X̂n,1(t, y) + X̂n,2(t, y)), t, y ≥ 0. (3.3)

When we focus on the amount of work, as in the workload processes, we use the stationary-

excess (or residual-lifetime) c.d.f. associated with the service-time c.d.f. F (assumed to have finite

mean µ−1), defined by

Fe(x) ≡ µ

∫ x

0
F c(s) ds, x ≥ 0. (3.4)

The mean of Fe is E[η2]/2E[η] = (c2s + 1)/2µ; that will be used in part (c) of Theorem 3.1 below.

Theorem 3.1 (FWLLN)

(a) Under Assumptions 1 and 2,

(

Ān, Ā
c
n, Ā

d
n, {Ād

n,i : i ≥ 1}, K̄n, Q̄
r
n, Q̄

t
n, Q̄

e
n, F̄

e
n , F̄

r,c
n , D̄n

)

⇒
(

ā, āc, ād, {ād
i : i ≥ 1}, k̄, q̄r, q̄t, q̄e, f̄ e, f̄ r,c, d̄

)

(3.5)

in D3 ×D∞ ×D2
D ×D ×D3

D ×D as n → ∞ w.p.1, where the limits are deterministic functions:

ā is the limit in (2.2), āc ≡ pcā, ā
d ≡ pdā, ā

d
i ≡ pd,iā

d, for i ≥ 1, k̄(t, x) ≡ tF (x) in (2.7),

q̄r(t, y) ≡
∫ t

0
F c(t+ y − s)dā(s), t ≥ 0, y ≥ 0, (3.6)

q̄e(t, y) ≡
∫ t

t−y
F c(t− s)dā(s), t ≥ 0, 0 ≤ y ≤ t, (3.7)

q̄t(t) ≡ q̄r(t, 0) = q̄e(t, t), f̄ e(t, y) ≡ q̄e(t, y)/q̄t(t), f̄ r,c(t, y) ≡ q̄r(t, y)/q̄t(t) and d̄ = ā− q̄t.
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(b) If, in addition to the assumptions in part (a), ā(t) = λt, t ≥ 0, and the service-time c.d.f.

F has finite mean µ−1, then

(

W̄ r
n, W̄

t
n, Īn, C̄n

)

⇒
(

w̄r, w̄t, ī, c̄
)

in DD ×D3 as n→ ∞ w.p.1, (3.8)

jointly with the limits in (3.5), where

w̄r(t, y) ≡ λ

∫ ∞

y
q̄r(t, x)dx, t ≥ 0, y ≥ 0,

= λ

∫ ∞

y

(

∫ t

0
F c(t+ x− s)ds

)

dx =
λ

µ

∫ t

0
F c

e (y + s)ds,

w̄t(t) ≡ w̄r(t, 0) =
λ

µ

∫ t

0
F c

e (s)ds,

ī(t) ≡ λt

µ
and c̄(t) ≡ ī(t) − w̄t(t) =

λ

µ

∫ t

0
Fe(s)ds, (3.9)

for Fe in (3.4).

(c) If, in addition to the assumptions of parts (a) and (b), E[η2] <∞, then

w̄r(t, y) → λ

µ

∫ ∞

0
F c

e (y + s)ds <∞ and w̄t(t) → λ(c2s + 1)

2µ2
as t→ ∞. (3.10)

We obtain Theorem 3.1 as an immediate corollary to the following FCLT, which exploits cen-

tering by the deterministic limits above. For the FCLT, define the normalized processes

Q̂r
n(t, y) ≡ √

n(Q̄r
n(t, y) − q̄r(t, y)), (3.11)

for t ≥ 0 and y ≥ 0, and similarly for the other processes, using the centering terms above. By

(3.3) and (3.6),

Q̂r
n(t, y) = X̂r

n,1(t, y) + X̂r
n,2(t, y), t ≥ 0, y ≥ 0. (3.12)

Moreover,

F̂ r,c
n (t, y) ≡ √

n(F̄ r,c
n (t, y) − f̄ r,c(t, y))

= Q̄t
n(t)−1

(

Q̂r
n(t, y) − Q̂t

n(t)f̄ r,c(t, y)
)

, t ≥ 0, y ≥ 0,

and

F̂ e
n(t, y) ≡ √

n(F̄ e
n(t, y) − f̄ e(t, y))

= Q̄t
n(t)−1

(

Q̂e
n(t, y) − Q̂t

n(t)f̄ e(t, y)
)

, t ≥ 0, 0 ≤ y ≤ t.

Define the CLT-scaled processes Âc
n ≡ {Âc

n(t) : t ≥ 0}, Âd
n ≡ {Âd

n(t) : t ≥ 0} and Âd
n,i ≡

{Âd
n,i(t) : t ≥ 0} by

Âc
n(t) ≡ n1/2(Āc

n(t) − āc(t)), Âd
n(t) ≡ n1/2(Ād

n(t) − ād(t)), Âd
n,i(t) ≡ n1/2(Ād

n,i(t) − ād
i (t)),
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for t ≥ 0 and i ≥ 1.

The joint deterministic limits in Theorem 3.1 are equivalent to the separate one-dimensional

limits, but that is not true for the FCLT generalization below. Let ◦ be the composition function,

i.e., (x ◦ y)(t) ≡ x(y(t)), t ≥ 0. Let
d
= mean equality in distribution.

Theorem 3.2 (FCLT)

(a) Under Assumptions 1 and 2,

(Ân, Â
c
n, Â

d
n, {Âd

n,i : i ≥ 1}, K̂n, Q̂
r
n, Q̂

t
n, Q̂

e
n, F̂

r,c
n , F̂ e

n, D̂n)

⇒ (Â, Âc, Âd, {Âd
i : i ≥ 1}, K̂, Q̂r, Q̂t, Q̂e, F̂ r,c, F̂ e, D̂) (3.13)

in D3 ×D∞ ×D2
D ×D ×D3

D ×D as n→ ∞, where Â is the limit in (2.1),

Âc = pcÂ+ Sc ◦ ā, Âd = pdÂ+ Sd ◦ ā, Âd
i = pdpd,iÂ+ Sd

i ◦ ā,

Sc = −Sd, Sc d
=
√

pc(1 − pc)B, Sd d
=
√

pd(1 − pd)B,

Sd
i

d
=

√

pdpd,i(1 − pdpd,i)B, i ≥ 1, (3.14)

where B is a standard BM, independent of Â, and the process (Sc, Sd, {Sd
i : i ≥ 1}) is an infinite-

dimensional BM with mean 0 and covariance matrix C where Cc,c = pc(1− pc), Cd,d = pd(1− pd),

Cc,d = Cd,c = −pcpd, Ci,i = pdpd,i(1 − pdpd,i) for i ≥ 1, Ci,c = Cc,i = −pcpdpd,i, Ci,d = Cd,i =

−p2
dpd,i and Ci,j = −p2

dpd,ipd,j for i 6= j, and the representations for Q̂r and Q̂e are

Q̂r(t, y) = X̂c,r
1 (t, y) + X̂c,r

2 (t, y) + X̂d,r(t, y), t ≥ 0, y ≥ 0, (3.15)

Q̂e(t, y) = X̂c,e
1 (t, y) + X̂c,e

2 (t, y) + X̂d,e(t, y), t ≥ 0, 0 ≤ y ≤ t,

where

X̂c,r
1 (t, y) ≡

∫ t

0
F c

c (t+ y − s)dÂc(s), X̂c,e
1 (t, y) ≡

∫ t

t−y
F c

c (t− s)dÂc(s), (3.16)

X̂c,r
2 (t, y) ≡

∫ t

0

∫ ∞

0
1(s + x > t+ y) dK̂c(āc(s), x),

X̂c,e
2 (t, y) ≡

∫ t

t−y

∫ t

0
1(s+ x > t) dK̂c(āc(s), x),

X̂d,r(t, y) ≡
∞
∑

i=1

(Âd
i (t) − Âd

i (t− (x̄i − y)+)),

X̂d,e(t, y) ≡
∞
∑

i=1

(Âd
i (t) − Âd

i (t− (x̄i ∧ y))),

with K̂c(āc(s), x) = U(āc(s), Fc(x)), which is independent of Â. Q̂t(t) ≡ Q̂r(t, 0), Q̂e(t, y) ≡ Q̂t(t)−
Q̂r(t−y, y), F̂ r,c(t, y) ≡ q̄t(t)−1(Q̂r(t, y)−Q̂t(t)f r,c(t, y)), F̂ e(t, y) ≡ q̄t(t)−1(Q̂e(t, y)−Q̂t(t)f e(t, y)),
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and D̂ = Â− Q̂t. All these limit processes are continuous. If, in addition, Â = Ba ◦ ā, as when An

is nonhomogeneous Poisson, then Âd and Âc are independent, and thus X̂c,r
1 , X̂c,r

2 and X̂d,r are

mutually independent.

(b) If, in addition to the assumptions in part (a), ā(t) = λt, t ≥ 0, and the service-time c.d.f.

F has finite mean µ−1, then (Ŵ r
n , Ŵ

t
n) ⇒ (Ŵ r, Ŵ t) in DD ×D as n → ∞ jointly with the limits

in (3.13), where

Ŵ r(t, y) ≡
∫ ∞

y
Q̂r(t, x) dx, and Ŵ t(t) ≡ Ŵ r(t, 0) =

∫ ∞

0
Q̂r(t, x) dx. (3.17)

(c) If, in addition to the assumptions in parts (a) and (b), E[η2] < ∞, then (În, Ĉn) ⇒ (Î , Ĉ)

in D2 as n→ ∞ jointly with the limits above, where

Î(t) ≡
√

λc2sBs(t) + µ−1Â and Ĉ(t) ≡ Î(t) − Ŵ t(t), t ≥ 0, (3.18)

with Bs being a standard BM independent of Â.

Remark 3.1 The limit processes Q̂r and Q̂e can also be expressed as the sum of the following

three mutually independent processes

Q̂r(t, y) = X̂r
1 (t, y) + X̂c,r

2 (t, y) + X̂r
3 (t, y), t ≥ 0, y ≥ 0, (3.19)

Q̂e(t, y) = X̂e
1(t, y) + X̂c,e

2 (t, y) + X̂e
3(t, y), t ≥ 0, 0 ≤ y ≤ t,

where

X̂r
1(t, y) ≡

∫ t

0
F c(t+ y − s)dÂ(s), X̂e

1(t, y) ≡
∫ t

t−y
F c(t− s)dÂ(s), (3.20)

X̂r
3 (t, y) ≡

∫ t

0
F c

c (t+ y − s)dSc(ā(s)) +

∞
∑

i=1

(

Sd
i (ā(t)) − Sd

i (ā(t− (x̄i − y)+))
)

,

X̂e
3(t, y) ≡

∫ t

t−y
F c

c (t− s)dSc(ā(s)) +

∞
∑

i=1

(

Sd
i (ā(t)) − Sd

i (ā(t− (x̄i ∧ y)))
)

.

The asymptotic variability of the arrival process is captured by Â, which appears only in X̂r
1 and

X̂e
1 ; the asymptotic variability of the service process is captured by K̂c, which appears only in

X̂c,r
2 and X̂c,e

2 ; while the asymptotic variability of service-time splitting is captured by Sc and Sd
i ,

which appears only in X̂r
3 and X̂e

3 . Thus, in some sense, there is additivity of stochastic effects, as

pointed out in [31, 27], but this might be misinterpreted. Notice that both X̂r
1 and X̂r

2 depend on

the full service-time c.d.f. F , not just its mean. On the other hand, the arrival process beyond its

deterministic rate only appears in X̂r
1 and X̂e

1 , so that there is a genuine asymptotic insensitivity

to the arrival process beyond its rate in X̂c,r
2 and X̂c,e

2 .
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This claim holds because, by (3.14), we can write X̂c
1(t, y) and X̂d(t, y) in (3.15) as

X̂c,r
1 (t, y) =

∫ t

0
F c

c (t+ y − s)d(pcÂ(t) + Sc(ā(s)))

=

∫ t

0

(

F c(t+ y − s) −
∑

u>t+y−s

∆F (u)
)

d(Â(t) + p−1
c Sc(ā(s))),

and

X̂d,r(t, y) =

∞
∑

i=1

[

pdpd,i

(

Â(t) − Â(t− (x̄i − y)+))
)

+
(

Sd
i (ā(t)) − Sd

i (ā(t− (x̄i − y)+))
)

]

=

∫ t

0

(

∑

u>t+y−s

∆F (u)
)

dÂ(t) +

∞
∑

i=1

(

Sd
i (ā(t)) − Sd

i (ā(t− (x̄i − y)+))
)

,

which implies that X̂c,r
1 (t, y) + X̂d,r(t, y) = X̂r

1(t, y) + X̂r
3 (t, y) for each t ≥ 0 and y ≥ 0. Similarly,

X̂c,e
1 (t, y) + X̂d,e(t, y) = X̂e

1(t, y) + X̂e
3(t, y) holds.

Remark 3.2 The two integrals in the expression for Q̂r are stochastic integrals. The first integral

for X̂c,r
1 (or X̂r

1) is a standard Ito integral if Â is a (time-changed) Brownian motion; otherwise,

the expression for X̂c,r
1 (or X̂r

1 ) is interpreted as the form after integration by parts. The relevant

version of integration by parts for X̂r
n,1 and X̂r

1 is given in Bremaud [4], p.336. For X̂r
n,1, it yields

X̂r
n,1(t, y) = F c(y)Ân(t) −

∫ t

0
Ân(s−) dF (t+ y − s), (3.21)

and similarly for X̂1. The left limit Ân(s−) in (3.21) is only needed if the functions F and Ân have

common discontinuities with positive probability. The second integral for X̂2 is either understood

as the stochastic integrals with respect to two-parameter processes of the first type, or in the

mean-square sense, as in [27]; see §6.3.
In the literature, several types of stochastic integrals with respect to two-parameter processes

have been defined. The first type of integral was first defined for two-parameter Brownian sheets

by Cairoli [5] (see also [47]), generalizing the definition of Ito’s integral directly. It was generalized

to n-parameter Brownian sheets by Wong and Zakai [52] and to general martingales by Cairoli and

Walsh [6]. Even more generalization appears in Wong and Zakai [53]. The important property we

apply here is the isometry property, analogous to the Ito isometry property.

Remark 3.3 We remark that if the service-time c.d.f. F is discontinuous, the process X̂2 defined

by

X̂2(t, y) ≡
∫ t

0

∫ ∞

0
1(s+ x > t+ y) dK̂(ā(s), x)
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is only continuous in t, but not in y, and in fact, it is not even in the space DD. The continuity of

X̂2 and Q̂t in t can be obtained as in Lemma 5.1 of [27]. To see that X̂2 need not be in DD, suppose

that F is the mixture of two point masses y1 > 0 and y2 > 0. Then, applying (4.1) below, we see

that, for each t ≥ 0, X̂2(t, y) = 0 for all y ≥ 0 except y1 and y2, so that X̂2(t, ·) /∈ D. That property

follows from (4.1) because ∆K̂(t1, t2, x1, x2) = 0 for 0 < x1 < x2 unless either y1 < x1 < y2 or

x1 < y1 < x2 < y2. That means that the random measure attaches all mass on the strips x = y1

and x = y2. Incidentally, in this example, X̂2(t, ·) is an element of the space E in Chapter 15 of

[49]. That explains why we split the general distribution into a mixture of a discrete distribution

and a continuous distribution.

We now establish additional results in the standard case for the fluid limits. In particular, we will

obtain an analog of the classic result for the M/GI/∞ model, stating that in steady state both the

elapsed service times and the residual service times are distributed as mutually independent random

variables, each with c.d.f. Fe in (3.4). We will see that the limiting empirical age distribution is

precisely Fe, just as is true for the prelimit processes with a Poisson arrival process.

Corollary 3.1 (the standard case) Consider the standard case in which ā(t) = λt, t ≥ 0, and

Â =
√

λc2aBa, where Ba is a standard BM. Assume that the service-time distribution F has finite

mean µ−1. Under Assumptions 1 and 2, the limits in (3.5) hold with

q̄r(t, y) ≡ λ

∫ t

0
F c(t+ y − s) ds = λ

∫ t

0
F c(y + s) ds

→ (λ/µ)F c
e (y) as t→ ∞,

q̄e(t, y) ≡ λ

∫ t

t−y
F c(t− s) ds = λ

∫ y

0
F c(s) ds = (λ/µ)Fe(y), for t ≥ 0,

f̄ e(t, y) ≡ q̄e(t, y)/q̄t(t) → Fe(y) as t→ ∞,

f̄ r,c(t, y) ≡ q̄r(t, y)/q̄t(t) → F c
e (y) as t→ ∞. (3.22)

4 Characterizing the Limit Processes

We now show that the two-parameter queue-length limit processes, Q̂r(t, y) and Q̂e(t, y), constitute

continuous Brownian analogs of the Poisson random measure representation for theM/GI/∞ model

[10]. (But the limit is only identical to the limit for the M/GI/∞ model when c2a = 1.) A key role

here is played by the transformed Kiefer process K̂(t, x) ≡ U(t, F (x)) = W (t, F (x))−F (x)W (t, 1).
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Any finite number of K̂-increments,

∆K̂(t1, t2, x1, x2) ≡ K̂(t2, x2) − K̂(t2, x1) − K̂(t1, x2) + K̂(t1, x1) (4.1)

= ∆W (t1, t2, F (x1), F (x2)) − (F (x2) − F (x1))(W (t2, 1) −W (t1, 1))

for 0 ≤ t1 < t2 and 0 ≤ x1 < x2, are independent random variables provided that the rectangles

(t1, t2] × (x1, x2] have disjoint horizontal time intervals (t1, t2].

We only treat Q̂r here. If the limit process Â has independent increments, then so does Q̂r,

provided that it is viewed as a function-valued process with the argument t. The limit processes

Q̂r is then a Markov process in DD (only considering the argument t). This result can be based on

a basic decomposition, depicted in Figure 1.

Figure 1: The basic decomposition for Qr(t, y).

Theorem 4.1 (decompositions, independent increments and the Markov property for Q̂r) The

limiting random variables X̂c,r
1 (t, y), X̂c,r

2 (t, y), X̂d,r(t, y) and Q̂r(t, y) in Theorem 3.2 admit the

decompositions

X̂c,r
i (t2, y) = X̂c,r

i (t1, y + t2 − t1) + Zc,r
i (t1, t2, y), for i = 1, 2, and t2 > t1 ≥ 0,

X̂d,r(t2, y) = X̂d,r(t1, y + t2 − t1) + Zd,r(t1, t2, y), t2 > t1 ≥ 0,

Q̂r(t2, y) = Q̂r(t1, y + t2 − t1) + Zr(t1, t2, y), t2 > t1 ≥ 0, (4.2)
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where y ≥ 0, Zr ≡ Zc,r
1 + Zc,r

2 + Zd,r, and

Zc,r
1 (t1, t2, y) ≡

∫ t2

t1

F c
c (t+ y − s)dÂc(s),

Zc,r
2 (t1, t2, y) ≡

∫ t2

t1

∫ ∞

0
1(s + x > t+ y) dK̂c(āc(s), x),

Zd,r(t1, t2, y) ≡
∞
∑

i=1

[

(Âd
i (t2) − Âd

i (t1)) − (Âd
i (t2 − (x̄i − y)+) − Âd

i (t1 − (x̄i − y)+))
]

.

If, in addition to the assumptions of Theorem 3.2, the limit process Â has independent increments,

which occurs in the standard case of Corollary 3.1, where Â is a BM, then the two random variables

on the right in (4.2) are independent in each case. Moreover, the four processes {X̂c,r
1 (t, ·) : t ≥ 0},

{X̂c,r
2 (t, ·) : t ≥ 0}, {X̂d,r(t, ·) : t ≥ 0} and {Q̂r(t, ·) : t ≥ 0} all have independent increments, and

are thus Markov processes (with respect to the argument t).

Proof. The decomposition for X̂c,r
1 (t, y), X̂c,r

2 (t, y), X̂d,r(t, y) and Q̂r(t, y) in (4.2) is by direct

construction, as in Figure 1. The independent-increments property is inherited from K̂c, Âc and

Âd.

We now show that the limit processes are Gaussian if Â is Gaussian, which again is the case if

Â is BM. For nonstationary non-Poisson arrival processes (Gt), we can construct such Gt processes

(or just think of them) by letting the original arrival processes {An(t) : t ≥ 0} be defined by

An(t) ≡ Ã(nā(t)), t ≥ 0, where Ã ≡ {Ã(t) : t ≥ 0} is a rate-1 stationary (or asymptotically

stationary) stochastic point process, such that Ã satisfies a FCLT with limit
√

c2aBa, where Ba is

a standard BM. As a consequence, a natural Gaussian limit process is Â(t) ≡
√

c2aBa(ā(t)), t ≥ 0.

Indeed, this occurs for the familiar Mt case, for which c2a = 1.

Theorem 4.2 (Gaussian property) If, in addition to the assumptions of Theorem 3.2, the limit

process Â is Gaussian, then the limit processes Q̂t, Q̂e, Q̂r, D̂, V̂ r, V̂ t in (3.13) are all continuous

Gaussian processes. If Â(t) =
√

c2aBa(ā(t)) for t ≥ 0, where Ba is a standard BM, then for each

fixed t ≥ 0 and y ≥ 0,

Q̂r(t, y)
d
= N(0, σ2

q,r(t, y)), Q̂e(t, y)
d
= N(0, σ2

q,e(t, y)), Ŵ r(t, y)
d
= N(0, σ2

w(t, y)), (4.3)
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where

σ2
q,r(t, y) = (c2a − 1)

∫ t

0
F c(t+ y − s)2dā(s) +

∫ t

0
F c(t+ y − s)dā(s),

σ2
q,e(t, y) = (c2a − 1)

∫ t

t−y
F c(t− s)2dā(s) +

∫ t

t−y
F c(t− s)dā(s),

σ2
w(t, y) = c2a

∫ ∞

y

∫ ∞

y

∫ t

0
F c(t+ x− s)F c(t+ z − s)dā(s)dxdz

+

∫ ∞

y

∫ ∞

y

∫ t

0
F (t+ x ∧ z − s)F c(t+ x ∨ z − s)dā(s)dxdz.

Proof. It is obvious that the limit processes are Gaussian when the limit arrival process Â is

Gaussian. We only need to derive the variance formulas. We will use (3.19) to calculate them

and the mutual independence between the three terms in the expression of Q̂r gives σ2
q,r(t, y) =

σ2
1,r(t, y)+σ2

2,c,r(t, y)+σ2
3,r(t, y), where σ2

1,r(t, y) = E[(X̂r
1 (t, y))2], σ2

2,c,r(t, y) = E[(X̂c,r
2 (t, y))2] and

σ2
3,r(t, y) = E[(X̂r

3 (t, y))2]. By Ito’s isometry, we have

σ2
1,r(t, y) = c2a

∫ t

0
F c(t+ y − s)2dā(s),

and

σ2
3,r(t, y) = pdpc

∫ t

0
F c

c (t+ y − s)2dā(s) +

∞
∑

i=1

(

pdpd,i(1 − pdpd,i)(ā(t) − ā(t− (x̄i − y)+))
)

− 2p2
d

∑

i<j

pd,ipd,j

(

ā(t) − ā(t− ((x̄i ∧ x̄j) − y)+)
)

− 2
∞
∑

i=1

pcpdpd,i

∫ t

0
F c

c (t+ y − s)d(ā(s) − ā(s − (x̄i − y)+)).

Having X̂c,r
2 well-defined with continuous paths follows from the definition of stochastic integral

with respect to the Brownian sheet of the first type. It clearly has mean 0. Its variance is given by

σ2
2,c,r(t, y) = E

[(

∫ t

0

∫ ∞

0
1(s + x > t+ y)dU(āc(s), Fc(x))

)2]

= E
[(

∫ t

0

∫ ∞

0
1(s + x > t+ y)d(W (āc(s), Fc(x)) − Fc(x)W (āc(s), 1))

)2]

=

∫ t

0

∫ ∞

0
1(s+ x > t+ y)dFc(x)dā

c(s) +

∫ t

0
F c

c (t+ y − s)2dāc(s)

− 2

∫ t

0

∫ ∞

0
1(s + x > t+ y)Fc(t+ y − s)dFc(x)dā

c(s)

=

∫ t

0
Fc(t+ y − s)F c

c (t+ y − s)dāc(s),

where the second equality uses the identity U(x, y) = W (x, y) − yW (x, 1), and the third equality

uses the isometry property of the stochastic integral of the first type with respect to two-parameter

Brownian sheets and also the isometry property of the stochastic Ito’s integral.
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Notice that

pdpc

∫ t

0
F c

c (t+ y − s)2dā(s) +

∫ t

0
Fc(t+ y − s)F c

c (t+ y − s)dāc(s)

=

∫ t

0
pcF

c
c (t+ y − s)(1 − pcF

c
c (t+ y − s))dā(s).

Moreover, F c = pcF
c
c +pdF

c
d and FF c = (1−pcF

c
c −pdF

c
d )(pcF

c
c +pdF

c
d ) = pcF

c
c (1−pcF

c
c )+pdF

c
d (1−

pdF
c
d )−2pcF

c
c pdF

c
d . Then, simple algebra calculation gives the final expression for σ2

q,r(t, y). Similar

argument applies to the calculation of σ2
q,e(t, y).

For the variance of Ŵ r(t, y), by the independence of X̂r
1(t, y), X̂c,r

2 (t, y) and X̂r
3 (t, y), we have

E[Ŵ r(t, y)2] = E
[(

∫ ∞

y
X̂r

1(t, x)dx
)2]

+ E
[(

∫ ∞

y
X̂c,r

2 (t, x)dx
)2]

+ E
[(

∫ ∞

y
X̂r

3(t, x)dx
)2]

.

Then by an analogous argument, we obtain the variance of Ŵ r(t, y).

We remark that, for Theorem 4.2, we could also have used an argument analogous to Lemma 5.1

in [27] by understanding the integral in X̂c,r
2 as a mean square limit (§6.3). However, our approach

here by applying properties of stochastic integrals of the first type with respect to two-parameter

Brownian sheets simplifies the proof. Paralleling the result in Lemma 5.1 [27], we can easily check

that for 0 ≤ t ≤ t′, 0 ≤ y ≤ y′,

E[(X̂c,r
2 (t, y) − X̂c,r

2 (t′, y′))2]

=

∫ t

0
(Fc(t

′ + y′ − u) − Fc(t+ y − u))(1 + Fc(t+ y − u) − Fc(t
′ + y′ − u))dāc(u).

Corollary 4.1 (the special case c2a = 1) If, in addition to the assumptions of Theorem 4.2, ā(t) =
∫ t
0 λ(s)ds and c2a = 1, then

V ar(Q̂r(t, y)) =

∫ t

0
F c(t+ y − u)λ(s) ds, (4.4)

for t ≥ 0 and y ≥ 0. The limit Â and all the other limits are the same as if the unscaled arrival

processes {An(t) : t ≥ 0} are Poisson processes (possibly nonhomogeneous). (When An is Poisson,

the prelimit variables Qr
n(t, y) and Qe

n(t, y) are Poisson random variables for each t and y.) More-

over, as in the Poisson-arrival case, for each t ≥ 0 and y ≥ 0, Q̂r(t, y) is distributed the same as

the limit of

Q̂r
n(t, y) ≡ √

n
( 1

n

Qt
n(t)
∑

i=1

ηi(t, y) − q̄r(t, y)
)

, (4.5)

where {ηi(t, y) : i ≥ 1} is a sequence of i.i.d. Bernoulli random variables with

P (ηi(t, y) = 1) = f̄ r,c(t, y), (4.6)

which are independent of the total queue length Q̂t
n(t).
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Proof. We need to justify (4.5). First, we note that this is the asymptotic generalization of an

exact relation for Poisson arrivals; e.g., see Theorem 2.1 of [15]. Here we start by defining

Qr
n(t, y) ≡

Qt
n(t)
∑

i=1

ηi(t, y),

for each t ≥ 0 and y ≥ 0. (In passing, we remark that Qr
n(t, y)

d
= Qr

n(t, y) in the special case of a

nonhomogeneous (Mt) arrival process, but not more generally.) By the FWLLN, the fluid scaled

processes Q̄r
n(t, y) converge to the fluid limit q̄r(t, y) as n→ ∞:

Q̄r
n(t, y) ⇒ Q̄r(t, y) ≡ E[ηi(t, y)]q̄

t(t) = f̄ r,c(t, y)q̄t(t) =
q̄r(t, y)

q̄t(t)
q̄t(t) = q̄r(t, y).

We can write Q̂r
n(t, y) in (4.5) as

Q̂r
n(t, y) =

1√
n

nQ̄t
n(t)
∑

i=1

(

ηi(t, y) − f̄ r,c(t, y)
)

+ f̄ r,c(t, y)Q̂t
n(t).

By FCLT for random walks with i.i.d. increments of mean 0 and finite variance (Theorem 8.2, [2]),

continuity of composition in D (Theorem 13.2.2, [49]) and Theorems 3.1 and 3.2, we obtain the

weak convergence of Q̂r
n(t, y):

Q̂r
n(t, y) ⇒ Q̂r(t, y) in DD as n→ ∞,

where

Q̂r(t, y) ≡ σ3(t, y)B3(q̄
t(t)) + f̄ r,c(t, y)Q̂t(t)

where σ2
3(t, y) ≡ f̄ r,c(t, y)(1 − f̄ r,c(t, y)) and B3 is a standard Brownian motion, independent of

Q̂t(t). Thus, Q̂r(t, y) is Gaussian with mean 0 and variance

V ar(Q̂r(t, y)) = σ2
3(t, y)q̄

t(t) + f̄ r,c(t, y)2V ar(Q̂t(t))

= f̄ r,c(t, y)(1 − f̄ r,c(t, y))q̄t(t) + f̄ r,c(t, y)2
∫ t

0
F c(t− u)λ(s) ds

=
q̄r(t, y)

q̄t(t)

(

1 − q̄r(t, y)

q̄t(t)

)

q̄t(t) +
q̄r(t, y)2

q̄t(t)2
q̄t(t)

= q̄r(t, y) =

∫ t

0
F c(t+ y − u)λ(s) ds = V ar(Q̂r(t, y)).

Since Q̂r(t, y) and Q̂r(t, y) are both Gaussian with the same mean and variance, Q̂r(t, y) and Q̂r(t, y)

are equal in distribution. When the arrival process is Mt, Q
r
n(t, y) has a Poisson distribution for

each n, t and y, so that the variance equals the mean. Since c2a = 1, the limit must be the same

here as in the Mt case.
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We emphasize that Corollary 4.1 is consistent with known results for the Mt/GI/∞ model.

The asymptotic equivalence to the random sum in (4.5) and (4.6) is the asymptotic analog of the

property for the Mt/GI/∞ model that, conditional on the number of customers in the system,

the remaining service times are distributed as i.i.d. random variables with c.d.f. f̄ r,c(t, ·); e.g., see

Theorem 2.1 of [15]. This property does not hold for c2a 6= 1.

Corollary 4.2 (the standard case) If ā(t) = λt and Â =
√

λc2aBa, then the variances of Q̂r(t, y)

and Q̂e(t, y) are

σ2
q,r(t, y) = λ(c2a − 1)

∫ t

0
F c(y + s)2ds+ λ

∫ t

0
F c(y + s)ds

→ λ(c2a − 1)

∫ ∞

y
F c(s)2ds+ λ

∫ ∞

y
F c(s)ds ≡ σ2

q,r(y) as t→ ∞, y ≥ 0,

and

σ2
q,e(t, y) = λ(c2a − 1)

∫ y

0
F c(s)2ds+ λ

∫ y

0
F c(s)ds ≡ σ2

q,e(y), t, y ≥ 0.

Thus, Q̂r(t, y) ⇒ N(0, σ2
q,r(y)) and Q̂e(t, y) ⇒ N(0, σ2

q,e(y)) as t→ ∞. If, in additon, c2a = 1, then

σ2
q,r(t, y) = λ

∫ t

0
F c(y + s)ds→ λ

∫ ∞

y
F c(s)ds =

λ

µ
F c

e (y), as t→ ∞, y ≥ 0,

σ2
q,e(t, y) = λ

∫ y

0
F c(s)ds =

λ

µ
Fe(y), t, y ≥ 0,

and V ar(Q̂t(t)) = λ
∫ t
0 F

c(s)ds→ λ/µ as t→ ∞.

5 Initial Conditions

So far, we considered only new arrivals. Now we consider customers in the system initially. Like

the generality of the service-time c.d.f., the initial conditions present technical difficulties. Our

assumptions will be similar to those made in [27] and to those for the new arrivals in §2. However,

these assumptions are less realistic here. Thus, for applications, it is good that the relevance of

the initial conditions decreases as time evolves, because we can think of the system starting in

the distant past with just new arrivals, so that we will be able to approximate the two-parameter

processes by the Markov limit processes.

We assume that the remaining service times of the customers initially in the system are i.i.d.,

distributed according to some new c.d.f., independent of the number of customers in the system and

everything associated with new arrivals. That rather strong assumption will actually be justified

if we assume that the initial state we see is the result of an Mt/GI/∞ system, possible with
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different model parameters, that started empty at some previous time. As noted in Corollary

4.1 and the remark before Corollary 4.2, this strong independence property actually holds in an

Mt/GI/∞ model. Moreover, that representation is asymptotically correct more generally if c2a = 1.

Unfortunately, however, that representation is not asymptotically correct if c2a 6= 1. Nevertheless,

it is a natural candidate approximate initial condition.

Here is our specific framework: Let Qi,r
n (y) be the number of customers initially in the nth

system at time 0, not counting new arrivals, who have residual service times strictly greater than

y. Let Qi,t
n ≡ Qi,r

n (0) be the total number of customers initially in the nth system and let Qi,e
n (y)

be the number of customers initially in the nth system that have elapsed service times less than or

equal to y. Let W i,r
n (y) and W i,t

n be the corresponding workload processes, defined as in (2.21).

Let Q̄i,r
n (y) and Q̂i,r

n (y) be the associated scaled processes, defined by

Q̄i,r
n (y) ≡ Qi,r

n (y)

n
and Q̂i,r

n (y) ≡ √
n(Q̄i,r

n (y) − q̄i,r(y)), y ≥ 0, (5.1)

where q̄i,r is the FWLLN limit of Q̄i,r
n to be proved. Let other scaled processes be defined similarly.

What we need are the FWLLN Q̄i,r
n ⇒ q̄i,r and the associated FCLT Q̂i,r

n ⇒ Q̂i,r in D as n → ∞,

jointly with the limits in Theorem 3.2. The extension to joint convergence with the other processes

will be immediate if the stochastic processes associated with new arrivals are independent of the

initial conditions. Otherwise, we require that we have the joint convergence (Ân, Q̂
i,r
n ) ⇒ (Â, Q̂i,r)

in D×D, with the service times of new arrivals coming from a sequence of i.i.d. random variables,

which is independent of both the arrival processes and the initial conditions. We now give sufficient

conditions to get these limits.

Assumptions for the Initial Conditions.

Assumption 3: i.i.d. service times. The service times of customers initially in the system

come from a sequence {ηi
j : j ≥ 1} of i.i.d. nonnegative random variables with a general c.d.f. Fi

and Fi(0) = 0, independent of n and independent of the total number of customers initially present

and all random quantities associated with new arrivals.

Assumption 4: independence and CLT for the initial number. The initial total number

of customers in the system, Qi,t
n , is independent of the service times of the initial customers and

all random quantities associated with new arrivals. There exist (i) a nonnegative constant q̄i,t and
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(ii) a random variable Q̂i,t such that

Q̂i,t
n ≡ 1√

n
(Qi,t

n − nq̄i,t) ⇒ Q̂i,t in R as n→ ∞. (5.2)

Paralleling Lemma 2.1, we have the representation result.

Lemma 5.1 (representation of Qi,r
n ) The process Qi,r

n can be represented as

Qi,r
n (y) =

Qi,t
n
∑

j=1

(

1(ηi
j > y) − F c

i (y)
)

+Qi,t
n F

c
i (y), y ≥ 0. (5.3)

Theorem 5.1 (FWLLN and FCLT for the initial conditions) Under Assumptions 3 and 4,

Q̄i,r
n (y) ⇒ q̄i,r(y) ≡ F c

i (y)q̄i,t in D as n→ ∞, (5.4)

Q̂i,r
n (y) ⇒ Q̂i,r(y) ≡ F c

i (y)Q̂i,t +
√

q̄i,tB0(Fi(y)) in D as n→ ∞,

where B0 is a Brownian bridge, independent of Q̂i,t.

We can combine Theorems 3.1, 3.2 and 5.1 to treat the total number of customers in the system

at time t with residual service times strictly greater than y, which we denote by QT,r
n (t, y). The

key representation is

QT,r
n (t, y) = Qr

n(t, y) +Qi,r(t+ y), t ≥ 0, y ≥ 0. (5.5)

Corollary 5.1 (FWLLN and FCLT for all customers) Under Assumptions 1-4,

Q̄T,r
n (t, y) ≡ Q̄i,r

n (t+ y) + Q̄r
n(t, y) ⇒ q̄T,r(t, y) ≡ q̄i,r(t+ y) + q̄r(t, y)

= F c
i (t+ y)q̄i,t +

∫ t

0
F c(t+ y − s) dā(s), (5.6)

Q̂T,r
n (t, y) ≡ Q̂i,r

n (t+ y) + Q̂r
n(t, y) ⇒ Q̂T,r(t, y) ≡ Q̂i,r(t+ y) + Q̂r(t, y)

= F c
i (t+ y)Q̂i,t +

√

q̄i,tB0(Fi(t+ y)) + X̂c,r
1 (t, y) + X̂c,r

2 (t, y) + X̂d,r(t, y),

in DD as n→ ∞, where X̂c,r
1 , X̂c,r

2 and X̂d,r are given in (3.16).

6 Proof of the FCLT

We now prove the FCLT in Theorem 3.2. First, the joint convergence of the processes

(Ân, Â
c
n, Â

d
n, {Âd

n,i : i ≥ 1}) ⇒ (Â, Âc, Âd, {Âd
i : i ≥ 1})

follows from Theorem 9.5.1 in [49]. For the subsystem with discrete service-time distribution, the

limits follow from an easy extension of [14]. In [14], the convergence to the limit X̂d,r(t, y) is proved
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in the space D for each fixed y ≥ 0, however, the convergence can be easily generalized to be in the

space DD since the limit process Â is assumed to be continuous here (Assumption 1). Since the

prelimit process of X̂d,r is

X̂d,r
n (t, y) =

∞
∑

i=1

(Âd
n,i(t) − Âd

n,i(t− (x̄i − y)+)), t, y ≥ 0,

it suffices to show that the mapping φ : D → DD defined by

φ(z)(t, y) ≡
∞
∑

i=1

(z(t) − z(t− (x̄i − y)+)

is continuous in the Skorohod J1 topology and then apply the continuous mapping theorem. More-

over, in order to prove Ŵ r,d
n (t, y) ⇒ Ŵ r,d(t, y) in DD, where Ŵ r,d

n (t, y) can be written as

Ŵ r,d
n (t, y) =

∞
∑

i=1

∫ x̄i

y
(Âd

n,i(t) − Âd
n,i(t− (x̄i − x)+))dx, t, y ≥ 0,

we need to prove the continuity of the mapping ψ : D → DD defined by

ψ(z)(t, y) =

∫ x̄i

y
(z(t) − z(t− (x̄i − x)+))dx, z ∈ D, t, y ≥ 0.

Since the limit Â is continuous, it suffices to show the uniform continuity of the mapping ψ on

compact intervals, which follows from a direct argument. Thus, we will only focus on the subsystem

with continuous service-time distributions. For notational convenience, we will simply suppose that

F in Assumption 2 is continuous such that Fc = F , Âc
n = Ân and similarly for other processes. In

particular, we write X̂c,r
1 and X̂c,r

2 simply as X̂1 and X̂2, respectively.

One might hope to obtain a very fast proof by applying the continuous mapping theorem with

an appropriate continuous mapping. That would seem to be possible, because both the initial

stochastic integral in (2.10) and the representation in Lemma 2.1 show that the scaled residual-

service queue-length process Q̂r
n can be regarded as the image of a deterministic function h : D ×

DD → DD mapping (Ân, K̂n) into Q̂r
n. Given that (Ân, K̂n) ⇒ (Â, K̂) under Assumptions 1 and 2,

we would expect that corresponding limits for Q̂r
n and the other processes would follow directly from

an appropriate continuous mapping theorem. Unfortunately, the connecting map is complicated,

being in the form of a stochastic integral, with the limit of the component X̂n,2 involving a two-

dimensional stochastic integral. In fact, we will show below that we can easily treat the component

X̂n,1 via the representation (3.21). However, X̂n,2 presents a problem. Unfortunately, the general

results of weak convergence of stochastic integrals and differential equations in [28, 32, 29] does not

seem to apply. Thus, instead, we will follow [27] and prove the convergence in the classical way, by
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proving tightness and convergence of the finite-dimensional distributions. (See [42] for a different

way.)

For us, the first step is to get convergence for the process R̂n jointly with (Ân, K̂n) by exploiting

the composition map for a random time change, paralleling §13.2 of [49]; see [45] for extensions

to DD. Starting from (Ân, K̂n) ⇒ (Â, K̂), we first obtain (Ân, Ān, K̂n) ⇒ (Â, ā, K̂) by applying

(2.1) and Theorem 11.4.5 of [49]. We then apply the continuous mapping theorem for composition

applied in the space DD, where the composition is with respect to the first component of K̂n, and

the limit ā and K̂ are both continuous (in the first component for K̂). That yields

(Ân, Ān, K̂n, R̂n) ⇒ (Â, ā, K̂, R̂) in D2 ×D2
D, (6.1)

where R̂(t, x) = K̂(ā(t), x) = U(ā(t), F (x)) for t ≥ 0 and x ≥ 0. Since R̂ does not involve Â, we

see that Ân and R̂n are asymptotically independent. Necessarily, then the processes X̂n,1 and X̂n,2

are asymptotically independent as well.

We use the classical method for establishing the limit

(Ân, Ān, K̂n, R̂n, X̂n,1, X̂n,2) ⇒ (Â, ā, K̂, R̂, X̂1, X̂2) (6.2)

in D2 × D4
D: We show convergence of the finite-dimensional distributions and tightness. We

get tightness for {(Ân, Ān, K̂n, R̂n) : n ≥ 1} from the convergence in (6.1). We use the fact that

tightness on product spaces is equivalent to tightness on each of the component spaces; see Theorem

11.6.7 of [49]. Since we can write X̂n,1 as (3.21), the tightness and convergence of X̂n,1 ⇒ X̂1 in

DD can be obtained directly by applying continuous mapping theorem if we can prove the mapping

defined in (3.21) from Ân to X̂n,1 is continuous in DD. We will prove the continuity of this

mapping in DD in §6.1. We then establish tightness for {(X̂n,1, X̂n,2) : n ≥ 1} in §6.2 and the

required convergence of the finite-dimensional distributions associated with {(X̂n,1, X̂n,2) : n ≥ 1}
in §6.3. Given the limit in (6.2), the rest of the limits in parts (a) and (b) follows from the

continuous mapping theorem. The limit in part (c) is an application of convergence preservation

for composition with linear centering as in Corollary 13.3.2 of [49]. The component limits require

finite second moments.

6.1 Continuity of the Representation for X̂n,1 in DD

In this section, we prove the continuity of the mapping φ : D → DD defined by

φ(x)(t, y) ≡ F c(y)x(t) −
∫ t

0
x(s−)dF (t+ y − s), (6.3)
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for x ∈ D and t, y ≥ 0. By (3.21) and (3.16), we have X̂n,1(t, y) = φ(Ân)(t, y) and X̂1(t, y) =

φ(Â)(t, y).

Lemma 6.1 The mapping φ defined in (6.3) is continuous in DD.

Proof. Suppose that xn → x in D. We need to show that dDD
(φ(xn), φ(x)) → 0 as n→ ∞. Let

T > 0 be a continuity point of x and consider the time domain [0, T ]× [0,∞). By the convergence

xn → x in (D,J1) as n → ∞, there exist increasing homeomorphisms λn of the interval [0, T ]

such that ||xn − x ◦ λn||T → 0 and ||λn − e||T → 0 as n → ∞, where e(t) = t for all t ≥ 0 and

||y||T = supt∈[0,T ] |y(t)| for any y ∈ D. Let M = sup0≤t≤T |x(t)| < ∞. Since F is continuous, it

suffices to show that

||φ(xn)(·, ·) − φ(x)(λn(·), ·)||T

= sup
(t,y)∈[0,T ]×[0,∞)

|φ(xn)(t, y) − φ(x)(λn(t), y)| → 0, as n→ ∞.

Now, we have

|φ(xn)(t, y) − φ(x)(λn(t), y)|

=
∣

∣

∣
F c(y)xn(t) −

∫ t

0
xn(s−)dF (t+ y − s)

− F c(y)x(λn(t)) +

∫ λn(t)

0
x(s−)dF (λn(t) + y − s)

∣

∣

∣

≤ F c(y)
∣

∣xn(t) − x(λn(t))
∣

∣

+
∣

∣

∣

∫ t

0
xn(s−)dF (t+ y − s) −

∫ λn(t)

0
x(s−)dF (λn(t) + y − s)

∣

∣

∣

= F c(y)
∣

∣xn(t) − x(λn(t))
∣

∣

+
∣

∣

∣

∫ t

0
xn(s−)dF (t+ y − s) −

∫ t

0
x(λn(s)−)dF (λn(t) + y − λn(s))

∣

∣

∣

≤ F c(y)
∣

∣xn(t) − x(λn(t))
∣

∣+
∣

∣

∣

∫ t

0
(xn(s−) − x(λn(s)−))dF (t+ y − s)

∣

∣

∣

+
∣

∣

∣

∫ t

0
x(λn(s)−)d(F (λn(t) + y − λn(s)) − F (t+ y − s))

∣

∣

∣

≤ F c(y)
∣

∣xn(t) − x(λn(t))
∣

∣+ ||xn − x ◦ λn||T |F (y) − F (t+ y)|

+M |F (λn(t) + y) − F (t+ y)|

≤ 3||xn − x ◦ λn||T +M |F (λn(t) + y) − F (t+ y)|.

The third term in the third inequality follows from the uniform continuity of the integrator because

F is continuous, monotone and bounded. By taking the supremum over (t, y) ∈ [0, T ]× [0,∞), the

first term converges to 0 by the convergence of xn → x in D, and the second term converges to 0
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by the uniform convergence of λn → e in [0, T ] and the continuity of F . This implies the initial

convergence to be shown, so that the mapping φ : D → DD is indeed continuous.

6.2 Tightness

In this section, we establish tightness for the sequence of scaled processes in (3.13). It suffices

to prove tightness of the sequences of processes {X̂n,1 : n ≥ 1} and {X̂n,2 : n ≥ 1} in DD. By

Assumption 1, the sequence of processes {Ân : n ≥ 1} is tight. The tightness of {X̂n,1} follows

from the continuity of the mapping φ in DD. It remains to show the tightness of {X̂n,2} and then

we obtain tightness of the sequences of processes {Q̄r
n : n ≥ 1} and {Q̂r

n : n ≥ 1} using the fact

that tightness of product spaces is equivalent to the tightness on each of the component spaces.

Theorem 6.1 Under Assumptions 1 and 2 (F is continuous), the sequence of processes {X̂n,1 :

n ≥ 1}, {X̂n,2 : n ≥ 1}, {Q̄r
n : n ≥ 1} and {Q̂r

n : n ≥ 1} are individually and jointly tight.

In order to prove the tightness of {X̂n,2 : n ≥ 1} defined in (2.14), we will closely follow the

approach in [27], but we must adjust to the tightness criteria in DD. The following tightness criteria

are adapted to DD from Theorem 3.8.6 of Ethier and Kurtz [11]. For a review of tightness criteria

for processes in the space D, see [51].

Theorem 6.2 A sequence of stochastic processes {Xn : n ≥ 1} in DD is tight if and only if

(i) the sequence {Xn : n ≥ 1} is stochastically bounded in DD, i.e., for all ǫ > 0, there exists a

compact subset K ⊂ R such that

P (||Xn||T ∈ K) > 1 − ǫ, for all n ≥ 1,

where ||Xn||T = sups∈[0,T ]{supt∈[0,T ] |Xn(s, t)|};
and any one of the following

(ii) For all δ > 0, and all uniformly bounded sequences {τn : n ≥ 1} where for each n, τn

is a stopping time with respect to the natural filtration Fn = {Fn(t), t ∈ [0, T ]} where Fn(t) =

σ{Xn(s, ·) : 0 ≤ s ≤ t}, there exists a constant β > 0 such that

lim
δ↓0

lim sup
n→∞

sup
τn

E[(1 ∧ dJ1
(Xn(τn + δ, ·),Xn(τn, ·)))β ] = 0;

or

(ii’) For all δ > 0, there exist a constant β and random variables γn(δ) ≥ 0 such that for each

n, w.p.1,

E[(1 ∧ dJ1
(Xn(s + u, ·),Xn(s, ·)))β |Fn](1 ∧ dJ1

(Xn(s− v, ·),Xn(s, ·)))β ≤ E[γn(δ)|Fn],
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for all 0 ≤ s ≤ T , 0 ≤ u ≤ δ and 0 ≤ v ≤ s ∧ δ, where Fn = {Fn(t) : t ∈ [0, T ]} with

Fn(t) = σ{Xn(s, ·) : 0 ≤ s ≤ t} and

lim
δ↓0

lim sup
n→∞

E[γn(δ)] = 0.

Remark. The following condition is sufficient, but not necessary, for condition (ii) in Theorem

6.2:

For all δn ↓ 0 and for all uniformly bounded sequences {τn : n ≥ 1}, where for each n, τn

is a stopping time with respect to the natural filtration Fn = {Fn(t) : t ∈ [0, T ]} with Fn(t) =

σ{Xn(s, ·) : 0 ≤ s ≤ t},

dJ1
(Xn(τn + δn, ·),Xn(τn, ·)) ⇒ 0, as n→ ∞.

We will also need to generalize the tightness criteria in Lemma VI.3.32 in [22] for processes in

the space D to those in the space DD as in the following lemma, and its proof also follows from

that in [22] with inequalities for the modulus of continuity for functions in the space DD.

Lemma 6.2 Suppose that a sequence of processes {Xn : n ≥ 1} in the space DD can be decomposed

into two sequences {Y q
n : n ≥ 1} and {Zq

n : n ≥ 1} for some parameter q ∈ N, i.e., Xn = Y q
n + Zq

n

for each n ≥ 1, and that (i) the sequence {Y q
n : n ≥ 1} is tight in the space DD and (ii) for all T > 0

and δ > 0, limq→∞ lim supn→∞ P (supt,y≤T |Zq
n(t, y)| > δ) = 0. Then, the sequence {Xn : n ≥ 1} is

tight in the space DD.

We first give a decomposition of the process X̂n,2 for each n. Following [27], we can write

R̂n(t, y) in (2.16) as

R̂n(t, y) = −
∫ y

0

R̂n(t, x)

1 − F (x)
dF (x) + L̂n(t, y),

where

L̂n(t, y) =
1√
n

An(t)
∑

i=1

(

1(ηi ≤ y) −
∫ y∧ηi

0

1

1 − F (x)
dF (x)

)

.

We remark that we need not consider the left-hand limit of R̂n in the second argument, as was

done in [27], since the service-time c.d.f F is assumed to be continuous, while F is allowed to be

discontinuous in [27]. Hence, X̂n,2 can be written as

X̂n,2(t, y) = Ĝn(t, y) + Ĥn(t, y), for t ≥ 0 and y ≥ 0, (6.4)
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where

Ĝn(t, y) ≡
∫ t

0

∫ ∞

0
1(s + x ≤ t+ y)d

(

−
∫ x

0

R̂n(s, v)

1 − F (v)
dF (v)

)

= −
∫ t+y

0

R̂n(t+ y − x, x)

1 − F (x)
dF (x), (6.5)

and

Ĥn(t, y) ≡
∫ t

0

∫ ∞

0
1(s+ x ≤ t+ y)dL̂n(s, x). (6.6)

Thus, the tightness of {X̂n,2} follows from the tightness of {Ĝn} and {Ĥn}. We will establish their

tightness in the following two lemmas.

Lemma 6.3 Under Assumptions 1 and 2 (F is continuous), the sequence of processes {Ĝn : n ≥
1} ≡ {{Ĝn(t, y) : t ≥ 0, y ≥ 0}, n ≥ 1} is tight in the space DD.

Proof. We will apply Lemma 6.2. We define the sequence of processes {Ĝǫ
n : n ≥ 1}, for some

ǫ ∈ (0, 1), by

Ĝǫ
n(t, y) ≡ −

∫ t+y

0

R̂n(t+ y − x, x)

1 − F (x)
1(F (x) ≤ 1 − ǫ)dF (x), t, y ≥ 0. (6.7)

We will prove that {Ĝǫ
n : n ≥ 1} is tight in DD and

lim
ǫ↓0

lim sup
n

P
(

sup
t,y≤T

∣

∣

∣

∫ t+y

0

R̂n(t+ y − x, x)

1 − F (x)
1(F (x) > 1 − ǫ)dF (x)

∣

∣

∣
> δ
)

= 0, (6.8)

for each δ > 0 and T > 0, and thus will conclude that the sequence {Ĝn} is tight in DD by Lemma

6.2. It is easy to see that (6.8) follows easily from (3.23) in [27]. So we only need to prove the

tightness of the sequence of processes {Ĝǫ
n : n ≥ 1}.

Recall that R̂n(t+y−x, x) = Ûn(Ān(t+y−x), F (x)). By (2.1) and Ûn ⇒ U in (2.5) as n→ ∞,

and by applying the continuous mapping theorem to the composition map of Ûn with respect to

the first argument (Theorem 13.2.2, [49]), we obtain

R̂n(t+ y − x, x) = Ûn(Ān(t+ y − x), F (x)) ⇒ U(ā(t+ y − x), F (x)) in DD,

as n→ ∞. The weak convergence of {R̂n : n ≥ 1} in DD implies that {R̂n : n ≥ 1} is stochastically

bounded, so the integral representation of Ĝǫ
n in terms of R̂n in (6.7) implies that {Ĝǫ

n : n ≥ 1} is

also stochastically bounded in DD. We apply Theorem 6.2 to prove the tightness of {Ĝǫ
n : n ≥ 1}

in DD. In this case, it is convenient to use the sufficient criterion in the remark right after Theorem

6.2.
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Let Gn = {Gn(t) : t ∈ [0, T ]} be a filtration defined by

Gn(t) = σ{R̂n(s, ·) : 0 ≤ s ≤ t} ∨ N

= σ{ηi ≤ x : 1 ≤ i ≤ An(t), x ≥ 0} ∨ σ{An(s) : 0 ≤ s ≤ t} ∨ N ,

where N includes all the null sets. Note that the filtration Gn satisfies the usual conditions

(Chapter 1, [25] and proof of Lemma 3.1 in [27]). Let δn ↓ 0 and {τn : n ≥ 1} be a uniformly

bounded sequence, where for each n, τn is a stopping times with respect to the filtration Gn. Then,

it suffices to show that

dJ1
(Ĝǫ

n(τn + δn, ·), Ĝǫ
n(τn, ·)) ⇒ 0, as n→ ∞.

Consider any sequence of nondecreasing homeomorphism {λn : n ≥ 1} on [0, T ] such that limn→∞ λn(y) =

y uniformly in y ∈ [0, T ]. We want to show that the following holds:

sup
0≤y≤T

∣

∣

∣
Ĝǫ

n(τn + δn, λn(y)) − Ĝǫ
n(τn, y)

∣

∣

∣
⇒ 0, as n→ ∞.

Now,

sup
0≤y≤T

∣

∣

∣
Ĝǫ

n(τn + δn, λn(y)) − Ĝǫ
n(τn, y)

∣

∣

∣

= sup
0≤y≤T

∣

∣

∣

∫ τn+δn+λn(y)

0

R̂n(τn + δn + λn(y) − x, x)

1 − F (x)
1(F (x) ≤ 1 − ǫ)dF (x)

−
∫ τn+y

0

R̂n(τn + y − x, x)

1 − F (x)
1(F (x) ≤ 1 − ǫ)dF (x)

∣

∣

∣

≤ sup
0≤y≤T

∣

∣

∣

∫ τn+δn+λn(y)

0

R̂n(τn + δn + λn(y) − x, x) − R̂n(τn + y − x, x)

1 − F (x)
1(F (x) ≤ 1 − ǫ)dF (x)

∣

∣

∣

+ sup
0≤y≤T

∣

∣

∣

∫ τn+δn+λn(y)

0

R̂n(τn + y − x, x)

1 − F (x)
1(F (x) ≤ 1 − ǫ)dF (x)

−
∫ τn+y

0

R̂n(τn + y − x, x)

1 − F (x)
1(F (x) ≤ 1 − ǫ)dF (x)

∣

∣

∣

⇒ 0

as n → ∞, where the first and the second terms converge to 0 by the stochastic boundedness

and weak convergence of R̂n in DD, and because τn is uniformly bounded, λn(y) converges to y

uniformly in [0, T ], and δn ↓ 0 as n→ ∞. Hence, the processes {Ĝǫ
n} are tight in DD and the proof

is completed.

Lemma 6.4 Under Assumptions 1 and 2 (F is continuous), the sequence of processes {Ĥn : n ≥
1} ≡ {{Ĥn(t, y) : t ≥ 0, y ≥ 0}, n ≥ 1} is tight in DD.
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Proof. As in Lemma 3.7 in [27], we write the process Ĥn as

Ĥn(t, y) =
1√
n

An(t)
∑

i=1

(

1(0 ≤ ηi ≤ t+ y − τn
i ) −

∫ ηi∧(t+y−τn
i )+

0

1

1 − F (u)
dF (u)

)

.

We will apply Theorem 6.2 to prove the tightness of {Ĥn : n ≥ 1} in DD. In this case, it is

convenient to use criterion (ii) in Theorem 6.2. We will first prove that this criterion holds, and

then prove the stochastic boundedness of the sequence of processes {Ĥn : n ≥ 1}.
Let Hn = {Hn(t) : t ∈ [0, T ]} be a filtration defined by

Hn(t) = σ{Ĥn(s, ·) : 0 ≤ s ≤ t} ∨ N

= σ{ηi ≤ s+ x− τn
i : 1 ≤ i ≤ An(t), x ≥ 0, 0 ≤ s ≤ t} ∨ {An(s) : 0 ≤ s ≤ t} ∨ N ,

where N includes all the null sets. The filtration Hn satisfies the usual conditions (see p. 254 in

[27]).

Let δ > 0 and {κn : n ≥ 1} be a uniformly bounded sequence, where for each n, κn is a stopping

time with respect to the filtration Hn. It suffices to show that

lim
δ↓0

lim sup
n→∞

sup
κn

E[dJ1
(Ĥn(κn + δ, ·), Ĥn(κn, ·))2] = 0. (6.9)

Consider any sequence of nondecreasing homeomorphism {λn : n ≥ 1} on [0, T ] such that

limn→∞ λn(y) = y uniformly in y ∈ [0, T ]. We want to show that the following holds:

lim
δ↓0

lim sup
n→∞

sup
κn

E
[(

sup
0≤y≤T

|Ĥn(κn + δ, λn(y)) − Ĥn(κn, y)|
)2]

= 0. (6.10)

Define the processes Ĥn,i ≡ {Ĥn,i(t, y) : t, y ≥ 0} by

Ĥn,i(t, y) ≡ 1(0 ≤ ηi ≤ t+ y − τn
i ) −

∫ ηi∧(t+y−τn
i )+

0

1

1 − F (u)
dF (u).

As in Lemma 3.5 in [27], one can check that for each fixed y and for each i, the process

{Ĥn,i(t, y) : t ≥ 0} is a square integrable martingale with respect to the filtration Hn and it has

predictable quadratic variation

〈Ĥn,i(·, y)〉(t) = 〈Ĥn,i〉(t, y) =

∫ ηi∧(t+y−τn
i )+

0

1

1 − F (u)
dF (u), for t ≥ 0,

and that the Hn martingales Ĥn,i(·, y) and Ĥn,j(·, y) for each fixed y are orthogonal for i 6= j.

Thus, for each fixed y and constant K > 0, the process Ĥ
(K)
n = {Ĥ(K)

n (t, y) : t ≥ 0} defined by

Ĥ(K)
n (t, y) =

1√
n

n(Ān(t)∧K)
∑

i=1

(

1(0 ≤ ηi ≤ t+ y − τn
i ) −

∫ ηi∧(t+y−τn
i )+

0

1

1 − F (u)
dF (u)

)

,
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is an Hn square integrable martingale with predictable quadratic variation

〈Ĥ(K)
n (·, y)〉(t) = 〈Ĥ(K)

n 〉(t, y) =
1

n

n(Ān(t)∧K)
∑

i=1

∫ ηi∧(t+y−τn
i )+

0

1

1 − F (u)
dF (u),

for t ≥ 0. By the SLLN,

1

n

⌊nt⌋
∑

i=1

∫ ηi

0

1

1 − F (u)
dF (u) → t, a.s. as n → ∞. (6.11)

So for each fixed y, the sequence of quadratic variations {〈Ĥ(K)
n (·, y)〉 : n ≥ 1} is C-tight by the

continuity of ā (Recall that a sequence {Yn} is said to be C-tight if it is tight and the limit of any

convergent subsequence must have continuous sample paths.). It follows by Theorem 3.6 in [51]

that the sequence {Ĥ(K)
n (·, y) : n ≥ 1} is C-tight for each fixed y.

Now, to prove (6.10), we have

E
[(

sup
0≤y≤T

∣

∣Ĥn(κn + δ, λn(y)) − Ĥn(κn, y)
∣

∣

)2]

≤ 2E
[

sup
0≤y≤T

∣

∣Ĥn(κn + δ, λn(y)) − Ĥn(κn, λn(y))
∣

∣

2
]

+ 2E
[

sup
0≤y≤T

∣

∣Ĥn(κn, λn(y)) − Ĥn(κn, y)
∣

∣

2
]

= 2 lim
K→∞

E
[

sup
0≤y≤T

∣

∣Ĥ(K)
n (κn + δ, λn(y)) − Ĥ(K)

n (κn, λn(y))
∣

∣

2
]

+2 lim
K→∞

E
[

sup
0≤y≤T

∣

∣Ĥ(K)
n (κn, λn(y)) − Ĥ(K)

n (κn, y)
∣

∣

2
]

,

where the equality holds by the dominated convergence and by stochastic boundedness of An. The

first term converges to 0 as n→ ∞ and δ ↓ 0 by the assumptions on κn and λn and C-tightness of

{Ĥ(K)
n : n ≥ 1}. We conclude that the second term converges to 0 by observing

Ĥ(K)
n (κn, λn(y)) − Ĥ(K)

n (κn, y)

=
1√
n

An(κn)∧K
∑

i=1

(

1(0 ≤ ηi ≤ κn + λn(y) − τn
i ) − 1(0 ≤ ηi ≤ κn + y − τn

i )

−
(

∫ ηi∧(κn+λn(y)−τn
i )+

0

1

1 − F (u)
dF (u) −

∫ ηi∧(κn+y−τn
i )+

0

1

1 − F (u)
dF (u)

))

.

Thus we obtain (6.10).

Now we prove the stochastic boundedness of {Ĥn : n ≥ 1} in DD. We observe that for each n,

each sample path of the process Ĥn is bounded by that of the process H̃n defined by

H̃n(t, y) =
1√
n

An(t+y)
∑

i=1

(

1(0 ≤ ηi ≤ t+ y − τn
i ) −

∫ ηi∧(t+y−τn
i )+

0

1

1 − F (u)
dF (u)

)

.
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The stochastic boundedness of {H̃n : n ≥ 1} in DD follows directly from the proof of Lemma 3.7

in [27]. Therefore, {Ĥn : n ≥ 1} is stochastically bounded, so that tightness of {Ĥn : n ≥ 1} in DD

is proved.

6.3 Convergence of the Finite-Dimensional Distributions

In this section, we complete the proof of the convergence (X̂n,1, X̂n,2) ⇒ (X̂1, X̂2) in DD ×DD by

proving that the finite-dimensional distributions of (X̂n,1, X̂n,2) converge to those of (X̂1, X̂2) since

we have proved the tightness of {(X̂n,1, X̂n,2) : n ≥ 1} in §6.2. We will mostly have to deal with

X̂n,2, since we have already shown convergence of X̂n,1. Our argument for X̂n,2 will also enable us

to establish joint convergence of the two finite-dimensional distributions.

Lemma 6.5 Under Assumptions 1 and 2 (F is continuous), the finite-dimensional distributions of

(X̂n,1, X̂n,2) converge to those of (X̂1, X̂2) as n→ ∞.

Proof. First of all, we understand the integrals X̂n,2 in (2.14) and X̂2 (≡ X̂c,r
2 ) in (3.16) as mean

square integrals, so that they can be represented as

X̂n,2(t, y) = l.i.m.k→∞X̂n,2,k(t, y), and X̂2(t, y) = l.i.m.k→∞X̂2,k(t, y),

where l.i.m. means limit in mean square, that is,

lim
k→∞

E[(X̂n,2(t, y) − X̂n,2,k(t, y))
2] = 0 and lim

k→∞
E[(X̂2(t, y) − X̂2,k(t, y))

2] = 0,

X̂n,2,k(t, y) ≡ −
∫ t

0

∫ ∞

0
1

y
k,t(s, x)dÛn(Ān(s), F (x))

= −
k
∑

i=1

[

∆Ûn
(Ān(sk

i−1), Ān(sk
i ), 0, F (t + y − sk

i ))
]

,

and

X̂2,k(t, y) ≡ −
∫ t

0

∫ ∞

0
1

y
k,t(s, x)dU(ā(s), F (x))

= −
k
∑

i=1

[

∆U (ā(sk
i−1), ā(s

k
i ), 0, F (t + y − sk

i ))
]

,

where 1
y
k,t is defined by

1
y
k,t(s, x) = 1(s = 0)1(x ≤ t+ y) +

k
∑

i=1

1(s ∈ (sk
i−1, s

k
i ])1(x ≤ t+ y − sk

i ), (6.12)
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with the points 0 = sk
0 < sk

1 < ... < sk
k = t chosen so that max1≤i≤k |sk

i−1 − sk
i | → 0 as k → ∞, and

∆Ûn
and ∆U are defined as ∆K̂ in (4.1).

We prove the convergence of the finite-dimensional distributions of X̂n,2 to those of X̂2 by taking

advantage of the convergence of Ûn ⇒ U as n→ ∞ in D([0,∞),D([0, 1],R)) (see (2.5)), for which

we define another process {X̃n,2,k(t, y) : t, y ≥ 0} in DD for each n by replacing the Ān terms in

∆Ûn
of X̂n,2,k by ā as follows,

X̃n,2,k(t, y) ≡ −
∫ t

0

∫ ∞

0
1

y
k,t(s, x)dÛn(ā(s), F (x))

= −
k
∑

i=1

[

∆Ûn
(ā(sk

i−1), ā(s
k
i ), 0, F (t + y − sk

i ))
]

.

Hence, we easily obtain the convergence of the finite-dimensional distributions of X̃n,2,k to those

of X̂2,k as n → ∞, since ā and F are both continuous by Assumptions 1 and 2, and the finite-

dimensional distributions of Ûn converge to those of U as n→ ∞ and U is continuous.

Moreover, since K̂n (Ûn) and An are independent by Assumptions 1 and 2, X̃n,2,k and X̂n,1

are independent, and since the limit processes X̂2,k and X̂1 are also independent, we obtain the

joint convergence of the finite-dimensional distributions of (X̂n,1, X̃n,2,k) to those of (X̂1, X̂2,k) as

n→ ∞.

Now it suffices to show that the difference between X̂n,2,k and X̃n,2,k is asymptotically negligible

in probability as n→ ∞, and the difference between X̂n,2 and X̂n,2,k is is asymptotically negligible

in probability as n→ ∞ and k → ∞, i.e.,

lim
n→∞

P
(

sup
0≤t≤T,y≥0

|X̂n,2,k(t, y) − X̃n,2,k(t, y)| > ǫ
)

= 0, T > 0, ǫ > 0. (6.13)

and

lim
k→∞

lim sup
n→∞

P (|X̂n,2,k(t, y) − X̂n,2(t, y)| > ǫ) = 0, t, y ≥ 0, ǫ > 0. (6.14)

We obtain (6.13) easily from Assumption 1 and (2.5) since ā and U are continuous. Now we

proceed to prove (6.14). We will follow a martingale approach argument similar to the one used in

Lemma 5.3 of [27], which relies on their technical Lemma 5.2. Fortunately, for our two-parameter

processes, the conditions of Lemma 5.2 [27] are satisfied by fixing the second argument. We have

for t, y ≥ 0 and Υ > 0,

P (|X̂n,2,k(t, y) − X̂n,2(t, y)| > ǫ)

≤ P (Ān(t) > Υ) + P (|X̂n,2,k(t, y) − X̂n,2(t, y)| > ǫ, Ān(t) ≤ Υ). (6.15)
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On {Ān(t) ≤ Υ},

X̂n,2,k(t, y) − X̂n,2(t, y) =

∫ t

0

∫ ∞

0
(1y

k,t(s, x) − 1(s + x ≤ t+ y))dÛn(Ān(s), F (x))

=
1√
n

An(t)∧(nΥ)
∑

i=1

βi(τ
n
i , ηi)(t, y),

where

βi(τ
n
i , ηi)(t, y) =

k
∑

j=1

1(sk
j−1 < τn

i ≤ sk
j )
(

1(t+ y − sk
j < ηi ≤ t+ y − τn

i )

− (F (t+ y − τn
i ) − F (t+ y − sk

j ))
)

.

Define the process Z
(Υ)
n ≡ {Z(Υ)

n (t, y) : t, y ≥ 0} by

Z(Υ)
n (t, y) ≡

An(t)∧(nΥ)
∑

i=1

βi(τ
n
i , ηi)(t, y), t, y ≥ 0.

As in Lemma 5.2 in [27], one can check that for each fixed y > 0, the process Z
(Υ)
n (·, y) = {Z(Υ)

n (t, y) :

t ≥ 0} is a square integrable martingale with respect to the filtration Fn = {Fn(t), t ≥ 0}, where

Fn(t) = σ{ηi ≤ s+ x : 1 ≤ i ≤ An(t), x ≥ 0, 0 ≤ s ≤ t} ∨ {An(s) : 0 ≤ s ≤ t} ∨ N ,

and the quadratic variation of Z
(Υ)
n (·, y) is

〈Z(Υ)
n (·, y)〉(t) = 〈Z(Υ)

n 〉(t, y) =

An(t)∧(nΥ)
∑

i=1

E[βi(τ
n
i , ηi)(t, y)

2]

=

An(t)∧(nΥ)
∑

i=1

k
∑

j=1

[

1(sj−1 < τn
i ≤ sk

j )(F (t+ y − τn
i ) − F (t+ y − sk

j ))

· (1 − (F (t+ y − τn
i ) − F (t+ y − sk

j )))
]

≤
An(t)∧(nΥ)
∑

i=1

k
∑

j=1

[

1(sj−1 < τn
i ≤ sk

j )(F (t+ y − τn
i ) − F (t+ y − sk

j ))
]

=

k
∑

j=1

(F (t+ y − sk
j−1) − F (t+ y − sk

j ))(An(sk
j ) −An(sk

j−1))

≤ sup
1≤j≤k

{An(sk
j ) −An(sk

j−1)},

where the last inequality follows from the fact that the sum of the coefficients before the An(sk
j )−

An(sk
j−1) terms is less than 1. So for fixed y ≥ 0, and on {Ān(t) ≤ Υ},

lim
k→∞

lim sup
n→∞

E[(X̂n,2(t, y) − X̂n,2,k(t, y))
2] = lim

k→∞
lim sup

n→∞
E
[

〈 1√
n
Z(Υ)

n (·, y)〉(t)
]

≤ lim
k→∞

lim sup
n→∞

E
[

sup
1≤j≤k

{Ān(sk
j ) − Ān(sk

j−1)}
]

= 0,
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where the convergence to 0 holds because of the continuity of ā, Assumption 1 and max1≤j≤k(s
k
j −

sk
j−1) → 0 as k → ∞.

Hence, (6.15) becomes

P (|X̂n,2,k(t, y) − X̂n,2(t, y)| > ǫ) ≤ P (Ān(t) > Υ) +
1

ǫ2
E
[

〈 1√
n
Z(Υ)

n (·, y)〉(t)
]

≤ P (Ān(t) > Υ) +
1

ǫ2
E
[

sup
1≤j≤k

{Ān(sk
j ) − Ān(sk

j−1)}
]

.

Therefore, by the stochastic boundedness of Ān, (6.14) is proved. That concludes the demon-

stration that the finite-dimensional distributions of (X̂n,1, X̂n,2) converge to those of (X̂1, X̂2) as

n→ ∞.
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