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Previously established upper and lower bounds for the mean waiting time in a GI/G/! queue given an interarrival-time 
distribution with increasing mean residual life are shown to be tight. Distributions for which the inequalities become equalities 
are displayed. The corresponding bounds for DMRL distributions are not tight. 

Queues, bounds, approximations, monotone mean residual life 

I. Introduction and summary 

Consider the G I / G / i  queue partially specified 
by the first two moments of the interarrival times 
and service times. Let ?~ be the arrival rate, p the 
traffic intensity, c, 2 the squared coefficient of vari- 
ation of the interarrival-time distribution (variance 
divided by the square of its mean), the c 2 the 
squared coefficient of variation of the service-time 
distribution. Kingman [!!] showed that the mean 
steady-state waiting time, £ W ,  is bounded above 
as follows: 

( l) 
2 ~ , ( i - p )  " 

Marshall [13] showed that if the interarrival-time 
distribution is also DFR (has decreasing failure 
rate), then 

- 1 2 + 1  P Ca 
2~t 

E W  <~ B -  

= ( ~ ' -  (2) 
2 ~ ( 1 - p )  " 

(See the Appendix for definitions of DFR and 
related concepts.) In fact, Daley has shown that 
the inequality (2) still holds if the interarrival-time 
distribution is only IMRL (has increasing mean 
residual life); see p. 26 of Daley and Trengove [7] 
or (5.6.5) of [16]. Stoyan and Stoyan [17] also 
established a lower bound for E W  which holds 

when the interarrival-time distribution is only 
NWUE (new worse than used in expectation, which 
is implied by IMRL): 

Ew>~ p(l + ~ )  (3) 
2 ~ ( 1 - p ) '  

which is just the bound (2) with c 2 = i, i.e., the 
exact M / G / !  formula; see 01.5 and 5.4 of [16] or 
Whirr [18]. (For NWUE distributions, c 2 ~ !.) 

Kingman's upper bound (!) is asymptotically 
tight in heavy traffic, but not in general. In fact, 
Daley [6] obtained a better upper bound, namely, 

(2 - p)~,~ ÷ p~ (4) 
~ w ~  2~(I - p) " 

The main purpose of this note is to show that 
the bounds (2) and (3) for IMRL and NWUE 
interarrivai-time distributions, respectively, are 
tight by exhibiting interarrival-time distributions 
that make (2) and (3) equalities for all service-time 
distributions with the given moments. Thus, for 
I M R L / G / I  queues with the first two moments oI 
the interarrival times and service times specified, 
the maximum relative error in £W (the upper 
bound minus the lower bound divided by the 
lower bound) is 

MRE(EW)-- p( c2 a + I)'  

By Little's formula L -  h W, the associated maxi- 

0167-6377/82/0000-0000/$02.75 © 1982 North-Holland 209 



Volume I, Number 6 OPERATIONS RESEARCH LETTERS December 1982 

mum relative error for the expected number in 
system, £N, is 

~ -  I (6) 
UXE(. N) = 2 + - I)" 

We ~ n  also identify the set of all possible values 
for EWin an IMRL/G/ !  queue with the first two 
moments of the interarrival times and service times 
sp¢c, ified: It is the interval (t~, b] with a and b 
given by (3) and (2). (It is not difficult to show 
that all values in the interval can be realized.) 

Since the interarrival-time distributions attain- 
ing the bounds are mixtures of two exponential 
distributions, no further improvement can be ob- 
tained by assuming the additional shape con- 
straints of complete monotonicity or log-convexity 
for the interarrival-time distribution; see Chapter 
$ of Keilson [10]. It turns out that the extremai 
interarrival-time distributions do not depend on 
the service-time distribution at all. Moreover, the 
mean waiting time given the extremal interarrival- 
time distribution depends on the service-time dis- 
tribution only through its mean and variance. 

For the special case of exponential service-time 
distributions and completely monotone inter- 
arrival.time distributions (mixtures of exponential 
distributions), the extremal distributions and the 
associated MRE in (6) were derived in Whitt [19]. 
in that setting there is a systematic procedure for 
deriving the extremal distributions based on com- 
plete Techbycheff systems. Here we show that 
these same interarrival.time distributions ar: ex- 
trem~i for more general service-time and inter- 
arrival° time distributions. 

The bounds (2) and (3) with the inequalities 
reversed were obtained for IFR and NBUE distri- 
butions, respectively, at the same time as (2) and 
(3), but the tightness properties are not the same. 
In the IFR case, we show that the analogues of (2) 
and (3) are not tight. 

It is natural to combine the bounds (2) and (3) 
to obtain approximations for general G I / G / i  
queues based on the DFR and IFR structure. In 
particular, it is reasonable to require that ap- 
proximations for EW fall between (2) and (3). 
Moreover, since (2) is asymptotically correct in 
heavy traffic (as 0 ~ I) while (3) is not unless 
c~ ~ 1, it is also reasonable to require that ap- 
proximations should approach (2) as 0 increases. 
We call approximations MFR approximations 

(monotone failure rate) if they are of the form 

Approx(EW) - / ( p ) B d ( 2 )  + [ 1 - f(p)]  Bd(3) (7) 

where 

for all p and f(p) is an increasing function of p. 
The special case of f ( p ) =  p yields 

2 
Approx(EW) = p( ¢a2 + cs ) (8) 

2 t , ( l - p ) '  

which is an approximation that is often proposed; 
see p. 221 of Arnold [I], Sakasegawa [14], 
Shanthikumar and Buzacott [15], and Yu [20]. 
However, as we indicate in Section 5, it is perhaps 
better to have jr(p)> p. 

The rest of this note is organized as follows. In 
Section 2 we present the interarrivai-time distribu- 
tion that attains the upper bound (2). In Section 3 
we present the interarrival-time distributions that 
asymptotically attain the lower bound (3). In Sec- 
tion 4 we discuss the case of DMRL interarrival- 
time distributions. Finally, in Section 5 we discuss 
related work by Daley, Karpelevich, and Kreinen 
[8,9,12]. 

2. The upper IMRL bound 

The interarrival-time distribution yielding the 
upper bound (2) is a mixture, being distributed 
according to an exponential distribution having 
mean (1 + ca2)/2X with probability 2/(ca 2 + i) and 
taking the value 0 with probability (ca 2 - l)/(ca z + 
I); its cdf is thus 

F(x)=  I + I)] (9) 
The mass at '0 can be interpreted as the limit of 
exponetttial distributions with asymptotically 
negligible means, so the upper bound can be ap- 
proximated arbitrarily closely with mixtures of two 
proper exponential distributions. 

Note that the arrival process wi~h the inter- 
arrival-time cdf F in (9) is equivalent to a com- 
pound Poisson process with geometrically distrib- 
uted batches. Thus the G I / G / I  system we claim 
attains the upper bound in (2) is none other than 
an M / G / I  system with batch arrivals. Hence, it is 
a simple matter to prove that the cdf F in (9) 
attains the bound: We apply known formulas for 
the mean waiting time in an M / G / I  queue with 
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batch arrivals. From §5.10 of Cooper [5], it follows 
that equality holds in (2) with F. (We use Poisson 
arrival rate 2/m1(I 4- c~), mean of the batch size 
(1 4- c~)/2, and variance of the batch size (c 2 + 

2 l)(c, 2 - 1)/4; then EWI - O'(c~ 4- cs )/2~,(1 - 0) 
and EW  2 -O(c  2 -  1)/2~, in (10.1) and (10.2) of 

[51.) 

3. The lower IMRL bound 

The interarrival-time distribution yielding the 
lower bound (3) is the exponential distribution 
with mean ~,-t. Of course, this distribution does 
not have the correct squared coefficient of varia- 
t~ion, c~, but it is the limit of distributions that do. 
For each b, let the approximating interarrival-time 
distribution be the mixture of two exponential 
distributions: one having mean b/~ with probabil- 
ity (ca 2 - l)/(ca 2 - I 4- 2 ( b -  1) 2) and the other 
having mean ( 1 - (c 2 - ! ) /2(b - 1))/?~ with prob- 
ability 2 ( b -  I)2/(c~ - 1 4- 2 ( b -  I)2). For each b, 
the approximating interarrival-time distribution 
has mean ~- t  and squared coefficient of variation 
c~. 

As b ~ oo, the approximating interarrival-time 
distribution approaches the exponential distribu- 
tion with mean A-I. Moreover, the mean waiting 
time as a function of b, E W(b), converges to the 
mean waiting time in tile associated M / G / I  queue 
with arrival rate ~. By the corollary on p. 58 of 
Borovkov [4], the steady-state waiting-time distri- 
butions converge. By uniform integrability, the 
means ~:onverge too; see p. 32 of Billingsley [3]. To 
get uniform integrability, note that the inter- 
arrival.time distribution indexed by b is stochasti- 
cally larger than the exponential distribution with 
mean ( I - (c~ - I ) /2(b  - 1))/?~. Hence, the asso- 
ciated steady-state waiting time W(b) is stochasti- 
cally smaller than the waiting time of the M / G / i  
system, which implies uniform integrability. 

4. DMRL interarrival-time distributions 

When the inequalities are reversed, the bounds 
(2) and (3) hold for IFR distributions, in fact, for 
DMRL and NBUE distributions, respectively. The 
NBUE upper bound, i.e., the analogue of (3) obvi- 

2<p2 it is ously cannot tie tight because for c, 
.+ 

greater than Kingman's upper bound (I). 
For the DMRL lower bound, there obviously 

can be no analogue of Section 2 because for some 
parameter values the bound (2) is negative. In 
particular, for c~ + p(c~ + 1)< l, the bound is 
negative. Of course, this can only occur if c~ ~ I, 
as is the case when the interarrival-time distribu- 
tion is DMRL. 

We now provide additional information about 
the DMRL lower bound in the case of determinis- 

' ~" 2 tie service umes, i.e., when c~ = 0. We show that 
there is a DMRL interarrival-time distribution 
with E W - O  if and only if c ~ < ( I - 0 )  2 . We 
conjecture that the infimum of E W  over all DMRL 
distributions is positive when c~ > (1 - 0)2. If the 
conjecture is true, then for (1 - p)2 • c~ • ! - p 
the bound (2) is negative while the infimum of EW 
is positive. For the following proof, let u and v be 
generic interarrival-time and service-time random 
variables. 

T h e  actual steady-state mean waiting time obvi- 
ously if 0 if and only if P(u > E v ) -  !. Hence, to 
achieve E W = 0, we must have u ffi Ev + X where 
X is a nonnegative random variable with mean 
E u - E v  and variance (Eu)'c~. Hence, X has 
squared coefficient of variation c~/(I -p )2 .  Since 
u has a DMRL distribution, so must X. Hence, the 
squared coefficient of variation of X must be less 
than or equal to I. in other words, it is possible to 
represent u as Eo + X if and only if c~ ~ (I - p)2. 
if c~ ¢ (! - p)2 then the minimum value of EW is 
0 and it is attained by any nonnegative random 
variable X having a DMRL distribution with 
squared coefficient of variation c ~ / ( i -  0)' .  in 
each case, X can be given a shifted exponential 
distribution, i.e., we can let X -  a + Y where a >I 0 
and Y is an exponential distribution. More gener- 
ally, the shifted.exponential distribution appears 
to be a good candidate for achieving the minimum 
O l / O / I  mean waiting time over all DMRL inter- 
arrival=time distributions for other service-time 
distributions and other values of c~ and p. How- 
ever, we conjecture that the shifted.exponential 
distribution does not always yield the minimum. 

In closing, we note that a better lower bound in 
the DMRL case cannot be contained from 
Marshall's argument [13], which is based on a 
formula relating EW to the steady=state idle-time, 
say 1. There is a sequence of service-time distribu- 
tions for which the key inequality (20) in [13] is 
asymptotically an equality. Consider the service- 
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time distribution with mass c2/(I + c 2) on 0 and 
mass 1/(c, 2 + I) on Eo(I + c 2). As c 2 --, ~ ,  almost 
all mass is on 0 and, for fixed DMRL interarrival- 
time distributions, the idle-time distribution and 
its first two moments converge as c~ 2 --, ao to the 
interarrival-time distribution and its first two mo- 
ments, Hence" E12/2Ei --, EuZ/2Eu as c~ --, Qo 
and Marshall's bound on Ei2/2E! is fight. 

& The garpelevleh-Kmimn curie 

promising for thecase c 2 ~< I, when the bounds (2) 
and (3) are not tight, is to replace the upper bound 
(3) in (7) with (8). 

Appendix. Some notions of aging 

Here we define classes of probability distribu- 
tions on the nonnegative real line. For more dis- 
cussion, see Barlow and Proschan [2] or Stoyan 
[16]. 

Daryi Daley (personal communication) has 
shown that the tightness of the IMRL/G/I  
bounds can also be derived from the Karpe- 
levich-Kreinen [8] curve for the interarrival time 
u, This curve F, is specified parametrically by 

F,-((E(u-x).,E(u-x)2+ ): O ( x  ~ oo},( i0) 

• where (x) + = max(x, 0). The curve moves from 
(£u, Eu 2) to (0, O) as x increases. The slope of the 
curve at x is just the mean residual life E ( u -  xlu 
> x), Since 

Fw- - - e(. - - w)2+ 
' (t,) 

see 03 of Daley [6], bounds on f W  [liven the first 
two moments of u and o are equivalent to bounds 
on £ ( u -  v - W)~, Daley's analysis of the Karpe- 
levich-Kreinen curve shows that in the IMRL case 
the extreme cases of the Karpelevich-Kreinen 
curve given two moments of u are linear functions. 
Moreover, they are obtained by the extremal dis- 
tributions in Sections 2 and 3. The iinearity ira- 
pries that the extreme values of E(u-X)2+ are 
attained by the same distributions of u for  any 
random variable X, e.g,, X - v + W. 

In the DMRL ease, the extremal curves given 
two moments of u are not linear, so it is not 
possible to consider the extremal Karpe- 
levich-Kreinen curves independently of u and W 
in order to obtain bounds for E W, 

Kreinen [12] has also applied the curve (10) to 
show that the approximation (8) is an upper (lower). 
bound for £ W  in E J G / I  queues (gamma inter- 
arrival times) having c 2 ~ I (c 2 > I). This suggests 
that the approximation (8) might be smaller (larger) 
when c2~  1 (c2> 1). This can be achieved, for 
example, by making f (o)~  p in (7). A natural 
choice is f ( p ) -  0 d where 0 < d < I. Even more 

Ddlnitlea i. A real-valued random variable X is 
stochastically less than or equal to another real.val- 
ued random variable Y, which we denote by X 

st Y, if 

P ( X > t ) ~ P ( Y > t )  for all t. 

Definition 2. Given a random variable X on the 
nonnegative real line, the residual lifetime of X 
after t is a random variable X, with 

P(X>x+tlX>t) 
P(X,>x)= ifP(X>t)>O, 

O, i fP (X> t )=O 

for x ;~ 0. 

Definition 3. The distribution of the nonnegative 
random variable X 

(a) has a decreasing failure rate (DFR) if 

X, ~st X,, O ,~ s < t < oz ,  

(b) has increasing mean residual life (IMRL) if 

EX~£X,, O < s < t < o o ,  

(c) is new worse than used (NWU) if 

X~,,X,, t >O,  

(d) is new worse than used in expectation 
(NWUE) if 

EX~EX,, t>~O. 

If the inequalities are reversed in Definition 3, 
the notions are called, respectively, increasing 
failure rate (IFR), decreasing mean residual life 
(DMRL), new better than used (NBU) and new 
better than used in expectation (NBUE). 
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